JPH01160935A - Production of 4-biphenyl p-tolyl ether - Google Patents

Production of 4-biphenyl p-tolyl ether

Info

Publication number
JPH01160935A
JPH01160935A JP62319384A JP31938487A JPH01160935A JP H01160935 A JPH01160935 A JP H01160935A JP 62319384 A JP62319384 A JP 62319384A JP 31938487 A JP31938487 A JP 31938487A JP H01160935 A JPH01160935 A JP H01160935A
Authority
JP
Japan
Prior art keywords
copper
reaction
phenylphenol
biphenyl
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62319384A
Other languages
Japanese (ja)
Other versions
JPH0541616B2 (en
Inventor
Naoki Hanayama
花山 直樹
Kazuo Nakagawa
中川 和生
Akira Shimada
朗 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Welfide Corp
Original Assignee
Welfide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welfide Corp filed Critical Welfide Corp
Priority to JP62319384A priority Critical patent/JPH01160935A/en
Publication of JPH01160935A publication Critical patent/JPH01160935A/en
Publication of JPH0541616B2 publication Critical patent/JPH0541616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To economically, industrially and advantageously obtain the title compound, by using 1,3-dimethyl-2-imidazolidinone as a reaction accelerator in reacting p-phenylphenol with pchlorotoluene in the presence of a copper catalyst. CONSTITUTION:p-phenylphenol is reacted with p-chlorotoluene in the presence of a copper catalyst, e.g., copper powder or inorganic copper compound, such as copper chloride or copper carbonate, copper salt of an organic carboxylic acid, especially a copper complex catalyst, such as a complex of 8- hydroxyquinoline or acetylacetone, using a 1,3-dimethyl-2-imidazolidinone as a reaction accelerator at 120-280 deg.C, preferably 140-200 deg.C under ordinary pressure for 5-20hr to afford the aimed 4-biphenyl p-tolyl ether useful as a sensitizer for heat-sensitive recording materials at a lower temperature, in a shorter reaction time and higher yield than those in well-known methods by extremely simple operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感熱記録材における増感剤として有用である
4−ビフェニルp−)リルエーテルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing 4-biphenyl p-)lyl ether, which is useful as a sensitizer in heat-sensitive recording materials.

〔従来の技術・解決しようとする問題点〕ジアリールエ
ーテル類の製造法としては、アリールオキシ金属塩とハ
ロゲン化アリールを銅触媒の存在下で反応させるいわゆ
るウルマン(Ulmann)反応が広く知られている。
[Prior art/Problems to be solved] As a method for producing diaryl ethers, the so-called Ulmann reaction, in which an aryloxy metal salt and an aryl halide are reacted in the presence of a copper catalyst, is widely known. .

このウルマン反応において他の条件が同しであれば、臭
素化子り−ルに比較して塩素化アリールの反応性は著し
く低下することが知られているが、その反面、極めて安
価であり工業的には塩素化アリールを出発原料とするこ
とが望ましい。
It is known that in this Ullmann reaction, if other conditions are the same, the reactivity of chlorinated aryl is significantly lower than that of brominated aryl, but on the other hand, it is extremely cheap and industrially In particular, it is desirable to use a chlorinated aryl as a starting material.

4−ビフェニルp−)リルエーテルの製造法においても
出発原料にp−クロロトルエンを用いる方法が研究され
ており、特公昭56−451号公報には、p−フェニル
フェノールとp−クロロトルエンから4−ビフェニルp
−トリルエーテルを製造する方法において、複数の無機
銅化合物を触媒とし、ジメチルアセトアミドを反応促進
剤として用いることが開示されている。しかしながら、
この方法は反応時間が長く収率も到底工業的に満足でき
るものではない。
A method for producing 4-biphenyl p-)lyl ether using p-chlorotoluene as a starting material has also been studied, and Japanese Patent Publication No. 1983-451 describes the production of 4-biphenylphenol and p-chlorotoluene from p-phenylphenol and p-chlorotoluene. biphenyl p
- In a method for producing tolyl ether, it is disclosed that a plurality of inorganic copper compounds are used as a catalyst and dimethylacetamide is used as a reaction accelerator. however,
This method takes a long reaction time and the yield is not industrially satisfactory.

