JPH01234117A - Machining error correction control method in die milling spark erosion machining - Google Patents

Machining error correction control method in die milling spark erosion machining

Info

Publication number
JPH01234117A
JPH01234117A JP5608788A JP5608788A JPH01234117A JP H01234117 A JPH01234117 A JP H01234117A JP 5608788 A JP5608788 A JP 5608788A JP 5608788 A JP5608788 A JP 5608788A JP H01234117 A JPH01234117 A JP H01234117A
Authority
JP
Japan
Prior art keywords
machining
electrode
gap
error
errors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5608788A
Other languages
Japanese (ja)
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Takeshi Araya
荒谷 雄
Masakazu Kishi
岸 雅一
Takashi Ishii
隆 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP5608788A priority Critical patent/JPH01234117A/en
Publication of JPH01234117A publication Critical patent/JPH01234117A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2500/00Holding and positioning of tool electrodes
    • B23H2500/20Methods or devices for detecting wire or workpiece position

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To set a correct reference surface with high reliability by aligning for setting a reference surface between an electrode and a workpiece before machining utilizing a characteristic that a gap under gap detecting conditions in a certain microdischarge converges to a specified value. CONSTITUTION:Alignment for setting a reference surface between an electrode 1 and a workpiece 2 before machining is performed by causing microdischarge for a designated time under gap detecting conditions that a gap with the electrode is a specified value to avoid an error due to burr, dust or the like. Further, in order to diagnose an error due to electrode consumption and thermal deformation caused in spark erosion machining, after machining in a designated step, the electrode is moved to a reference surface setting position in the same manner before machining, and while it is switched to gap detecting conditions to cause microdischarge for a designated time, the position of the electrode after the gap with the electrode, that is, an error due to electrode consumption and thermal deformation is detected to control error correction. Thus, the reference surface can be set correctly and with high reliability, and a machining error is eliminated so as to improve machining accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放電加工で生じる加工間隙変化による誤差や
電極消耗及び熱変形による誤差など加工深さ方向の加工
誤差を検出2診断し、それを正確に補正制御する方法に
関すもので、特に形彫り放電加工の高精度化に好適なも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention detects and diagnoses machining errors in the machining depth direction, such as errors due to machining gap changes that occur during electrical discharge machining, errors due to electrode wear and thermal deformation, and The present invention relates to a method for accurately correcting and controlling the process, and is particularly suitable for increasing the precision of die-sinking electrical discharge machining.

〔従来の技術〕[Conventional technology]

形彫り放電加工機は金型産業を中心とする種々の産業界
で広く利用されており、中でも多目的加工の制御が可能
なNC制御式放電加工機が多く普及しつつある。
Die-sinker electrical discharge machines are widely used in various industries, including the mold industry, and among them, NC-controlled electrical discharge machines that can control multi-purpose machining are becoming increasingly popular.

一般にNC制御式放電加工機は第15図に示すように、
放電加工を行う機械本体とその一連の制御を行うNG制
御装置内蔵の制御電源本体とに大別される。ベツド3に
X軸とY軸の駆動機構を内蔵したX、Yテーブル4が搭
載され、かつその上部には加工槽5が配置され、その中
に加工対象製品の工作物が取り付けられるようになって
いる。
In general, NC-controlled electrical discharge machines, as shown in Figure 15,
It is roughly divided into a machine body that performs electric discharge machining and a control power supply body that has a built-in NG control device that performs a series of controls. An X, Y table 4 with a built-in drive mechanism for the X and Y axes is mounted on the bed 3, and a processing tank 5 is placed above it, into which the workpiece of the product to be processed is attached. ing.

また、Y軸の電極送り機構が内蔵されたクイル6は支柱
7によって支持され、そのクイル6先端部に電極1が取
り付けられている。8は加工液供給装置で、加工槽5内
に加工液を供給及び循環すると共に、放電加工によって
生じる加工生成物(加工屑や加工液の分解物など)を適
宜排出されるために、tt441と工作物2との放電加
工近傍部にも適量の加工液が供給できるようになってい
る。−方、制御電源本体9に内蔵されたNC制御装置9
aは、任意の加工条件の設定、登録や加工電源回路9c
の制御が行えると同時に、3軸駆動制御回路9hを経由
して電極1と工作物2との位置決め制御、さらにY軸の
電極送り機構の駆動及び加工中の電極位置の制御、X軸
、Y軸のテーブル機構の駆動及び揺動制御など、放電加
工で必要な一連の制御を行うことができるようになって
いる。
Further, a quill 6 having a built-in Y-axis electrode feeding mechanism is supported by a column 7, and an electrode 1 is attached to the tip of the quill 6. 8 is a machining fluid supply device, which supplies and circulates machining fluid into the machining tank 5 and also discharges machining products (machining waste, decomposed products of machining fluid, etc.) produced by electrical discharge machining as appropriate. An appropriate amount of machining fluid can also be supplied to the vicinity of the workpiece 2 during electrical discharge machining. - On the other hand, the NC control device 9 built into the control power supply main body 9
a is for setting and registering arbitrary machining conditions and machining power supply circuit 9c
At the same time, it is possible to control the positioning of the electrode 1 and workpiece 2 via the 3-axis drive control circuit 9h, drive the Y-axis electrode feed mechanism, control the electrode position during machining, and control the X-axis, Y-axis, and Y-axis. It is now possible to perform a series of controls necessary for electric discharge machining, such as driving and swing control of the axis table mechanism.

このように構成された形彫り放電加工機を使用して従来
から放電加工が行われているが、近年の産業の高度化に
伴い、高能率加工はもとより、特に高精度加工に対する
要求が高まっている。
Electrical discharge machining has traditionally been performed using a die-sinker electric discharge machine configured in this way, but with the advancement of industry in recent years, the demand for not only high-efficiency machining but especially high-precision machining has increased. There is.

放電加工による成形品の加工精度は仕上げ加工工程で大
半が決まるが、加工に関する要因が多くあるため、各因
子の特性及び相互関係を十分に把握しないと効果的な加
工の高精度化を図ることができない、加工精度に関係す
る要因は吹吸1に示すように、(1)機械的要因、(2
)制御的要因。
Most of the machining accuracy of molded products by electric discharge machining is determined by the finishing process, but since there are many machining-related factors, it is difficult to effectively achieve high machining accuracy unless you fully understand the characteristics and interrelationships of each factor. The factors related to machining accuracy that are not possible are (1) mechanical factors, (2)
) controlling factors.

(3)放電加工現象的要因、(4)温度的要因、(5)
その他要因に分類することができる。
(3) Electric discharge machining phenomenon factors, (4) Temperature factors, (5)
It can be classified into other factors.

これらの要因に対して、その対策が物理的に容易なもの
と困難なものとがあり、特に(3)項については放電加
工特有の現象が絡んでいるため、その対策がやっかいで
ある。中でも、放電加工中に生じる加工間隙変化による
加工誤差や電極消耗による加工誤差は、高精度加工を粗
害する大きな要因として指摘されている。さらに、放電
加工中は、加工液の温度上昇を伴うため、この温度変化
による熱変形、熱膨張誤差も大きな粗害要因となる。
Some of these factors are physically easy to take measures against, while others are difficult to deal with, and item (3) is particularly troublesome to deal with because it involves phenomena specific to electrical discharge machining. Among these, machining errors due to changes in the machining gap that occur during electrical discharge machining and machining errors due to electrode wear have been pointed out as major factors that degrade high-precision machining. Furthermore, during electric discharge machining, the temperature of the machining fluid increases, so thermal deformation and thermal expansion errors caused by this temperature change also become a major cause of roughness.

また、加工前に行う電極と工作物との位置決めで生じる
設定誤差も見過ごすことのできない要因の一つである。
Furthermore, setting errors that occur during positioning of the electrode and workpiece before machining are also one of the factors that cannot be overlooked.

このような誤差が生じる状況について、ここでは穴加工
を一つの例題にして具体的に説明する。
A situation in which such an error occurs will be specifically explained using hole machining as an example.

吹吸2.3.4は、加工対象品の加工仕様に対するその
加工計画と条件選定、及びこの加工工程に応じた電極送
り量と揺動半径の算出法の概要を示したものである。
2.3.4 outlines the machining plan and condition selection for the machining specifications of the workpiece, and the calculation method of the electrode feed amount and swing radius according to this machining process.

表    2 穴加工例 また、第17図は、第15図に示した形彫り放電加工機
を用いて実際に加工を実施するための加工動作のフロー
チャート例を示す、一般に放電加工は、最初の荒加工か
ら最終の仕上げ加工に至るまで数工程で行い、各々の加
工条件は、加工速度。
Table 2 Example of Hole Machining Also, Figure 17 shows an example of a flowchart of machining operations for actually performing machining using the die-sinker electrical discharge machine shown in Figure 15. Generally speaking, electrical discharge machining begins with the initial roughening. There are several steps from machining to final finishing, and each machining condition is determined by the machining speed.

加工面粗さ、電極消耗率、PM間ギャップ(加工間隙)
などの緒特性が記載された加工技術データファイルよ゛
り適正な条件を選定する。言うまでもなく、荒加工の条
件は放電エネルギーが大きいので高速加工が行え、仕上
げ加工の条件では所要の加工面粗さを得るために、その
放電エネルギーが小さく低速加工となる。また、電極消
耗の影響を抑  ′制あるいはなくすために、極力電極
消耗率が小さい条件が選定される。
Machining surface roughness, electrode wear rate, PM gap (machining gap)
Appropriate conditions are selected from the processing technology data file that describes the characteristics such as Needless to say, under the conditions of rough machining, the discharge energy is large, so high-speed machining can be performed, while under the conditions of finishing machining, the discharge energy is small and machining is performed at low speed in order to obtain the required machined surface roughness. In addition, in order to suppress or eliminate the influence of electrode wear, conditions are selected to minimize the electrode wear rate.

深さ方向の電極送り量と半径方向の揺動量は。The electrode feed amount in the depth direction and the amount of oscillation in the radial direction.

一般に第13図(3)に示したように各加工条件におけ
る加工面粗さ値と極間ギャップ値を加減算することによ
って求められ、この算出結果に基づいて各々設定される
。最初の荒加工では、特に揺動(r t = O)を行
う必要がないが、使用するiff極径が所定値より小さ
ければ、その所定値に対応するように揺動を加算するこ
とによって所定の加工を行うことができる。
Generally, as shown in FIG. 13 (3), it is obtained by adding and subtracting the machined surface roughness value and the machining gap value under each machining condition, and each is set based on the calculation result. In the first rough machining, it is not necessary to perform any particular oscillation (r t = O), but if the if diameter used is smaller than a predetermined value, the oscillation is added to correspond to the predetermined value. can be processed.

このようにして計画した加工内容をプログラム化して、
それをNG制御式放電加工機に入力し、また、所定形状
の電極と工作物を所定位置に設置する。そしてこの加工
準備が整ってから実際の加工運転に入り、第17図に示
したフローチャートのように加工動作が実行される。ス
テップには加工工程の順位を示し、ここではに=1〜6
となる。
By programming the machining details planned in this way,
This is input into the NG control type electric discharge machine, and an electrode of a predetermined shape and a workpiece are installed at a predetermined position. After this machining preparation is completed, actual machining operation begins, and machining operations are executed as shown in the flowchart shown in FIG. The step indicates the order of the processing process, and here = 1 to 6
becomes.

この時の電極送り量の目標値ZにはZ 1 ” Z e
で、最終の仕上げ加工のZs (Z−)に到達するまで
順次加工を繰り返し行うようになっている。この時の加
工穴と電極送り量の様子を第18図に示す。
At this time, the target value Z of the electrode feed amount is Z 1 ”Z e
The machining is repeated in sequence until the final finishing machining Zs (Z-) is reached. Figure 18 shows the machined hole and electrode feed amount at this time.

図中には最終加工時の揺動半径rnも示しである。The figure also shows the swing radius rn during final machining.

