JPH01175244A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH01175244A JPH01175244A JP33224187A JP33224187A JPH01175244A JP H01175244 A JPH01175244 A JP H01175244A JP 33224187 A JP33224187 A JP 33224187A JP 33224187 A JP33224187 A JP 33224187A JP H01175244 A JPH01175244 A JP H01175244A
- Authority
- JP
- Japan
- Prior art keywords
- film
- tungsten film
- etching
- oxygen
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 49
- 239000010937 tungsten Substances 0.000 claims abstract description 49
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000005530 etching Methods 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 10
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011737 fluorine Substances 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 238000010000 carbonizing Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 31
- 239000001301 oxygen Substances 0.000 abstract description 26
- 229910052760 oxygen Inorganic materials 0.000 abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 25
- 239000012495 reaction gas Substances 0.000 abstract description 6
- 230000000903 blocking effect Effects 0.000 abstract description 5
- 125000001153 fluoro group Chemical group F* 0.000 abstract description 5
- 238000010494 dissociation reaction Methods 0.000 abstract description 4
- 230000005593 dissociations Effects 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000010354 integration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
高集積度半導体装置の製造に適した配線用又は電極用高
融点金属膜の形成方法、特に配線用又は電極用タングス
テン膜を高精度に形成する方法に関し、
半導体装置を微細化、高集積度化することを目的とし、
半導体基板上にタングステン膜を堆積する工程と、
該タングステン膜の堆積された半導体基板を窒素雰囲気
中、高温で熱処理する工程と、該タングステン膜をフッ
素系反応ガスを用いてRIB法にてエツチングする工程
とを含み構成する。[Detailed Description of the Invention] [Summary] This invention relates to a method for forming a high melting point metal film for wiring or electrodes suitable for manufacturing highly integrated semiconductor devices, particularly a method for forming a tungsten film for wiring or electrodes with high precision. , A step of depositing a tungsten film on a semiconductor substrate for the purpose of miniaturizing and increasing the degree of integration of semiconductor devices; A step of heat-treating the semiconductor substrate on which the tungsten film is deposited at high temperature in a nitrogen atmosphere; The method includes a step of etching the tungsten film by the RIB method using a fluorine-based reactive gas.
本発明は、高集積度半導体装置の!!!造に適した配線
用又は電極用高融点金属膜の形成方法、特に配線用又は
電極用タングステン膜を高精度に形成する方法に関する
。The present invention is a highly integrated semiconductor device! ! ! The present invention relates to a method for forming a high-melting point metal film for wiring or electrodes suitable for manufacturing, particularly a method for forming a tungsten film for wiring or electrodes with high precision.
半導体ICにおいては、近時その高集積度化、微細化に
伴い、ゲート電極用又は配線用に低抵抗の高融点金属膜
が提案されている。2. Description of the Related Art In recent years, as semiconductor ICs have become highly integrated and miniaturized, low-resistance, high-melting-point metal films have been proposed for use in gate electrodes or wiring.
なかでもタングステン膜は熱的に安定、な為、特に多く
用いられるようになっている。Among these, tungsten film is particularly popular because it is thermally stable.
(従来の技術)
第3図(a)、(b)は従来のゲート電極用タングステ
ン膜の形成方法を示す模式断面図である。(Prior Art) FIGS. 3(a) and 3(b) are schematic cross-sectional views showing a conventional method of forming a tungsten film for a gate electrode.
図において、101は半導体基板、102はゲートSt
o!膜、103は厚さ4000人程度0タングステン膜
、104はエツチングマスク用レジスト膜、105はタ
ングステン膜に対する酸素ブロック材用のSiO□膜、
Fはフッ素原子、0は酸素原子、SF4は反応ガス分子
を示す。In the figure, 101 is a semiconductor substrate, 102 is a gate St.
o! 103 is a tungsten film with a thickness of about 4000, 104 is a resist film for etching mask, 105 is a SiO□ film as an oxygen blocking material for the tungsten film,
F represents a fluorine atom, 0 represents an oxygen atom, and SF4 represents a reactive gas molecule.
同図(a)はタングステン膜103上に直接エツチング
マスク用レジスト膜104を被着パターニングしてタン
グステンlff103をエツチングする方法、同図(b
)はタングステン膜103上に酸素ブロック材用のSi
ng膜105を堆積して、エツチングマスク用レジスト
[104を被着パターニングしてタングステン膜103
をエツチングする方法を示す、これらの方法は後の工程
におけるイオン打ち込み又はタングステンv103に対
する酸素のブロックの必要性の有無により使い分けられ
る。The figure (a) shows a method of etching the tungsten lff 103 by depositing and patterning a resist film 104 for an etching mask directly on the tungsten film 103, and the figure (b)
) is Si for oxygen blocking material on the tungsten film 103.
