JPH0123926B2 - - Google Patents
Info
- Publication number
- JPH0123926B2 JPH0123926B2 JP55157590A JP15759080A JPH0123926B2 JP H0123926 B2 JPH0123926 B2 JP H0123926B2 JP 55157590 A JP55157590 A JP 55157590A JP 15759080 A JP15759080 A JP 15759080A JP H0123926 B2 JPH0123926 B2 JP H0123926B2
- Authority
- JP
- Japan
- Prior art keywords
- wound
- manufacturing
- winding
- alloy thin
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 3
- 229910008423 Si—B Inorganic materials 0.000 claims 1
- 239000011162 core material Substances 0.000 description 24
- 230000005284 excitation Effects 0.000 description 13
- 229910000889 permalloy Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910000815 supermalloy Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】
本発明は、高透磁率合金薄板を巻回してなる励
磁電流特性の良好な巻鉄心とその製造方法に関す
るものである。
磁気移相器、磁気増幅器、直流電流検出器、磁
気変調器などには、例えば、異方性50Niパーマ
ロイ、スーパーマロイ、方向性ケイ素鋼などから
成る巻鉄心が使用されている。これら従来の巻鉄
心は、励磁電流特性に優れ、また飽和までの急峻
性が大きいことで知られているが、近年より小さ
い電流による励磁、飽和電圧の増加、飽和に到る
急峻な―特性が求められている。
また、従来の鉄心のうち、特に50Niパーマロ
イ、スーパーマロイ等のパーマロイ系鉄心は、構
成材料の歪感受性が大きいために、運搬、輸送、
巻線なでの作業の際に機械的歪による磁気特性の
劣化が著しく、巻鉄心としての所要機能、電気的
平衡を損なうなど大きな欠点を有している。加う
るに、これら従来の巻鉄心構成材料を製造するに
は、溶解、造塊、熱間圧延、酸洗、冷間圧接など
の複雑で周到な工程を必要とするため、巻鉄心の
価格を高価なものとしていた。
本発明は上記従来技術の欠点を解消し、励磁電
流特性、歪感受性、耐衝撃性に優れ、より安価な
巻鉄心とその製造方法を提供することを目的とす
る。
上記目的を達成するために本発明は、巻鉄心を
構成する高透磁率合金薄板としてFe―Co―Si―
B系の非晶質合金を用いたことを特徴とするもの
である。
本願発明者らは、式FedCoeTfSigBh(式中Tは、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、
Mn、Ni、Pd、のうちの1種または2種以上であ
り、d+e+f+g+h=100)で示される非晶
質合金、特に上記式において、0≦f≦3、72≦
d+e≦85、7≦g<16、7≦h<10、15≦g+
h≦25なる条件を満足する非晶質合金を熱処理、
特に磁場中で熱処理し、冷却したものを用いて巻
鉄心を構成すると優れた励磁電流特性が得られる
ことを見出だし、本発明を完成したものである。
本発明において、非晶質形成元素であるSiとB
の総和が15原子%(以下単に%と記す)未満では
非晶質化そのものが困難となり、25%をこえると
磁束密度の低下をきたすので、15〜25%とする。
非晶質形成元素として他の半金属元素、たとえば
C、P、Ge、Bi、Alが知られているが、熱的安
定性および靭性の点でSiとBとの組合せが最も優
れている。C、P、Ge、Bi、Alを含んでいても
特に本発明の効果を大きく損なうことはないが、
5%以下であることが望ましい。
Bの含有量は7%未満では非晶質化が困難であ
り、10%以上では耐環境特性、たとえば耐湿性、
耐アルカリ性が大巾に低下して好ましくない。
Siの含有量は7%未満では熱的安定性が損なわ
れ16%以上ではHcが0.1Oe以上となり好ましくな
い。
FeとCoの総和は72%から85%であり、85%を
こえると非晶質化が困難となり、72%未満では磁
束密度の低下があり好ましくない。Coは、Feと
の相互作用により磁場中焼なまし及び冷却による
