JPH01174870A - Device for diagnosis of refrigerator - Google Patents
Device for diagnosis of refrigeratorInfo
- Publication number
- JPH01174870A JPH01174870A JP33470287A JP33470287A JPH01174870A JP H01174870 A JPH01174870 A JP H01174870A JP 33470287 A JP33470287 A JP 33470287A JP 33470287 A JP33470287 A JP 33470287A JP H01174870 A JPH01174870 A JP H01174870A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerator
- enthalpy
- knowledge base
- signal
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims description 17
- 230000002159 abnormal effect Effects 0.000 claims abstract description 8
- 230000005856 abnormality Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 abstract description 22
- 230000008569 process Effects 0.000 abstract description 21
- 239000003507 refrigerant Substances 0.000 abstract description 18
- 231100000279 safety data Toxicity 0.000 abstract 2
- 238000012545 processing Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000012423 maintenance Methods 0.000 description 14
- 238000013480 data collection Methods 0.000 description 8
- 238000005057 refrigeration Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、ビルや工場等に冷熱量を供給する冷凍機の診
断装置に係わり、特に推論を実行して冷凍機の異常を診
断する冷凍機診断装置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a diagnostic device for a refrigerator that supplies cooling energy to buildings, factories, etc. The present invention relates to a refrigerator diagnostic device that diagnoses abnormalities.
(従来の技術)
従来、冷凍機の診断は、冷凍機の所要とする各所に圧力
計や流量計等を取付け、定期点検または巡視点検時、監
視員が遠隔地の冷凍機の場所まで出向いてそれらの圧力
計や流量計の指示値を読取り、予め定めた規定値との関
係から異常の有無を判断している。(Conventional technology) Conventionally, in order to diagnose a refrigerator, pressure gauges, flow meters, etc. were installed at various locations on the refrigerator, and during periodic inspections or patrol inspections, a supervisor traveled to the location of the refrigerator in a remote location. The indicated values of these pressure gauges and flow meters are read and the presence or absence of an abnormality is determined based on the relationship with predetermined specified values.
(発明が解決しようとする問題点)
従って、以上のような診断方法を採用した場合、冷凍機
の部品9機器、システムの異常は監視員が巡視点検等で
現場に出向いて計器を見ない限り発見することができず
、その間に異常動作が引金となって様々な事故を誘発し
ひいてはm大1G故につながる危険性があった。冷凍機
を監視する監視呂は、異常有無の判断に際し過去の経験
を踏まえながら決定するためにそれ相当な熟練者でない
と判断できない場合が多い。また、冷凍機を動作させて
冷熱はを供給する場合には熱源設備が必要となってくる
が、小さなビルにそれぞれ独立した熱源設備を設置する
には余りにもコストがかかり過ぎる問題があった。(Problem to be Solved by the Invention) Therefore, if the above diagnostic method is adopted, abnormalities in the nine components and systems of the refrigerator will not be detected unless a supervisor goes to the site during a patrol inspection and looks at the instruments. If it could not be detected, there was a risk that abnormal operation would trigger various accidents and even lead to a 1G accident. The supervisor who monitors the refrigerator must be a highly skilled person to determine whether there is an abnormality or not, based on past experience. In addition, heat source equipment is required to operate a refrigerator and supply cold energy, but there is a problem in that it is too costly to install independent heat source equipment in each small building.
本発明は1−記実情に鑑みてなされたもので、冷凍機の
異常状態を迅速、かつ、確実に診断し得、冷凍機の安定
動作およびメンテナンスの効率を高め得る冷凍機診断装
置を提供することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and provides a refrigerator diagnostic device that can quickly and reliably diagnose abnormal conditions in a refrigerator and improve stable operation and maintenance efficiency of the refrigerator. The purpose is to
[発明の構成]
(問題点を解決するだめの手段)
本発明による冷凍機診断装置は、冷凍機の所望箇所に設
けられ診断に必要な信号を計測するセンサ群と、これら
センサ群から信号を収集すると共にその収集された信号
の中から必要な信号を用いてエンタルピを算出しこのエ
ンタルピに基づいて前記冷凍機の特性座標を算出しグラ
フ表示する運転特性表示手段と、少なくとも前記収集デ
ータを用いて知識ベースに基づいて冷凍機の動作状態を
推論し異常があれば前記運転特性表示手段によって表示
されたグラフ上にその異常状態を表示する診断推論手段
とを備えたものである。[Structure of the Invention] (Means for Solving the Problems) The refrigerator diagnostic device according to the present invention includes a group of sensors that are installed at desired locations on the refrigerator and measure signals necessary for diagnosis, and a group of sensors that receive signals from these sensor groups. an operating characteristic display means for collecting and calculating enthalpy using necessary signals from the collected signals, and calculating characteristic coordinates of the refrigerator based on the enthalpy and displaying the characteristic coordinates in a graph; and at least using the collected data. and diagnostic inference means for inferring the operating state of the refrigerator based on the knowledge base and, if there is an abnormality, displaying the abnormal state on the graph displayed by the operating characteristic display means.
