JPH01231924A - Treatment of gaseous solvent - Google Patents
Treatment of gaseous solventInfo
- Publication number
- JPH01231924A JPH01231924A JP63059591A JP5959188A JPH01231924A JP H01231924 A JPH01231924 A JP H01231924A JP 63059591 A JP63059591 A JP 63059591A JP 5959188 A JP5959188 A JP 5959188A JP H01231924 A JPH01231924 A JP H01231924A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- solvent
- desorption
- gas
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 35
- 238000002485 combustion reaction Methods 0.000 claims abstract description 23
- 238000003795 desorption Methods 0.000 claims abstract description 23
- 239000002351 wastewater Substances 0.000 claims abstract description 16
- 238000009833 condensation Methods 0.000 claims abstract 2
- 230000005494 condensation Effects 0.000 claims abstract 2
- 238000001816 cooling Methods 0.000 claims abstract 2
- 238000001179 sorption measurement Methods 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 12
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 230000001172 regenerating effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000002918 waste heat Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 239000008234 soft water Substances 0.000 description 2
- 239000010887 waste solvent Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1例えば印刷用インキ製造プラントにおけるイ
ンク溶剤、ビデオテープ製造プラントにおけるコーティ
ング溶剤、粘着テープ製造プラントにおける接着材溶剤
等から発生する例えばトルエン、キシレン、ヘキサン。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to the use of toluene, for example, generated from ink solvents in printing ink manufacturing plants, coating solvents in videotape manufacturing plants, adhesive solvents in adhesive tape manufacturing plants, etc. , xylene, hexane.
シクロヘキサノン(特にビデオテープコーティング溶剤
か・ら発生)等の溶剤ガス処理方法に関する。It relates to a method for treating solvent gases such as cyclohexanone (particularly generated from videotape coating solvents).
第2図に、従来の溶剤ガス処理装置のプロセスを示す。 FIG. 2 shows the process of a conventional solvent gas treatment apparatus.
ここで溶剤発生源からのガスは、電動機2により駆動さ
れるガス吸引ファン1によシ吸着槽3内に充填された活
性炭4に圧送され、吸着される(これを「吸着工程」と
云う)。Here, the gas from the solvent source is forced into the activated carbon 4 filled in the adsorption tank 3 by the gas suction fan 1 driven by the electric motor 2, and is adsorbed (this is called the "adsorption step"). .
活性炭の吸着能力が規定値になった吸着槽はガス通気を
停止され、活性炭内、に吸着された溶剤分の除去のため
、蒸気側に吸着槽を切替え、蒸気の投入が行なわれ、吸
着能力の回復が行なわれる(これを「脱着工程」と云う
)。When the adsorption capacity of the activated carbon reaches the specified value, gas ventilation is stopped in the adsorption tank, and in order to remove the solvent adsorbed in the activated carbon, the adsorption tank is switched to the steam side and steam is introduced, increasing the adsorption capacity. (this is called the "desorption process").
吸着槽から流出した水蒸気と溶剤の混合蒸気(これを「
蒸留気」と云う)は、コンデンサで凝縮冷却させられた
後1分離槽へ流下し溶剤と排水に分離される。Mixed vapor of water vapor and solvent flowing out from the adsorption tank (this is called “
After being condensed and cooled in a condenser, the distilled vapor flows into a separation tank where it is separated into solvent and waste water.
吸kI脱着の各工程を繰返すことによシ、溶剤ガスを処
理(回収)するが、この間溶剤発生源からのガス吸引は
、電動機で駆動されるガス吸引ファンによって行なわれ
る。The solvent gas is treated (recovered) by repeating the suction and desorption steps, during which the gas suction from the solvent source is performed by a gas suction fan driven by an electric motor.
第5図にこれらの運転概念を示す。Figure 5 shows these operating concepts.
従来の溶剤ガス処理装置は。 Conventional solvent gas treatment equipment.
(1)ガス吸引ファンは、吸着槽の吸着!脱着工程にか
かわらす、装置運転の全期間にわたって。(1) The gas suction fan absorbs the adsorption tank! Throughout the entire period of equipment operation, including the desorption process.
ファン駆動のための電力を消費する。このためのランニ
ングコストは比較的大きい。Consumes power to drive the fan. The running costs for this are relatively high.