深さ方向の基準面は、加工対象物に応じて任意に設定す
ることができるが、ここでは分りやすく説明するため、
加工穴の工作物上面としている。
The reference plane in the depth direction can be set arbitrarily depending on the workpiece, but for the sake of easy explanation here,
The upper surface of the workpiece is the hole to be machined.

加工前に行うこの基準面設定は、電極と工作物との接触
感知による方法が従来から利用され、ここでも同じ方法
で行っている。放電加工はこの基準面より深さ方向に行
ねれ、その加工の進行に追従して加工間隙をある適正な
範囲内に保つように電極位置を制御する。加工間隙を制
御する方法としては、FA間の平均加工電圧を検出して
これを一定に制御する方法が簡便で従来から広く用いら
れている。この他にもいくつかの制御方法があるが、い
ずれにしても加工間隙を適正な範囲内に保つようにしな
ければ、放電現象が乱れて正常な放電加工を持続するこ
とができない、また、放電加工に悪影響を及ぼさないよ
うに加工生成物を加工間隙内から排出されることも必要
である。
This reference plane setting, which is performed before machining, has traditionally been performed by sensing contact between an electrode and a workpiece, and the same method is used here. Electric discharge machining is performed in the depth direction from this reference plane, and the electrode position is controlled so as to follow the progress of the machining and keep the machining gap within a certain appropriate range. As a method of controlling the machining gap, a method of detecting the average machining voltage between FAs and controlling it to a constant value is simple and has been widely used. There are several other control methods, but in any case, if the machining gap is not kept within an appropriate range, the discharge phenomenon will be disturbed and normal discharge machining cannot be maintained. It is also necessary that processed products be discharged from the processing gap so as not to adversely affect processing.

このような方法で加工を実施した場合、最初に生じる誤
差は加工前の位置合せ設定の誤差である。
When machining is performed using such a method, the first error that occurs is an error in positioning settings before machining.

接触感知による位置合せ設定(基準面設定)は。Alignment settings (reference plane settings) using touch detection.

電極の端部に形成しやすいパリや工作物の表面に付着し
たゴミ、ホコリ及び他の介在物の影響を受けやすく、そ
の誤差量(ΔOx)が数μmから数十μmにも及ぶこと
があり、正確な基準面出しがきわめて困難である。接触
感知以外の他の位置合せ方法としては1例えば特公昭6
1−58255号公報に開示されているように、高圧電
圧の印加によるコロナ放電を利用した検知法がある。こ
の検知法を用いれば、上記のような問題点を回避するこ
とが可能であるが、通常の放電加工電圧よりもきわめて
高い1ooov程度の特別な高圧電源及び制御装置が必
要になり、かつ安全性にも注意を要する。
It is susceptible to the effects of pars that tend to form at the ends of electrodes, dirt, dust, and other inclusions that adhere to the surface of the workpiece, and the amount of error (ΔOx) can range from several μm to several tens of μm. , it is extremely difficult to accurately align the reference surface. Other positioning methods other than touch sensing include 1, for example, Japanese Patent Publication No. 6
As disclosed in Japanese Patent No. 1-58255, there is a detection method that utilizes corona discharge by applying a high voltage. If this detection method is used, it is possible to avoid the above-mentioned problems, but it requires a special high-voltage power supply and control device of about 1ooov, which is much higher than the normal electric discharge machining voltage, and it is not safe. Also requires caution.

さらに空気中でのコロナ放電を利用することは可能であ
っても、液中及び加工途中での利用はその現象が異なっ
てしまうので空気中と同じ取り扱いが困難である。
Furthermore, even if it is possible to utilize corona discharge in air, the phenomenon is different when using it in liquid or during processing, so it is difficult to handle it in the same way as in air.

一方、放電加工中の加工間隙は常に一定ではなく、種々
の加工条件によって増減し、かつ加工生成物の影響によ
る放電加工現象の変化に応じて上下変動している。この
ため、あらかじめ設定した加工間隙(GaP値)値には
ならず、この設定値との相違量が加工誤差となる。第1
9図1表5は、第17図に示した方法で加工した時のス
テップに加工後の電極位置と間隙誤差の状況を示したも
のである。加工前の計画ではZ K =HK −Gにで
あり、加工後の結果はZ * = Z a = Ha 
 G a w G a = G K f:ΔGKであっ
た。
On the other hand, the machining gap during electrical discharge machining is not always constant, but increases and decreases depending on various machining conditions, and fluctuates up and down in response to changes in electrical discharge machining phenomena due to the influence of machining products. For this reason, the machining gap (GaP value) value set in advance is not achieved, and the amount of difference from this set value becomes a machining error. 1st
9. Table 5 in FIG. 1 shows the electrode position and gap error after processing in the step when processing was performed using the method shown in FIG. 17. The plan before processing is Z K = HK - G, and the result after processing is Z * = Z a = Ha
G a w G a = G K f:ΔGK.

表   5 すなわち、設定値Gにに対する実際の間隙値G&が過大
であれば(G K < G a ) 、加工過多になり
Table 5 In other words, if the actual gap value G& relative to the set value G is excessive (G K < Ga), excessive machining will occur.

反対に過小であれば(Gに>aa) 、加工不足になっ
てしまう、設定値との相違量は、放電及び加工現象に大
きく左右され、数μmから数十μmにも及ぶことがある
On the other hand, if it is too small (G>aa), machining will be insufficient.The amount of difference from the set value is largely influenced by electric discharge and machining phenomena, and may range from several μm to several tens of μm.

さらに、加工中は加工液の温度上昇が伴うため、この温
度変化によって熱膨脹変形が生じる。また、低消耗条件
での加工といえども、加工中に電極が消耗する。その時
の様子を第20図及び第21図。
Furthermore, since the temperature of the machining fluid increases during machining, this temperature change causes thermal expansion deformation. Further, even when machining is performed under low consumption conditions, the electrode is consumed during machining. Figures 20 and 21 show the situation at that time.

第22図に示す、第20図において、電極1は電極固定
治具6bを介してクイル6aの先端部に、また工作物2
は工作物固定治具4bを介してテーブル4a上にそれぞ
れ設定され、かつ加工液(図示せず)中白にある。vw
は所定形状の電極1によって所定の深さまで加工した時
の加工体積、Vcはその時の電極消耗体積で、またΔn
cはその消耗が均一と仮定した時の電極消耗長さ、さら
に、ΔLe及びΔL、は加工液の温度上昇によって生じ
る電極側及び工作物側の熱膨張変形量をそれぞれ示して
いる。一方、目標の加工深さHKに到達するまでの加工
時間tとその時の温度変化ΔT、電極消耗長さΔQcと
の関係は第23図2表6のように示される。第23図9
表6はメチツブに加工後の電極消耗と熱変形の状況を示
す、電極消耗長さはΔQc=A−HK・δにであり、熱
膨脹変形ΔM=(Le・ρe + L−・ρW)・ΔT
であり、加工深さはHa =HK±ΔH=Hg±(ΔQ
c+ΔL)である。
22, in FIG. 20, the electrode 1 is attached to the tip of the quill 6a via the electrode fixing jig 6b, and the workpiece 2
are respectively set on the table 4a via the workpiece fixing jig 4b, and are in the middle of the machining fluid (not shown). vw
is the machining volume when machining to a predetermined depth with the electrode 1 of a predetermined shape, Vc is the electrode consumption volume at that time, and Δn
c represents the length of electrode wear assuming that the wear is uniform, and ΔLe and ΔL represent the amount of thermal expansion deformation on the electrode side and workpiece side caused by the temperature rise of the machining fluid, respectively. On the other hand, the relationship between the machining time t until reaching the target machining depth HK, the temperature change ΔT at that time, and the electrode wear length ΔQc is shown in Table 6 of FIG. 23. Figure 23 9
Table 6 shows the situation of electrode wear and thermal deformation after mechanical processing.The electrode wear length is ΔQc=A-HK・δ, and the thermal expansion deformation ΔM=(Le・ρe + L−・ρW)・ΔT
The machining depth is Ha = HK±ΔH=Hg±(ΔQ
c+ΔL).

表  6 放電エネルギーが大きくて加工速度が速いMlの場合は
、加工速度が遅いv2の場合よりも短時間で目標の加工
深さに達し、また温度変化ΔT1も大きくなる。電極消
耗長さΔncは、電極消耗率δにと加工深さに比例増加
し、ΔQc=A−Hに・δにで示それる。この値は加工
寸法精度に対してマイナスの誤差要因となる。一方、熱
膨張による変形ΔLは、温度変化に比例して大きくなり
、ΔL=(Le・/) e+ Lm ’ P w)’Δ
Tで示され、加工寸法精度に対してプラスの誤差要因と
なる0表6は、第23図に示した結果を要約したもので
、電極消耗が過大であれば(Δnc>ΔL)、加工不足
になり、反対に温度変化によって熱変形が過大であれば
(ΔΩC〈ΔL)、加工過多になってしまう。温度変化
は加工条件によって異なるが、放電エネルギーの大きい
荒加工下では10℃以上になることもあり、これによっ
て生じる熱変形は数十μmにも及び、電極消耗の値をは
るかに上回る場合が少なくない、尚、Hには目標加工深
さ、Aは定数、δには電極消耗率、ρ6は電極側の熱膨
脹係数、ρ、は工作物の熱膨脹係数である。
Table 6 In the case of Ml, where the discharge energy is large and the machining speed is fast, the target machining depth is reached in a shorter time than in the case of v2, where the machining speed is slow, and the temperature change ΔT1 is also larger. The electrode wear length Δnc increases in proportion to the electrode wear rate δ and the machining depth, and is expressed as ΔQc=A−H·δ. This value becomes a negative error factor for machining dimensional accuracy. On the other hand, the deformation ΔL due to thermal expansion increases in proportion to the temperature change, ΔL=(Le・/) e+ Lm 'P w)'Δ
Table 6, which is indicated by T and is a positive error factor for machining dimensional accuracy, summarizes the results shown in Figure 23. If the electrode wear is excessive (Δnc>ΔL), machining is insufficient. On the other hand, if the thermal deformation due to temperature change is excessive (ΔΩC<ΔL), excessive processing will occur. Temperature changes vary depending on the machining conditions, but during rough machining with large discharge energy, the temperature can reach over 10°C, and the thermal deformation caused by this can reach several tens of micrometers, which is rarely far greater than the value of electrode wear. In addition, H is the target machining depth, A is a constant, δ is the electrode wear rate, ρ6 is the thermal expansion coefficient of the electrode side, and ρ is the thermal expansion coefficient of the workpiece.

このように、(1)加工前に生じる位置合せ誤差(2)
加工中に生じる電極消耗による誤差(3)温度変化によ
る熱膨脹変形の誤差(4)加工間隙変化による誤差など
が相互に関係して1表7に示すように加工寸法精度に影
響を与えることなる。
In this way, (1) alignment error that occurs before processing (2)
Errors due to electrode wear that occur during machining (3) Errors due to thermal expansion deformation due to temperature changes, (4) Errors due to changes in machining gap, etc. are interrelated and affect the machining dimensional accuracy as shown in Table 1.

したがって加工の高精度化を図るには、特にこれらの誤
差要因を各々解決する必要があり、そのための有効な誤
差検出法及び誤差補正制御法が強く望まれていた。これ
までにもいくつかの検知。
Therefore, in order to improve the accuracy of machining, it is particularly necessary to solve each of these error factors, and effective error detection methods and error correction control methods for this purpose have been strongly desired. Several detections have been made so far.

検出方法及び補正制御法が提案されているが、上記のよ
うな各誤差を正確に検出及び解消し得るようなものは提
示されていないのが現状である。
Although detection methods and correction control methods have been proposed, at present no method has been proposed that can accurately detect and eliminate the above-mentioned errors.

加工液の温度を管理する装置として1例えば特開昭61
−86130号公報に開示されているように。
As a device for controlling the temperature of machining fluid, for example, JP-A-61
As disclosed in Publication No.-86130.

