JPH0116136B2 - - Google Patents
Info
- Publication number
- JPH0116136B2 JPH0116136B2 JP60184781A JP18478185A JPH0116136B2 JP H0116136 B2 JPH0116136 B2 JP H0116136B2 JP 60184781 A JP60184781 A JP 60184781A JP 18478185 A JP18478185 A JP 18478185A JP H0116136 B2 JPH0116136 B2 JP H0116136B2
- Authority
- JP
- Japan
- Prior art keywords
- barrel
- zone
- raw material
- cooling
- screw element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002994 raw material Substances 0.000 claims description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 28
- 235000013312 flour Nutrition 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 238000012546 transfer Methods 0.000 claims description 17
- 238000004898 kneading Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 5
- 238000010411 cooking Methods 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 18
- 241000894006 Bacteria Species 0.000 description 13
- 241000209094 Oryza Species 0.000 description 11
- 235000007164 Oryza sativa Nutrition 0.000 description 11
- 235000009566 rice Nutrition 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 241000519695 Ilex integra Species 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 230000001954 sterilising effect Effects 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000004744 fabric Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 235000012437 puffed product Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000019685 rice crackers Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21C—MACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
- A21C1/00—Mixing or kneading machines for the preparation of dough
- A21C1/06—Mixing or kneading machines for the preparation of dough with horizontally-mounted mixing or kneading tools; Worm or screw mixers
- A21C1/065—Worm or screw mixers, e.g. with consecutive mixing receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
- B01F27/72—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
- B01F27/721—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle
- B01F27/723—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle the helices intermeshing to knead the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/114—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
- B01F27/1143—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections screw-shaped, e.g. worms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cereal-Derived Products (AREA)
- Manufacturing And Processing Devices For Dough (AREA)
- Formation And Processing Of Food Products (AREA)
Description
〔産業上の利用分野〕
本発明は粗砕した米粉を含む穀類の粉を、二軸
型エクストルーダを利用することによつて極めて
短時間の間に団子や餅と同様の生地に製造するた
めの可食性生地の製造に利用するためのものであ
る。
〔従来の技術〕
従来より、米粉などの穀粉を用いて団子或いは
餅状の生地を得ることは一般に行われている、し
かしながらそれらの手段は、例えば団子生地製造
の場合には、原料穀粉に適宜の吸水を加えたもの
を混合したのち蒸練機を数回通したのちに捻り出
し機から押し出しをするという方法であり前記蒸
練機を通すごとに副原料を添加するという煩雑な
手段を必要としていたし、また、餅状生地を製造
する場合には、所謂バツチ式のものであり、水
洗、浸漬された原料米を粉砕機によつて粉砕した
のち蒸練機によつて蒸煮し、次いでエクストルー
ダによつて練り出しを行いながら蒸練生地を得、
さらに、これを容器に収容して70数時間安定させ
たのち所望形状に切断乾燥するという方法によつ
ていたものであり原料投入から製品生地を得るま
でに3日以上を要するというものであつた。これ
らバツチ式の有する時間的な欠点を解決するもの
として一軸型エクストルーダを利用した餅生地の
加工方法が開発されたが幾つかの欠点があつた。
〔発明が解決しようとする問題点〕
前記した従来の一軸型エクストルーダが有する
欠点として以下のような点が指摘されている、即
ち、一軸型エクストルーダの加工原理が、送入
された加工原料がバレル壁面と原料との摩擦によ
りスクリユーとの共回りが妨げられながら前方へ
押し出されていくというものであるために、原料
中の水分が多くなるとバレル壁面でスリツプする
ことになり前方への押し出しが不安定となる。従
つて、原料中の許容水分は30〜40%程度が限界と
なつている。摩擦によるエネルギーロスが多
く、動力の電力消費が多い。一般に一軸型のエ
クストルーダのバレル壁面は滑面ではなく溝が切
つてあり、スクリユーフライトとバレル壁面との
クリアランスが大きいために原料中の水分等が多
い場合に、原料がスクリユーフライトを乗り越え
て逆流することがあり、高い圧力は望めない。な
どの問題点がそれである。
〔問題点を解決するための手段〕
本発明は、二軸型エクストルーダを利用するこ
とによつて、原料の水和、混合、加熱及び冷却を
特別のトラブルを伴うことなく行えることに着目
し、特に、エクストルーダを構成する各バレル中
に組み込むスクリユーパターンを巧みに組合わせ
ることによつて米粉その他、粗砕した米粉を含む
穀類の粉を余剰の水分を添加することなく、短時
間の間に、望ましくは「瞬間的」に近い、極めて
短時間の間に加熱蒸煮による原料の糊化、及びそ
れら糊化された原料を速やかに冷却することがで
きるように構成し、従来の製造方法及び装置が有
していた多くの問題を解決しようとするものであ
る。
また、本発明の方法及び装置によればそれらの
製品は極めて品質の優れたものとすることができ
るはずであり、またそのような手段により製造さ
れた製品はその製造コストにおいても著しい低廉
化をもたらすことが可能なはずである。本発明者
等は二軸型エクストルーダを利用すること、特に
二軸型エクストルーダに内装する数種のスクリユ