(作用)
従って、本発明は以上のような手段とすることにより、
冷凍機の所ワ!箇所に設けられたセンサ群から診断に必
要な信号を収集すると共にその収集された信号の中から
必要な信号を用いてエンタルピを算出しこのエンタルピ
に基づいて前記冷凍機の特性座標を算出しこの運転特性
および冷凍機設計時の特性等を表示装置にグラフ表示し
、少なくとも前記収集データを用いて知識ベースに基づ
いて冷凍機の動作状態を推論し異常があれば前記運転特
性表示手段によって表示されたグラフ上にその異常状態
を表示し、冷凍機が遠隔地に設置されている場合でもセ
ンター側に居ながらにして冷凍機の動作状態を迅速に把
握できる。(Function) Therefore, the present invention has the above-mentioned means.
Where is the freezer? Signals necessary for diagnosis are collected from a group of sensors installed at a location, enthalpy is calculated using the necessary signals from the collected signals, and characteristic coordinates of the refrigerator are calculated based on this enthalpy. The operating characteristics and the characteristics at the time of chiller design are displayed in a graph on a display device, the operating state of the chiller is inferred based on a knowledge base using at least the collected data, and if there is an abnormality, it is displayed by the operating characteristic display means. The abnormal state is displayed on a graph, so even if the refrigerator is installed in a remote location, the operating state of the refrigerator can be quickly grasped from the center.
(実施例) 以下、本発明装置の実施例について説明する。(Example) Examples of the apparatus of the present invention will be described below.
第1図は本発明に係わる冷凍機診断装置の一実施例を示
す概略構成図であって、これは冷凍機が設置されるロー
カルエリア側Aと、このローカルエリア側Aの冷凍機の
動作を診断するセンターエリア側Bとに分けられる。FIG. 1 is a schematic configuration diagram showing an embodiment of the refrigerator diagnosis device according to the present invention, and this diagram shows a local area side A where a refrigerator is installed and the operation of the refrigerator on this local area side A. It is divided into a center area side B for diagnosis.
このローカルエリア側Aは、冷凍機装置11、データの
入出力機能をもったプロセス人出力装置12、記憶装置
およびCPU等を備え、プロセス人出力装置12から送
られてくる冷凍機装置11の運転状態、故障等のデジタ
ル信号DI、冷媒の圧力および温度等のアナログ信号A
Iおよび圧縮機の電力に等のパルス信号API等を受け
て伝送に適するデータ形態に変換し、かつ、センターエ
リア側Bからの指令である冷凍機、ポンプ等の運転指令
を行うリレー信号ROおよび温度設定用パルス信号PO
をプロセス人出力装置12へ送出する中央演算処理装置
13、前記センターエリア側Bとの間でデータの伝送を
行うモデム14等で構成されている。This local area side A is equipped with a refrigerator device 11, a process human output device 12 having a data input/output function, a storage device, a CPU, etc., and operates the refrigerator device 11 by receiving information from the process human output device 12. Digital signal DI for status, failure, etc., analog signal A for refrigerant pressure and temperature, etc.
Relay signals RO and RO receive pulse signals such as I and compressor power, convert them into a data format suitable for transmission, and issue operating commands for refrigerators, pumps, etc., which are commands from center area side B. Pulse signal PO for temperature setting
It is comprised of a central processing unit 13 that sends data to the process output device 12, a modem 14 that transmits data to and from the center area side B, and the like.
一方、センターエリア側Bは、ローカルエリア側Aとの
間でデータの伝送を行うモデム21、前記冷凍機、ポン
プ等の運転指令用信号RO,POに相当する信号を出力
し、その他種々の演算制御例えば冷凍機のエンタルピ算
出、このエンタルピから特性座標の算出、この特性圧(
票の算出結果からモリエル線図等の状態線図を表示する
制御、更には冷凍機の診断推論等を行う中央演算処理装
置22および冷凍機のモリエル線図、成績線図等の状態
線図を表示するCR7表示装置23等で構成されている
。On the other hand, the center area side B outputs signals corresponding to the modem 21 for data transmission with the local area side A, operation command signals RO and PO for the refrigerator, pump, etc., and performs various other calculations. Control For example, calculation of enthalpy of a refrigerator, calculation of characteristic coordinates from this enthalpy, characteristic pressure (
The central processing unit 22 performs control to display status diagrams such as Mollier diagrams based on the calculation results of the votes, and also performs diagnosis and inferences of refrigerators, and displays status diagrams such as Mollier diagrams and performance diagrams for refrigerators. It is composed of a CR7 display device 23 and the like for displaying images.
