JPH01180960A - Metallic rh for vacuum deposition - Google Patents

Metallic rh for vacuum deposition

Info

Publication number
JPH01180960A
JPH01180960A JP216988A JP216988A JPH01180960A JP H01180960 A JPH01180960 A JP H01180960A JP 216988 A JP216988 A JP 216988A JP 216988 A JP216988 A JP 216988A JP H01180960 A JPH01180960 A JP H01180960A
Authority
JP
Japan
Prior art keywords
less
1ppm
elements
ppm
vacuum deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP216988A
Other languages
Japanese (ja)
Inventor
Toshiya Yamamoto
俊哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP216988A priority Critical patent/JPH01180960A/en
Publication of JPH01180960A publication Critical patent/JPH01180960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain metallic Rh suppressing bumping and scattering of molten Rh in vacuum deposition by regulating the contents of impurity elements e.g., Cd, Mg and Al in Rh each having a lower b.p. than Rh, and by specifying the purity of the Rh. CONSTITUTION:This metallic Rh for vacuum deposition has >=99.98wt.% purity and contains, by weight, <=30ppm, in total, of <=1ppm Cd, <=1ppm As, <=1ppm Na, <=1ppm K, <=1ppm Zn, <=3ppm Mg, <=1ppm Sr, <=3ppm Ca, <=1ppm Bi, <=1ppm Sb, <=1ppm Ba, <=1ppm Pb, <=20ppm Al, <=1ppm In, <=1ppm Mn, <=1ppm Ag, <=10ppm Si and <=1ppm Sn. When the metallic Rh is vacuum- deposited, the evaporation of impurity elements is suppressed and bumping and scattering of molten Rh are prevented. The total amt. of elements having <=1,000 deg.C b.p. such as Cd is preferably regulated to <=3ppm, that of elements having 1,000-2,000 deg.C b.p. such as Mg to <=7ppm and that of elements having >2,000 deg.C b.p. such as Al to <=20ppm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リードスイッチ用接点材料などに使用される
真空蒸着用Rh金属に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Rh metal for vacuum deposition, which is used as a contact material for a reed switch.

(従来の技術とその問題点) 従来よりRhは、通常99.95%のものが純Rhとし
て、真空蒸着材料に使用されている。
(Prior Art and its Problems) Conventionally, Rh has been used in vacuum evaporation materials, usually with 99.95% pure Rh.

ところで、このRhの真空蒸着材料の中には不純物とし
て多数の元素が微量存在しているので、真空蒸着時に溶
融状態のRhが突沸したり、飛散したりして、溶融Rh
が基板に付着し、平滑な膜が得られないものである。
By the way, this Rh vacuum evaporation material contains a small amount of many elements as impurities, so molten Rh may bump or scatter during vacuum evaporation, resulting in molten Rh
adheres to the substrate, making it impossible to obtain a smooth film.

これはRhの融点が228℃であるが、不純物として微
量存在する多数の元素の沸点は殆んどそれ以下である為
、溶融Rh中ではそれらの元素が選択的にしかも突沸的
に蒸発するからである。
This is because the melting point of Rh is 228°C, but the boiling points of many elements that exist in small amounts as impurities are almost all lower than that, so those elements evaporate selectively and bumpingly in molten Rh. It is.

(発明の目的) 本発明は、上記問題点を解決すべ(なされたもので、不
純物として存在する多数の元素の含有量を少な(して、
真空蒸着時それらの元素の蒸発を少なくし、溶融Rhが
突沸したり、飛散したりするのを減少するようにした真
空蒸着用Rh金属を提供することを目的とするものであ
る。
(Objective of the Invention) The present invention has been made to solve the above problems, and to reduce the content of many elements that exist as impurities.
The object of the present invention is to provide a Rh metal for vacuum deposition, which reduces evaporation of these elements during vacuum deposition and reduces bumping and scattering of molten Rh.

(問題点を解決するための手段) 上記問題点を解決するための本発明の真空蒸着用Rh金
属は、重量比で、Cdが1PPM以下、Asが1PPM
以下、Naか1PPM以下、Kが1PPM以下、Znが
1PPM以下、Mgが3PPM以下、Srが1PPM以
下、Caが3PPM以下、Biが1PPM以下、Sbが
1PPM以下、Baが1PPM以下、Pbが1PPM以
下、Anが20PPM以下、Inが1PPM以下、Mn
が1PPM以下、Agが1PPM以下、Siが10PP
M以下、SnがI P P M以下で、これら元素の総
量が30PPM以下であり、且つRhの純度が重量比で
99.98%以上であることを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the Rh metal for vacuum deposition of the present invention has a weight ratio of Cd of 1 PPM or less and As of 1 PPM.
Below, Na is 1PPM or less, K is 1PPM or less, Zn is 1PPM or less, Mg is 3PPM or less, Sr is 1PPM or less, Ca is 3PPM or less, Bi is 1PPM or less, Sb is 1PPM or less, Ba is 1PPM or less, Pb is 1PPM Below, An is 20 PPM or less, In is 1 PPM or less, and Mn is
is 1PPM or less, Ag is 1PPM or less, Si is 10PP
M or less, Sn is I P P M or less, the total amount of these elements is 30 PPM or less, and the purity of Rh is 99.98% or more by weight ratio.