(2)吸着槽に投入される蒸気は、吸着槽の入口で減圧
されるため、エネルギをロスしている。(2) The steam input into the adsorption tank is depressurized at the inlet of the adsorption tank, resulting in a loss of energy.
(3)回収された溶剤が多成分混合又は水分多量含有等
で1分離槽で分離したままの状態では使用できない場合
には、蒸留による分留I脱水を行なう等の複雑な処理が
必要となシ、設備費用が大であった。(3) If the recovered solvent is a multi-component mixture or contains a large amount of water and cannot be used as it is separated in one separation tank, complicated treatment such as fractional distillation I dehydration is required. However, equipment costs were high.
(4)また回収後廃却される場合は、装置設置のメリッ
トがなかった。(4) In addition, if the equipment is disposed of after collection, there is no merit in installing the equipment.
(5)排水についても1分離したままの状態では溶剤含
有濃度が高く、そのままでは排出できない場合には、蒸
留や曝気等の処理設備が必要となり、設備費用が犬であ
った。(5) The concentration of solvent contained in wastewater is high when it is left separated, and if it cannot be discharged as is, treatment equipment such as distillation or aeration is required, which increases the cost of equipment.
本発明は上記問題点を解消することを目的とする。The present invention aims to solve the above problems.
〔課題を解決するだめの手段及び作用〕(1)吸着槽に
投入される蒸気は、供給圧力(3〜5Kg1caG程度
)から吸着槽入口において、約0.1Kg/cr/iG
にオリフィス等で減圧されて投入される。これは、吸1
着槽以後の耐圧上からの要求によるものである。[Means and actions to solve the problem] (1) The steam input into the adsorption tank is approximately 0.1 Kg/cr/iG at the inlet of the adsorption tank from the supply pressure (approximately 3 to 5 Kg/caG).
The pressure is reduced through an orifice, etc. This is Suction 1
This is due to pressure resistance requirements after the tank is installed.
この減圧によってロスする分に相当する蒸気のエネルギ
を回収するために蒸気タービンを設置する。回収された
エネルギで蒸気タービンを運転し、これによって発生し
た回転力をファンに伝達し、ガス吸引を行なう。A steam turbine is installed to recover the steam energy equivalent to the amount lost due to this pressure reduction. The recovered energy is used to operate a steam turbine, and the rotational force generated by this is transmitted to a fan to suck gas.
吸着槽で蒸気を使用しない間も、ガスの吸引が行なえる
ように、電動機も設置し、ファン1堅動を行なえるよう
にする。An electric motor is also installed so that the fan 1 can be operated steadily so that gas can be sucked even when steam is not used in the adsorption tank.
12)吸着槽から流出した脱着初期の蒸留見向には空気
が混入しているため、コンデンサへ導き冷却凝縮させた
後1分離槽で排水と溶剤に分離する。分離後の排水を燃
焼炉に供給すると共に、溶剤は助燃材として使用し、い
ずれも燃焼炉で燃焼焼却する。12) Since air is mixed in the distillate that flows out from the adsorption tank at the initial stage of desorption, it is led to a condenser, cooled and condensed, and then separated into waste water and solvent in a separation tank. The wastewater after separation is supplied to the combustion furnace, and the solvent is used as a combustion aid, and both are burned and incinerated in the combustion furnace.
(3)さらに脱着がある程度経過すると蒸留見向の空気
がなくなるため、この状態となった蒸留気を、コンデン
サ側から切替えて、直接燃焼炉に投入し燃焼焼却する。(3) After a certain amount of desorption has passed, there will be no more air available for distillation, so the distilled gas in this state is switched from the condenser side and directly fed into the combustion furnace to be burned and incinerated.
(4)燃焼炉からの高温排ガスで軟水を加熱し蒸気とす
る。廃熱ボイラにより燃焼熱を回収すると共に、この発
生した蒸気を再度脱着蒸気として使用できるように、蒸
気タービンの蒸気入口側へ戻す。(4) Heat the soft water with high-temperature exhaust gas from the combustion furnace and turn it into steam. Combustion heat is recovered by the waste heat boiler, and the generated steam is returned to the steam inlet side of the steam turbine so that it can be used again as desorption steam.