前記センターエリア側Bの中央演算処理装置22は、特
に冷凍機の診断推論手段に関し第2図のような機能を備
えている。すなわち、中央演算処理装置22は、プロセ
スデータ収集機能221、保全データ収集機能222、
各冷凍サイクル毎の故障診断機能223および総合判定
機能224等で構成されている。プロセスデータ収集機
能221は、リアルタイムにプロセスデータAl。The central processing unit 22 on the center area side B has the functions as shown in FIG. 2, particularly regarding the refrigerator diagnosis and inference means. That is, the central processing unit 22 has a process data collection function 221, a maintenance data collection function 222,
It is composed of a failure diagnosis function 223 and a comprehensive judgment function 224 for each refrigeration cycle. The process data collection function 221 collects process data Al in real time.
DI、API等を収集しプロセスに関するデータを1記
憶するプロセスデータベース225の内容を逐次更新す
る機能を持っている。It has a function of sequentially updating the contents of a process database 225 that collects DI, API, etc. and stores data related to processes.
前記保全データ収集機能222は、保全データベース2
26を有し、この保全データベース226に対しプロセ
スデータ収集機能221による収集データを加工して得
られた運転時間、冷凍機効率、冷熱量使用量等の保全デ
ータの更新、運転履歴および故障履歴等のデータを収集
記憶する。The maintenance data collection function 222 includes the maintenance database 2
This maintenance database 226 is updated with maintenance data such as operation time, chiller efficiency, cooling energy consumption, etc. obtained by processing the data collected by the process data collection function 221, as well as operation history, failure history, etc. Collect and store data.
前記故障診断機能223は、各冷凍サイクル毎に存在し
、かつ、固定知識ベース227Aと可変知識ベース22
7Bとを持っている。この固定知識ベース227Aには
例えば起動条件の様に一度冷凍機か納入されるとそれ以
降に何ら変化しない知識が格納されている。可変知識ベ
ース227Bには例えばブロアの油温などの様に潤滑油
の寿命により判定値の変化する知識が格納されており、
知識ベースを更新するか否かは故障診断機能223内に
ある条件更新判定機能により決定されて更新される。2
28は知識ベースエディタであって、これは各知識ベー
ス227A、227Bの内容を自由に参照でき、かつ、
その知識ベースを修正、追加および削除する機能をもっ
ている。このことは運転実績に基づく運転員の経験を反
映させることができる。The failure diagnosis function 223 exists for each refrigeration cycle, and has a fixed knowledge base 227A and a variable knowledge base 22.
I have 7B. This fixed knowledge base 227A stores knowledge, such as start-up conditions, that does not change at all once the refrigerator is delivered. The variable knowledge base 227B stores knowledge whose judgment value changes depending on the life of lubricating oil, such as the oil temperature of a blower, for example.
Whether or not to update the knowledge base is determined and updated by a condition update determination function within the failure diagnosis function 223. 2
28 is a knowledge base editor, which can freely refer to the contents of each knowledge base 227A, 227B, and
It has the ability to modify, add and delete the knowledge base. This can reflect the operator's experience based on the driving record.
前記総合判定機能224は、各サイクル毎の故障診断機
能223で得られた推定原因に基づいて判断し最終診断
を行う機能を持っている。The comprehensive judgment function 224 has a function of making a final diagnosis by making a judgment based on the estimated cause obtained by the failure diagnosis function 223 for each cycle.
次に、第3図は第1図に示す冷凍機装置11のうち例え
ばターボ冷凍機装置について具体的に示した構成図であ
る。本装置は、ターボ冷凍機装置の各冷凍サイクルであ
る凝縮工程Kl、膨脹工程に2.蒸発工程に3および圧
縮工程に4の特性を診断するものであり、その場合には
前述したように前記信号DI、AI、API、ROおよ
びPO等が必要となってくるので、専らこれらの信号と
の関係で説明する。すなわち、凝縮器31を含む凝縮工
程Kl、膨脹膨脹2を含む膨脂工程K 2 。Next, FIG. 3 is a block diagram specifically showing, for example, a centrifugal chiller device among the refrigerator device 11 shown in FIG. 1. This device has 2. This is to diagnose the characteristics of 3 for the evaporation process and 4 for the compression process, and in that case, as mentioned above, the signals DI, AI, API, RO, PO, etc. are required, so these signals are used exclusively. This will be explained in relation to That is, a condensation process Kl including a condenser 31, and a fat expansion process K2 including an expansion step 2.