ーエレメントのパターンをその機能に応じて巧み
に組合わせることにより前記した従来技術が有す
る欠点を除去し本発明が目的とする効果を達成さ
せようとするものである。
本発明の上記した目的は、原料穀粉及び所要量
の水の混合物を二軸型エクストルーダを利用して
加熱処理並びに冷却処理をすることによつて達成
することができる。
本発明で用いる二軸型エクストルーダは、原料
供給用のフイーダ、数個のバレル、前記数個のバ
レルにそれぞれ内装する二軸のスクリユーエレメ
ント、バレル先端に装着したダイからなつている
ものである。前記した数個のバレルは、原料投入
ゾーンと、高熱処理ゾーンと、冷却処理ゾーンと
して組合わされて構成されている。原料投入ゾー
ンは原料投入口と水の供給口を有する、高熱処理
ゾーンは、原料投入ゾーンから移送された原料と
水とを混合しながら加熱撹拌を行う予備加熱ゾー
ン、予備加熱ゾーンにより十分に水和した原料を
加圧、粉砕しバレルから供給される熱によつて原
料中の澱粉を糊化させるクツキングゾーンから構
成される、また、冷却処理ゾーンは、前記高熱処
理ゾーンによつて加熱処理された原料を徐々に冷
却しながら後端部に取り付けた押し出し用のダイ
に連続するように構成されている。前記した二軸
型エクストルーダは、バレルの内側に回転を自在
とするように取り付けた二本のスクリユ軸に日的
に応じた機能を有するスクリユーエレメントが組
み合わされ嵌装されてなり、互いに噛み合いなが
ら同方向に回転駆動されるもので、混合、粉砕、
混練、圧縮、剪断、加熱、殺菌などの総ての工程
が一つの機構の中で順次連続的に行えるような装
置として構成されている、二軸型エクストルーダ
の具体的な構成体の一例としては東芝機械株式会
社の製造に係る同方向回転二軸押出機TEM50B
が好適であつた。
〔作用〕
以下に、本発明の作用を、その製造に用いる二
軸型エクストルーダの図面を参照しながら説明す
る。なお、本発明の作用を示すための二軸型エク
ストルーダは東芝機械株式会社製の二軸型押出機
TEM50Bである。第1図は二軸型エクストルー
ダを示す一部を断面にした正面図であり、第2図
はバレル内部のスクリユーエレメントの配置状態
を示すための縦断正面図である。
本発明は、供給された原料穀粉及び水を混合、
混練する工程と、この混合された原料を100℃程
度に加熱されたバレル内においてニーデイングデ
イスクにより均一に水和混合しながら加熱する予
備加熱工程と、前記予備加熱された原料を加圧下
において約150℃程度の熱により加熱しながら混
練し且つその混練移送の途中においてはリバース
スクリユーエレメントを組合わせ高圧条件下での
強い剪断応力をうけながら原料の糊化及び生地中
の一般生菌及び耐熱性菌の滅菌を図る工程とから
なるクツキング工程の連続からなる高熱処理工程
と、前記クツキング工程によつて得られた生地
を、冷却水の供給をうけ、内部には二軸の移送用
スクリユーエレメントを具えた幾つかのバレルを
通過させることによつて生地の冷却を図る冷却工
程と、所定温度に冷却された生地をバレル先端に
取り付けたダイによつて連続的に押し出し成形す
る押し出し工程の組合せによつて構成されてい
る。なお、本発明に使用する原料穀粉の種類は特
に限定するものではなく米の粗砕粒、胴搗粉、胴
搗粗粒粉、ロール粉などのほか各種の穀粉を単独
或いは適宜の比率で混合して使用することが可能
である。
以下、本発明に係る製造方法の一実施例をその
製造装置と対応させて具体的に説明する。
高熱処理工程は、原料及び水を投入するフイー
ド用バレルB1と、この投入された原料及び水を
100℃程度の比較的低温で予備的に半生状態とな
るまで加熱混練する予備加熱用バレルB2と、前
記予備的に加熱、混練された原料を、加圧下に約
150℃の温度で加熱、混練しながら水和原料の完
全な糊化を図るクツキング用バレルB3とによつ
て構成され、これらの各バレルは機械的に連続せ
しめられて原料が順次自由に移動できるようにし
ている。冷却処理工程は数個の冷却用バレルB4
〜B6の連続によつて構成されており、最後部の
冷却用バレルB6には製造された生地原料を送り
出すためのダイDを取り付けている。前記した冷
却処理用バレルB4〜B6は高熱処理ゾーンに機械
的に連続している。フイード用バレルB1は原料
の投入口を有するものであり、前記投入口にはシ
ユータ1を取り付け、また適宜の位置に吸水を供
給するための加水用パイプ11を取り付けてい
る、フイード用バレルB1の内側には、投入され
た原料を移送するための互いに噛み合つた二組の
移送用スクリユーエレメント12,12が回転す
るように嵌合されている。予備加熱用バレルB2
は、移送された原料をニーデイングデイスクによ
り水和混合しながら加熱するものでありバレルの
内側には多段のニーデイングデイスク21,21
が互いに噛み合つて回転するように取り付けられ
ている、予備加熱用バレルB2には、原料の加熱
及び冷却を目的として、バレルに加熱ヒータ3と
冷水ジヤケツト(図示しない)が設けられてお
り、同じく図示していない温度センサ及び自動温
度調節計で一定の温度に制御されるようになつた
バレルを用いている。クツキング用バレルB3は
予備加熱用バレルB2と同様の構成からなるバレ
ルを使用するものでありその内部には移送機能を
有するスクリユーエレメント31と、この移送用
スクリユーエレメント31による生地の送り出し
を適当な圧力で妨害することによつて高圧を発生
しながら原料を所定時間滞留させるようにしたリ
バーススクリユーエレメント32とが組み合わさ
れて配設されている。このクツキング用バレル
B3では、予備加熱用バレルB2から送り込まれた
半生状態の原料生地を、二つのスクリユーエレメ
ント31及び32の作用により加圧しながら所定
の時間滞留させることにより高熱を受け完全に糊
化させることが可能となる。また、このクツキン
グ用バレルB3では二つのスクリユーエレメント
31及び32の剪断作用、特にリバーススクリユ
ーエレメント32の剪断応力によりクツキングさ
れた生地に対する滅菌効果を完全に発揮させるこ
とが可能となる。冷却用バレルB4〜B6のバレル
は前述した予備加熱用バレルB2及びクツキング
用バレルB3と同様の構成からなつており、内部
には互いに噛み合つた移送用スクリユーエレメン
ト41……41が回転するようにして配設されて
いる。ダイDは最後尾の冷却用バレルB6の端部
に取り付けるものであり所望大きさの生地が成形
され押し出されるオリフイス5を穿設している。
〔実施例〕
実施例1 (米菓用生地の製造例)
スクリユ回転数……160〜200rpm
上新粉……40〜42Kg/h
加水量(注水量)……10〜12l/h
バレル温度……バレルB2からB6に向かつて100―
150―40―40―40℃の順としている。
ダイ温度……40℃
原料投入用バレルB1のシユータ1にフイーダ
2より上新粉が連続的に供給され、続いて加水用
パイプ11より水の供給を受け多少の混練を受け
ながら予備加熱用バレルB2内に移送する、100℃
に加熱された予備加熱用バレルB2内にて十分な
混捏を施すと、原料が均一に吸水し、原料温度を
100℃近くまで上昇させる、次いでクツキング用
バレルB3内に移送されると、予備加熱用バレル
B2内において一部糊化された原料は更に十分な
撹拌混練が行われしかも高温加熱によつて完全に
糊化されよく練られた生地となる、このクツキン
グ用バレルB3内で得られた生地の温度は高温高
圧部分で144〜147℃あつたが冷却用バレルB4〜
B6を通過するに従つて次第に冷却され最終的に
ダイDの押し出し直後の品温は89〜94℃であつ
た。なお、原料投入用バレルB1に投入された原
料が可食性の生地となつてダイDから押し出され
るのに要した時間は約1.5分であつた。本実施例
によつて得られた菓子生地は均一な状態で未膨化
で押し出された、この押し出された生地を走査型
電子顕微鏡で観察したところ粉体粒子は完全に粉
砕され、澱粉粒子も殆ど崩壊した状態にあり気泡
は細かく分散していた。また得られた生地は水分
含有量が25%程度という極めて低いものであり、
爾後の乾燥を短時間に容易に行うことが出来た。
更にまた、得られた生地を2〜3mm厚にスライ
スし4℃48時間通風状態で乾燥したものを焼成ま
たは油ちよう手段により二次加工した製品の所見
は、ポツプコーン様の極めて緻密な構造を有し、
しかも比較的軽い食感を持つ、口溶けのよい膨化
物を得ることができ、従来にない新しい食感を得
ることができた。更にまた、ダイDより押し出さ
れた生地中に一般生菌の存在は認められず滅菌効
果の強いことが確認でき、原料由来の細菌による
各種の問題を解決することができる優れた可食性
生地を得ることができた。
実施例2 (団子生地の製造例)
スクリユ回転数……160〜240rpm
上新粉……24Kg/h
糖(シヨ糖7:麦芽糖を3)…12Kg/h
加水量……18l/h
バレル温度……バレルB2からB6に向かつて100―
150―40―40―40℃の順としている。
ダイ温度……40℃
原料投入用バレルB1内に、上新粉、糖がそれ
ぞれ別のフイーダからシユータ1に安定して供給