誘導磁気異方性を発生せしめ、B―H曲線の角型
性を、従つて励磁電流特性における飽和までの急
峻度を生じる効果を有す。
また添加元素としてTで示す各元素を含むこと
が可能である。Ti、Zr、Hf、V、Nb、Ta、
Mo、W、Mn、Ni、Pd、の一群は添加により非
晶質形成能を向上させ、Cr、Pdは耐食性、耐湿
性を向上させる。
MnはHcを低くする効果がある。これらの添加
元素Tの総量は10%以下であることが高い磁束密
度を保証する上で好ましい。10%をこえるとたと
えばB10は急激に低下する傾向にあり、好ましく
ない。
以上の組成範囲の非晶質鉄心材料をトロイダル
鉄心とし磁場中で、250℃から450℃の間の適切な
温度で焼なまし、毎時300℃以下の冷却速度で磁
場中冷却することにより、Hcで0.09Oe以下、B10
で12000G、Br/B10が75%以上の低保磁力、高磁
束密度、高角型比巻鉄心が容易に得られる。磁界
としては従来直流が一般的に採用されているが、
半波整流及び交流(商用周波数)でも効果はほと
んど減じない。
熱処理温度は組成の変化により最適温度がずれ
るが450℃をこえると脆化が著しくなり、また、
250℃未満では焼きなましによる応力緩和が不可
能であり、効果がほとんどない。磁場中冷却速度
が毎時300℃をこえると冷却むらが発生し易く75
%以上のBr/B10が得られない。
以下、実施例に基き詳細に説明する。
第1表は、従来のスーパーマロイと50Niパー
マロイに対する本発明の巻鉄心を構成する非晶質
合金鉄心の直流磁性の例を示す。いずれの組成に
おいても最適の熱処理温度を採つた場合である。
第1表から明らかなように、本発明の巻鉄心を
構成する非晶質合金鉄心はスーパーマロイと同等
以下の低い保磁力を示しており、B10、Br/B10
は50Niパーマロイと同等のレベルのものがあり
総合的に従来材の長所を兼備した優れた性能をも
つており、良好な励磁電流特性を示すことが明ら
かである。
第1図は、第1表中の合金No.2(3)、No.11(4)
より成る巻鉄心の50Hzにおける励磁電流特性を
スーパーマロイ(1)、50Niパーマロイ(2)と
の対比で示したものである(( )内は図中の符
号を示す)。巻鉄心の鉄心寸法は内径25mmφ、外
径35mmφ、高さ5mm、励磁巻数は1次、2次側と
も15ターンである。第1図から明らかなように本
発明の巻鉄心は低い励磁起磁力(励磁電流)が出
力電圧の高いレベルまで維持され、またこの間の
直線性が良好であり、優れた励磁特性を有してい
る。
上記実施例から明らかなごとく、本発明の巻鉄
心の励磁特性は極めて優れており、磁気増幅器、
磁気移相器、直流電流検出器、磁気変調器などの
制御用巻鉄心として優れたものである。
また、鉄心素材の非晶質合金が本来的に持つて
いる強度と靭性から本発明の巻鉄心は応力感受性
が低く、耐衝撃性に優れた信頼性の高いものであ
る。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wound core having good excitation current characteristics, which is formed by winding a thin plate of a high magnetic permeability alloy, and a method for manufacturing the same. For magnetic phase shifters, magnetic amplifiers, DC current detectors, magnetic modulators, etc., wound cores made of, for example, anisotropic 50Ni permalloy, supermalloy, grain-oriented silicon steel, etc. are used. These conventional wound cores are known for their excellent excitation current characteristics and their steepness until saturation. It has been demanded. In addition, among conventional iron cores, especially permalloy iron cores such as 50Ni permalloy and supermalloy, the strain sensitivity of the constituent materials is high, so transportation, transportation, etc.