予熱装置によって加熱液を予熱すると同時に加工機本体
にも循環して加工中の温度を一定に保つ装置がある。こ
のような装置を用いれば、温度変化による誤差の問題は
回避することが可能であるが、他の誤差要因については
まったく解消できない。
There is a device that preheats the heating liquid using a preheating device and at the same time circulates it through the processing machine body to keep the temperature constant during processing. If such a device is used, it is possible to avoid the problem of errors caused by temperature changes, but other error factors cannot be completely eliminated.

このため、他の方法を用いなければならず、また上記の
装置は大じかけな装置となるので機能的。
For this reason, other methods must be used, and the above-mentioned device is a large-scale device, so it is not functional.

経済的な面で問題がある。There is an economic problem.

一方、電極消耗を検出する方法としては、例えば特開昭
55−150937号公報に開示されているように、放
電加工の前後に電極を電極先端検出板に対向及び微弱放
電させてその先端位置の変化より電極消耗を検出する方
法がある。電極消耗を検出する手段としては有望と考え
られるが、電極先端検出板が加工対象嘉の工作物からか
なり離れた位置に固定されているので、工作物との位置
合せに支障が生じる恐れがある。また、微弱放電を短時
間行うとしているが、その時の間隙状態についてはまっ
たく開示されていない、加工前と加工後の電極先端の表
面状態は異なるので、微弱放電時の間隙状態は変化して
いるはずであり、その影響を考慮しないと正確な電極の
位置検出ができず、かえって誤差を増大させる恐れがあ
る。温度変化による熱変形についてはまったく開示され
ていない。
On the other hand, as a method for detecting electrode wear, for example, as disclosed in Japanese Unexamined Patent Publication No. 150937/1982, the electrode is faced to an electrode tip detection plate before and after electrical discharge machining, and a weak discharge is caused to detect the tip position. There is a method to detect electrode wear based on changes. Although it is considered to be a promising means of detecting electrode wear, the electrode tip detection plate is fixed at a considerable distance from the workpiece to be processed, so there is a risk that alignment with the workpiece may be hindered. . In addition, although it is said that a weak discharge is performed for a short time, the gap condition at that time is not disclosed at all.The surface condition of the electrode tip before and after machining is different, so the gap condition during a weak discharge changes. Therefore, if this effect is not taken into consideration, accurate electrode position detection may not be possible, and there is a risk that the error will increase on the contrary. There is no disclosure whatsoever regarding thermal deformation due to temperature changes.

この他、加工誤差を測定及び補正する方法としては、例
えば特開昭58−160018号公報に開示されている
ように、加工を途中で中断し、測定プローブを用いて加
工深さを実測した後、所望深さとの誤差を補正加工する
方法がある。しかし、加工直後の加工穴底部には加工生
成物があるので、その影響を受けやすく、正確な測定が
困難と考えられる。このため、その加工生成物の除去作
業あるいは特別な除去装置が必要となり、また、上記の
方法は大じかけな測定装置が必要となるので機能的。
In addition, as a method for measuring and correcting machining errors, for example, as disclosed in JP-A-58-160018, machining is interrupted midway and the machining depth is actually measured using a measuring probe. There is a method of correcting the error with the desired depth. However, since there is a processing product at the bottom of the processed hole immediately after processing, it is likely to be affected by this, making accurate measurement difficult. For this reason, removal of the processed product or a special removal device is required, and the above method requires a large-scale measuring device, so it is not functional.

経済的な面で問題がある。There is an economic problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記した技術課題及び従来技術の問題点に鑑
みてなされたもので、ある微小放電の間隙検出条件での
間隙が特定な値に収束する特性を利用して、加工前の電
極と工作物との位置合わせ設定を正確に行い、さらに放
電加工中に生じる加工間隙変化による誤差や電極消耗及
び熱変形による誤差など、加工深さ方向の一連の加工誤
差を検出9診断すると共にそれを正確に補正制御し、放
電加工の高精度化を図るのに有効な制御法を提供するこ
とを目的としている。
The present invention has been made in view of the above-mentioned technical issues and problems of the prior art, and utilizes the characteristic that the gap converges to a specific value under certain micro-discharge gap detection conditions. It accurately aligns the workpiece with the workpiece, and also detects and diagnoses a series of machining errors in the machining depth direction, such as errors due to machining gap changes that occur during electrical discharge machining, errors due to electrode wear and thermal deformation, etc. The purpose of this invention is to provide an effective control method for accurate correction control and higher accuracy in electrical discharge machining.

[課題を解決するための手段] 本発明の制御法は、加工開始前に、所定の設置した基準
面設定台あるいはその代用が可能な工作物上面の特定な
位置で、電極との間隙が特定値になる間隙検出条件で微
小放電を所定時間生じさせて、その位置検出より加工深
さ方向の基準面設定を行った後、所定の加工を開始し、
その後さらに。
[Means for Solving the Problems] The control method of the present invention specifies the gap between the electrode and the workpiece at a specific position on the top surface of the workpiece on a predetermined reference plane setting table installed in a predetermined manner or which can be substituted for the reference surface setting table before starting machining. A micro discharge is generated for a predetermined time under the gap detection conditions that result in a value, and after setting a reference surface in the machining depth direction by detecting the position, the predetermined machining is started,
More after that.

指定したステップの加工後に、電極を前記基準面設定の
位置に移動すると共に前記間隙検出条件に切換え、微小
放電を所定時間生じさせて間隙を収。
After machining the specified step, move the electrode to the reference plane setting position and switch to the gap detection condition to generate a micro discharge for a predetermined period of time to close the gap.

束させた後の電極位置を検出し、その検出値と加工開始
前に設定した値との比較結果より加工時に生じた電極消
耗及び熱変形による誤差を検出して、その誤差を基準面
の再設定によって補正し、さらにこの再設定後の電極を
加工後の穴に再度移動すると共に、前記間隙検出条件で
微小放電を所定時間生じさせながら電極と工作物加工面
との間隙を収束させた後の電極位置を検出し、その検出
結果より、加工時に生じた間隙変化による誤差を算出し
、また加工深さを算出した後、加工計画時の所定値に対
する加工深さ方向の加工誤差量を算出して、この算出結
果から補正加工が必要と判断された場合に、前記加工誤
差量を補正するように電極送りを制御して補正加工を行
うようにした。また。
The position of the electrodes after they are bundled is detected, and errors due to electrode wear and thermal deformation that occur during machining are detected by comparing the detected value with the value set before the start of machining. After making corrections according to the settings, and further moving the electrode after this reset to the hole after machining, the gap between the electrode and the machined surface of the workpiece is converged while generating a micro discharge for a predetermined period of time under the gap detection conditions. Detects the electrode position, uses the detection results to calculate the error due to gap changes that occur during machining, and after calculating the machining depth, calculates the amount of machining error in the machining depth direction with respect to the predetermined value at the time of machining planning. Then, when it is determined from this calculation result that correction machining is necessary, the electrode feeding is controlled to correct the machining error amount to perform the correction machining. Also.

もう一つの制御法では、指定したステップの加工後の電
極消耗及び熱変形による加工誤差を前記と同様な方法で
検出した後、その誤差量を基準面の再設定によって補正
すると共に、この再設定後の電極を加工穴位置に移動し
て、前記誤差量を補正するように電極送りを制御しなが
ら次のステップの加工を行うようにした。さらに本発明
の他の制御法は、上記した電極消耗及び熱変形による加
工誤差の補正制御を行うと共に、さらに加工間隙変化に
よる加工誤差の補正制御も行えるようにしたもので、指
定したステップの加工途中で電極送りが指定の深さに達
した地点での電極位置を検出し、その加工条件から前記
間隙検出条件に切換え、微小放電を所定時間生じさせな
がら加工面との間隙を収束させた後の電極位置を検出し
、この両方の検出結果より加工時に生じた加工間隙変化
による誤差量あるいは加工深さの誤差量を検出して、こ
の誤差量を補正するように電極送りを制御しながらその
後の加工を再開するようにしたことを特徴とする。
Another control method involves detecting machining errors due to electrode wear and thermal deformation after machining a specified step using the same method as above, and then correcting the amount of error by resetting the reference plane. The subsequent electrode was moved to the position of the hole to be machined, and the next step of machining was performed while controlling the electrode feed to correct the amount of error. Furthermore, another control method of the present invention not only performs correction control for machining errors caused by electrode wear and thermal deformation as described above, but also performs correction control for machining errors caused by changes in machining gap. After detecting the electrode position at the point where the electrode feed reaches a specified depth midway, the machining conditions are switched to the gap detection conditions described above, and the gap between the machining surface and the machining surface is converged while generating a micro discharge for a predetermined period of time. Detects the electrode position, and from both detection results, detects the error amount due to machining gap change or machining depth error amount that occurred during machining, and then controls the electrode feed to correct this error amount. The feature is that the processing is restarted.

本願発明の方法は、形彫り放電加工機を用いて5工作物
に対して所定の位置より電極を所定の深さ方向に送り、
かつ、荒加工から仕上げ加工まで一連の加工ステップ順
に電極送りを制御しながら工作物の加工を行う最中に生
じる加工誤差を補正制御する方法において、加工開始前
に、所定の位置に設置した基準面設定台あるいはその代
用が可能な工作物上面の特定な位置で、電極との間隙が
特定値になる間隙検出条件で微小放電を所定時間生じさ
せ、その位置検出より加工深さ方向の基準面設定を行っ
た後、所定の加工を開始し、その後さらに、前記加工過
程で指定したステップの加工後に、電極を前記基準面設
定の位置に移動すると共に前記間隙検出条件に切換え、
微小放電を所定時間生じさせて間隙を収束させた後の電
極位置を検出し、その検出値と加工開始前に設定した値
との比較結果より加工時に生じた電pf4消耗及び熱変
形による誤差を検出して、その誤差を基準面の再設定に
よって補正し、さらにこの再設定後の電極を加工後の穴
に再度移動すると共に、前記間隙検出条件で微小放電を
所定時間生じさせながら電極と工作物加工面との間隙を
収束させた後の電極位置を検出し、その検出結果より、
加工時に生じた間隙変化による誤差を算出し、また加工
深さを算出した後、加工計画時の所定値に対する加工深
さ方向の加工誤差量を算出しい、この算出結果がら補正
加工が必要と判断された場合に、前記加工誤差量を補正
するように電極送りを制御して補正加工を行うようにし
たことを特徴とする。
The method of the present invention uses a die-sinker electric discharge machine to send an electrode to five workpieces from a predetermined position in a predetermined depth direction,
In addition, in a method for correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed in the order of a series of machining steps from rough machining to finishing machining, a reference set at a predetermined position before the start of machining is used. At a specific position on the top surface of the workpiece that can be used as a surface setting table or as a substitute, a micro discharge is generated for a specified period of time under the gap detection conditions that the gap between the electrode and the electrode becomes a specific value, and the reference plane in the machining depth direction is determined by detecting that position. After making the settings, start a predetermined machining, and then further move the electrode to the reference plane setting position and switch to the gap detection condition after the machining of the step specified in the machining process,
The electrode position is detected after the gap is converged by generating a micro discharge for a predetermined period of time, and the detected value is compared with the value set before the start of machining. Errors due to electric pf4 consumption and thermal deformation that occur during machining are calculated. The error is corrected by resetting the reference plane, and the electrode after this resetting is moved again to the hole after machining, and the electrode and machining are performed while generating a micro discharge for a predetermined time under the gap detection conditions. Detect the electrode position after converging the gap with the workpiece surface, and from the detection result,
After calculating the error due to the gap change that occurred during machining and calculating the machining depth, calculate the amount of machining error in the machining depth direction with respect to the predetermined value at the time of machining plan. Based on this calculation result, it is determined that correction machining is necessary. The present invention is characterized in that when the amount of machining error is corrected, electrode feed is controlled to perform correction machining to correct the amount of machining error.