An NG film 105 is deposited, and a resist for etching mask [104 is deposited and patterned to form a tungsten film 103.
These methods are used depending on whether ion implantation or blocking of oxygen to tungsten V103 is required in the subsequent process.
[発明が解決しようとする問題点〕
しかし上述の方法によると、第3図(a)のようにタン
グステン膜103を、反応ガスSFaを用いRrE法に
てエツチングする場合、タングステン膜103をスパッ
タにて形成する際、チャンバ内に含まれる酸素ガス又は
タングステンターゲット中から出てきた酸素ガスが該形
成されたタングステン膜103に通常150〜200p
pm程度の濃度で取り込まれる為、この酸素が反応ガス
のフン素原子の解離を促し化学的エツチング作用が優勢
になる。即ち等方性エツチングが起こり易くなり、エツ
チングマスク用レジスト膜104でマスクされていると
ころでもサイドエツチングされるエツチングシフトが生
じて半導体ICの微細化・高集積度化をさまたげている
。[Problems to be Solved by the Invention] However, according to the above method, when the tungsten film 103 is etched by the RrE method using the reactive gas SFa as shown in FIG. When forming the tungsten film 103, the oxygen gas contained in the chamber or the oxygen gas coming out of the tungsten target will normally deposit 150 to 200 p of the formed tungsten film 103.
Since the oxygen is taken in at a concentration of about pm, this oxygen promotes the dissociation of fluorine atoms in the reaction gas, and the chemical etching effect becomes predominant. In other words, isotropic etching is more likely to occur, and etching shifts resulting in side etching occur even in areas masked by the etching mask resist film 104, hindering miniaturization and higher integration of semiconductor ICs.
この問題は第3図(b)に示すように、酸素ブロック材
用の5toJtosがタングステン膜103の上に堆積
している場合は更に顕著になうでくる。This problem becomes more noticeable when 5toJtos for the oxygen blocking material is deposited on the tungsten film 103, as shown in FIG. 3(b).
そこで本発明は、配線用又は電極用タングステン膜をR
IE法にてエツチング形成する際、エツチングシフト量
を減少させ半導体装置の微細化・高集積度化を図ること
を目的とするものである。Therefore, the present invention has developed a tungsten film for wiring or electrodes with R
The purpose of this invention is to reduce the amount of etching shift when etching is performed using the IE method, thereby achieving miniaturization and higher integration of semiconductor devices.
上記問題点は、半導体基板上にタングステン膜を堆積す
る工程と、
該タングステン膜の堆積された半導体基板を窒素雰囲気
中、高温で熱処理する工程と、該タングステン膜をフッ
素系反応ガスを用いてRIB法にてエツチングする工程
とを含むことを特徴とする半導体装置の製造方法によっ
て解決される。The above problems are solved by the steps of depositing a tungsten film on a semiconductor substrate, heat-treating the semiconductor substrate on which the tungsten film is deposited at high temperature in a nitrogen atmosphere, and RIBing the tungsten film using a fluorine-based reactive gas. The problem is solved by a method for manufacturing a semiconductor device characterized by including a step of etching using a method.
即ち本発明は、スパッタリングにより堆積された酸素を
含んだタングステン膜を窒素雰囲気中、高温で熱処理す
ることにより該酸素をタングステン膜の外に放出してタ
ングステン膜中の酸素濃度を減らす。これによりRrE
法にてタングステン膜をエツチングする際、反応ガス分
子からフッ素の解離を凍らして化学的エツチング作用を
抑制し、相対的に物理的エツチング作用を優勢にしてエ
ツチングシフト量を少なくするものである。That is, in the present invention, a tungsten film containing oxygen deposited by sputtering is heat-treated at high temperature in a nitrogen atmosphere to release the oxygen to the outside of the tungsten film and reduce the oxygen concentration in the tungsten film. This allows RrE
When etching a tungsten film using this method, the chemical etching action is suppressed by freezing the dissociation of fluorine from the reaction gas molecules, and the physical etching action is relatively predominant, thereby reducing the amount of etching shift.