第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.
本プロセスは、吸着槽で蒸気が使用される間(脱着工程
中)は、工場ボイラあるいは廃熱ボイラから供給された
蒸気がファン駆動用蒸気タービン8を通ることによシ減
圧(このエネルギがタービンの回転力となる)きれ、低
圧となって吸着槽に投入される。この蒸気タービンの回
転をガス吸引ファン1に伝達することにより、溶剤発生
源からのガスを吸引し。In this process, while the steam is used in the adsorption tank (during the desorption process), the steam supplied from the factory boiler or waste heat boiler passes through the fan-driving steam turbine 8 to reduce the pressure (this energy is transferred to the turbine). (rotating force), and it is put into the adsorption tank under low pressure. By transmitting the rotation of this steam turbine to the gas suction fan 1, gas from the solvent generation source is sucked.
吸着槽3内の活性炭4に圧送する。The activated carbon 4 in the adsorption tank 3 is fed under pressure.
脱着完了後の吸着槽3の切替時や、ガス中の溶剤濃度が
計画値より薄くて脱着が連続にならず、蒸気使用がない
場合は、ファン1の駆動源を伝達切替装置7を切替える
ことにより。When switching the adsorption tank 3 after the completion of desorption, or when the solvent concentration in the gas is lower than the planned value and desorption is not continuous and no steam is used, the drive source of the fan 1 is switched by the transmission switching device 7. By.
電動機2にてガス吸引ファン1を駆動しガス吸引を行な
う。これらファン駆動源(蒸気タービンI電動機)の切
替えは運転に合わせて自動コントロールされる。A gas suction fan 1 is driven by an electric motor 2 to suck gas. Switching of these fan drive sources (steam turbine I electric motor) is automatically controlled according to the operation.
吸着槽より流出した脱着初期の蒸留見向には空気が混入
しているため、コンデンサ5に導かれ凝縮冷却させられ
た後1分離槽6へ流下し溶剤と排水に分離される。Since air is mixed in the distillate that flows out from the adsorption tank at the initial stage of desorption, it is led to a condenser 5 where it is condensed and cooled, and then flows down to a separation tank 6 where it is separated into solvent and waste water.
分離された排水は排水ポンプ9により燃焼炉12に送ら
れる。ここに金気ファン10からの空気とオイルポンプ
11からの助燃材と混合させ、燃焼炉12で排水を燃焼
焼却させる。The separated waste water is sent to a combustion furnace 12 by a waste water pump 9. The air from the air fan 10 and the combustion auxiliary material from the oil pump 11 are mixed here, and the waste water is combusted and incinerated in the combustion furnace 12.
これにより装置外への排水をゼロとする。また2分離槽
で分離した溶剤は助燃材としても使用される。This eliminates the amount of water discharged outside the device. The solvent separated in the two separation tanks is also used as a combustion aid.
脱着がある程度経過すると蒸留気中に空気の混入は無く
なるため、この状態になったら流路をコンデンサ5・側
から燃焼炉12に切替えて、直接蒸留気を燃焼炉に投入
し燃焼焼却する。After a certain amount of desorption has elapsed, air will no longer be mixed into the distilled gas, so when this state is reached, the flow path is switched from the condenser 5 side to the combustion furnace 12, and the distilled gas is directly introduced into the combustion furnace to be burned and incinerated.
これら流路切替えは蒸留気の状態に応じて。These flow paths are switched depending on the state of the distilled gas.
自動コントロールされる燃焼炉12からの高温排ガスは
廃熱ボイラ13に導かれ、軟水を蒸気にする。この蒸気
は再び脱着用の蒸気として使用するため、蒸気タービン
8の蒸気入口側に返される。工場ボイラ蒸気及び廃熱ボ
イラ蒸気は任意に使用できるが2通常は廃熱ボイラの運
転に応じて自動コントロールされる。High-temperature exhaust gas from the automatically controlled combustion furnace 12 is led to a waste heat boiler 13 to turn soft water into steam. This steam is returned to the steam inlet side of the steam turbine 8 to be used again as steam for desorption. Although factory boiler steam and waste heat boiler steam can be used arbitrarily, they are usually automatically controlled according to the operation of the waste heat boiler.