され、続いて水の供給パイプ11から水の供給を
受ける。100℃に加熱された予備加熱用バレルB2
内にて上新粉と糖を均一に混合撹拌すると上新粉
が均一に吸水し、併せて糖が溶解され品温が80℃
近くまで上昇した生地に均一に練り込まれた後次
ぎのクツキング用バレルB3内に送り込まれる。
予備加熱用バレルB2内にて一部糊化された生地
は、150℃に加熱されたクツキング用バレルB3内
において再度高温高圧下で混捏されて完全に糊化
された生地が得られる、このクツキング用バレル
B3内における生地の温度は116℃であつた。糊化
された生地は40℃に温度設定された冷却用バレル
B4〜B6内を通過することによつて次第に冷却さ
れダイDから押し出された生地は57℃であつた。
なお、本実施例における製造の所要時間も実施例
1と同様に約1.5分であつた。本実施例によつて
得られた団子生地は米粉粒子が均一に細かく粉砕
された水分含有量38.6%の「腰」の強いものであ
つた。また、二次加工した製品は舌触りが滑らか
な極めて食感に優れたものであつた。また、実施
例1と同様に生地中の一般生菌は認められず、殺
菌効果に極めて優れており原料由来の細菌による
問題を解決することができる優れた効果を有して
いた。
実施例3 (餅生地の製造例)
スクリユ回転数……160〜240rpm
餅粉……32〜38Kg/h
加水量(注水量)……14〜20l/h
バレル温度……バレルB2からB6に向かつて100―
150―40―40―40℃の順としている。
ダイ温度……40℃
原料投入用バレルB1のシユータ1にフイーダ
2より餅粉が連続的に供給され、続いて加水用パ
イプ11より水の供給を受け多少の混練を受けな
がら予備加熱用バレルB2に移送する、100℃に加
熱された予備加熱用バレルB2内にて十分な混捏
を施すと原料が均一に吸水し原料温度を100℃近
くまで上昇させる、次いでクツキング用バレル
B3に移送されると、予備加熱用バレルB2内にお
いて一部糊化された原料は更に十分な撹拌混練が
行われしかも高温加熱によつて完全に糊化されよ
く練られた生地となる、このクツキング用バレル
B3内で得られた餅生地の温度は高温高圧部で144
〜147℃あつたが冷却用バレルB4〜B6内を通過す
るに従つて次第に冷却され、最終的にダイDの押
し出し直後の品温は61℃であつた。なお、原料投
入用バレルB1に投入された原料が可食性の生地
となつてダイDから押し出されるのに要した時間
は、実施例1及び2と同様に約1.5分であつた。
本実施例によつて得られた餅生地は市販の餅生地
(切り餅)に比較して生地が均一な状態を呈し滑
らかであつた。また、焼成による二次加工では伸
びが極めて良好であつた、但し蒸煮による加熱で
は市販品に比較して溶け易いという結果が出てい
る。更にまた、実施例1と同様に生地中の一般生
菌は認められず、殺菌効果に極めて優れており原
料由来の細菌による問題を解決することができる
優れた効果を有していた。
耐熱細菌に対する滅菌効果の確認
実施例1〜3においていずれも細菌に対する滅
菌効果に優れていることが確認できたがこれらの
事実を特に確認するために、以下の実験をした。
耐熱性菌としてBacillus subtilis(IFO―3134)
の芽胞を原料と同時に106〜107のオーダーで投入
し、押し出された生地での残存の有無を確認し
た。
実験区 1
上新粉 32〜38Kg/h
加水量 14〜20l/h
実験区 2
餅 粉 32Kg/h
加水量 20l/h
実験区 3
上新粉 22Kg/h
糖 12℃/h
加水量 18l/h
スクリユ回転数 160〜240rpm
バレル温度 100―150―40―40―40℃
実験方法の詳細についてはJ.A.Bouveresse,
O.Cerf S.Guilbert and J.C Cheftel“Influence
of Extrusion―Cooking on the Thermal
Destruction of Bacillus stearothermosphilus
Spores in a Starch―Protein―Sucrose
Mix” Lebensm.―Wiss.u.―Technol.,15,
3,135,1983に従つた。
実験結果
投入したB.subtilis芽胞は、下表に示すように
団子生地、餅生地、その他どの条件の生地におい
ても検出されず、耐熱性を有する芽胞に対して二
軸型エクストルーダが極めて有効な滅菌機である
ことが照明された。
[Industrial Application Field] The present invention is a method for manufacturing grain flour, including coarsely crushed rice flour, into dough similar to dumplings or mochi in an extremely short period of time by using a twin-screw extruder. It is intended for use in the production of edible dough. [Prior Art] Conventionally, it has been common practice to obtain dough for dumplings or rice cakes using grain flour such as rice flour. This method involves mixing the mixture with water absorption added to it, passing it through a steamer several times, and then extruding it from a twisting machine, which requires the complicated means of adding auxiliary materials each time it passes through the steamer. In addition, when producing rice cake-like dough, the so-called batch method is used, in which raw rice that has been washed and soaked in water is crushed in a crusher, then steamed in a steamer, and then extruded. Obtain steamed dough while kneading by
Furthermore, the method involved storing the dough in a container, allowing it to stabilize for over 70 hours, and then cutting it into the desired shape and drying it, which meant that it took more than three days from inputting the raw materials to obtaining the product dough. Ta. A method of processing mochi dough using a uniaxial extruder was developed to solve the time-consuming drawbacks of the batch method, but it had several drawbacks. [Problems to be Solved by the Invention] The following points have been pointed out as the drawbacks of the conventional uniaxial extruder described above. Namely, the processing principle of the uniaxial extruder is that the processed material fed into the barrel is The friction between the wall surface and the raw material prevents it from rotating with the screw and pushes it forward, so if there is too much moisture in the raw material, it will slip on the barrel wall, making it impossible to push it forward. It becomes stable. Therefore, the limit of allowable moisture in raw materials is about 