蒸発器33を含む蒸発工程に3.圧縮器34を含む圧縮
工程に4の所要とする箇所にAl11定目的に応じたセ
ンサが設置され、例えば冷媒圧力41.冷媒温度42お
よび冷媒湿度43等のプロセス値としてのアナログ信号
AIを計測する。また、圧縮器34に増速装置35を介
して接続される電動機36からは運転状態信号44.故
障信号45等のデジタル信号DIが得られ、その他、電
動機36から消費型カゴ信号46等のパルス化信号AP
Iが得られる。3. In the evaporation process including the evaporator 33. In the compression process including the compressor 34, a sensor corresponding to the purpose of Al11 is installed at the required location of 4, for example, the refrigerant pressure 41. Analog signals AI as process values such as refrigerant temperature 42 and refrigerant humidity 43 are measured. Further, an operating state signal 44. A digital signal DI such as a failure signal 45 is obtained, and in addition, a pulsed signal AP such as a consumable car signal 46 is obtained from the electric motor 36.
I is obtained.
一方、センターエリア側Bから送られてくる運転指令と
してのリレー信号ROは電動機36に与えられ、またパ
ルス信号POは蒸発器33に対し蒸発器内循環冷水出口
温度設定信号として与えられる様になっている。On the other hand, the relay signal RO as an operation command sent from the center area side B is given to the electric motor 36, and the pulse signal PO is given to the evaporator 33 as a temperature setting signal for the circulating cold water outlet in the evaporator. ing.
次に、本装置の動作について第4図を参照して説明する
。先ず、ローカルエリア側Aの中央演算処理装置13は
、センターエリア側Bの中央演算処理装置22からの指
令を受けて、あるいは自らのシーケンスプログラムによ
り定めた一定周期ごとに、サーボ冷凍機装置の信号DI
、AI。Next, the operation of this device will be explained with reference to FIG. First, the central processing unit 13 on the local area side A receives a command from the central processing unit 22 on the center area side B, or at regular intervals determined by its own sequence program, outputs a signal from the servo chiller device. D.I.
, A.I.
APIをプロセス人出力装置12を介して取込んで伝送
に適する信号形態に変換し、モデム14で変調してセン
ターエリア側Bの中央演算処理装置22へ送出する。ま
た、ローカルエリア側Aの中央演算処理装置13はセン
ターエリア側Bの中央演算処理装置22から送られてく
る信号RO。The API is taken in through the process output device 12, converted into a signal form suitable for transmission, modulated by the modem 14, and sent to the central processing unit 22 on the center area side B. Further, the central processing unit 13 on the local area side A receives the signal RO sent from the central processing unit 22 on the center area side B.
POを電動機36および蒸発器33に導入する。PO is introduced into electric motor 36 and evaporator 33.
しかして、fiターエリア側Bの中央演算処理装置22
は、ローカルエリア側Aの中央演算処理装置13から伝
送されてくる信号に基づいて第3図に示すような運転特
性表示手段および診断推論手段を実行する。先ず、運転
特性表示り段は、開始指令を受けて冷媒の温度信号42
.冷媒の湿度信号43に基づいてステップS1に示すよ
うにエンタルピIR(KCAL/Kg)を算出する。Therefore, the central processing unit 22 on the filter area side B
Based on the signals transmitted from the central processing unit 13 on the local area side A, the driving characteristic display means and diagnostic inference means shown in FIG. 3 are executed. First, the operating characteristic display stage receives a start command and receives a refrigerant temperature signal 42.
.. Based on the refrigerant humidity signal 43, enthalpy IR (KCAL/Kg) is calculated as shown in step S1.