本プロセスを使用した場合の運転概念を第2〜3図に示
す
第2図はガスの溶剤濃度が計画値の場合一連続運転、第
3図はガスの溶剤濃度が計画値より薄い場合−断続脱着
を示す。Figures 2 and 3 show the operational concept when using this process. Figure 2 shows continuous operation when the gas solvent concentration is at the planned value, and Figure 3 shows intermittent operation when the gas solvent concentration is lower than the planned value. Indicates desorption.
(1)従来の溶剤回収装置では、装置運転の吸着工程!
脱着工程の全期間にわたりガス吸引ファン駆動のための
電力を消費するが9本発明を採用することにより、脱着
工程では脱着に使用する蒸気のエネルギでガス吸引ファ
ンを駆動する(電動機は停止)ため、ガス吸引のための
電力消費を大きく低減できる。例えばガス発生が連続で
、且つ溶剤濃度が高濃度であれば、ガス吸引電力を9割
以上削減できる。(1) In conventional solvent recovery equipment, the adsorption process of equipment operation!
Electricity is consumed to drive the gas suction fan during the entire period of the desorption process, but by adopting the present invention, the gas suction fan is driven by the energy of the steam used for desorption during the desorption process (the electric motor is stopped). , power consumption for gas suction can be greatly reduced. For example, if gas generation is continuous and the solvent concentration is high, the gas suction power can be reduced by 90% or more.
(2)排水を燃焼炉で焼却してしまうため、装置よシの
排水がゼロとなシ排水規制の厳しいところでも、蒸留等
の複雑な排水処理設備が不要となる。(2) Since the wastewater is incinerated in a combustion furnace, there is no wastewater from the equipment, and even in places with strict wastewater regulations, there is no need for complex wastewater treatment equipment such as distillation.
(3)回収しても再使用できない溶剤でも、燃焼炉の助
燃材として使用できるため有効利用が図れる。(3) Even if a solvent is recovered but cannot be reused, it can be used as a combustion aid in a combustion furnace, so it can be used effectively.
(4)排水及び溶剤を焼却した排熱を廃熱ボイラで回収
し、これにより再生した蒸気を再度脱着に使用するため
、装置外から供給するボイラ蒸気の使用量を大きく低減
できる。(4) The waste heat from incinerating the waste water and solvent is recovered in the waste heat boiler, and the regenerated steam is used again for desorption, so the amount of boiler steam supplied from outside the device can be significantly reduced.
第1図は本発明の一実施例を示すフロー図。
第2図及び第3図はそれぞれ本発明方法による運転概念
図、第4図は従来方法のフa−図、第5図は従来方法に
よる運転概念図である。
1・・・ガス吸引ファン、2・・・ファン駆動電動機。
3・・・吸着槽、4・・・活性炭、5・・・コンデンサ
。
6・・・分離槽、7・・・伝達切替装置、8.・・ファ
ン駆動蒸気タービン 9・・・排水ポンプ、1000.
空気ファン、11・・・オイルポンプ、12・・・燃焼
炉。
13・・・廃熱ボイラ。FIG. 1 is a flow diagram showing one embodiment of the present invention. 2 and 3 are conceptual diagrams of operation according to the method of the present invention, FIG. 4 is a diagram of the conventional method, and FIG. 5 is a conceptual diagram of operation according to the conventional method. 1... Gas suction fan, 2... Fan drive motor. 3... Adsorption tank, 4... Activated carbon, 5... Capacitor. 6...Separation tank, 7...Transmission switching device, 8. ...Fan-driven steam turbine 9...Drainage pump, 1000.
Air fan, 11...oil pump, 12...combustion furnace. 13...Waste heat boiler.