本発明の実施態様を例示すると次の通りである。Examples of embodiments of the present invention are as follows.

(1)放電加工で生じる一連の加工誤差の検出及びその
補正制御を最終ステップの加工後に行い、また、それに
先立って必要に応じて指定したステップの加工後にも行
えるように構成したこと。
(1) Detection of a series of machining errors occurring in electric discharge machining and correction control thereof are performed after machining the final step, and can also be performed after machining a specified step as necessary prior to that.

(2)形彫り放電加工機を用いて、工作物に対して所定
の位置より電極を所定の深さ方向に送り。
(2) Using a die-sinker electrical discharge machine, feed the electrode from a predetermined position to a predetermined depth on the workpiece.

かつ、荒加工から仕上げ加工まで一連の加工ステップ順
に電極送りを制御しながら工作物の加工を行う最中に生
じる加工誤差を補正制御する方法において、加工開始前
に、所定の位置に設置した基準面設定台あるいはその代
用が可能な工作物上面の特定な位置で、電極との間隙が
特定値になる間隙検出条件で微小放電を所定時間生じさ
せて、その位置検出より加工深さ方向の基準面設定を行
った後、所定の加工を開始し、その後さらに、前記加工
過程で指定したステップの加工後に、電極を前記基準面
設定の位置に移動すると共に前記間隙検出条件に切換え
、微小放電を所定時間生じさせて間隙を収束させた後の
電極位置を検出し、その検出値と加工開始前に設定した
値との比較結果より加工時に生じた電極消耗及び熱変形
による誤差を検出し、その誤差を基準面の再設定によっ
て補正すると共に、この再設定後の電極を再び加工穴位
置に移動して、前記誤差量を補正するように電極送りを
制御しながら次のステップの加工を行うようにしたこと
In addition, in a method for correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed in the order of a series of machining steps from rough machining to finishing machining, a reference set at a predetermined position before the start of machining is used. At a specific position on the top surface of the workpiece that can be used as a surface setting table or as a substitute, a micro discharge is generated for a predetermined time under the gap detection conditions where the gap with the electrode becomes a specific value, and the reference in the machining depth direction is determined by detecting that position. After setting the surface, predetermined machining is started, and then, after machining the step specified in the machining process, the electrode is moved to the position of the reference surface setting and the gap detection condition is switched to generate a micro discharge. The electrode position is detected after the gap has converged after a predetermined period of time, and errors due to electrode wear and thermal deformation that occur during machining are detected by comparing the detected value with the value set before the start of machining. The error is corrected by resetting the reference plane, and the electrode after this resetting is moved to the machining hole position again to perform the next step of machining while controlling the electrode feed to correct the error amount. What I did.

(3)上記(2)において、放電加工で生じる電極消耗
及び熱変形による誤差の検出を、少なくとも最終ステッ
プ加工前の加工後と、さらに最初の荒加工後あるいはそ
の後の指定したステップの加工後に2回以上行うように
したこと。
(3) In (2) above, the detection of errors due to electrode wear and thermal deformation that occurs during electrical discharge machining is performed at least after machining before the final step, and also after the first rough machining or after machining the specified step. I tried to do it more than once.

(4)形彫り放電加工機を用いて、工作物に対して所定
の位置より電極を所定の深さ方向に送り、かつ、荒加工
から仕上げ加工まで一連の加工ステップ順に電極送りを
制御しながら工作物の加工を行う最中に生じる加工誤差
を補正制御する方法において、加工開始前に、所定の位
置に設置した基準面設定台あるいはその代用が可能な工
作物上面の特定な位置で、−電極との間隙が特定値にな
る間隙検出条件で微小放電を所定時間生じさせて、その
位置検出より加工深さ方向の基準面設定を行った後、所
定の加工を開始し、その後さらに、前記加工過程で指定
したステップの加工後に、電極を前記基準面設定の位置
に移動すると共に前記間隙検出条件に切換え、微小放電
を所定時間生じさせて間隙を収束させた後の電極位置を
検出し、その検出値と加工開始前に設定した値との比較
結果より加工時に生じた電極消耗及び熱変形による誤差
を検出し、その誤差を基準面の再設定によって補正する
と共に、この再設定後の電極を再び加工穴位置に移動し
て、前記誤差量を補正するように電極送りを制御しなが
ら次のステップの加工を行い、また、この加工途中ある
いは他の指定したステップの加工途中で、電極送りが指
定の深さに達した地点での電極位置を検出し、その加工
条件から前記間隙検出条件に切換え、微小放電を所定時
間生じさせながら加工面との間隙を収束させた後の電極
位置を検出し、この両方の検出結果より加工時に生じた
加工間隙変化による誤差あるいは加工深さの誤差を検出
して、この誤差量を補正するように電極送りを制御して
その後の加工を再開するようにしたこと。
(4) Using a die-sinker electric discharge machine, feed the electrode from a predetermined position to a predetermined depth direction of the workpiece, and control the electrode feed in the order of a series of machining steps from rough machining to finishing machining. In a method for correcting and controlling machining errors that occur during machining of a workpiece, before the start of machining, on a reference plane setting table installed at a predetermined position or at a specific position on the top surface of the workpiece that can be substituted for - A micro discharge is generated for a predetermined time under the gap detection condition that the gap with the electrode becomes a specific value, and after setting a reference plane in the machining depth direction by detecting the position, a predetermined machining is started, and then the above-mentioned After machining the step specified in the machining process, move the electrode to the reference plane setting position and switch to the gap detection condition, generate a micro discharge for a predetermined period of time, and detect the electrode position after converging the gap; Errors due to electrode wear and thermal deformation that occurred during processing are detected from the results of comparison between the detected value and the value set before starting machining, and the error is corrected by resetting the reference plane. is moved to the machined hole position again, and the next step is machined while controlling the electrode feed to correct the error amount. Also, during this process or during machining of another specified step, the electrode feed The electrode position is detected at the point where the metal reaches a specified depth, the machining conditions are switched to the gap detection conditions, and the electrode position is determined after converging the gap with the machining surface while generating a micro discharge for a predetermined period of time. Based on the results of both of these detections, an error due to a change in the machining gap or an error in the machining depth that occurs during machining is detected, and the electrode feed is controlled to correct this error amount and subsequent machining is restarted. What I did.

(5)上記(4)において放電加工で生じる加工間隙変
化による誤差あるいは加工深さ誤差の検出とその誤差量
の補正制御加工を、最終ステップの加工途中で行い、ま
たそれに先立って必要に応じて指定したステップの加工
途中でも行えるように構成したこと。
(5) In (4) above, detection of errors due to machining gap changes or machining depth errors that occur during electric discharge machining and correction control machining of the amount of error are performed during the final step of machining, and prior to that, as necessary. The configuration is such that it can be performed even during the processing of a specified step.

〔作用〕[Effect]

上記したように本発明では、加工前に行う電極と工作物
との基準面設定の位置合せを、電極との間隙が特定値に
なる間隙検出条件で微小放電を所定時間生じさせて行う
ようにしたので、電極表面の端部に形成しやすいパリや
加工表面に付着したゴミ、ホコリ及び他の介在物などの
影響よる誤差が回避され、正確かつ信頼性の高い基準面
設定ができる。また、放電加工で生じた電極消耗及び熱
変形による誤差を診断するために、指定したステップの
加工後に、加工開始前と同様に電極を基準面の設定位置
に移動すると共に前記間隙検出条件に切換えて微小放電
を所定時間生じさせながら電極との間隙を収束させた後
の電極位置を検出する。
As described above, in the present invention, the alignment of the reference plane between the electrode and the workpiece before machining is performed by generating a micro discharge for a predetermined period of time under the gap detection condition that the gap between the electrode and the workpiece becomes a specific value. Therefore, errors due to the effects of pars, which tend to form at the ends of the electrode surface, dirt, dust, and other inclusions adhering to the processed surface, are avoided, and accurate and reliable reference plane setting can be achieved. In addition, in order to diagnose errors due to electrode wear and thermal deformation that occur during electrical discharge machining, after machining the specified step, move the electrode to the set position on the reference surface and switch to the gap detection conditions as before machining starts. The electrode position is detected after the gap between the electrode and the electrode is converged while generating a micro discharge for a predetermined period of time.

その時の電極位置の値は、加工開始前に設定した値に対
して電極消耗誤差と熱変形誤差との差だけ変化するので
、その変化量より上記の電極消耗及び熱変形による誤差
量が判定できる。さらに、基準面を再設定することによ
ってこの誤差量を加工方向の電極送り量に補正制御する
ことができ、その補正加工も行える。この誤差補正制御
の加工を、ここでは次のステップの加工で行うことによ
り、電極消耗と熱変形による誤差量がプラスの値でもマ
イナスの値でも支障なく補正できる。
The value of the electrode position at that time changes from the value set before starting machining by the difference between the electrode wear error and thermal deformation error, so the amount of error due to the electrode wear and thermal deformation mentioned above can be determined from the amount of change. . Furthermore, by resetting the reference plane, this error amount can be corrected and controlled to the electrode feed amount in the processing direction, and correction processing can also be performed. By performing this error correction control process in the next step, it is possible to correct the error amount due to electrode wear and thermal deformation without any problem, whether it is a positive value or a negative value.

その後さらに、放電加工で生じた加工間隙変化による誤
差や加工深さの誤差を診断するために、前記誤差の診断
後あるいは指定したステップの加工途中で、間隙の特定
値に収束する前記間隙検出条件に再び移行して、電極の
上下運動による継続的な微小放電を所定時間生じさせな
がら加工面との間隙を収束させる。その時の電極位置と
加工時の電極位置との変化量を算出することによって、
加工間隙の設定値に対するその誤差量が算出でき。
After that, in order to diagnose errors due to changes in machining gap caused by electric discharge machining and errors in machining depth, the gap detection conditions are set such that the gap converges to a specific value after diagnosing the error or during machining of a specified step. Then, the gap between the machined surface and the machined surface is converged while a continuous micro-discharge is generated by the vertical movement of the electrode for a predetermined period of time. By calculating the amount of change between the electrode position at that time and the electrode position during machining,
The amount of error relative to the machining gap setting value can be calculated.

また、加工された深さ及びその目標値に対する加工誤差
も同様に算出することができる。算出したこの誤差量を
電極送り量に補正制御して加工を再開することにより加
工深さ方向の一連の加工誤差が解消される。
Furthermore, the machining depth and the machining error relative to its target value can be calculated in the same manner. By correcting the calculated error amount to the electrode feed amount and restarting machining, a series of machining errors in the machining depth direction are eliminated.

このように、放電加工で生じる電極消耗及び熱変形によ
る誤差や加工間隙変化による誤差など一連の加工誤差を
正確、かつ迅速に検出2診断し、それを補正制御するよ
うにしたので、加工精度が大幅に向上させることができ
る。
In this way, a series of machining errors, such as errors due to electrode wear and thermal deformation that occur during electrical discharge machining, and errors due to changes in machining gap, are accurately and quickly detected and diagnosed, and correction control is performed to improve machining accuracy. can be significantly improved.