これによってマスク寸法余裕度を最小にできるので、半
導体装置の微細化・高集積度化を図ることができる。This allows the mask dimensional margin to be minimized, thereby making it possible to miniaturize and increase the degree of integration of semiconductor devices.
以下、本発明を図示の一実施例により具体的に説明する
。Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.
第1図(a)、(b)、(c)は窒素雰囲気中高温で熱
処理する工程を、酸素及びイオン注入ブロック材用のS
iN膜成長工程で兼ねることを特徴とする本発明の一実
施例を示す工程断面図、第2図(a)、(b)、(c)
は本発明の詳細な説明する図である。Figures 1 (a), (b), and (c) show the process of heat treatment at high temperature in a nitrogen atmosphere.
2(a), (b), (c) are process cross-sectional views showing an embodiment of the present invention characterized in that it also serves as an iN film growth process.
FIG. 2 is a diagram illustrating the present invention in detail.
第1図において、1はn型又はp型の半導体基板、2は
厚さ200人程人程ゲー)Sin、膜9.3は厚さ40
00人程度0ゲート電極用タングステン膜、4は酸素及
びイオン注入ブロック材用の厚さ2000人程度Ost
Nffl、5はエツチングマスク用のパターニングされ
たレジスト膜、0は酸素原子、Nは窒素原子を示す。In FIG. 1, 1 is an n-type or p-type semiconductor substrate, 2 is a silicon film with a thickness of about 200 mm, and a film 9.3 is a film with a thickness of 40 mm.
Tungsten film for gate electrode, 4 is about 2000 thickness for oxygen and ion implantation block material Ost
Nffl, 5 is a patterned resist film for an etching mask, 0 is an oxygen atom, and N is a nitrogen atom.
第2図(a)は熱処理温度760°Cにおいてタングス
テン膜中の酸素濃度がN!中の熱処理時間によってどう
変わるかを示す図、同図(b)は厚さ4000人のタン
グステン膜上に直接エツチングマスク用レジスト膜を被
着パターニングし、反応ガスSF、を用いてRrE法に
より100%オーバーエツチング、即ち4000人エツ
チングするのに必要な時間の2倍の時間エツチングする
時、N、中熱処理をしないものとN2中760℃5分し
たものと、N2中760 ’C20分したものとの3種
類の試料を用いて、エツチングシフト量とN、中熱処理
前の酸素濃度との関係を調査した結果を示す図、同図(
c)は同図(b)と同じ条件、試料を用いてエツチング
レートとN2中熱処理前の酸素濃度との関係を調査した
結果を示す図である。Figure 2 (a) shows that the oxygen concentration in the tungsten film is N! at a heat treatment temperature of 760°C. The figure (b) shows how a resist film for an etching mask is deposited and patterned directly on a tungsten film with a thickness of 4,000 yen, and then patterned by the RrE method using a reactive gas SF. % over etching, that is, when etching for twice the time required for etching 4,000 people, one without medium heat treatment in N2, one treated at 760'C in N2 for 5 minutes, and one treated at 760'C in N2 for 20 minutes. This figure shows the results of investigating the relationship between the amount of etching shift, N, and oxygen concentration before medium heat treatment using three types of samples.
Figure c) shows the results of investigating the relationship between the etching rate and the oxygen concentration before heat treatment in N2 using the same conditions and samples as in figure (b).
第1図に示すように本発明に係る半導体装置の製造方法
においては、例えばn型又はp型の半導体基板lの上に
厚さ200人程人程ゲー)SLO□F!2を形成し、マ
グネトロンスパッタ装置などを用いて厚さ4000人程
度0ゲングステン膜3をスパッタリングにより堆積する
。このとき該スパック装置のチャンバ内に含まれる残留
酸素およびタングステンターゲット中から出てきた酸素
が該堆積されたタングステンII’23中に取り込まれ
る。この濃度はX線吸収法などにより測定されるが、通
常150〜200pplIとv&itである(第1図(
a))。As shown in FIG. 1, in the method for manufacturing a semiconductor device according to the present invention, for example, an n-type or p-type semiconductor substrate l is coated with a thickness of about 200 people (SLO□F!). 2 is formed, and a gengusten film 3 having a thickness of approximately 4,000 mm is deposited by sputtering using a magnetron sputtering device or the like. At this time, residual oxygen contained in the chamber of the spuck apparatus and oxygen released from the tungsten target are incorporated into the deposited tungsten II'23. This concentration is measured by X-ray absorption method, etc., and is usually 150 to 200 pplI and v&it (Figure 1 (
a)).