Claims (1)
)式ファンに利用した後、吸着槽の脱着に使用し、流出
した水蒸気と溶剤の混合蒸気をそのままか、又はこの混
合蒸気を凝縮冷却後、分離した溶剤と排水のいずれをも
燃焼炉で燃焼させ、この燃焼熱で再度脱着に使用する蒸
気を作り出すことを特徴とする溶剤ガス処理方法。In solvent gas processing, desorption steam is used in a steam-driven (turbine) type fan and then used for desorption in an adsorption tank, and the mixed steam of water vapor and solvent that flows out is used as it is, or after condensation and cooling, the mixed steam is separated. A solvent gas processing method characterized by burning both the solvent and wastewater in a combustion furnace, and using the combustion heat to generate steam that is used again for desorption.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63059591A JPH01231924A (en) | 1988-03-14 | 1988-03-14 | Treatment of gaseous solvent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63059591A JPH01231924A (en) | 1988-03-14 | 1988-03-14 | Treatment of gaseous solvent |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01231924A true JPH01231924A (en) | 1989-09-18 |
Family
ID=13117631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63059591A Pending JPH01231924A (en) | 1988-03-14 | 1988-03-14 | Treatment of gaseous solvent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01231924A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1825902A1 (en) * | 2006-02-22 | 2007-08-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of processing volatile organic compound and system for processing volatile organic compound |
US8142555B2 (en) | 2004-08-19 | 2012-03-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of treating volatile organic compound and system for treating volatile organic compound using gas turbine |
CN109821520A (en) * | 2019-03-13 | 2019-05-31 | 常州大学 | A kind of mobile and combined adsorbent desorption and regeneration system on the spot |
-
1988
- 1988-03-14 JP JP63059591A patent/JPH01231924A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8142555B2 (en) | 2004-08-19 | 2012-03-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of treating volatile organic compound and system for treating volatile organic compound using gas turbine |
EP1825902A1 (en) * | 2006-02-22 | 2007-08-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of processing volatile organic compound and system for processing volatile organic compound |
KR100860868B1 (en) * | 2006-02-22 | 2008-09-29 | 가부시키가이샤 아이에이치아이 | Method of processing volatile organic compound and system for processing volatile organic compound |
US7914608B2 (en) | 2006-02-22 | 2011-03-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of processing volatile organic compound and system for processing volatile organic compound |
CN109821520A (en) * | 2019-03-13 | 2019-05-31 | 常州大学 | A kind of mobile and combined adsorbent desorption and regeneration system on the spot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100860868B1 (en) | Method of processing volatile organic compound and system for processing volatile organic compound | |
RU2335701C1 (en) | Method and system for processing of volatile organic compound with application of gas turbine | |
JP3956993B1 (en) | Volatile organic compound processing method and volatile organic compound processing system using gas turbine | |
CN100510345C (en) | Use of VOC as fuel for an engine | |
KR100382869B1 (en) | Exhaust gas treatment system | |
CN113719842B (en) | VOCs processing system of high-efficient heat recovery | |
CN208824219U (en) | A kind of organic waste gas treatment device | |
JPH01231924A (en) | Treatment of gaseous solvent | |
KR100199410B1 (en) | Method and apparatus for treating waste gas produced by heating organic compounds | |
KR100364066B1 (en) | Gasborne component condensing apparatus | |
CN117654202A (en) | Process and device for treating organic waste gas by using activated carbon | |
CN217369743U (en) | Low-energy-consumption organic contaminated soil concentration heat treatment device | |
CN212069289U (en) | Non-drainage small-sized paint spraying treatment equipment | |
KR100381789B1 (en) | Direction of the wind separated by rotation type rotor for v.o.c treatment equipment | |
KR200443443Y1 (en) | VOC Waste Gas Purifying Apparatus Having Two Serially Arranged Blowers Cooperated With a Decoupled Equalizing Air Duct | |
KR20190122391A (en) | System for processing volatile organic compounds in painting shop | |
CN113894152A (en) | Low-energy-consumption organic contaminated soil concentration heat treatment device | |
CN114307540A (en) | Double-temperature desorption device and method | |
JP2004037038A (en) | Method and device for treating organic component-containing air and organic component-containing waste liquid | |
JP2010188274A (en) | Volatile organic compound treatment system | |
CN117427457B (en) | VOCs waste gas treatment process capable of flexibly switching adsorption and desorption and enhancing heat recovery | |
CN219462967U (en) | Volatile organic compound treatment system for large air volume and low concentration | |
CN220834581U (en) | Organic waste gas treatment system | |
SU1639725A1 (en) | Method for treating gas effluents | |
CN113894151A (en) | Low-energy-consumption concentration heat treatment method for organic contaminated soil |