[実施例〕 以下、本発明の内容を実施例を具体的に説明する。第1
図は、本発明の内容を示す加工動作のフローチャ78例
で、間隙検出条件による加工前の基準面設定、また加工
の最中に生じる電極消耗及び熱変形による誤差の検出と
その補正、さらに加工間隙変化による誤差を含む一連の
加工深さ方向の加工誤差の検出とその補正制御を行う方
法を開示している。また、第2図〜第6図は、第1図に
示した内容を各々説明したものである0本発明では、加
工前に深さ方向の基準面設定を行うため、第2図、第3
図に示したように、所定の位置に設定した基準面出し台
27で、まず、電極との間隙が特定な値になる間隙検出
条件で微小放電を所定時間生じさせる。基準面出し台2
7の設定場所は、加工対象物の形状に応じて適切な場所
を選択し、できれば加工穴に近い所がよい。また、基準
面出し台27の代用が可能であれば工作物上面でも基卓
面設定を行うことができる。この図では、基準面出し台
27の高さHcをOとすil+ばよい。ここでいう間隙
検出条件とは、最良面加工を行う時のような放電エネル
ギーがきわめて小さい条件で、かつ印加電圧も通常の加
工条件と同一レベルでよい、所定時間(例えば20〜6
0秒)微小放電させることによって電極1との間隙が一
定(gc)となる1間隙が一定となった地点で停止し、
その時の電極位置Zaoよりgcを差し引いた地点が基
準面出し台27の上面で、基準面(Zoo=Z−o+t
<c=0)となる。上記微小放電によって加工される量
は横微量で無視できる。また、間隙値gcはその変動幅
が±2μm以下と小さく安定している。
[Example] Hereinafter, the content of the present invention will be specifically described with reference to Examples. 1st
The figure shows a flowchart of 78 examples of machining operations illustrating the content of the present invention, including setting of a reference plane before machining based on gap detection conditions, detection and correction of errors due to electrode wear and thermal deformation that occur during machining, and further machining. A method is disclosed for detecting a series of machining errors in the machining depth direction, including errors due to gap changes, and controlling correction thereof. In addition, FIGS. 2 to 6 each explain the contents shown in FIG.
As shown in the figure, first, a micro discharge is generated for a predetermined period of time under a gap detection condition in which the gap between the electrode and the electrode becomes a specific value using the reference leveling table 27 set at a predetermined position. Reference plane table 2
As for the setting location 7, an appropriate location is selected depending on the shape of the workpiece, preferably a location close to the machined hole. Further, if the reference surface setting table 27 can be used instead, the base surface can be set on the upper surface of the workpiece. In this figure, the height Hc of the reference leveling table 27 may be O and il+. The gap detection conditions mentioned here are conditions where the discharge energy is extremely small, such as when performing best surface machining, and the applied voltage may be at the same level as normal machining conditions, for a predetermined period of time (for example, 20 to 6
0 seconds) By causing a micro-discharge, the gap with the electrode 1 becomes constant (gc). It stops at the point where the gap becomes constant,
The point obtained by subtracting gc from the electrode position Zao at that time is the upper surface of the reference surface exposing table 27, and the reference surface (Zoo=Z-o+t
<c=0). The amount machined by the above-mentioned micro-discharge is horizontally small and can be ignored. Further, the gap value gc is stable and has a small variation range of ±2 μm or less.

このようにして正確な基準面設定を行った後、tttp
Aを加工位置に移動(XY子テーブル移動による工作物
との相対移動であるが、ここでは便宜上電極移動と以下
称す、)シて所定の加工を開始する。その所定の加工は
従来通り(第17図参照)であるが、本発明では第1図
に示したように、指定したステップの加工後に深さ方向
の加工誤差を検出及び診断してそれを補正制御する。そ
の方法は第4図、第5図、第6図及び吹吸8に示した手
順に従って行う。
After setting the reference plane accurately in this way, tttp
A is moved to the processing position (relative movement with the workpiece by XY child table movement, but hereinafter referred to as electrode movement for convenience) and predetermined processing is started. The predetermined machining is the same as before (see Fig. 17), but in the present invention, as shown in Fig. 1, machining errors in the depth direction are detected and diagnosed after machining the specified steps, and the errors are corrected. Control. The method is carried out according to the steps shown in FIGS. 4, 5, 6, and 8.

指定した加ニステップでの電極送り量が目標値に達しく
Za=Zに)、その加工を終えた第4図の状態から電極
1を基準面出し台27に移動後、間隙検出条件に移行し
て電極の上下運動による断続的な微小放電を所定時間生
じさせながら間隙を収束させる。その収束後の電極位’
ItZao’は第5図に示すように、加工時に生じた電
極消耗誤差ΔQCと温度変化による熱変形誤差ΔLとの
差だけ変化し、Z、。′=(ΔQc−ΔL ) −g 
cとなる。
When the electrode feed amount in the specified machining step reaches the target value (Za = Z), the electrode 1 is moved from the state shown in Fig. 4 where the machining is completed to the reference surface leveling table 27, and then the gap detection condition is entered. The gap is converged while causing intermittent micro discharges for a predetermined period of time by vertical movement of the electrode. Electrode position after convergence'
As shown in FIG. 5, ItZao' changes by the difference between the electrode wear error ΔQC caused during machining and the thermal deformation error ΔL due to temperature change, and Z. '=(ΔQc−ΔL)−g
c.

したがって、加工前後の電極位置の変化(ΔZa。Therefore, the change in electrode position before and after machining (ΔZa).

= Z ao’  Z *o)から電極消耗と熱変形に
よる誤差量を検出することができる(ΔZao=ΔQc
−ΔL)。
= Z ao' Z *o), it is possible to detect the amount of error due to electrode wear and thermal deformation (ΔZao = ΔQc
-ΔL).

また、ここで基準面を再設定することによって上記誤差
量を補正することができる。すなわち、Zao’ =Z
ao=  gcと再設定すれば、第6図及び表8に示し
たように誤差補正される(ΔQe−ΔL=ΔZba)−
そして、基準面設定後の電極1を再び加工穴位置に移動
及び深さ方向に送り、さらに前記間隙検出条件に再び移
行して、電極の上下運動による断続的な微小放電を所定
時間生じさせながら加工面との間隙を収束させる6間隙
が収束して一定(gc)となった地点での電極停止位置
Zah’は、Zda+ΔZL禽となる。ΔZ+、mは前
段階で誤差補正した電極消耗及び熱変形による誤差量に
相当する。加工直後の電極位置(Za=Zに)と、その
後前記のように間隙が特定値(gc)に収束する間隙検
出条件による微小放電後の電極位置との相関関係から、
加工時の加工間隙Gaとその設定値GKに対する間隙誤
差量ΔGを表8のように算出(ΔG=Gk−Gh=Gw
−(Zah  Za+gc))することができる、また
、同様に加工時の加工深さH&はZaa+Δ ZL處+
 gc−He: Za+Ga+Δ Zt、a−Hcとし
て算出され、さらに目標の加工深さHにに対する加工深
さ誤差(ΔHK=Hに−H&)を算出することができ、
ΔHに=ΔG+ΔZLa=ΔG+ΔQc−ΔLとなる。
Furthermore, the above error amount can be corrected by resetting the reference plane here. That is, Zao' =Z
By resetting ao=gc, the error is corrected as shown in Figure 6 and Table 8 (ΔQe-ΔL=ΔZba)-
After setting the reference plane, the electrode 1 is again moved to the machined hole position and sent in the depth direction, and the gap detection condition is again changed to generate intermittent micro discharge for a predetermined period of time due to the vertical movement of the electrode. The electrode stopping position Zah' at the point where the six gaps converging and becoming constant (gc) with respect to the processing surface becomes Zda+ΔZL. ΔZ+, m corresponds to the amount of error due to electrode wear and thermal deformation corrected in the previous step. From the correlation between the electrode position immediately after machining (Za = Z) and the electrode position after a microdischarge based on the gap detection condition where the gap converges to a specific value (gc) as described above,
The machining gap Ga during machining and the gap error amount ΔG for its set value GK are calculated as shown in Table 8 (ΔG=Gk-Gh=Gw
-(Zah Za+gc)), and similarly, the machining depth H& during machining is Zaa+Δ ZL 處+
gc-He: Calculated as Za + Ga + Δ Zt, a-Hc, and furthermore, the machining depth error (ΔHK = H to -H&) with respect to the target machining depth H can be calculated,
ΔH=ΔG+ΔZLa=ΔG+ΔQc−ΔL.

八HKの値がプラスの場合(Hに>Ha)は加工深さ不
足であり、加工時の加工間隙Gaが過小あるいは電極消
耗誤差ΔQcが過大になっていることを示している0反
対にΔHxの値がマイナスの場合(Hに< Ha )に
は加工過多であり、加工間隙Gaが過大あるいは熱変形
誤差ΔLが電極消耗誤差Δmcよりも過大であることに
なる。したがって、この結果より補正加工の要否を判断
し、ΔHにの値がプラスとなるHK>H&の場合に、そ
の加工誤差量をΔHa =ΔZKと補正して加工を再開
する。補正後の電極送り量Zに′は2に+ΔZにとなる
。なお、Hx<Haの場合には補正加工を行う必要がな
い、上記した深さ方向の一連の加工誤差の検出時期及び
回数は任意に指定することができるので、例えば、最終
ステップの仕上げ加工後に行い、また、これに先立って
最初の荒加工後あるいはその近傍の加工後当りのステッ
プを指定して行うようにするとよい、さらに必要であれ
ばその回数を増すことも可能である。温度変化による熱
変形誤差は、第18図に示したように放電エネルギーが
大きく、かつ加工体積も多い荒加工の過程で最も生じや
すく、また、放電加工中に生じる電極消耗も加工深さに
比例して増加する特性がある。さらに放電エネルギーの
大きさに比例する加工間隙はその変化率が荒加工あるい
はその近傍の加工の条件下で大きく生じやすい傾向にあ
る。したがって、上記のように誤差検出の時期を指定す
れば、これらの要因によって生じる一連の加工誤差を早
期に検出2診断してそれを解消することができるばかり
でなく、さらにその後の加工で生じた加工誤差も最後に
解消することができる。このように本発明を用いること
によって加工深さ方向の加工誤差を迅速に、かつ正確に
検出1診断及び補正できるので、従来法に比べて高精度
な加工結果を得ることができる。
8 If the value of HK is positive (H>Ha), the machining depth is insufficient, indicating that the machining gap Ga during machining is too small or the electrode wear error ΔQc is excessive.0On the contrary, ΔHx If the value of is negative (H<Ha), excessive machining has occurred, and the machining gap Ga is too large or the thermal deformation error ΔL is greater than the electrode wear error Δmc. Therefore, it is determined whether correction machining is necessary based on this result, and if HK>H&, in which the value of ΔH is positive, the machining error amount is corrected to ΔHa=ΔZK and machining is restarted. The electrode feed amount Z after correction becomes 2+ΔZ. Note that when Hx<Ha, there is no need to perform correction machining.The detection timing and number of times of the series of machining errors in the depth direction described above can be specified arbitrarily, so for example, after the final step of finishing machining, In addition, prior to this, it is preferable to specify a step after the first rough machining or after machining in the vicinity, and it is also possible to increase the number of times if necessary. Thermal deformation errors due to temperature changes are most likely to occur during rough machining, where the electrical discharge energy is large and the machining volume is large, as shown in Figure 18, and electrode wear that occurs during electrical discharge machining is also proportional to the machining depth. It has the property of increasing. Furthermore, the machining gap, which is proportional to the magnitude of the discharge energy, tends to have a large rate of change under conditions of rough machining or machining in the vicinity thereof. Therefore, by specifying the timing of error detection as described above, it is not only possible to detect and diagnose a series of machining errors caused by these factors at an early stage and eliminate them. Processing errors can also be eliminated at the end. As described above, by using the present invention, machining errors in the machining depth direction can be detected, diagnosed, and corrected quickly and accurately, so that machining results with higher precision can be obtained than with conventional methods.