次にブロック材用の5iNttff4を成長する為、5
rHaとNH,との混合ガス中で760℃の高温熱処理
する、こうすることによりタングステン膜3中の酸素は
外へ放出され、該タングステン膜3中の酸素濃度は減少
する(第1図(b))。例えば第2図(a)に示すよう
に酸素濃度はN2熱処理時間と共に減少し、N2中熱処
理前に約200ppmあったものは20分のN□中熱処
理により約5opp園まで減少する。Next, in order to grow 5iNttff4 for block material, 5iNttff4 is grown.
By performing high temperature heat treatment at 760°C in a mixed gas of rHa and NH, oxygen in the tungsten film 3 is released to the outside, and the oxygen concentration in the tungsten film 3 is reduced (see Figure 1 (b). )). For example, as shown in FIG. 2(a), the oxygen concentration decreases with the time of the N2 heat treatment, and from about 200 ppm before the N2 heat treatment, it decreases to about 5 opp after the N□ heat treatment for 20 minutes.
その後、第1図(c)のようにゲート電極を形成するた
めに、第1図(b)の半導体装置の上にレジスト膜5を
被着・パターニングし、次いでRIE法によりSF4反
応ガス中でエツチングする。Thereafter, in order to form a gate electrode as shown in FIG. 1(c), a resist film 5 is deposited and patterned on the semiconductor device shown in FIG. 1(b), and then in an SF4 reaction gas by RIE method. Etching.
このときタングステン膜3中s中の酸素濃度は減少して
いる為、反応ガスSF、からフッ素原子の解離が抑制さ
れ、化学的エツチングが抑制されて、物理的エツチング
が優勢になるので、エツチングレートが減少する(第2
図(C))とともに、サイドエツチングが起こりにくく
なってエツチングシフト量も極端に減少する(第2図(
b))。At this time, since the oxygen concentration in s in the tungsten film 3 is decreasing, the dissociation of fluorine atoms from the reaction gas SF is suppressed, chemical etching is suppressed, and physical etching becomes dominant, so that the etching rate is reduced. decreases (second
At the same time, side etching becomes difficult to occur and the amount of etching shift is extremely reduced (see Figure 2 (C)).
b)).
フッ素系反応ガスとしては他にCF4等も用いることが
できる。CF4 and the like can also be used as the fluorine-based reactive gas.
又窒素雰囲気中、高温熱処理する工程を、タングステン
膜を炭化する工程で兼ねることもできることは言うまで
もない。It goes without saying that the process of performing high temperature heat treatment in a nitrogen atmosphere can also be used as the process of carbonizing the tungsten film.
なお該タングステン膜の炭化はタングステン膜のダレイ
ンに沿って炭化させることにより、前記サイドエツチン
グ防止の効果を更にあげる為に行われるものである。The tungsten film is carbonized along the dale of the tungsten film in order to further improve the effect of preventing side etching.
以上のように本発明によれば、電極用又は配線用タング
ステン膜を形成する際のエツチングシフト量を極端に少
なくできるので、マスク寸法余裕度を最小にできる。こ
のため半導体装置の微細化・高集積度化を図るのにを効
となる。As described above, according to the present invention, the amount of etching shift when forming a tungsten film for electrodes or wiring can be extremely reduced, so that mask dimensional margin can be minimized. Therefore, it is effective in achieving miniaturization and higher integration of semiconductor devices.
第1図(a)、(b)、(c)は本発明の一実施例を示
す工程断面図、
第2図(a)、(b)、(c)は本発明の詳細な説明す
る図、
第3図(a)、(b)は従来例の問題点を説明する工程
断面図である。
(符号の説明)
1.101・・・半導体基板、
2 、102.105・・・SiO□膜3.103・・
・タングステン膜、
4.104・・・レジスト膜
6・・・SiN膜、
SF、・・・反応ガス分子、
F・・・フン素原子、
0・・・酸素原子、
N・・・窒素原子。
本発明の一実施例を示す工程断面図
0 5 10 15 20分
N2熱処理時間
本発明の詳細な説明する図
第 2 図(その1)
N1熱処浬前酸素1度 <ppm)
Nz熱処理約酸素1度(ppm)
本発明の詳細な説明する図
第 2 図(その2)FIGS. 1(a), (b), and (c) are process sectional views showing one embodiment of the present invention. FIGS. 2(a), (b), and (c) are diagrams illustrating detailed explanations of the present invention. , FIGS. 3(a) and 3(b) are process cross-sectional views illustrating the problems of the conventional example. (Explanation of symbols) 1.101... Semiconductor substrate, 2, 102.105... SiO□ film 3.103...