It has major drawbacks such as significant deterioration of magnetic properties due to mechanical strain during winding work, impairing the required function as a wound core and electrical balance. In addition, manufacturing these conventional wound core constituent materials requires complex and detailed processes such as melting, ingot-forming, hot rolling, pickling, and cold welding, which reduces the cost of the wound core. It was considered expensive. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, and to provide a wound core that is excellent in excitation current characteristics, strain sensitivity, and impact resistance, and is less expensive, and a method for manufacturing the same. In order to achieve the above object, the present invention has developed Fe-Co-Si-
It is characterized by using a B-based amorphous alloy. The inventors of the present application have determined that the formula Fe d Co e T f Si g B h (where T is
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W,
An amorphous alloy of one or more of Mn, Ni, and Pd, represented by d+e+f+g+h=100), especially in the above formula, 0≦f≦3, 72≦
d+e≦85, 7≦g<16, 7≦h<10, 15≦g+
Heat treating an amorphous alloy that satisfies the condition h≦25,
In particular, the inventors have discovered that excellent excitation current characteristics can be obtained by constructing a wound core using a core that has been heat-treated in a magnetic field and cooled, thereby completing the present invention. In the present invention, Si and B, which are amorphous forming elements,
If the total is less than 15 atomic % (hereinafter simply referred to as %), it will be difficult to make it amorphous, and if it exceeds 25%, the magnetic flux density will decrease, so it is set to 15 to 25%.
Although other metalloid elements such as C, P, Ge, Bi, and Al are known as amorphous-forming elements, the combination of Si and B is the best in terms of thermal stability and toughness. Even if C, P, Ge, Bi, and Al are included, the effects of the present invention will not be significantly impaired, but
It is desirable that it is 5% or less. If the content of B is less than 7%, it is difficult to make it amorphous, and if it is more than 10%, the environmental resistance properties, such as moisture resistance,
This is not preferable because the alkali resistance is greatly reduced. If the Si content is less than 7%, the thermal stability will be impaired, and if it is more than 16%, the Hc will be 0.1 Oe or more, which is not preferable. The total amount of Fe and Co is 72% to 85%, and if it exceeds 85%, it becomes difficult to make it amorphous, and if it is less than 72%, the magnetic flux density decreases, which is not preferable. Co causes induced magnetic anisotropy due to annealing and cooling in a magnetic field through interaction with Fe, which has the effect of increasing the squareness of the BH curve and, therefore, the steepness of the excitation current characteristics up to saturation. has. Further, each element indicated by T can be included as an additive element. Ti, Zr, Hf, V, Nb, Ta,
Addition of a group of Mo, W, Mn, Ni, and Pd improves amorphous formation ability, and Cr and Pd improve corrosion resistance and moisture resistance. Mn has the effect of lowering Hc. The total amount of these additional elements T is preferably 10% or less in order to ensure high magnetic flux density. If it exceeds 10%, for example, B10 tends to decrease rapidly, which is not preferable. Hc Less than 0.09Oe at B 10
At 12,000G, a low coercive force, high magnetic flux density, and high square ratio core with Br/B 10 of 75% or more can be easily obtained. Conventionally, direct current is generally used as the magnetic field, but
Even with half-wave rectification and alternating current (commercial frequency), the effect hardly decreases. The optimal temperature for heat treatment will vary depending on composition changes, but if it exceeds 450℃, embrittlement will become significant, and
At temperatures below 250°C, stress relaxation by annealing is impossible and has little effect. If the cooling rate in a magnetic field exceeds 300℃/hour, uneven cooling is likely to occur75
Br/B 10 of % or more cannot be obtained. Hereinafter, a detailed explanation will be given based on examples. Table 1 shows examples of DC magnetism of the amorphous alloy core constituting the wound core of the present invention for conventional supermalloy and 50Ni permalloy. This is the case when the optimum heat treatment temperature is adopted for any composition. As is clear from Table 1, the amorphous alloy core constituting the wound core of the present invention exhibits a low coercive force equal to or lower than that of supermalloy, with B 10 and Br/B 10
It is clear that this material has the same level as 50Ni permalloy, has excellent performance that combines the advantages of conventional materials, and exhibits good excitation current characteristics. Figure 1 shows alloys No. 2 (3) and No. 11 (4) in Table 1.