また、一般にウルマン反応において塩素化アリールを出
発原料とする場合、その反応を促進させるためN、N−
ジメチルホルムアミド、N−メチルピロリドン、ジメチ
ルスルホキシド、ヘキサメチルホスホルアミドなどの極
性非水溶媒類やジエチレングリコールアルキルエーテル
などのポリエーテル類を用いることが知られているが、
4−ビフェニルp−)リルエーテルの製造に当たって、
これらの極性非水溶媒類やポリエーテル類を用いても工
業的に充分な収量を得ることができなかった。
In general, when a chlorinated aryl is used as a starting material in the Ullmann reaction, N, N-
It is known to use polar nonaqueous solvents such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and hexamethylphosphoramide, and polyethers such as diethylene glycol alkyl ether.
In producing 4-biphenyl p-)lyl ether,
Even when these polar non-aqueous solvents and polyethers were used, industrially sufficient yields could not be obtained.

ところで、特開昭61−257938号公報には銅化合
物触媒及び塩基の存在下、クロロベンゼンとm−ヒドロ
キシベンジルアルコールとの反応によりm−フェノキシ
ヘンシルアルコールを製造する方法において、N、 N
’  −ジメチルイミダゾリジノンを含むクロロベンゼ
ンより高沸点の極性溶媒中で反応させることが開示さて
いるが、これらのN、  N’  −ジメチルイミダゾ
リジノンの使用は溶媒としての使用であって、しかも原
料であるクロロベンゼンと特定の比率を正しく選び、適
切な温度範囲で生成水をクロロベンゼンと共沸させて系
外に水を除去しながら行なうというもので、厳格な条件
のもとでのみ収率を向上させるものである。それゆえに
、同じウルマン反応であっても、このように複雑な反応
条件を原料化合物の異なる反応に応用することは困難で
あり、さらにN、 N’−ジメチルイミダゾリジノン自
身も溶媒としてはかなり高価なものである。
By the way, JP-A-61-257938 discloses a method for producing m-phenoxyhensyl alcohol by reacting chlorobenzene and m-hydroxybenzyl alcohol in the presence of a copper compound catalyst and a base, in which N, N
Although it is disclosed that the reaction is carried out in a polar solvent with a boiling point higher than that of chlorobenzene containing '-dimethylimidazolidinone, the use of these N,N'-dimethylimidazolidinones is only for use as a solvent, and moreover, The method involves selecting a specific ratio of chlorobenzene and azeotropically producing water with chlorobenzene in an appropriate temperature range to remove water from the system. Yields can only be improved under strict conditions. It is something that makes you Therefore, even for the same Ullmann reaction, it is difficult to apply such complicated reaction conditions to different reactions of starting compounds, and N,N'-dimethylimidazolidinone itself is quite expensive as a solvent. It is something.

このような状況のもとで感熱記録材における増感剤とし
て極めて有用である4−ビフェニルp−トリルエーテル
の簡便で経済的しかも工業的に有利な製造方法の開発が
希求されていた。
Under these circumstances, there has been a desire to develop a simple, economical, and industrially advantageous manufacturing method for 4-biphenyl p-tolyl ether, which is extremely useful as a sensitizer in heat-sensitive recording materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの状況のもとで鋭意研究を重ねた
結果、4−ビフェニルp−4リルエーテルの製造法にお
いて反応促進剤として1,3−ジメチル−2−イミダゾ
リジノンを用いることによって顕著に収率が向上するこ
とを見出し、本発明を完成するに至った。
As a result of extensive research under these circumstances, the present inventors found that by using 1,3-dimethyl-2-imidazolidinone as a reaction accelerator in the method for producing 4-biphenyl p-4yl ether, It was discovered that the yield was significantly improved, and the present invention was completed.

すなわち、本発明はp−フェニルフェノールとp−クロ
ロトルエンとを銅触媒の存在下、反応促進剤として1.
3−ジメチル−2−イミダゾリジノンを用いて反応させ
ることを特徴とする4−ビフェニルp−1リルエーテル
の製造法に関する。
That is, in the present invention, p-phenylphenol and p-chlorotoluene are used as reaction accelerators in the presence of a copper catalyst.
The present invention relates to a method for producing 4-biphenyl p-1yl ether, which is characterized by carrying out the reaction using 3-dimethyl-2-imidazolidinone.