30 to 40%. There is a lot of energy loss due to friction, and power consumption is high. Generally, the barrel wall of a uniaxial extruder has grooves rather than a smooth surface, and the clearance between the screw flight and the barrel wall is large, so if there is a lot of moisture in the raw material, the raw material can overcome the screw flight. Backflow may occur, and high pressure cannot be expected. That is the problem. [Means for Solving the Problems] The present invention focuses on the fact that by using a twin-screw extruder, raw materials can be hydrated, mixed, heated, and cooled without any special troubles. In particular, by skillfully combining the screw patterns built into each barrel that makes up the extruder, rice flour and other grain flours, including coarsely ground rice flour, can be mixed in a short period of time without adding excess water. , desirably configured to be capable of gelatinizing the raw materials by heating and steaming in an extremely short period of time close to "instantaneous" and rapidly cooling the gelatinized raw materials, and using conventional manufacturing methods and equipment. This is an attempt to solve many of the problems that existed. Furthermore, according to the method and apparatus of the present invention, these products should be able to be made with extremely high quality, and products manufactured by such means should also be able to significantly reduce their manufacturing costs. It should be possible to bring it about. The present inventors have solved the drawbacks of the prior art described above by using a two-screw extruder, and in particular by skillfully combining several types of screw element patterns installed in the two-screw extruder according to their functions. This is intended to achieve the desired effect of the present invention. The above objects of the present invention can be achieved by heating and cooling a mixture of raw flour and a required amount of water using a twin-screw extruder. The twin-screw extruder used in the present invention consists of a feeder for supplying raw materials, several barrels, two-shaft screw elements installed in each of the barrels, and a die attached to the tip of the barrel. . The several barrels described above are combined to form a raw material input zone, a high heat treatment zone, and a cooling treatment zone. The raw material input zone has a raw material input port and a water supply port.The high heat treatment zone has a preheating zone that heats and stirs the raw material transferred from the raw material input zone and water while mixing it, and a preheating zone that has a sufficient amount of water. The cooling treatment zone consists of a heating zone that pressurizes and pulverizes the softened raw materials and gelatinizes the starch in the raw materials with the heat supplied from the barrel. It is constructed so that the raw material is gradually cooled and continues to an extrusion die attached to the rear end. The above-mentioned two-shaft extruder is made up of two screw shafts that are rotatably attached to the inside of the barrel, and screw elements that have functions depending on the day are combined and fitted. They are rotatably driven in the same direction and are used for mixing, grinding,
An example of a specific structure of a twin-screw extruder, which is configured as a device that can perform all processes such as kneading, compression, shearing, heating, and sterilization sequentially and continuously in one mechanism, is as follows: Co-rotating twin screw extruder TEM50B manufactured by Toshiba Machine Co., Ltd.
was suitable. [Function] Hereinafter, the function of the present invention will be explained with reference to the drawings of a biaxial extruder used for manufacturing the extruder. The twin-screw extruder used to demonstrate the effects of the present invention is a twin-screw extruder manufactured by Toshiba Machinery Co., Ltd.