The excitation current characteristics at 50 Hz of the wound core made of the following are shown in comparison with those of supermalloy (1) and 50Ni permalloy (2) (numerals in parentheses indicate the numbers in the figure). The core dimensions of the wound core are: inner diameter 25mmφ, outer diameter 35mmφ, height 5mm, and the number of excitation turns is 15 turns on both the primary and secondary sides. As is clear from Fig. 1, the wound core of the present invention maintains a low excitation magnetomotive force (excitation current) up to a high level of output voltage, and has good linearity during this period, and has excellent excitation characteristics. There is. As is clear from the above examples, the excitation characteristics of the wound core of the present invention are extremely excellent, and the magnetic amplifier,
It is excellent as a control wound core for magnetic phase shifters, DC current detectors, magnetic modulators, etc. Furthermore, because of the strength and toughness inherent in the amorphous alloy of the core material, the wound core of the present invention has low stress sensitivity, excellent impact resistance, and high reliability. 【table】
第1図は50Hzにおける本発明の巻鉄心と従来
の巻鉄心の励磁電流特性を示した図である。
FIG. 1 is a diagram showing the excitation current characteristics of the wound core of the present invention and the conventional wound core at 50 Hz.
Claims (1)
心において、その組成が、 組成式:FedCoeSigBh 但し、d+e+g+h=100 72≦d+e≦85、7≦g<16、 7≦h<10、15≦g+h≦25 で表わされるFe―Co―Si―B系非晶質合金薄板
を巻回したものであることを特徴とする巻鉄心。 2 高透磁率合金薄板を巻回して形成される巻鉄
心において、その組成が、 組成式:FedCoeTfSigBh 但し、T=(Ti、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Pd、Ni、Mn) d+e+f+g+h=100、0<f≦
3、 72≦d+e≦85、7≦g<16、7≦h
<10、15≦g+h≦25 で表わされるFe―Co―Si―B系非晶質合金薄板
を巻回したものであることを特徴とする巻鉄心。 3 その組成が、 組成式:FedCoeSigBh 但し、d+e+g+h=100 72≦d+e≦85、7≦g<16、7≦h
<10、15≦g+h≦25 で表わされるFe―Co―Si―B系非晶質合金薄板
を巻回した後、熱処理することを特徴とする巻鉄
心の製造方法。 4 特許請求の範囲第3項記載の巻鉄心の製造方
法において、熱処理として、磁場中にて250℃か
ら450℃の間で焼なましを行ない、毎時300℃以下
の冷却速度にて磁場中冷却を施すことを特徴とす
る巻鉄心の製造方法。 5 その組成が、 組成式:FedCoeTfSigBh 但し、T=(Ti、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Pd、Ni、Mn) d+e+f+g+h=100、0<f≦
3、72≦d+e≦85、7≦g<16、7
≦h<10、15≦g+h≦25 で表わされるFe―Co―Si―B系非晶質合金薄板
を巻回した後、熱処理することを特徴とする巻鉄
心の製造方法。 6 特許請求の範囲第5項記載の巻鉄心の製造方
法において、熱処理として、磁場中にて250℃か
ら450℃の間で焼なましを行ない、毎時300℃以下
の冷却速度にて磁場中冷却を施すことを特徴とす
る巻鉄心の製造方法。[Claims] 1. A wound core formed by winding a high magnetic permeability alloy thin plate, the composition of which is: Fe d Co e Si g B h , where d+e+g+h=100 72≦d+e≦85, 7 A wound iron core characterized in that it is made by winding Fe--Co--Si--B based amorphous alloy thin plates expressed by ≦g<16, 7≦h<10, 15≦g+h≦25. 2. In a wound core formed by winding a high permeability alloy thin plate, its composition is as follows: Fe d Co e T f Si g B h , where T=(Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Pd, Ni, Mn) d+e+f+g+h=100, 0<f≦
3, 72≦d+e≦85, 7≦g<16, 7≦h
A wound iron core characterized in that it is made by winding Fe-Co-Si-B amorphous alloy thin plates expressed by <10, 15≦g+h≦25. 3 Its composition is: Composition formula: Fe d Co e Si g B h However, d+e+g+h=100 72≦d+e≦85, 7≦g<16, 7≦h
A method for manufacturing a wound iron core, which comprises winding an Fe--Co--Si--B amorphous alloy thin plate expressed by <10, 15≦g+h≦25 and then heat-treating the sheet. 4. In the method for manufacturing a wound core according to claim 3, the heat treatment includes annealing in a magnetic field between 250°C and 450°C, and cooling in the magnetic field at a cooling rate of 300°C or less per hour. A method of manufacturing a wound iron core characterized by subjecting it to. 5 Its composition is: Composition formula: Fe d Co e T f Si g B h However, T = (Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Pd, Ni, Mn) d+e+f+g+h=100, 0<f≦
3, 72≦d+e≦85, 7≦g<16, 7