〔作 用〕[For production]

本発明をさらに詳細に説明すると、使用される1、3−
ジメチル−2−イミダゾリジノンは、p−フェニルフェ
ノールに対し約1〜約3(lffi%程度である。
To explain the present invention in more detail, the 1,3-
Dimethyl-2-imidazolidinone is about 1 to about 3 (lffi%) relative to p-phenylphenol.

銅触媒としては、触媒能を有するものならばいずれでも
よく、たとえば銅粉末や塩化銅、炭酸銅などの無機銅化
合物、有機カルボン酸の銅塩などが使用できるが、特に
8−オキシキノリンまたはアセチルアセトンの銅錯体触
媒が好ましい。これらの錯体は錯体として別途調製した
ものを使用してもよいが、8−オキシキノリンやアセチ
ルアセトンなどと塩化銅のごとき無機銅化合物を別個に
反応器中に入れ、その中で錯塩を形成させてもよい。銅
触媒の使用量は反応温度、反応時間により異なるが、通
常p−フェニルフェノールに対し0.01〜10重量%
、好ましくは0.1〜3.0重量%程度が使用される。
As the copper catalyst, any catalyst may be used as long as it has catalytic ability, such as copper powder, inorganic copper compounds such as copper chloride and copper carbonate, and copper salts of organic carboxylic acids, but in particular, 8-oxyquinoline or acetylacetone can be used. copper complex catalysts are preferred. These complexes may be prepared separately as complexes, but 8-oxyquinoline, acetylacetone, etc. and an inorganic copper compound such as copper chloride may be separately placed in a reactor and a complex salt formed therein. Good too. The amount of copper catalyst used varies depending on the reaction temperature and reaction time, but is usually 0.01 to 10% by weight based on p-phenylphenol.
, preferably about 0.1 to 3.0% by weight.

原料として使用されるp−フェニルフェノールは、その
アルカリ金属塩としても使用でき、p−フェニルフェノ
ールとアルカリ金属アルコラード(カリウムアルコラー
ド、ナトリウムアルコラードなど)、水酸化アルカリ 
(水酸化カリウム、水酸化ナトリウムなど)、炭酸アル
カリ (炭酸カリウム、炭酸ナトリウムなど)、重炭酸
アルカリ (重炭酸カリウム、重炭酸ナトリウムなど)
などとの反応により得られるが、アルカリ金属塩を単離
したのち反応に使用する必要はなく、p−フェニルフェ
ノールと水酸化アルカリ、炭酸アルカリ、重炭酸アルカ
リなどを同−反応器中に仕込み、その反応器中でp−フ
ェニルフェノールのアルカリ金属塩を生成させればよい
。アルカリはp−フェニルフェノール1モルに対して0
.9〜2.0アルカリ当量、好ましくは0.95〜1.
5アルカリ当量を使用スる。また、p−クロロトルエン
はトルエン、キシレンのごとき不活性溶剤を反応溶媒と
して使用スる場合、p−フェニルフェノール1モルに対
して1.0〜1.5モル倍使用すればよいが、p−クロ
ロトルエン自体を反応溶媒とする場合であればさらに過
剰の量を使用できる。
p-phenylphenol used as a raw material can also be used as its alkali metal salt, and p-phenylphenol and alkali metal alcoholade (potassium alcoholade, sodium alcoholade, etc.), alkali hydroxide
(potassium hydroxide, sodium hydroxide, etc.), alkali carbonate (potassium carbonate, sodium carbonate, etc.), alkali bicarbonate (potassium bicarbonate, sodium bicarbonate, etc.)
However, it is not necessary to isolate the alkali metal salt and use it in the reaction; instead, p-phenylphenol and alkali hydroxide, alkali carbonate, alkali bicarbonate, etc. are charged into the same reactor. An alkali metal salt of p-phenylphenol may be produced in the reactor. Alkali is 0 per mole of p-phenylphenol.
.. 9-2.0 alkali equivalent, preferably 0.95-1.
5 alkali equivalents are used. In addition, when using an inert solvent such as toluene or xylene as a reaction solvent, p-chlorotoluene may be used in an amount of 1.0 to 1.5 moles per mole of p-phenylphenol. If chlorotoluene itself is used as a reaction solvent, an even larger amount can be used.