第7図及び第8図は本発明の他の実施例で、電極消耗及
び熱変形による誤差の検出及び補正方法を示す、加工開
始前に行う間隙検出条件による基準面設定は、前記の第
2図、第3図では基準面出し台27を使用したが、ここ
ではそれを使用せずに加工位置近傍の工作物上面に直接
微小放電を生じさせて行う例を開示している。所定の加
工動作と加工時に生じた電極消耗及び熱変形による誤差
を検出する手順は、前記と同様であるが、その後の誤差
補正の加工をここでは次のステップの加工で行うように
構成している。第7図に示したように、指定した加ニス
テップでの電極送りが目標値に達して(Za=Zx)そ
の加工を終えた後、電極を加工開始前と同様の基準面出
し位置に移動すると共に、間隙が特定値になる間隙検出
条件しこ切換える。そして、第8図、第9図に示したよ
うに電極の上下運動による断続的な微小放電を所定時間
生じさせることにより、加工時に生じた電極表面の凹凸
及び付着物の影響を回避でき、かつ電極1と工作物2表
面との間隙が特定値(gc)に収束する。収束後の電極
の停止位置Zao’は、前述したように、加工前め時(
Zao=  gc)よりも電極消耗誤差ΔQcと熱変形
誤差ΔLどの差だけ変化しZao’ = (ΔQc−Δ
L)−gcとなる。この結果よりその誤差量(Z−o=
ΔQc−ΔL)が検出でき。
FIGS. 7 and 8 show another embodiment of the present invention, which shows a method for detecting and correcting errors caused by electrode wear and thermal deformation. Although the reference leveling table 27 is used in FIGS. 3 and 3, an example is disclosed in which micro discharge is directly generated on the upper surface of the workpiece in the vicinity of the machining position without using it. The procedure for detecting errors due to predetermined machining operations and electrode wear and thermal deformation occurring during machining is the same as described above, but the subsequent error correction machining is configured to be performed in the next step of machining. There is. As shown in Figure 7, after the electrode feed in the specified machining step reaches the target value (Za = Zx) and the machining is completed, the electrode is moved to the same reference leveling position as before machining started. At the same time, the gap detection conditions are changed so that the gap becomes a specific value. As shown in Figures 8 and 9, by generating intermittent micro-discharges for a predetermined period of time due to the vertical movement of the electrode, it is possible to avoid the effects of unevenness and deposits on the electrode surface that occur during machining, and The gap between the electrode 1 and the surface of the workpiece 2 converges to a specific value (gc). As mentioned above, the stopping position Zao' of the electrode after convergence is the same as before machining (
How much difference between electrode wear error ΔQc and thermal deformation error ΔL changes than Zao = gc)?
L)-gc. From this result, the amount of error (Z-o=
ΔQc−ΔL) can be detected.

さらに、基準面に対する電極位置を再設定(Z ao’
=Zao=  gc)することによってΔQc−ΔL=
ΔZL處と誤差補正できる。その誤差補正の加工は。
Furthermore, the electrode position with respect to the reference plane is reset (Z ao'
=Zao=gc), ΔQc−ΔL=
Error correction can be made with ΔZL. What is the process for correcting that error?

次のステップの加工で実行される。Executed in the next step of machining.

上記の誤差検出の時期及び回数は、工作物の形状や大き
さ、また加工条件及び加工工程に応じて任意に指定する
ことができる。第16図に示した加工計画のように、最
初の荒加工から最終の仕上げ加工までの工程数が6回(
加工のステップに=1〜6.n=6)ある加工例で示す
と、第7図における誤差検出の時期を例えばに=1とに
=n−1と指定すると、最初の荒加工後と最終加工前の
加工後に誤差検出が2同突行される。また誤差検出後の
誤差補正は1次のステップであるに=2とに=n=6の
加工でそれぞれ行われる。最終の仕上げ加工では、加工
体状が少量なので、電極消耗及び熱変形による誤差が極
少でその影響がほとんどない。このようにすれば、放電
エネルギーが大きく、かつ加工体積も多い荒加工の過程
で最も生じやすい温度変化による熱変形誤差と電極消耗
誤差を早期に解消することができる。また、その後の加
工で生じた誤差も解消できると共に、加工終了後の加工
深さが過大になる恐れも回避でき、高精度な加工結果を
得ることができる。なお、ここでは誤差検出及びその補
正加工を2同突行する例を示したが、その回数を増すこ
ともでき、また。
The timing and number of times of error detection described above can be arbitrarily specified depending on the shape and size of the workpiece, the machining conditions, and the machining process. As shown in the machining plan shown in Figure 16, the number of processes from the initial rough machining to the final finishing machining is 6 (
Processing steps = 1 to 6. n=6) To show a machining example, if the timing of error detection in Fig. 7 is specified as =1 and =n-1, the error detection will be 2 after the first rough machining and after the machining before the final machining. They will be rushed together. Further, error correction after error detection is performed in the first step of processing of n = 2 and = n = 6, respectively. In the final finishing process, since the workpiece shape is small, errors due to electrode wear and thermal deformation are extremely small and have almost no influence. In this way, it is possible to quickly eliminate thermal deformation errors and electrode wear errors caused by temperature changes, which are most likely to occur in the course of rough machining where discharge energy is large and machining volume is large. In addition, errors caused in subsequent machining can be eliminated, and the possibility of excessive machining depth after machining can be avoided, making it possible to obtain highly accurate machining results. Although an example in which error detection and correction processing are carried out twice is shown here, the number of times of error detection and correction processing can be increased.

最初の検出時期を他のステップに指定変更できることは
言うまでもない。上記した実施例の加工誤差補正制御法
は、特に、電極消耗や熱変形による加工誤差が生じやす
い形状の放電加工を行う場合に有効である。
It goes without saying that the first detection time can be changed to another step. The machining error correction control method of the embodiment described above is particularly effective when electrical discharge machining is performed on a shape where machining errors are likely to occur due to electrode wear or thermal deformation.

第10図及び第11図、第12図は本発明の他の実施例
で、所定の加工過程で生じる加工間隙変化による加工誤
差の検出及び補正方法を示す。指定したステップの加工
途中で、まず、第11図に示したように開始時期を判別
させ、例えば加工中の電極送り量Z&がZK−βに達し
た地点での電極位置Z&値を算出する。Zに一βは所定
の目標値に対してβだけ手前であることを示しており、
βの値としては任意に定めることができ、例えばその加
工下での加工面粗さ値Rmaxkと定めてやればよい、
加工中の電極位置zaを算出後、加工面との間隙が特定
値(gc)になる間隙検出条件に切換えて、電極の上下
運動による断続的な微小放電を所定時間生じさせながら
間隙を収束させ、収束後の電極位置を上記と同じように
算出する。電極位置は放電現象の変化に応じて時々刻々
と変動しているので、安定な測定位置(例えばタイミン
グ時開t1の地点)を定め、その位置での値を数回測定
して平均化するとよい0間隙が特定値に収束するのにあ
る程度の時間を要するのは、この前段階での加工生成物
が残留しているのためで、それを十分に排出する必要が
あり、電極の上下運動はその排出促進を図る役目をして
いる。収束所要時間tcは約30〜60秒である。この
時間中に加工される量は極微量で無視できる。なお、上
記の演算処理を簡素にしたければ、第1図で述べたよう
に、所要の加工と微小放電を各々終えた後の電極停止位
置から求めるとよい。
FIG. 10, FIG. 11, and FIG. 12 are other embodiments of the present invention, and show a method for detecting and correcting machining errors due to changes in machining gap that occur during a predetermined machining process. During machining of a specified step, first, the start time is determined as shown in FIG. 11, and, for example, the electrode position Z& value at the point where the electrode feed amount Z& during machining reaches ZK-β is calculated. One β in Z indicates that the predetermined target value is short by β.
The value of β can be arbitrarily determined, for example, it may be determined as the machined surface roughness value Rmaxk under the machining process.
After calculating the electrode position za during machining, the gap detection conditions are changed so that the gap with the machining surface becomes a specific value (gc), and the gap is converged while causing intermittent micro-discharge due to the vertical movement of the electrode for a predetermined period of time. , calculate the electrode position after convergence in the same way as above. Since the electrode position changes from moment to moment according to changes in the discharge phenomenon, it is recommended to determine a stable measurement position (for example, the point at timing t1), measure the value at that position several times, and average it. The reason why it takes a certain amount of time for the 0 gap to converge to a specific value is because the processing products from the previous stage remain, and it is necessary to remove them sufficiently, and the vertical movement of the electrode is Its role is to promote its emission. The required convergence time tc is about 30 to 60 seconds. The amount processed during this time is extremely small and can be ignored. Incidentally, if it is desired to simplify the above calculation process, it is preferable to obtain the electrode stop position after completing the required machining and micro-discharge, as described in FIG. 1.

測定した両者の電極位置の変化量Δgd=Zd−Z&よ
り加工中の加工間隙値G&を算出(G&=Δga+gc
) L、r、同時に加工中の深さHaも算出(Ha=Z
a+gc)する、そうすれば、次に加工計画時の加工間
隙値GKに対する間隙誤差量へ〇Kが算出(ΔGK=G
x  Ga)でき、また、加工深さの誤差量ΔHOにも
同時に算出(ΔHGに=Hに一β−Ha ”ΔGK)で
きる、この結果よりその誤差量を電極送り量に補正(Δ
Zaに=ΔG K =ΔHQに)制御して加工を再開す
る。補正後の電極送り量ZK’は2に+ΔZoにとなり
、残りの加工量はβ−ΔZoにである。
The machining gap value G& during machining is calculated from the measured change in the positions of both electrodes Δgd=Zd-Z&(G&=Δga+gc
) L, r, and the depth Ha during machining is also calculated (Ha=Z
a+gc), then 〇K is calculated as the gap error amount for the machining gap value GK during machining planning (ΔGK=G
x Ga), and the error amount ΔHO of the machining depth can also be calculated at the same time (ΔHG=H=β−Ha ”ΔGK). From this result, the error amount can be corrected to the electrode feed amount (ΔGK).
Za = ΔG K = ΔHQ) and machining is restarted. The corrected electrode feed amount ZK' becomes 2+ΔZo, and the remaining machining amount becomes β−ΔZo.

このように加工誤差補正制御をすることによって加工時
に生じた加工間隙変化による加工誤差あるいは加工深さ
誤差が容易に診断でき、かつそれを正確に解消すること
ができる。上記の誤差検出の開始時期及び回数は任意に
指定することができ、例えば、最終ステップの加工過程
の他に、それ先立つ中間ステップの加工過程でも行うよ
うに指定すればよい、ここでは誤差検出の開始時期を、
第11図、第12図に示したようにZa=zに一βの加
工途中の地点としたが、加工後のzJI=zKと設定す
ることも可能で、電極位置の演算処理が簡素になる。な
お、z&=zKと設定変更する場合には、第1図で記述
したように、補正加工の要否を判断した上で、加工誤差
の補正制御を行うようにすればよい、上記した実施例の
加工誤差補正制御法は。
By performing machining error correction control in this manner, machining errors or machining depth errors due to changes in the machining gap that occur during machining can be easily diagnosed and accurately eliminated. The above error detection start time and number of times can be specified arbitrarily.For example, it can be specified to be performed not only in the final step machining process but also in the preceding intermediate step machining process. Start time,
As shown in Figures 11 and 12, Za = z is set at a point in the middle of machining, but it is also possible to set zJI = zK after machining, which simplifies the calculation process for the electrode position. . In addition, when changing the setting to z&=zK, as described in FIG. 1, it is sufficient to determine whether or not correction processing is necessary and then perform correction control for processing errors. What is the machining error correction control method?

特に、加工間隙変化による加工誤差が生じやすい形状の
放電加工を行う場合に有効である0次表9に本例の諸条
件を示す。
The various conditions of this example are shown in zero-order Table 9, which is particularly effective when performing electrical discharge machining of a shape that is likely to cause machining errors due to machining gap changes.

表    9 第13図の実施例は、電極消耗及び熱変形による加工誤
差と加工間隙変化による加工誤差の両方をそれぞれ検出
9診断してそれを補正制御するようにしたものである。
Table 9 The embodiment shown in FIG. 13 detects and diagnoses both machining errors due to electrode wear and thermal deformation and machining errors due to changes in machining gap, and performs correction control.