また、本発明の真空蒸着用Rh金属は、沸点が100℃
以下のCd、As、Na、K、Znの元素が総量で重量
比3PPM以下であることも特徴である。
Furthermore, the Rh metal for vacuum deposition of the present invention has a boiling point of 100°C.
Another feature is that the total amount of the following elements Cd, As, Na, K, and Zn is 3 PPM or less by weight.

さらに本発明の真空蒸着用Rh金属は、沸点が1000
°0〜200℃のMg、Sr、Ca、B i、Sb、B
a、Pbの元素が総量で重量比7PPM以下であること
も特徴である。
Furthermore, the Rh metal for vacuum deposition of the present invention has a boiling point of 1000
°0~200℃ Mg, Sr, Ca, Bi, Sb, B
Another feature is that the total amount of the elements a and Pb is 7 PPM or less by weight.

さらにまた本発明の真空萎着用Rh金属は、沸点が20
0℃を超えるAl、In、Mn、Ag、Si、Snの元
素が総量で重量比20PPM以下であることも特徴であ
る。
Furthermore, the Rh metal for vacuum shrinkage of the present invention has a boiling point of 20
Another feature is that the total amount of the elements Al, In, Mn, Ag, Si, and Sn whose temperature exceeds 0° C. is 20 PPM or less by weight.

本発明の真空蒸着用Rh金属に於いて、各元素の重量比
の上限を前述の如く限定した理由は、各元素の重量比が
上限を超えると、真空蒸着時各元素が突沸的に蒸発する
為である。また各元素の総量を30PPM以下に限定し
た理由は、30PPMを超えると真空蒸着時含有する元
素の蒸発が極端に増加するからである。
The reason for limiting the upper limit of the weight ratio of each element in the Rh metal for vacuum deposition of the present invention as described above is that if the weight ratio of each element exceeds the upper limit, each element evaporates in a bumping manner during vacuum deposition. It is for this purpose. Further, the reason why the total amount of each element is limited to 30 PPM or less is that if it exceeds 30 PPM, the evaporation of the elements contained during vacuum deposition will increase dramatically.

沸点が100℃以下の蒸気圧の高いCd、As、Na、
K、Znの元素の総量を重量比で3PPM以下にした理
由は、真空蒸着時それらの元素の蒸発をなくし、溶融R
hの突沸を減少するためである。
Cd, As, Na, with a boiling point of 100°C or less and a high vapor pressure.
The reason why the total amount of K and Zn elements was set to 3 PPM or less by weight was to eliminate evaporation of these elements during vacuum deposition, and to reduce the molten R
This is to reduce bumping of h.

沸点が100℃〜200℃の蒸気圧の低いMg、Sr、
Ca、Bi、Sb、Ba、Pbの元素の総量を重量比で
7PPM以下にした理由は、真空蒸着時それらの元素の
蒸発を少なくし、溶融Rhの突沸を減少する為である。
Mg, Sr, with a boiling point of 100°C to 200°C and low vapor pressure;
The reason why the total amount of the elements Ca, Bi, Sb, Ba, and Pb is set to 7 PPM or less by weight is to reduce evaporation of these elements during vacuum deposition and to reduce bumping of molten Rh.

沸点が200℃を超える蒸気圧の極めて低いAl、In
、Mn、Ag、S i、Snの元素の総量を重量比で2
0PPM以下にした理由は、真空蒸着時それらの元素の
蒸発を少なくし、溶融Rhの突沸を減少する為である。
Al, In with a boiling point exceeding 200°C and extremely low vapor pressure
, Mn, Ag, Si, and Sn in a weight ratio of 2
The reason why it is set to 0 PPM or less is to reduce evaporation of those elements during vacuum deposition and to reduce bumping of molten Rh.

Rhを重量比で99.98%としたのは、Rhの純度を
より高める為である。
The reason for setting Rh to 99.98% by weight is to further increase the purity of Rh.