反応は120〜280℃、好ましくは常圧下140〜2
00℃で5〜20時間加熱攪拌する。p−フェニルフェ
ノールとアルカリを仕込み反応器内でp−フェニルフェ
ノールのアルカリ塩を形成させる場合には反応系内に水
が生成してくるが、始めに触媒を除く他の反応試剤を仕
込み加熱還流により共沸してくる水分を系外に除去した
のち触媒を加え反応を開始してもよい。また、触媒を含
む全ての反応試剤を仕込んだのち加熱還流し、共沸して
くる水分を系外に取り出しながら反応を進めてもよい。
The reaction is carried out at 120-280°C, preferably at 140-280°C under normal pressure.
Heat and stir at 00°C for 5 to 20 hours. When p-phenylphenol and an alkali are charged to form an alkali salt of p-phenylphenol in a reactor, water is generated in the reaction system, but first the other reaction reagents except the catalyst are charged and heated under reflux. The reaction may be started by adding a catalyst after removing water azeotropically from the system. Alternatively, the reaction may proceed while heating and refluxing all the reaction reagents including the catalyst and removing azeotropic water from the system.

反応終了後、水洗、溶媒留去、蒸留、再結晶など通常の
操作を加えることにより高純度の目的物が得られる。
After the reaction is completed, a highly pure target product can be obtained by performing usual operations such as washing with water, distilling off the solvent, distillation, and recrystallization.

〔実施例〕〔Example〕

以下、実施例により本発明をより具体的に説明するが、
本発明はこれらの実施例により何ら限定されるものでは
ない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these Examples.

実施例1 温度計、撹拌棒、還流分水器を付した4つロフラスコに
p−フェニルフェノール554.7g(3,20モル)
、p−クロロトルエン607.7g(4,80モル)、
炭酸カリウム265.4 g (1,92モル)、8−
オキシキノリン銅錯体8.Ogおよび1.3−ジメチル
−2−イミダゾリジノン82gを入れ、窒素雰囲気下で
徐々に温度を上げながら140〜180℃で5時間攪拌
し、還流により分水器中に分離してきた水は適宜系外に
除去した。
Example 1 554.7 g (3.20 mol) of p-phenylphenol was placed in a four-loaf flask equipped with a thermometer, stirring bar, and reflux separator.
, p-chlorotoluene 607.7g (4.80 mol),
Potassium carbonate 265.4 g (1,92 mol), 8-
Oxyquinoline copper complex8. Add Og and 82 g of 1,3-dimethyl-2-imidazolidinone and stir at 140 to 180°C for 5 hours while gradually increasing the temperature under a nitrogen atmosphere. Removed from the system.

さらに170〜185°Cで15時間加熱撹拌したのち
反応物中のp−フェニルフェノールとp−ビフェニルp
−1−リルエーテルの存在比をGLC(gas−1iq
uid chromatography)面積比にて分
析すると1.5対98.5であった。反応終了後、lQ
mmHgの減圧下に反応物を濃縮するとp−クロロトル
エンと1.3−ジメチル−2−イミダゾリジノンからな
る留出物270gが得られた。濃縮残金にトルエン40
0m1を加え、反応物を溶解し有機層を10%水酸化ナ
トリウム水、10%硫酸水、水で順次洗浄したのちトル
エンを減圧下に留去すると淡褐色の4−ビフェニルp−
トリルエーテルの粗生成物796gが得られた(粗収率
95%)。さらに粗生成物を2mm11gの減圧下に蒸
留すると留温190〜195℃で、融点97〜99℃の
白色の目的物775gが得られた(収率92%)。
After further heating and stirring at 170 to 185°C for 15 hours, p-phenylphenol and p-biphenyl p in the reaction product were mixed.
The abundance ratio of -1-lyl ether was determined by GLC (gas-1iq
When analyzed by area ratio (UID chromatography), it was 1.5:98.5. After the reaction is complete, lQ
The reaction product was concentrated under reduced pressure of mmHg to obtain 270 g of a distillate consisting of p-chlorotoluene and 1,3-dimethyl-2-imidazolidinone. Add 40% toluene to the concentrated residue
0 ml was added, the reactants were dissolved, and the organic layer was sequentially washed with 10% sodium hydroxide solution, 10% sulfuric acid solution, and water, and the toluene was distilled off under reduced pressure to obtain light brown 4-biphenyl p-
796 g of crude tolyl ether was obtained (crude yield 95%). Further, the crude product was distilled to 2 mm and 11 g under reduced pressure to obtain 775 g of a white target product with a distillation temperature of 190 to 195°C and a melting point of 97 to 99°C (yield: 92%).