加工開始前に行う間隙検出条件による基準面設定と加工
時に生じた電極消耗及び熱変形による加工誤差の検出、
補正の、方法は、第7図及び第8図で記述した通りであ
る。また、加工間隙変化による加工誤差の検出、補正の
方法については第10図及び第11図、第12図で記述
した通りであるが、ここでは両方の補正制御を相互に行
う手順について説明する。まず、指定したステップの加
工後に、電極を加工開始と同様に基準面出し位置に移動
すると共に間隙検出条件に切換えて、第8図に示したよ
うに電極消耗及び熱変形による誤差量(ΔZ−o=ΔQ
c−ΔL)を検出する。さらに基型面の再設定法により
誤差補正(ΔQc−ΔL=ΔZi、a)した後、その電
極を再び加工穴位置に移動して次のステップの加工を行
う。
Setting a reference plane using gap detection conditions before starting machining, and detecting machining errors due to electrode wear and thermal deformation that occur during machining.
The method of correction is as described in FIGS. 7 and 8. Furthermore, the method for detecting and correcting machining errors due to machining gap changes is as described in FIGS. 10, 11, and 12, but here, a procedure for mutually performing both types of correction control will be described. First, after machining the specified step, move the electrode to the reference leveling position in the same way as at the start of machining, switch to the gap detection condition, and calculate the amount of error due to electrode wear and thermal deformation (ΔZ- o=ΔQ
c-ΔL) is detected. Further, after error correction (ΔQc−ΔL=ΔZi, a) by the method of resetting the base surface, the electrode is moved to the position of the machining hole again and the next step of machining is performed.

補正後の電極送り量Zに′はZに+ΔZL愈となり。After correction, the electrode feed amount Z becomes +ΔZL.

このステップの加工によって上記誤差量が補正加工され
る。そして、次にこのステップの加工途中で、加工間隙
変化による加工誤差を検出する。加工中の補正後の電極
送り量Za’(Za+ΔZhm)が例えばZに′−βに
達した地点での電極位1f!fZa’値を算出し、その
後さらに、加工面との間隙が特定値(gc)になる間隙
検出条件に切換えて、11i小放電を所定時間生じさせ
ながら間隙を収束させ、収束後の1を極位置Zd’ (
Za+ΔZL處)を算出する。
The above-mentioned error amount is corrected by the processing in this step. Then, during the machining of this step, a machining error due to a change in machining gap is detected. The electrode position 1f at the point where the corrected electrode feed amount Za' (Za+ΔZhm) during machining reaches, for example, Z'-β! The fZa' value is calculated, and then the gap detection conditions are changed so that the gap with the machined surface becomes a specific value (gc), and the gap is converged while a small 11i discharge is generated for a predetermined period of time. Position Zd' (
Za+ΔZL) is calculated.

算出した両者の電極位置の変化量Δga  Za’−Z
a’より加工中の加工間隙(Ga=Za’  Za’+
gc)と加工深さ(Ha=Za’ +KC)をそれぞれ
算出する。そうすれば、第11図で記述したように間隙
誤差量(ΔG K = GK−aa)と加工深さの誤差
量(ΔHaに=Hx−β−Ha =ΔGx)が算出でき
、この結果よりその誤差量を電極送り量に補正(ΔZa
K=ΔGK)して加工を再開する。再補正後の電極送り
量ZK’はZに+ΔZLa+ΔZaに=Zに+ΔZにと
なる。ΔZL億は前記したように、”rtI4@消耗及
び熱変形による誤差量(ΔQc−ΔL=ΔZLa)に相
当し、すでに補正加工済みである。
Calculated amount of change in both electrode positions Δga Za'-Z
Machining gap during machining from a'(Ga=Za'Za'+
gc) and machining depth (Ha=Za'+KC). Then, as described in Fig. 11, the gap error amount (ΔG K = GK - aa) and the machining depth error amount (ΔHa = Hx - β - Ha = ΔGx) can be calculated, and from this result, the Correct the error amount to the electrode feed amount (ΔZa
K=ΔGK) and restart machining. The electrode feed amount ZK' after re-correction becomes Z+ΔZLa+ΔZa=Z+ΔZ. As mentioned above, ΔZL corresponds to the amount of error due to wear and thermal deformation (ΔQc−ΔL=ΔZLa), and has already been corrected.

加工の再開によって加工される残りの加工量はβ−ΔZ
Gにとなる。
The remaining machining amount by restarting machining is β−ΔZ
It becomes G.

このように加工誤差補正制御を行うことによって、加工
開始前の位置合せ誤差の解消はもとより。
By performing machining error correction control in this manner, it is possible to eliminate alignment errors before starting machining.

加工時に生じた電極消耗及び熱変形による誤差や加工間
隙変化による誤差等、加工深さ方向の一連の加工誤差が
診断でき、かつそれを正確に解消することができる。誤
差検出の開始時期及び回数は前記したように任意に指定
することができる0例えば電槻消耗及び熱変形による誤
差検出をに=1とに=n−1と指定し、また加工間隙変
化による誤差検出をに=2とに=nと指定すると、その
誤差検出後の各誤差補正の加工は、に=2とに=nのス
テップの加工でそれぞれ2回づつ実行される。
A series of machining errors in the machining depth direction, such as errors due to electrode wear and thermal deformation that occur during machining, and errors due to changes in machining gap, can be diagnosed and accurately resolved. The start time and number of times of error detection can be specified arbitrarily as described above. For example, error detection due to power consumption and thermal deformation is specified as =1 and =n-1, and error due to machining gap change is specified. When the detection is specified as 2=2 and 2=n, each error correction process after the error detection is executed twice in steps of 2=2 and 2=n.

このようにすれば、放電エネルギーの大きい加工条件下
で生じた一連の加工誤差が早期に解消され。
In this way, a series of machining errors that occur under machining conditions with large discharge energy can be quickly eliminated.

さらにその後の加工で生じた加工誤差も最終ステップの
加工で最後に解消することができる。なお、上記の誤差
検出及び誤差補正を加工の実行回数をさらに増すことも
、また、最初の検出時期を他のステップに指定変更でき
ることは言うまでもない。
Furthermore, any machining errors that occur during subsequent machining can be eliminated in the final step of machining. It goes without saying that the number of times the error detection and error correction processes are performed can be further increased, and the initial detection timing can be changed to another step.

上記した実施例の加工誤差補正制御法は、電極消耗誤差
、熱変形誤差゛、加工間隙誤差などが相互に生じやすい
形状の放電加工に対して特に有効で、従来法に比べて大
幅な加工精度の向上を図ることができる。
The machining error correction control method of the embodiment described above is particularly effective for electric discharge machining where electrode wear errors, thermal deformation errors, machining gap errors, etc. are likely to occur, and the machining accuracy is significantly higher than that of conventional methods. It is possible to improve the

最後に一連の本発明を実施する形彫り放電加工機の全体
構成を第14図に示す0図において、電極1と工作物2
に接続された加工電源9は、NC制御装置11によって
指令された所定の加工条件及び間隙検出条件に対応する
パルス電圧、電流を出力する。極間電圧検出回路24は
、電極1と工作物2との間で生じた放電の極間電圧を検
出して、その検出信号をNC制御装置11と電極送りサ
ーボ制御回路16に送信し、放電状態の良否を判別させ
る。電極1は、Z軸のパルスサーボモータ13に連結さ
れた電極送り機構12の先端部に設置されており、増巾
器15を介して電極送りサーボ制御回路16によって駆
動制御されている。その電極送りサーボ制御回路16は
、NC制御装置11からの指令信号で動作すると共に、
各加工条件での放電状態の判別結果に従って電極位置を
適正に制御する。この他にも、指定された加工条件及び
間隙検出で@t4i1を周期的に上下運動させる機能を
持っている。パルスサーボモータ13に連結されたパル
スエンコーダ14は、電極1の位置指令に対するその移
動位置を検出し、その検出信号が電極送りサーボ制御回
路16及びNC制御装置11にフィードバックされる。
Finally, the overall configuration of a die-sinker electric discharge machine for implementing the present invention is shown in FIG. 14, in which an electrode 1 and a workpiece 2 are
A machining power source 9 connected to outputs pulse voltage and current corresponding to predetermined machining conditions and gap detection conditions instructed by the NC control device 11. The inter-electrode voltage detection circuit 24 detects the inter-electrode voltage of the discharge generated between the electrode 1 and the workpiece 2, transmits the detection signal to the NC control device 11 and the electrode feed servo control circuit 16, and detects the electric discharge. Let them determine whether the condition is good or bad. The electrode 1 is installed at the tip of an electrode feed mechanism 12 connected to a Z-axis pulse servo motor 13, and is driven and controlled by an electrode feed servo control circuit 16 via an amplifier 15. The electrode feed servo control circuit 16 operates based on a command signal from the NC control device 11, and
The electrode position is appropriately controlled according to the discrimination result of the discharge state under each machining condition. In addition, it has a function to periodically move @t4i1 up and down based on specified machining conditions and gap detection. A pulse encoder 14 connected to the pulse servo motor 13 detects the movement position of the electrode 1 in response to a position command, and the detection signal is fed back to the electrode feed servo control circuit 16 and the NC control device 11.

xYテーブル4上に設置された工作物2は、XYテーブ
ル機構17に搭載され、かつXY子テーブル動制御回路
23によって制御される。電極1と工作物2の位置合せ
や工作物2を移動及び揺動させる一連の制御指令は、N
C制御装置11より送信されている。
The workpiece 2 placed on the xY table 4 is mounted on the XY table mechanism 17 and is controlled by the XY child table movement control circuit 23. A series of control commands for aligning the electrode 1 and the workpiece 2 and for moving and swinging the workpiece 2 are N.
It is transmitted from the C control device 11.

駆動用のパルスモータ18,19と移動位置検出用のパ
ルスエンコーダ20,21は、前記したZ軸と同様な機
能を持っている。加工槽5には加工液供給袋[8より加
工液が供給及び循環(図示せず)され、同時に放電加工
近傍部にも適量の加工液が供給され、加工生成物が加工
間隙内から適宜排出できるようになっている。
The pulse motors 18 and 19 for driving and the pulse encoders 20 and 21 for detecting the moving position have the same function as the Z axis described above. Machining fluid is supplied and circulated (not shown) to the machining tank 5 from a machining fluid supply bag [8], and at the same time, an appropriate amount of machining fluid is supplied to the vicinity of the electrical discharge machining area, and machining products are appropriately discharged from the machining gap. It is now possible to do so.

一方、誤差検出回路25は1間隙が特定値に収束する間
隙検出条件に移行前後の電極位置の変化を検出して、そ
の検出結果より、加工時に生じた電極消耗及び熱変形に
よる誤差、また加工間隙変化による誤差や加工深さ誤差
など一連の加工誤差を検出及び診断するもので、NC制
御装置11の指令信号とttt極送リサすボ制御回路1
6がらの信号に従って動作すると共に、その検出及び診
断結果をNC制御装置11と誤差補正回路26に送信す
る。さらに、誤差補正回路26は、前記誤差検出及び診
断結果に対応した誤差補正を設定すると同時に、電極送
りの補正及び補正加工を指示する制御信号をNC制御装
置!11に送る。
On the other hand, the error detection circuit 25 detects changes in the electrode position before and after transition to the gap detection condition in which one gap converges to a specific value, and from the detection results, detects errors due to electrode wear and thermal deformation that occurred during machining, and It detects and diagnoses a series of machining errors such as errors due to gap changes and machining depth errors.
The detection and diagnosis results are transmitted to the NC control device 11 and the error correction circuit 26. Further, the error correction circuit 26 sets error correction corresponding to the error detection and diagnosis results, and at the same time sends a control signal instructing electrode feed correction and correction processing to the NC control device! Send to 11.

このように構成した形彫り放電加工機を使用することに
よって、前記した本発明の放電加工における加工誤差の
検出9診断及び補正制御が実行され、その目的を達成す
ることができる。
By using the die-sinker electric discharge machine configured as described above, the above-described machining error detection 9 diagnosis and correction control in electric discharge machining of the present invention can be executed, and the object thereof can be achieved.