IR−0,24TR+ (597,3+0.44TR)
*X (1)X= (0,[i6*Xs*RII
) /l (1−Rll) *Xs + 0.822
) =12)ここで、TRは冷媒温度(” C) 、X
は冷媒絶対湿度(Kg/Kg’ ) 、RHは冷媒相対
湿度(%)、Xsは飽和絶対湿度(Kg/Kg’)であ
る。なお、中央演算処理装置22には例えば0.0°C
から60.0°Cまでについて0.1°Cきざみで飽和
絶対湿度を記憶する飽和絶対湿度テーブルが用意され、
測定冷媒温度T″Cに相当するテーブル部分の飽和絶対
湿度を読出すことにより、上式のエンタルピIRを算出
する。次に、ステップS2ではエンタルピIRに基づい
て特性座標を算出する。すなわち、冷媒圧力信号41と
上記エンタルピIRを用いて、座標X軸は冷媒圧力信号
41のX軸最人値に対する割合配合、座標Y軸はエンタ
ルピIRのY軸最大値に対する割合配合を求める。しか
る後、中央演算処理装置22はステップS3において記
憶装置に記憶されている冷凍機設計時の特性データを読
出し、表示装置23に例えば空色にてグラフ表示する。IR-0,24TR+ (597,3+0.44TR)
*X (1)X= (0, [i6*Xs*RII
) /l (1-Rll) *Xs + 0.822
) = 12) Here, TR is the refrigerant temperature ("C), X
is the refrigerant absolute humidity (Kg/Kg'), RH is the refrigerant relative humidity (%), and Xs is the saturated absolute humidity (Kg/Kg'). Note that the central processing unit 22 has a temperature of 0.0°C, for example.
A saturated absolute humidity table is prepared that stores the saturated absolute humidity in 0.1°C steps from 60.0°C to 60.0°C.
The enthalpy IR in the above formula is calculated by reading the saturated absolute humidity of the table portion corresponding to the measured refrigerant temperature T″C. Next, in step S2, characteristic coordinates are calculated based on the enthalpy IR. That is, the refrigerant Using the pressure signal 41 and the above enthalpy IR, the coordinate X-axis is the ratio combination of the refrigerant pressure signal 41 to the X-axis maximum value, and the coordinate Y-axis is the ratio combination of the enthalpy IR to the Y-axis maximum value. In step S3, the arithmetic processing unit 22 reads out the characteristic data at the time of refrigerator design stored in the storage device, and displays it as a graph on the display device 23, for example, in sky blue.
従って、グラフ表示から冷凍機の正常特性を判断できる
。次に、ステップS4に移行し、ここでステップS2に
て取得した冷凍機運転時の特性を表示装置23に白色に
てグラフ表示する。この場合には冷凍機の運転特性を判
断できる。Therefore, the normal characteristics of the refrigerator can be determined from the graph display. Next, the process moves to step S4, where the characteristics during operation of the refrigerator acquired in step S2 are graphically displayed in white on the display device 23. In this case, the operating characteristics of the refrigerator can be determined.
次に、ステップS5において診断推論手段を実行する。Next, in step S5, the diagnostic reasoning means is executed.
この診断推論手段は、前述した第2図に示すように故障
診断機能223においてプロセスデータ収集機能221
で収集されたデータおよび保全データ収集機能222に
よって得られた保全データ、運転履歴および故障履歴デ
ータ等を取込んで各固定知識ベース227Aおよび可変
知識ベース227Bのルールに基づいて推論を行って故
障診断を行い、かつ、総合判定機能224で最終的な判
断を行う。例えば第5図に示す■−■間の線より冷凍圧
力が低ければその低い所を例えば赤色表示に変化させる
と共に固定知識ベース277Aおよび可変知識ベース2
27Bにより、冷媒が不足しているとか冷水管が汚れて
いるとか油が混入しているとか負荷が少ない等の診断を
する。また、■−■間の線から冷媒圧力が高ければその
高い所を例えば赤色で変化させると共に固定知識ベース
227Aおよび可変知識ベース227Bにより、不凝縮
ガスが混入しているとか冷却管が汚れているとか冷却水
量が不足しているとが、あるいは冷却水温が高い等の診
断を行う。As shown in FIG.
Fault diagnosis is performed by taking in the data collected by , maintenance data, driving history, failure history data, etc. obtained by the maintenance data collection function 222 and making inferences based on the rules of each fixed knowledge base 227A and variable knowledge base 227B. Then, the comprehensive judgment function 224 makes a final judgment. For example, if the refrigeration pressure is lower than the line between ■ and ■ shown in FIG.
27B diagnoses whether there is a lack of refrigerant, whether the cold water pipe is dirty, whether oil is mixed in, or whether the load is low. Also, if the refrigerant pressure is high from the line between ■ and ■, the high point will change to red, for example, and the fixed knowledge base 227A and variable knowledge base 227B will indicate that non-condensable gas is mixed in or the cooling pipe is dirty. Diagnose whether the amount of cooling water is insufficient or the temperature of the cooling water is high.