It is TEM50B. FIG. 1 is a partially sectional front view showing a biaxial extruder, and FIG. 2 is a longitudinal sectional front view showing the arrangement of screw elements inside the barrel. The present invention involves mixing supplied raw material flour and water,
a kneading step, a preheating step of heating the mixed raw materials in a barrel heated to about 100°C while uniformly hydrating and mixing them with a kneading disk, and a preheating step of heating the preheated raw materials under pressure to approx. Kneading is performed while heating at approximately 150℃, and during the kneading and transfer process, a reverse screw element is used to gelatinize the raw materials and remove general viable bacteria in the dough while undergoing strong shear stress under high pressure conditions. A high-heat treatment process consists of a series of footwearing processes to sterilize sex-related bacteria, and the fabric obtained through the footwearing process is supplied with cooling water and has a biaxial transfer screw inside. There is a cooling process in which the dough is cooled by passing it through several barrels equipped with elements, and an extrusion process in which the dough cooled to a predetermined temperature is continuously extruded and molded using a die attached to the tip of the barrel. It is composed of combinations. Note that the type of raw material flour used in the present invention is not particularly limited, and in addition to coarsely crushed rice grains, doudou flour, doudou coarse grain flour, rolled flour, etc., various grain flours may be used alone or mixed in an appropriate ratio. It is possible to use the Hereinafter, one embodiment of the manufacturing method according to the present invention will be specifically described in conjunction with its manufacturing apparatus. The high heat treatment process consists of a feed barrel B 1 into which raw materials and water are input, and a feed barrel B1 into which raw materials and water are input.
The preheating barrel B 2 heats and kneads the preliminarily heated and kneaded raw materials at a relatively low temperature of about 100°C until they become semi-raw, and the preheated and kneaded raw materials are heated and kneaded under pressure.
It consists of a shoe-making barrel B3 that completely gelatinizes the hydrated raw materials while heating and kneading them at a temperature of 150℃, and each of these barrels is mechanically connected to allow the raw materials to move freely in sequence. I'm trying to make it possible. The cooling process consists of several cooling barrels B 4
~ B6 in series, and the cooling barrel B6 at the rear end is equipped with a die D for feeding out the manufactured dough raw material. The cooling treatment barrels B 4 to B 6 described above are mechanically continuous with the high heat treatment zone. The feed barrel B 1 has an input port for raw materials, a shooter 1 is attached to the input port, and a water addition pipe 11 for supplying absorbed water is attached to an appropriate position. Two sets of transfer screw elements 12, 12 that are engaged with each other and are used to transfer the input raw material are rotatably fitted inside the container 1 . Preheating barrel B 2
The transferred raw materials are heated while being hydrated and mixed by a kneading disk, and there are multi-stage kneading disks 21, 21 inside the barrel.
The preheating barrel B2 , which is attached so as to mesh with each other and rotate, is provided with a heater 3 and a cold water jacket (not shown) for the purpose of heating and cooling the raw material. A barrel whose temperature is controlled to a constant level using a temperature sensor and an automatic temperature controller (not shown) is used. The shoeking barrel B 3 uses a barrel having the same structure as the preheating barrel B 2 , and has a screw element 31 having a transfer function inside it, and the dough is sent out by this transfer screw element 31. A reverse screw element 32 is installed in combination with a reverse screw element 32 which generates high pressure by interfering with a suitable pressure to cause the raw material to remain for a predetermined period of time. Barrel for this shoe king
In B 3 , the semi-raw raw material fed from the preheating barrel B 2 is held for a predetermined time while being pressurized by the action of two screw elements 31 and 32, thereby receiving high heat and completely gelatinizing it. becomes possible. Further, in this shoeing barrel B3 , the shearing action of the two screw elements 31 and 32, especially the shearing stress of the reverse screw element 32, makes it possible to fully exhibit the sterilization effect on the stuffed fabric. The cooling barrels B 4 to B 6 have the same construction as the preheating barrel B 2 and shoeking barrel B 3 described above, and there are screw elements 41 for transfer that mesh with each other inside. is arranged so that it rotates. The die D is attached to the end of the last cooling barrel B6 , and has an orifice 5 through which dough of a desired size is formed and extruded. [Example] Example 1 (Production example of dough for rice crackers) Screw rotation speed...160-200 rpm Joshinko...40-42 Kg/h Amount of water added (water injection amount)...10-12 l/h Barrel temperature... …100 from barrel B 2 to B 6
The order is 150-40-40-40℃. Die temperature: 40°C Fresh powder is continuously supplied from the feeder 2 to the shooter 1 of the raw material input barrel B 1 , and then water is supplied from the water pipe 11 and kneaded to some extent for preheating. Transfer into barrel B 2 , 100℃
When sufficiently kneaded in the preheating barrel B 2 , which is heated to
The preheating barrel is heated to nearly 100℃ and then transferred into the shoeking barrel B 3 .
The raw materials partially gelatinized in B 2 are further sufficiently stirred and kneaded and are completely gelatinized by high-temperature heating, resulting in a well-kneaded dough, which is obtained in shoe-making barrel B 3 . The temperature of the fabric is 144 to 147 degrees Celsius in the high temperature and high pressure part, but the cooling barrel B 4 to
As it passed through B6 , it was gradually cooled down, and the final temperature immediately after extrusion from die D was 89 to 94°C. The time required for the raw material input into the raw material input barrel B1 to turn into edible dough and be extruded from the die D was about 1.5 minutes. The confectionery dough obtained in this example was extruded in a uniform, unexpanded state. When this extruded dough was observed with a scanning electron microscope, the powder particles were completely crushed, and almost all the starch particles were found. It was in a collapsed state and the air bubbles were finely dispersed. The resulting fabric also has an extremely low moisture content of around 25%.