(実施例) 本発明による真空蒸着用Rh金属の実施例及び比較例に
ついて説明する。不純物として多数の元素を含有するR
hを予めアーク溶解炉や電子ビーム溶解炉で5分以上溶
解して、Rhより蒸気圧の高い各元素を選択的に蒸発さ
せて、下記の表に示す成分組成の実施例1〜8及び比較
例1〜4の真空蒸着用Rh金属を得た。
(Example) Examples and comparative examples of Rh metal for vacuum deposition according to the present invention will be described. R containing many elements as impurities
Rh was preliminarily melted in an arc melting furnace or an electron beam melting furnace for 5 minutes or more to selectively evaporate each element with a higher vapor pressure than Rh. Rh metals for vacuum deposition of Examples 1 to 4 were obtained.

これら実施例及び比較例の真空蒸着用Rh金属を基板に
真空蒸着した処、当初の1分間で下記の表の右端欄に示
すような回数の突沸かあった。
When the Rh metals for vacuum evaporation of these Examples and Comparative Examples were vacuum evaporated onto substrates, bumping occurred as many times as shown in the right column of the table below in the first minute.

(以下余白) 上記の表で明らかなように比較例1〜4の真空蒸着用R
h金属は、真空蒸着時の微量に含有する元素の蒸発によ
る溶融Rhの突沸回数が3〜5回と多いのに対し、実施
例1〜8の真空蒸着用Rh金属は、真空蒸着時の微量に
含有する元素の蒸発による溶融Rhの突沸回数が0〜1
回と極めて少ないことが判る。これはひとえにRh中に
含有するCd、As、Na、K、Znの各々が1PPM
以下で、Mg、Caが3PPM以下、Sr、Bi、Sb
、Ba、Pbの各々が1PPM以下で、AI!。
(Left below) As is clear from the table above, R for vacuum deposition in Comparative Examples 1 to 4
In the case of the Rh metal, the number of bumping times of the molten Rh due to the evaporation of elements contained in trace amounts during vacuum deposition is as high as 3 to 5 times, whereas the Rh metals for vacuum deposition in Examples 1 to 8 have a trace amount of bumping during vacuum deposition. The number of bumping times of molten Rh due to evaporation of elements contained in is 0 to 1
It turns out that there are very few times. This simply means that each of Cd, As, Na, K, and Zn contained in Rh is 1 PPM.
Below, Mg, Ca is 3 PPM or less, Sr, Bi, Sb
, Ba, and Pb are each 1 PPM or less, and AI! .

20PPM以下、SSi10PP、I n、Mn、Ag
、Snの各々か1PPMであり、これら元素の総量が3
0PPM以下であるからである。
20PPM or less, SSi10PP, In, Mn, Ag
, Sn is 1 PPM, and the total amount of these elements is 3
This is because it is 0 PPM or less.

そして沸点100℃以下の元素の総量が3PPM以下、
沸点1000〜2000’Cの元素の総量が7PPM以
下、沸点200℃以上の元素の総量か20PPM以下で
あるからである。
and the total amount of elements with a boiling point of 100°C or less is 3 PPM or less,
This is because the total amount of elements with a boiling point of 1000 to 2000'C is 7 PPM or less, and the total amount of elements with a boiling point of 200C or more is 20 PPM or less.