以上のようにして診断推論を行った後、ステップS6に
おいて異常時の処理ガイダンスを表示装置23に表示す
る。このとき、例えば推論の結果異常である場合にはグ
ラフ上の左上に異常マークだけを表示し、オペレータが
その異常マークを選択したときにどのような処置をすれ
ばよいかをガイダンスに対し回答する形式を採ってもよ
い。After performing the diagnostic inference as described above, processing guidance in the event of an abnormality is displayed on the display device 23 in step S6. At this time, for example, if the result of the inference is abnormal, only the abnormality mark will be displayed at the top left of the graph, and when the operator selects that abnormality mark, the operator will respond to guidance on what action to take. It may take any form.
従って、以上のような実施例の構成によれば、遠隔地に
設置された冷凍機から必要なデータを収集し、この収集
データおよび保全データ等を用いて知識ベースに基づい
て診断推論を行い冷凍機の異常を診断すると共に冷凍機
の動作状態の特性を表示装置23にグラフ表示するので
、どの冷凍サイクル工程において異常が発生しているの
が容易に把握でき、かつ、その状況に対応した処置方法
をガイダンスの会話形式で間合せできるのでスムーズに
異常に対する処置を514じることかできる。Therefore, according to the configuration of the embodiment as described above, necessary data is collected from refrigerators installed in remote locations, and diagnostic reasoning is performed based on the knowledge base using this collected data and maintenance data. In addition to diagnosing machine abnormalities, the characteristics of the operating status of the refrigerator are displayed graphically on the display device 23, so it is easy to understand in which refrigeration cycle process an abnormality has occurred, and to take appropriate measures to deal with the situation. Since the method can be explained in the form of conversational guidance, the troubleshooting process can be carried out smoothly.
また、診断そのものは設備のr防保全に大きな効果があ
り、新たに得られた故障データ等は知識ベースに反映で
きるのでより正確な診断結果が得られる。Further, the diagnosis itself has a great effect on preventive maintenance of equipment, and newly obtained failure data can be reflected in the knowledge base, so more accurate diagnosis results can be obtained.
なお、」二記実施例では冷凍機1台の場合について説明
したが、複数台の冷凍機をqする場合でも同様に適用で
きることは言うまでもない。また、冷凍機以外の設備で
あっても同様に適用できる。In addition, although the case of one refrigerator was explained in the second embodiment, it goes without saying that the present invention can be similarly applied even when a plurality of refrigerators are used. Furthermore, the present invention can be similarly applied to equipment other than refrigerators.
その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。In addition, the present invention can be implemented with various modifications without departing from the gist thereof.
[発明の効果]
以上詳記したように本発明によれば、遠隔地に設置され
た冷凍機から必要なデータを収集し、この収集データお
よび保全データ等を用いて知識ベースに基づいて診断推
論を行い冷凍機の動作状態を診断すると共に冷凍機のモ
リエル線図等の状態線図をCR7表示装置にグラフ表示
するので、冷凍機の異常状態を遠隔地で確実に診断で゛
き、冷凍機の安定動作およびメンテナンスの効率を向上
できるとともに知識ベースをを効に活用することにより
種々の状況を判断しながら優れた診断結果を得ることが
でき、ひいては冷凍機異常時には冷却熱量需要家への悪
影響を最小限に抑えることができる冷凍機診断装置を提
供できる。[Effects of the Invention] As detailed above, according to the present invention, necessary data is collected from refrigerators installed in remote locations, and diagnostic inferences are made based on a knowledge base using the collected data and maintenance data. This function diagnoses the operating status of the refrigerator and displays a graph of the refrigerator's status diagram, such as a Mollier diagram, on the CR7 display, making it possible to reliably diagnose abnormal conditions in the refrigerator remotely and In addition to improving the stable operation and maintenance efficiency of the refrigerator, by effectively utilizing the knowledge base, it is possible to obtain excellent diagnostic results while judging various situations, and in the event of an abnormality in the refrigerator, it is possible to reduce the negative impact on cooling heat demand customers. It is possible to provide a refrigerator diagnostic device that can minimize the
第1図ないし第5図は本発明に係わる冷凍機診断装置の
一実施例を説明するために示したもので、第1図は装置
全体の概略構成図、第2図は第1図に示すセンターエリ
アの中央演算処理装置の診断推論部分の機能構成図、第
3図は第1図の冷凍機の具体的な冷凍サイクル構成図、
第4図は本発明装置の動作を説明する流れ図、第5図は
冷凍機の状態線図の表示例を示す図である。
A・・・ローカルエリア側、B・・・センターエリア側
、11・・・冷凍機装置、1122・・・中央演算処理
装置、221・・・プロセスデータ収集機能、222・
・・保全データ収集機能、223・・・故障診断機能、
224・・・総合判定機能、225・・・プロセスデー
タベース、226・・・保全データベース、227A・
・・固定知識ベース、227B・・・可変知識ベース、
228・・・知識ベースエディタ。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第4図1 to 5 are shown to explain an embodiment of the refrigerator diagnostic device according to the present invention, FIG. 1 is a schematic configuration diagram of the entire device, and FIG. 2 is shown in FIG. 1. A functional configuration diagram of the diagnostic inference part of the central processing unit in the center area, Figure 3 is a specific refrigeration cycle configuration diagram of the refrigerator in Figure 1,
FIG. 4 is a flowchart explaining the operation of the apparatus of the present invention, and FIG. 5 is a diagram showing an example of display of a state diagram of the refrigerator. A... Local area side, B... Center area side, 11... Refrigerator device, 1122... Central processing unit, 221... Process data collection function, 222...