Subsequent drying could be easily carried out in a short period of time. Furthermore, the obtained dough was sliced into 2-3 mm thick pieces, dried in a ventilated state at 4°C for 48 hours, and then processed by baking or oil-frying. have,
In addition, it was possible to obtain a puffed product that had a relatively light texture and melted well in the mouth, resulting in a new texture that had never existed before. Furthermore, the presence of general viable bacteria was not observed in the dough extruded from Die D, confirming a strong sterilization effect, and producing an excellent edible dough that can solve various problems caused by bacteria derived from raw materials. I was able to get it. Example 2 (Manufacturing example of dumpling dough) Screw rotation speed...160-240rpm Joshin flour...24Kg/h Sugar (7 parts cane sugar: 3 parts maltose)...12Kg/h Amount of water added...18L/h Barrel temperature... …100 from barrel B 2 to B 6
The order is 150-40-40-40℃. Die temperature: 40°C In the raw material input barrel B 1 , fresh powder and sugar are stably supplied to the shooter 1 from separate feeders, and then water is supplied from the water supply pipe 11. Preheating barrel B 2 heated to 100℃
When the Joshin flour and sugar are evenly mixed and stirred in the inside, the Joshin flour absorbs water uniformly, and the sugar is dissolved at the same time, resulting in a product temperature of 80℃.
After it is evenly kneaded into the dough that has risen to a nearby level, it is sent into the next barrel B 3 for shoe making.
The partially gelatinized dough in the preheating barrel B 2 is kneaded again under high temperature and pressure in the shoemaking barrel B 3 heated to 150°C to obtain a completely gelatinized dough. Barrel for this shoe king
The temperature of the dough in B3 was 116°C. The gelatinized dough is placed in a cooling barrel set at a temperature of 40℃.
The dough was gradually cooled by passing through B 4 to B 6 and extruded from die D at a temperature of 57°C.
The time required for production in this example was also about 1.5 minutes, similar to Example 1. The dumpling dough obtained in this example had a firm texture with a water content of 38.6% in which the rice flour particles were uniformly and finely ground. In addition, the secondary processed product had a smooth texture and an extremely excellent texture. Further, as in Example 1, no common viable bacteria were observed in the dough, indicating an extremely excellent sterilizing effect and an excellent effect of solving problems caused by bacteria originating from raw materials. Example 3 (Manufacturing example of mochi dough) Screw rotation speed...160-240rpm Mochi powder...32-38Kg/h Amount of water added...14-20l/h Barrel temperature...Barrel B 2 to B 6 100-
The order is 150-40-40-40℃. Die temperature...40°C Mochi powder is continuously supplied from the feeder 2 to the shooter 1 of the raw material input barrel B 1 , and then water is supplied from the water pipe 11 and the mixture is mixed to a certain extent while being transferred to the preheating barrel. The raw materials are transferred to B2 , where they are thoroughly kneaded in the preheating barrel B2 heated to 100℃, which causes the raw materials to evenly absorb water and raise the temperature of the raw materials to nearly 100℃.
When transferred to B 3 , the partially gelatinized raw materials in the preheating barrel B 2 are further sufficiently stirred and kneaded, and are completely gelatinized by high-temperature heating to become a well-kneaded dough. , this barrel for shoe king
The temperature of the mochi dough obtained in B 3 is 144 in the high temperature and high pressure section.
The temperature of ~147°C was gradually cooled as it passed through the cooling barrels B4 to B6 , and the final product temperature immediately after extrusion from die D was 61°C. The time required for the raw material input into the raw material input barrel B1 to turn into an edible dough and be extruded from the die D was about 1.5 minutes, similar to Examples 1 and 2.
The mochi dough obtained in this example had a more uniform texture and was smoother than commercially available mochi dough (cut mochi). In addition, the elongation was extremely good in secondary processing by firing, however, when heated by steaming, it was found that it melted more easily than commercially available products. Furthermore, as in Example 1, no common viable bacteria were observed in the dough, indicating an extremely excellent sterilizing effect and an excellent effect in solving problems caused by bacteria originating from raw materials. Confirmation of sterilizing effect on heat-resistant bacteria It was confirmed that all of Examples 1 to 3 were excellent in sterilizing effect on bacteria, but in order to specifically confirm these facts, the following experiment was conducted. Bacillus subtilis (IFO-3134) as a heat-resistant bacterium
Spores of 10 6 to 10 7 were added at the same time as the raw materials, and the presence or absence of any remaining spores in the extruded dough was confirmed. Experimental area 1 Joshinko 32-38Kg/h Amount of water added 14-20l/h Experimental area 2 Mochi flour 32Kg/h Amount of water added 20l/h Experimental area 3 Joshinko 22Kg/h Sugar 12℃/h Amount of water added 18l/h Screw rotation speed 160~240rpm Barrel temperature 100-150-40-40-40℃ For details of the experimental method, please refer to JA Bouveresse.
O.Cerf S.Guilbert and JC Cheftel“Influence
of Extrusion―Cooking on the Thermal
Destruction of Bacillus stearothermophilus
Spores in a Starch-Protein-Sucrose
Mix” Lebensm.―Wiss.u.―Technol., 15,
3, 135, 1983. Experimental results As shown in the table below, the B. subtilis spores that were introduced were not detected in the dough for dumplings, rice cakes, or any other dough, indicating that the twin-screw extruder is extremely effective at sterilizing heat-resistant spores. It was revealed that it was a machine.