(発明の効果) 以上の説明で判るように本発明の真空蒸着用Rh金属は
、不純物として存在する多数の元素の含有量を少なくし
であるので、真空蒸着時それら元素の蒸発が少なく、溶
融Rhの突沸や飛散が著しく減少し、平滑な膜を形成で
きるという効果がある。
(Effects of the Invention) As can be seen from the above explanation, the Rh metal for vacuum deposition of the present invention has a reduced content of many elements that exist as impurities, so there is less evaporation of those elements during vacuum deposition, and it is melted. Bumping and scattering of Rh are significantly reduced, and a smooth film can be formed.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)重量比で、Cdが1PPM以下、Asが1PPM
以下、Naが1PPM以下、Kが1PPM以下、Znが
1PPM以下、Mgが3PPM以下、Srが1PPM以
下、Caが3PPM以下、Biが1PPM以下、Sbが
1PPM以下、Baが1PPM以下、Pbが1PPM以
下、Alが20PPM以下、Inが1PPM以下、Mn
が1PPM以下、Agが1PPM以下、Siが10PP
M以下、Snが1PPM以下で、これら元素の総量が3
0PPM以下であり、且つRhの純度が重量比で99.
98%以上であることを特徴とする真空蒸着用Rh金属
(1) In terms of weight ratio, Cd is 1 PPM or less, As is 1 PPM
Below, Na is 1PPM or less, K is 1PPM or less, Zn is 1PPM or less, Mg is 3PPM or less, Sr is 1PPM or less, Ca is 3PPM or less, Bi is 1PPM or less, Sb is 1PPM or less, Ba is 1PPM or less, Pb is 1PPM or less. Below, Al is 20PPM or less, In is 1PPM or less, Mn
is 1PPM or less, Ag is 1PPM or less, Si is 10PP
M or less, Sn is 1 PPM or less, and the total amount of these elements is 3
0 PPM or less, and the purity of Rh is 99.
98% or more Rh metal for vacuum deposition.
(2)重量比で、沸点が100℃以下のCd、As、N
a、K、Znの元素が総量で3PPM以下であることを
特徴とする特許請求の範囲第1項記載の真空蒸着用Rh
金属。
(2) Cd, As, N with a boiling point of 100°C or less in terms of weight ratio
Rh for vacuum deposition according to claim 1, characterized in that the total amount of the elements a, K, and Zn is 3 PPM or less.
metal.
(3)重量比で、沸点が1000℃〜2000℃のMg
、Sr、Ca、Bi、Sb、Ba、Pbの元素が総量で
7PPM以下であることを特徴とする特許請求の範囲第
1項記載の真空蒸着用Rh金属。
(3) Mg with a boiling point of 1000°C to 2000°C by weight
, Sr, Ca, Bi, Sb, Ba, and Pb in a total amount of 7 PPM or less.
(4)重量比で、沸点が2000℃を超えるAl、In
、Mn、Ag、Si、Snの元素が総量で20PPM以
下であることを特徴とする特許請求の範囲第1項記載の
真空蒸着用Rh金属。
(4) Al, In with a boiling point exceeding 2000°C in terms of weight ratio
, Mn, Ag, Si, and Sn in a total amount of 20 PPM or less.
JP216988A 1988-01-08 1988-01-08 Metallic rh for vacuum deposition Pending JPH01180960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP216988A JPH01180960A (en) 1988-01-08 1988-01-08 Metallic rh for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP216988A JPH01180960A (en) 1988-01-08 1988-01-08 Metallic rh for vacuum deposition

Publications (1)

Publication Number Publication Date
JPH01180960A true JPH01180960A (en) 1989-07-18

Family

ID=11521863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP216988A Pending JPH01180960A (en) 1988-01-08 1988-01-08 Metallic rh for vacuum deposition

Country Status (1)

Country Link
JP (1) JPH01180960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737969B1 (en) * 2002-02-20 2007-07-12 마츠시다 덴코 가부시키가이샤 Plasma processing device and plasma processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737969B1 (en) * 2002-02-20 2007-07-12 마츠시다 덴코 가부시키가이샤 Plasma processing device and plasma processing method

Similar Documents

Publication Publication Date Title
EP0704272B1 (en) Lead-free alloys for use in solder bonding
EP0711629B1 (en) Lead-free low melting solder with improved mechanical properties and articles bonded therewith
KR100317091B1 (en) Process for producing high-purity ruthenium, high-purity ruthenium material for thin film deposition, and thin film of semiconductor
KR20010023932A (en) Method for preparing high purity ruthenium sputtering target and high purity ruthenium sputtering target
JPH06344181A (en) Solder having improved dynamic property and free from pb
CN110524137B (en) Solder ball, solder joint and joining method
US5352542A (en) Use of silver alloys as cadium-free brazing solder
US4622205A (en) Electromigration lifetime increase of lead base alloys
US4610720A (en) Method for preparing high purity vanadium
CN108015292B (en) Preparation method of GeSbTe alloy powder
JPH01180960A (en) Metallic rh for vacuum deposition
JPH01180962A (en) Metallic pd for vacuum deposition
JPH01180961A (en) Metallic pt for vacuum deposition
JPH01180964A (en) Metallic ir for vacuum deposition
JP2533588B2 (en) Ru metal for vacuum deposition
JPH01180963A (en) Metallic os for vacuum deposition
US3637421A (en) Vacuum vapor coating with metals of high vapor pressure
US5531962A (en) Cadmium-free silver alloy brazing solder, method of using said solder, and metal articles brazed with said solder
JP2614885B2 (en) Copper substrate for vacuum deposition
JPS62184727A (en) Contactor for vacuum switchgear and manufacture of the same
JPH06279992A (en) High purity ag for vapor deposition
JP2614895B2 (en) Copper substrate for vacuum deposition
JPS61269998A (en) Sn alloy solder having excellent thermal fatigue characteristic
JPH0317073B2 (en)
JPS63140794A (en) Ge alloy brazing filler metal exhibiting joint strength at high temperature