本発明は、実施例に示した丸穴形状の加工に限らず、多
種多用の形状加工に対しても同様に実施することができ
る。さらに、Z軸の送りに代ってX軸またはY軸を送り
制御しながら加工する横送り制御の加工法に対しても、
軸方向の制御を変換してやれば、本発明の適用を図るこ
とが可能である。
The present invention is not limited to machining a round hole shape as shown in the embodiment, but can be similarly implemented to machining a wide variety of shapes. Furthermore, for the horizontal feed control machining method, which performs machining while controlling the X-axis or Y-axis feed instead of the Z-axis feed,
The present invention can be applied by converting the control in the axial direction.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、ある微小放電の間隙検出
条件での間隙が特定の値に収束する特性を利用して、加
工前の電極と工作物との基準面設定の位置合せを行い、
また、放電加工で生じる加工間隙変化による誤差や電極
消耗及び熱変形による誤差など一連の加工誤差を正確、
かつ迅速に検出9診断し、それを補正制御するようにし
たので。
As described above, the present invention uses the characteristic that the gap converges to a specific value under certain micro discharge gap detection conditions to align the reference plane setting between the electrode and the workpiece before machining. ,
In addition, we can accurately eliminate a series of machining errors, such as errors caused by machining gap changes that occur during electrical discharge machining, errors caused by electrode wear, and thermal deformation.
In addition, the system quickly detects and diagnoses the results and performs correction control.

従来の接触感知法で生じていた誤差が回避されて、正確
かつ信頼性の高い基準面設定を行うことができると同時
に、従来技術の誤差検出補正法では困難であった一連の
加工誤差が解消され、加工精度を大幅に向上させること
ができる。さらに本発明の加工誤差補正制御法は、簡便
な制御回路で迅速、かつ正確に行うことができるので、
従来のような加工を中断しての加工誤差測定やその手間
が省け、また特別な測定機器を用いる必要もなく、機能
的。
Errors caused by traditional contact sensing methods are avoided, allowing for accurate and reliable reference surface setting, while eliminating a series of processing errors that were difficult with conventional error detection and correction methods. This can significantly improve machining accuracy. Furthermore, the processing error correction control method of the present invention can be performed quickly and accurately using a simple control circuit.
It eliminates the need to interrupt machining to measure machining errors, which is the conventional method, and does not require the use of special measuring equipment, making it highly functional.

経済的な効果がある。It has an economic effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す加工動作のフロー図
、第2図、第4図、第5図、第6図及び第8図は夫々第
1図の例に用いるm極と工作物との各過程での移動状況
を示す位置関係説明図、第3図は第2図の移動を説明す
る電極動作と時間との関係図、第7図は本発明の他の実
施例を示す加工動作のフロー図、第9図は第8図の例の
電極動作の経時変化を示す特性図、第10図、第11図
。 第13図は本発明の更に他の実施例を示す加工動作のフ
ロー図、第12図は第11UiAのフローによる加工成
果の経時変化を示す特性図、第14図は本発明を実施す
る形彫り放電加工機の全体構成を示す配置図、第15図
は従来型の形彫り放電加工機の斜視図、第16図は穴加
工例における加工条件を定義する寸法定義説明図、第1
7図は従来例による加工動作のフロー図、第18図は加
工穴と電極送り量との関係を示す加工穴近傍の拡大図、
第19図は第17図の従来法で加工した時の電極位置と
間隙誤差の発生状況の説明図、第20図は同じ〈従来法
による加工装置の位置関係を示す断面図、第21図は第
20図の従来例による電極消耗に起因する誤差発生状況
を示す特性図、第22図は同じく熱変形に起因する誤差
発生状況を示す特性図、第23図は第20図の従来法で
加工した時の電極消耗と熱変形の発生状況の説明図であ
る。 第 1I71 第 2 口 ! 第 3 口 弔 4 口 奉 δ 日 第 9 日 第 //  図 慕 12  口 経過ft間T 第 74 口 第 15  口 2・・・1作物 5・・・ベツド 4・・・X、Yチー7”ル 5・・・加工槽 奉 /6  [1 第 17  日 第18  目 第 19  羽 エイF7す
FIG. 1 is a flowchart of the machining operation showing one embodiment of the present invention, and FIGS. 2, 4, 5, 6, and 8 respectively show the m-pole and Figure 3 is a diagram showing the relationship between the electrode operation and time to explain the movement in Figure 2, and Figure 7 is a diagram showing another embodiment of the present invention. FIG. 9 is a flowchart of the processing operation shown, and FIG. 9 is a characteristic diagram showing changes over time in the electrode operation of the example shown in FIG. 8, and FIGS. 10 and 11. FIG. 13 is a flowchart of machining operations showing still another embodiment of the present invention, FIG. 12 is a characteristic diagram showing changes over time in machining results according to the flow of 11th UiA, and FIG. 14 is a die-sinking machine implementing the present invention. FIG. 15 is a perspective view of a conventional die-sinker electrical discharge machine; FIG. 16 is a dimension definition explanatory diagram that defines machining conditions in an example of hole machining;
Figure 7 is a flowchart of the machining operation according to the conventional example, and Figure 18 is an enlarged view of the vicinity of the machined hole showing the relationship between the machined hole and the electrode feed amount.
Figure 19 is an explanatory diagram of the electrode position and gap error occurrence situation when machining with the conventional method shown in Figure 17, Figure 20 is a cross-sectional view showing the positional relationship of the machining equipment according to the same method, and Figure 21 is Fig. 20 is a characteristic diagram showing the error occurrence situation due to electrode wear according to the conventional example, Fig. 22 is a characteristic diagram showing the error occurrence situation also caused by thermal deformation, and Fig. 23 is processing using the conventional method shown in Fig. 20. FIG. 3 is an explanatory diagram of the occurrence of electrode wear and thermal deformation when 1I71 2nd part! 3rd Mouth 4 Mouth Offering δ Day 9th Day // Drawing 12 Mouth Passage ft T 74th Mouth 15th Mouth 2...1 Crop 5...Bed 4...X, Y Chi 7" Le 5...Processing tank service /6 [1 17th day 18th day 19th feather stingray F7

Claims (1)

【特許請求の範囲】[Claims] 1、形彫り放電加工機を用いて、工作物に対して所定の
位置より電極を所定の深さ方向に送り、かつ、荒加工か
ら仕上げ加工まで一連の加工ステップ順に電極送りを制
御しながら工作物の加工を行う最中に生じる加工誤差を
補正制御する方法において、加工開始前に、所定の位置
に設置した基準面設定台あるいはその代用が可能な工作
物上面の特定な位置で、電極との間隙が特定値になる間
隙検出条件で微小放電を所定時間生じさせ、その位置検
出より加工深さ方向の基準設定を行つた後、所定の加工
を開始し、その後さらに、前記加工過程で指定したステ
ップの加工後に、電極を前記基準面設定の位置に移動す
ると共に前記間隙検出条件に切換え、微小放電を所定時
間生じさせて間隙を収束させた後の電極位置を検出し、
その検出値と加工開始前に設定した値との比較結果より
加工時に生じた電極消耗及び熱変形による誤差を検出し
て、その誤差を基準面の再設定によつて補正し、さらに
この再設定後の電極を加工後の穴に再度移動すると共に
、前記間隙検出条件で微小放電を所定時間生じさせなが
ら電極と工作物加工面との間隙を収束させた後の電極位
置を検出し、その検出結果より、加工時に生じた間隙変
化による誤差を算出し、また加工深さを算出した後、加
工計画時の所定値に対する加工深さ方向の加工誤差量を
算出して、この算出結果から補正加工が必要と判断され
た場合に、前記加工誤差量を補正するように電極送りを
制御して補正加工を行うようにしたことを特徴とする形
彫り放電加工における加工誤差補正制御法。
1. Using a die-sinker electric discharge machine, feed the electrode from a predetermined position to a predetermined depth direction of the workpiece, and machine the workpiece while controlling the electrode feed in the order of a series of machining steps from rough machining to finishing machining. In a method for correcting and controlling machining errors that occur during machining of an object, before the start of machining, an electrode is A micro discharge is generated for a predetermined time under the gap detection conditions where the gap becomes a specific value, and after setting a reference in the machining depth direction by detecting its position, a predetermined machining is started, and then further specified in the machining process. After processing the step, move the electrode to the reference plane setting position, switch to the gap detection condition, generate a micro discharge for a predetermined period of time, and detect the electrode position after converging the gap,
Errors due to electrode wear and thermal deformation that occurred during machining are detected from the comparison results between the detected value and the value set before the start of machining, and the errors are corrected by resetting the reference plane. At the same time as moving the latter electrode again to the hole after machining, detecting the electrode position after converging the gap between the electrode and the machined surface of the workpiece while generating a micro discharge for a predetermined period of time under the gap detection conditions, and detecting the position of the electrode. From the results, calculate the error due to the gap change that occurred during machining, and after calculating the machining depth, calculate the machining error amount in the machining depth direction with respect to the predetermined value at the time of machining plan, and perform correction machining from this calculation result. 1. A machining error correction control method in die-sinking electrical discharge machining, characterized in that when it is determined that the machining error amount is necessary, correction machining is performed by controlling electrode feed to correct the machining error amount.
JP5608788A 1988-03-11 1988-03-11 Machining error correction control method in die milling spark erosion machining Pending JPH01234117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5608788A JPH01234117A (en) 1988-03-11 1988-03-11 Machining error correction control method in die milling spark erosion machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5608788A JPH01234117A (en) 1988-03-11 1988-03-11 Machining error correction control method in die milling spark erosion machining

Publications (1)

Publication Number Publication Date
JPH01234117A true JPH01234117A (en) 1989-09-19

Family

ID=13017312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5608788A Pending JPH01234117A (en) 1988-03-11 1988-03-11 Machining error correction control method in die milling spark erosion machining

Country Status (1)

Country Link
JP (1) JPH01234117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384364B1 (en) * 2000-12-21 2002-05-07 General Electric Company Method of aligning electrode in multiple-axis EDM drilling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (en) * 1981-12-29 1983-07-08 Fanuc Ltd Electric discharge machining
JPS58160018A (en) * 1982-03-19 1983-09-22 Mitsubishi Electric Corp Electric discharge device
JPS61279429A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (en) * 1981-12-29 1983-07-08 Fanuc Ltd Electric discharge machining
JPS58160018A (en) * 1982-03-19 1983-09-22 Mitsubishi Electric Corp Electric discharge device
JPS61279429A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384364B1 (en) * 2000-12-21 2002-05-07 General Electric Company Method of aligning electrode in multiple-axis EDM drilling

Similar Documents

Publication Publication Date Title
US9360857B2 (en) Electrical discharge milling machine
JP3575087B2 (en) Electric discharge machine
JPS63267121A (en) Wire-cut electric discharge machining device
JP2597598B2 (en) Nozzle check device in laser beam machine
JPH01234117A (en) Machining error correction control method in die milling spark erosion machining
US4366360A (en) Method of and apparatus for determining relative position of a tool member to a workpiece in a machine tool
JPH03178731A (en) Electric discharge machine
JPS58137529A (en) Positioning method for discharge machining
JPH01205917A (en) Detection of working error in diesinking electric discharge machining
US7113884B1 (en) Positioning apparatus for an electrical discharge machine and a method therefor
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
JP2977864B2 (en) Non-contact machining method and apparatus
JP4678711B2 (en) Die-sinker EDM
CN110153875B (en) Grinding wheel abrasion real-time detection and calibration method and device
JP4904654B2 (en) EDM machine
JP4463901B2 (en) Electric discharge machining method and apparatus
JPH11277249A (en) Dressing method for spot welding electrode and spot welding equipment
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
CN113828872B (en) Automatic triaxial numerical control spark machine of tool setting
JPH0671687B2 (en) Electric discharge machine
JPH0468103B2 (en)
JP2686094B2 (en) Electric discharge machine
JP3727673B2 (en) EDM machine
JPH0798290B2 (en) EDM method
JPH0259239A (en) Numerically controlled machine tool with electro-discharge machine function