本発明の効果を述べれば以下の通りである。
穀粉の種類を問わず、或いはこれらを混合し
たものを用いて団子や餅と同様の水分を有する
可食性の生地を連続的に製造することができ
る。
従来の製造方法及び装置によれば可食性生地
の製造に2〜3日という極めて長い時間を要し
ていたが、本発明の方法及び装置によれば原料
投入から可食性生地の押し出しまでを約1.5分
という極めて短時間に製造することが可能とな
る。
製造時間が短縮されることに伴い、製造コス
トの低廉化を図ることができ、製品価格の低廉
化に寄与することが可能である。
原料投入から可食性生地の押し出しまでを一
貫して二軸型エクストルーダが行い、人の手に
触れることがないので極めて衛生的である。
二軸型エクストルーダを用いて製造するので
原料中の水分が多くなつた場合にも逆流による
前方への押し出し不良などが生じることがな
く、安定した製造を行うことができる。
製造過程において、摩擦によるエネルギーロ
スがないので、動力の電力消費が少なくて済
み、コストの低減化に寄与することができる。
二軸型エクストルーダによる押し出し、特に
高熱処理ブロツクにおいて剪断応力を与えなが
ら押し出しを行うので、原料由来の一般細菌は
勿論のこと耐熱性菌なども完全に滅菌をするこ
とが可能となり極めて衛生的な可食性生地を得
ることができる。
The effects of the present invention are as follows. Edible dough having moisture similar to that of dumplings or rice cakes can be continuously produced using any type of flour or a mixture thereof. According to conventional manufacturing methods and equipment, it took an extremely long time of 2 to 3 days to manufacture edible dough, but with the method and equipment of the present invention, the process from inputting raw materials to extruding edible dough takes about 2 to 3 days. This makes it possible to manufacture the product in an extremely short time of 1.5 minutes. As the manufacturing time is shortened, manufacturing costs can be reduced, which can contribute to lower product prices. A twin-screw extruder handles everything from inputting raw materials to extruding the edible dough, which is extremely hygienic as it does not come into contact with human hands. Since it is manufactured using a twin-screw extruder, even if the moisture in the raw material increases, there will be no forward extrusion failure due to backflow, and stable manufacturing can be performed. In the manufacturing process, there is no energy loss due to friction, so power consumption is low, contributing to cost reduction. Extrusion using a twin-screw extruder, especially extrusion while applying shear stress in a high heat treatment block, makes it possible to completely sterilize not only general bacteria derived from raw materials but also heat-resistant bacteria, making it extremely hygienic. Edible dough can be obtained.
図は本発明を実施するための装置を示すもので
あり、第1図は一部を切欠した正面図、第2図は
スクリユーエレメントの配置を示す縦断正面図で
ある。
B1……フイード用バレル、B2……予備加熱用
バレル、B3……クツキング用バレル、B4〜B6…
…冷却用バレル、D……ダイ、1……シユータ、
11……加水用パイプ、12,31,41……移
送用スクリユーエレメント、21……ニーデイン
グデイスク、32……リバーススクリユーエレメ
ント、5……オリフイス、2……フイーダ、3…
…加熱ヒータ。
The figures show an apparatus for carrying out the present invention; FIG. 1 is a partially cutaway front view, and FIG. 2 is a longitudinal sectional front view showing the arrangement of screw elements. B 1 ... Barrel for feed, B 2 ... Barrel for preheating, B 3 ... Barrel for shoe king, B 4 ~ B 6 ...
...Cooling barrel, D...Die, 1...Shooter,
11... Pipe for adding water, 12, 31, 41... Screw element for transfer, 21... Kneading disk, 32... Reverse screw element, 5... Orifice, 2... Feeder, 3...
...heater.
Claims (1)
ゾーンと、バレルに設けた加熱・冷却手段によつ
て、100℃程度に加熱制御されてなる予備加熱ゾ
ーンと、150℃程度に加熱制御されてなるクツキ
ングゾーンと、40℃程度に冷却制御されてなる冷
却処理ゾーンを有するように結合された複数のバ
レルと、前記原料投入ゾーンのバレル内には移送
スクリユーエレメント、前記予備加熱ゾーンのバ
レル内には移送スクリユーエレメントとニーデイ
ングデイスク、前記クツキングゾーンのバレル内
には移送スクリユーエレメントとリバーススクリ
ユーエレメント、前記冷却処理ゾーンのバレル内
には移送スクリユーエレメントを配した構成から
なる回転自在の二軸のスクリユーと、前記バレル
の後端部に設けられたダイとからなる二軸型エク
ストルーダにより、前記原料投入ゾーンに供給さ
れた原料穀粉を加水しながら前記スクリユーによ
つて後端部に移送し、前記予備加熱ゾーンで半生
状態となるまで加熱混練し、前記クツキングゾー
ンでは半生状態となつた原料を高温高圧下で糊化
滅菌を図つた後、前記冷却処理ゾーンで冷却しな
がら前記ダイにより所望の形状に押出成形するこ
とを特徴とする二軸型エクストルーダを利用した
可食性生地の製造方法。 2 バレルに設けた加熱・冷却手段は、バレルに
設けた加熱ヒーターと冷水ジヤケツトにより温度
制御されることを特徴とする請求項1に記載の二
軸型エクストルーダを利用した可食性生地の製造
方法。 3 原料穀粉の供給と水の供給を受ける原料投入
ゾーンと、バレルに設けた加熱・冷却手段によつ
て、100℃程度に加熱制御されてなる予備加熱ゾ
ーンと、150℃程度に加熱制御されてなるクツキ
ングゾーンと、40℃程度に冷却制御されてなる冷
却処理ゾーンを有するように結合された複数のバ
レルと、前記原料投入ゾーンのバレル内には移送
スクリユーエレメント、前記予備加熱ゾーンのバ
レル内には移送スクリユーエレメントとニーデイ
ングデイスク、前記クツキングゾーンのバレル内
には移送スクリユーエレメントとリバーススクリ
ユーエレメント、前記冷却処理ゾーンのバレル内
には移送スクリユーエレメントを配した構成から
なる回転自在の二軸のスクリユーと、前記バレル
の後端部に設けられたダイとからなることを特徴
とする二軸型エクストルーダを利用した可食性生
地の製造装置。 4 バレルに設けた加熱・冷却手段は、バレルに
設けた加熱ヒーターと冷水ジヤケツトにより温度
制御されることを特徴とする請求項3に記載の二
軸型エクストルーダを利用した可食性生地の製造
装置。[Scope of Claims] 1. A raw material input zone that receives supply of raw material flour and water, a preheating zone that is heated to approximately 100°C by heating/cooling means provided in the barrel, and a preheating zone that is heated to approximately 150°C. A plurality of barrels are connected to each other so as to have a cooking zone whose heating is controlled to a temperature of about 40°C, and a cooling processing zone whose cooling is controlled to a temperature of about 40°C, a transfer screw element in the barrel of the raw material input zone, A transfer screw element and a kneading disk are disposed within the barrel of the preheating zone, a transfer screw element and a reverse screw element are disposed within the barrel of the footing zone, and a transfer screw element is disposed within the barrel of the cooling treatment zone. A two-shaft type extruder consisting of a rotatable two-shaft screw and a die provided at the rear end of the barrel is used to add water to the raw material flour supplied to the raw material input zone and extrude the raw material flour while adding water. The raw material is transferred to the rear end by a screw, heated and kneaded in the preheating zone until it becomes semi-raw, and the semi-raw material is gelatinized and sterilized under high temperature and pressure in the packing zone. A method for producing edible dough using a twin-screw extruder, characterized in that the dough is extruded into a desired shape by the die while being cooled in a cooling treatment zone. 2. The method for producing edible dough using a twin-screw extruder according to claim 1, wherein the temperature of the heating/cooling means provided in the barrel is controlled by a heater and a cold water jacket provided in the barrel. 