1. A method for manufacturing a wound core, which comprises winding an Fe--Co--Si--B amorphous alloy thin plate represented by ≦h<10, 15≦g+h≦25, and then heat-treating the sheet. 6. In the method for manufacturing a wound core according to claim 5, annealing is performed in a magnetic field between 250°C and 450°C as the heat treatment, and cooling in the magnetic field is performed at a cooling rate of 300°C or less per hour. A method of manufacturing a wound iron core characterized by subjecting it to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55157590A JPS5783005A (en) | 1980-11-11 | 1980-11-11 | Wound core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55157590A JPS5783005A (en) | 1980-11-11 | 1980-11-11 | Wound core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5783005A JPS5783005A (en) | 1982-05-24 |
JPH0123926B2 true JPH0123926B2 (en) | 1989-05-09 |
Family
ID=15653026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55157590A Granted JPS5783005A (en) | 1980-11-11 | 1980-11-11 | Wound core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5783005A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59150414A (en) * | 1982-12-23 | 1984-08-28 | Toshiba Corp | Reactor for semiconductor circuit |
GB2138215B (en) | 1983-04-13 | 1987-05-20 | Hitachi Metals Ltd | Amorphous wound coil |
US4834815A (en) * | 1987-10-15 | 1989-05-30 | Allied-Signal Inc. | Iron-based amorphous alloys containing cobalt |
DE102010001394A1 (en) * | 2010-01-29 | 2011-08-04 | Vacuumschmelze GmbH & Co. KG, 63450 | Antenna core, antenna and method for producing an antenna core and an antenna |
CN103820741B (en) * | 2014-03-01 | 2015-11-25 | 南通大青节能科技有限公司 | A kind of mu-metal material for energy-saving electric machine and preparation method thereof |
CN106024248A (en) * | 2016-08-02 | 2016-10-12 | 广西南宁胜祺安科技开发有限公司 | Neodymium-iron-boron magnetic material and preparation method thereof |
CN108597795B (en) * | 2018-04-13 | 2020-11-06 | 河南宝泉电力设备制造有限公司 | Amorphous dry-type transformer |
CN111575610B (en) * | 2020-06-29 | 2021-09-21 | 华麟津磁(天津)科技有限公司 | SmFeB amorphous soft magnetic alloy material and preparation method thereof |
CN114381668B (en) * | 2022-01-18 | 2022-12-13 | 浙江大学 | Supersaturated solid solution soft magnetic material and preparation method thereof |
-
1980
- 1980-11-11 JP JP55157590A patent/JPS5783005A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5783005A (en) | 1982-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4038073A (en) | Near-zero magnetostrictive glassy metal alloys with high saturation induction | |
US4268325A (en) | Magnetic glassy metal alloy sheets with improved soft magnetic properties | |
US4150981A (en) | Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction | |
US4437907A (en) | Amorphous alloy for use as a core | |
GB1580498A (en) | Metallic glasses having a combination of high permeability low magnetostriction low ac core loss and high thermal stability | |
JPS6328483B2 (en) | ||
JPH0123926B2 (en) | ||
US6432226B2 (en) | Magnetic glassy alloys for high frequency applications | |
JPS6362579B2 (en) | ||
US6749695B2 (en) | Fe-based amorphous metal alloy having a linear BH loop | |
JPH08188858A (en) | Glass alloy having permimber characteristic | |
US4312683A (en) | Method for heat-treating amorphous alloy films | |
JPH0544165B2 (en) | ||
JPS6332244B2 (en) | ||
JPS6119701B2 (en) | ||
JP2004519554A (en) | Metallic glass alloys for electronic article surveillance | |
JPH0323619B2 (en) | ||
JPS59147415A (en) | Wound core | |
JPH06200357A (en) | Amorphous alloy | |
JPS61261451A (en) | Magnetic material and its production | |
EP0329704B1 (en) | Near-zero magnetostrictive glassy metal alloys for high frequency applications | |
JPH0257683B2 (en) | ||
JPS5919304A (en) | Wound core | |
JPS62167840A (en) | Magnetic material and its manufacture | |
JPH0811818B2 (en) | Heat treatment method for toroidal amorphous magnetic core |