...Maintenance data collection function, 223...Failure diagnosis function,
224... Comprehensive judgment function, 225... Process database, 226... Maintenance database, 227A.
...Fixed knowledge base, 227B...Variable knowledge base,
228...Knowledge base editor. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4
Claims (1)
るセンサ群と、これらセンサ群から信号を収集すると共
にその収集された信号の中から必要な信号を用いてエン
タルピを算出しこのエンタルピに基づいて前記冷凍機の
特性座標を算出しグラフ表示する運転特性表示手段と、
少なくとも前記収集データを用いて知識ベースに基づい
て冷凍機の動作状態を推論し異常があれば前記運転特性
表示手段によって表示されたグラフ上にその異常状態を
表示する診断推論手段とを備えたことを特徴とする冷凍
機診断装置。A group of sensors are installed at desired locations on the refrigerator to measure signals necessary for diagnosis, and signals are collected from these sensor groups, and enthalpy is calculated using the necessary signals from the collected signals. an operating characteristic display means for calculating characteristic coordinates of the refrigerator based on the information and displaying the calculated characteristic coordinates in a graph;
and diagnostic inference means for inferring the operating state of the refrigerator based on a knowledge base using at least the collected data and, if there is an abnormality, displaying the abnormal state on a graph displayed by the operating characteristic display means. A refrigerator diagnostic device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33470287A JPH01174870A (en) | 1987-12-28 | 1987-12-28 | Device for diagnosis of refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33470287A JPH01174870A (en) | 1987-12-28 | 1987-12-28 | Device for diagnosis of refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01174870A true JPH01174870A (en) | 1989-07-11 |
Family
ID=18280259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33470287A Pending JPH01174870A (en) | 1987-12-28 | 1987-12-28 | Device for diagnosis of refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01174870A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0572940A2 (en) * | 1992-05-29 | 1993-12-08 | MERLONI ELETTRODOMESTICI S.p.A. | Automatic functional test system for household electrical appliances |
WO2003089855A1 (en) * | 2002-04-22 | 2003-10-30 | Danfoss A/S | Method for evaluating a non-measured operating variable in a refrigeration plant |
KR100749175B1 (en) * | 2006-05-24 | 2007-08-14 | 한국에너지기술연구원 | Method of classified rule-based fault detection and diagnosis in air-handling system and device thereof |
US7681407B2 (en) | 2002-07-08 | 2010-03-23 | Danfoss A/S | Method and a device for detecting flash gas |
US7685830B2 (en) | 2002-04-22 | 2010-03-30 | Danfoss A/S | Method for detecting changes in a first media flow of a heat or cooling medium in a refrigeration system |
US8100167B2 (en) | 2002-10-15 | 2012-01-24 | Danfoss A/S | Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device |
JP2015092121A (en) * | 2013-11-08 | 2015-05-14 | 東日本旅客鉄道株式会社 | Maintenance timing determination method for vehicular air conditioner and air conditioner |
RU2658871C2 (en) * | 2016-11-10 | 2018-06-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет" | Bench for studying heat-power characteristics of small refrigerating machines |
WO2019146035A1 (en) * | 2018-01-25 | 2019-08-01 | 三菱電機株式会社 | State analysis system and state analysis device |
WO2021014638A1 (en) * | 2019-07-25 | 2021-01-28 | 三菱電機株式会社 | Device for monitoring apparatus state and method for monitoring apparatus state |
-
1987
- 1987-12-28 JP JP33470287A patent/JPH01174870A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0572940A3 (en) * | 1992-05-29 | 1994-10-26 | Merloni Elettrodomestici Spa | Automatic functional test system for household electrical appliances. |
EP0572940A2 (en) * | 1992-05-29 | 1993-12-08 | MERLONI ELETTRODOMESTICI S.p.A. | Automatic functional test system for household electrical appliances |
WO2003089855A1 (en) * | 2002-04-22 | 2003-10-30 | Danfoss A/S | Method for evaluating a non-measured operating variable in a refrigeration plant |