- Tungsten film, 4.104... Resist film 6... SiN film, SF,... Reactive gas molecule, F... Fluorine atom, 0... Oxygen atom, N... Nitrogen atom. Process cross-sectional diagram showing one embodiment of the present invention 0 5 10 15 20 minutes N2 heat treatment time Detailed explanation diagram of the present invention Figure 2 (Part 1) Oxygen 1 degree <ppm) before N1 heat treatment Approximately oxygen 1 degree (ppm) Detailed explanation of the present invention Figure 2 (Part 2)
Claims (3)
、 該タングステン膜の堆積された半導体基板を窒素雰囲気
中、高温で熱処理する工程と、 該タングステン膜をフッ素系反応ガスを用いてRIE法
にてエッチングする工程とを含むことを特徴とする半導
体装置の製造方法。(1) Depositing a tungsten film on a semiconductor substrate; heat-treating the semiconductor substrate on which the tungsten film is deposited at high temperature in a nitrogen atmosphere; and subjecting the tungsten film to RIE using a fluorine-based reactive gas. 1. A method of manufacturing a semiconductor device, comprising the step of etching.
長工程で兼ねることを特徴とする特許請求の範囲第1項
記載の半導体装置の製造方法。(2) The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment step also serves as a step of growing a SiN film of the block material.
工程で兼ねることを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。(3) The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment step also serves as a step of carbonizing the tungsten film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33224187A JPH01175244A (en) | 1987-12-29 | 1987-12-29 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33224187A JPH01175244A (en) | 1987-12-29 | 1987-12-29 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01175244A true JPH01175244A (en) | 1989-07-11 |
Family
ID=18252755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33224187A Pending JPH01175244A (en) | 1987-12-29 | 1987-12-29 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01175244A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010113360A (en) * | 2009-11-27 | 2010-05-20 | Semiconductor Energy Lab Co Ltd | Method of manufacturing semiconductor device, and semiconductor device |
JP2010239148A (en) * | 1999-05-14 | 2010-10-21 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
US8654270B2 (en) | 1999-08-12 | 2014-02-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the semiconductor device |
-
1987
- 1987-12-29 JP JP33224187A patent/JPH01175244A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010239148A (en) * | 1999-05-14 | 2010-10-21 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
US8654270B2 (en) | 1999-08-12 | 2014-02-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the semiconductor device |
US9041875B2 (en) | 1999-08-12 | 2015-05-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the semiconductor device |
US9640630B2 (en) | 1999-08-12 | 2017-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the semiconductor device |
JP2010113360A (en) * | 2009-11-27 | 2010-05-20 | Semiconductor Energy Lab Co Ltd | Method of manufacturing semiconductor device, and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100392120B1 (en) | Method for forming polycrystalline silicon film | |
JPS5836491B2 (en) | Manufacturing method of semiconductor device | |
JPH01175244A (en) | Manufacture of semiconductor device | |
US7811928B2 (en) | Semiconductor devices and fabrication methods thereof | |
JPH05121655A (en) | Manufacture of semiconductor device | |
JP3261444B2 (en) | Manufacturing method of semiconductor thin film | |
JPH0198229A (en) | Manufacture of semiconductor device | |
JPH01175257A (en) | Manufacture of mis semiconductor device | |
JPS63300563A (en) | Manufacture of mos field-effect transistor | |
JPH04226080A (en) | Manufacture of thin film transistor | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPH04302147A (en) | Tft and manufacture thereof | |
JPS62124736A (en) | Silicon thin-film and manufacture thereof | |
JP2906491B2 (en) | Method for manufacturing semiconductor device | |
JPH07122752A (en) | Manufacture of thin film transistor | |
JPH11214386A (en) | Semiconductor and method for forming insulating film on semiconductor substrate surface | |
JPH0547784A (en) | Formation of gate electrode | |
JPH07147234A (en) | Manufacture of semiconductor thin film | |
JPH02256248A (en) | Manufacture of thin film semiconductor element | |
JPH0516177B2 (en) | ||
JPH07183515A (en) | Manufacture of semiconductor device | |
KR100348313B1 (en) | Method for fabricating semiconductor device | |
JPH0198230A (en) | Manufacture of semiconductor device | |
JPH0845838A (en) | Production process of soi structure | |
JPH05152276A (en) | Manufacture of semiconductor device |