3. A raw material input zone that receives the supply of raw material flour and water, a preheating zone that is heated to approximately 100℃ by heating and cooling means installed in the barrel, and a preheating zone that is heated to approximately 150℃. A plurality of barrels are connected to each other so as to have a packing zone, a cooling treatment zone whose cooling is controlled to about 40° C., a transfer screw element in the barrel of the raw material input zone, and a barrel of the preheating zone. A transfer screw element and a kneading disk are arranged inside the barrel, a transfer screw element and a reverse screw element are arranged inside the barrel of the cooling zone, and a transfer screw element is arranged inside the barrel of the cooling processing zone. An edible dough manufacturing apparatus using a biaxial extruder, characterized by comprising a rotatable biaxial screw and a die provided at the rear end of the barrel. 4. The edible dough manufacturing apparatus using a twin-screw extruder according to claim 3, wherein the temperature of the heating/cooling means provided in the barrel is controlled by a heating heater and a cold water jacket provided in the barrel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184781A JPS6255067A (en) | 1985-08-22 | 1985-08-22 | Production of edible dough using twin-screw extruder and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184781A JPS6255067A (en) | 1985-08-22 | 1985-08-22 | Production of edible dough using twin-screw extruder and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6255067A JPS6255067A (en) | 1987-03-10 |
JPH0116136B2 true JPH0116136B2 (en) | 1989-03-23 |
Family
ID=16159184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184781A Granted JPS6255067A (en) | 1985-08-22 | 1985-08-22 | Production of edible dough using twin-screw extruder and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6255067A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069473B2 (en) * | 1985-12-27 | 1994-02-09 | 明治乳業株式会社 | Continuous production method of rice cake |
JPS63254972A (en) * | 1987-04-10 | 1988-10-21 | Ikegai Corp | Twin-screw extruder for food processing |
JP2530173B2 (en) * | 1987-08-19 | 1996-09-04 | 雪印乳業株式会社 | Method for producing high-expansion rice crackers and snack food dough |
JP2530184B2 (en) * | 1987-12-25 | 1996-09-04 | 雪印乳業株式会社 | Method for producing food dough for rice snacks and snacks having flexibility and high swelling property |
JPH02215349A (en) * | 1989-02-17 | 1990-08-28 | Ezaki Glico Co Ltd | Production of rice cake |
US7261913B2 (en) | 2003-07-07 | 2007-08-28 | Dreyer's Ice Cream, Inc. | Aerated frozen suspension with adjusted creaminess and scoop ability based on stress-controlled generation of superfine microstructures |
US7655265B2 (en) | 2003-07-07 | 2010-02-02 | Nestec S.A. | Process control scheme for cooling and heating compressible compounds |
CN103027370A (en) * | 2012-08-03 | 2013-04-10 | 李同庚 | Artificial composite nutritional rice forming device |
CN111264577B (en) * | 2020-03-04 | 2021-12-14 | 惠民县宇东面粉有限公司 | Advanced vacuum flour-mixing machine equipment |
WO2024204672A1 (en) * | 2023-03-30 | 2024-10-03 | 株式会社日清製粉ウェルナ | Method for producing heat-treated cereal flour |
-
1985
- 1985-08-22 JP JP60184781A patent/JPS6255067A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6255067A (en) | 1987-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2540220B2 (en) | Kneading apparatus and method for producing batter, especially batter products | |
US5558886A (en) | Extrusion apparatus for the preparation of instant fresh corn dough or masa | |
US5532013A (en) | Method for the preparation of instant fresh corn dough or masa | |
JP2772200B2 (en) | Method for producing pre-cooked cereal food | |
KR960000756B1 (en) | Process for manufacturing powder for propulsive charge | |
JPH0775503B2 (en) | Method and apparatus for making batter products | |
PL201333B1 (en) | Extrusion process, apparatus and product | |
JPH0116136B2 (en) | ||
EP0342465A1 (en) | Method for producing a breakfast cereal from half products | |
KR20020035363A (en) | Twin screw extruder and producing method of swelled grain by using the same | |
KR200201867Y1 (en) | Grain noodle manufacturing apparatus | |
JP2761874B2 (en) | Manufacturing method of starch food | |
JPH07170930A (en) | Puffed grain material and its production | |
KR20000019384A (en) | Noodle making apparatus using low-cohesive corn powder and method thereof | |
JP2558494B2 (en) | Process for producing puffed food | |
JPH02207746A (en) | Preparation of soft candy | |
JPS6181757A (en) | Preparation of noodle | |
JPH05123121A (en) | Instant food and its production | |
JPH0378981B2 (en) | ||
JP6920781B2 (en) | How to make a steamed cake using extruder-treated pregelatinized durum wheat grains | |
JPS62195250A (en) | Method for producing dough for snack food and apparatus therefor | |
JPH0579290B2 (en) | ||
JP2005027586A (en) | Method for producing rice cracker-like puffed confectionery | |
JPH01104141A (en) | Production of raw material for soy sauce | |
JPS60227645A (en) | Preparation of food raw material from rice |