US7650758B2 (en) | 2002-04-22 | 2010-01-26 | Danfoss A/S | Method for evaluating a non-measured operating variable in a refrigeration plant |
US7685830B2 (en) | 2002-04-22 | 2010-03-30 | Danfoss A/S | Method for detecting changes in a first media flow of a heat or cooling medium in a refrigeration system |
US7681407B2 (en) | 2002-07-08 | 2010-03-23 | Danfoss A/S | Method and a device for detecting flash gas |
US8100167B2 (en) | 2002-10-15 | 2012-01-24 | Danfoss A/S | Method and a device for detecting an abnormality of a heat exchanger, and the use of such a device |
KR100749175B1 (en) * | 2006-05-24 | 2007-08-14 | 한국에너지기술연구원 | Method of classified rule-based fault detection and diagnosis in air-handling system and device thereof |
JP2015092121A (en) * | 2013-11-08 | 2015-05-14 | 東日本旅客鉄道株式会社 | Maintenance timing determination method for vehicular air conditioner and air conditioner |
RU2658871C2 (en) * | 2016-11-10 | 2018-06-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный аграрный университет" | Bench for studying heat-power characteristics of small refrigerating machines |
WO2019146035A1 (en) * | 2018-01-25 | 2019-08-01 | 三菱電機株式会社 | State analysis system and state analysis device |
JPWO2019146035A1 (en) * | 2018-01-25 | 2020-11-19 | 三菱電機株式会社 | State analysis system and state analysis device |
US11906185B2 (en) | 2018-01-25 | 2024-02-20 | Mitsubishi Electric Corporation | State analyzer system and state analysis device |
WO2021014638A1 (en) * | 2019-07-25 | 2021-01-28 | 三菱電機株式会社 | Device for monitoring apparatus state and method for monitoring apparatus state |
JPWO2021014638A1 (en) * | 2019-07-25 | 2021-11-25 | 三菱電機株式会社 | Equipment status monitoring device and equipment status monitoring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grimmelius et al. | On-line failure diagnosis for compression refrigeration plants | |
US5754450A (en) | Detection of faults in the working of electric motor driven equipment | |
JP2005241089A (en) | Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system | |
US10330099B2 (en) | HVAC compressor prognostics | |
JPH01174870A (en) | Device for diagnosis of refrigerator | |
US20200386430A1 (en) | Method and system for proactively and remotely diagnosing an hvac system | |
EP1731857A1 (en) | Device diagnosis device, freezing cycle device, fluid circuit diagnosis method, device monitoring system, and freezing cycle monitoring system | |
JPH10508712A (en) | Analyzing process data of technical equipment | |
CN102056784A (en) | Air conditioner for use in vehicle, vehicle air conditioning management system, and method of vehicle air conditioning management | |
JP6865893B2 (en) | Failure diagnosis system | |
JP4224275B2 (en) | Management device and management method for heat source unit for air conditioner | |
JP2001133011A (en) | Diagnosing device for air conditioner | |
JP2001141279A (en) | Diagnosing device for air conditioner | |
US20060075771A1 (en) | Refrigeration mechanical diagnostic protection and control device | |
Yoshimura et al. | Effective diagnosis methods for air-conditioning equipment in telecommunications buildings | |
EP3745055B1 (en) | State analysis system and state analysis device | |
CN113934191A (en) | Fault diagnosis system for water chilling unit | |
CN109649305B (en) | Vehicle self-checking system and fire engine | |
JPH06221740A (en) | Management of freezing and refrigerating equipment | |
CN115307380A (en) | Industrial refrigeration equipment operation on-line monitoring, regulation and control management system | |
JPH0331667A (en) | Operation state monitoring device for freezer air conditioner | |
JPH09138703A (en) | Plant macro monitoring device | |
JPH0432299B2 (en) | ||
CN113847713B (en) | Air conditioner water pump energy efficiency diagnosis method and device based on cold quantity and quality | |
JP2002090011A (en) | Monitoring system |