実施例2 p−フェニルフェノール340g(2,0モル)、p−
クロロトルエン630g(5,0モル) 、L3−ジメ
チル−2−イミダゾリジノン68gおよび水酸化ナトリ
ウム81.0g(2,0モル)を混合し160〜168
℃で加熱攪拌し、共沸還流により分離してくる水分を系
外に除去したのち、8−オキシキノリン銅錯体を5.0
g加え155〜165℃で15時間加熱攪拌を続けた。
Example 2 340 g (2.0 mol) p-phenylphenol, p-
630 g (5.0 mol) of chlorotoluene, 68 g of L3-dimethyl-2-imidazolidinone and 81.0 g (2.0 mol) of sodium hydroxide were mixed to form a mixture of 160 to 168 g.
After heating and stirring at ℃ and removing water separated from the system by azeotropic reflux, the 8-oxyquinoline copper complex was reduced to 5.0
g was added, and heating and stirring was continued at 155 to 165°C for 15 hours.

G L C分析によればp−フェニルフェノールの目的
物への転化率は98.0%であった。反応終了後、実施
例1と同様に処理し、粗生成物490gを得た(粗収率
94%)。粗生成物をイソプロピルアルコールに溶解し
、活性炭および白土で脱色したのち再結晶すると、目的
物として融点97〜98℃の白色の結晶が得られた。
According to GLC analysis, the conversion rate of p-phenylphenol to the target product was 98.0%. After the reaction was completed, it was treated in the same manner as in Example 1 to obtain 490 g of a crude product (crude yield 94%). The crude product was dissolved in isopropyl alcohol, decolorized with activated carbon and clay, and then recrystallized to obtain white crystals with a melting point of 97 to 98°C as the desired product.

実施例3 p−フェニルフェノール34.0g(0,2モル)、p
−クロロトルエン50.6g(0,4モル)、炭酸カリ
ウム16.6g(0,12モル)、1.3−ジメチル−
2−イミダゾリジノン6.8gおよびアセチルアセトン
銅錯体0.5gを混合し140〜180°Cで4時間撹
拌した後、還流により分水器中に分離してきた水を系外
に除去し、さらに170〜185℃で15時間撹拌した
。GLC分析によればp−フェニルフェノールの目的物
への転化率は95.2%であった。
Example 3 34.0 g (0.2 mol) p-phenylphenol, p-phenylphenol
-chlorotoluene 50.6 g (0.4 mol), potassium carbonate 16.6 g (0.12 mol), 1.3-dimethyl-
After mixing 6.8 g of 2-imidazolidinone and 0.5 g of acetylacetone copper complex and stirring at 140 to 180°C for 4 hours, the water separated in the water separator by reflux was removed from the system, and further 170 g of acetylacetone copper complex was mixed. Stir at ˜185° C. for 15 hours. According to GLC analysis, the conversion rate of p-phenylphenol to the target product was 95.2%.

実施例4 実施例3において、アセチルアセトン銅錯体を塩化第一
&M1.5gに代えて実施例3と同様にして水を除去し
たのち、180〜220℃で20時間反応すると転化率
は93.2%であった。
Example 4 In Example 3, the acetylacetone copper complex was replaced with 1.5 g of Daiichi &M chloride, water was removed in the same manner as in Example 3, and the reaction was performed at 180 to 220°C for 20 hours, resulting in a conversion rate of 93.2%. Met.

比較例1 p−フェニルフェノール34.0g(0,2モル)、p
−クロロトルエン50.6g(0,4モル)、炭酸カリ
ウム16.6g(0,12モル)、8−オキシキノリン
銅錯体0.5gおよびジメチルスルホキシド17gを混
合し加熱還流により分離してきた水を除去した後、17
0〜185℃で20時間反応した。この場合の転化率は
84.2%であった。
Comparative example 1 p-phenylphenol 34.0 g (0.2 mol), p
- Mix 50.6 g (0.4 mol) of chlorotoluene, 16.6 g (0.12 mol) of potassium carbonate, 0.5 g of 8-oxyquinoline copper complex, and 17 g of dimethyl sulfoxide and remove the separated water by heating under reflux. After that, 17
The reaction was carried out at 0 to 185°C for 20 hours. The conversion rate in this case was 84.2%.

比較例2 比較例1において、ジメチルスルホキシドをジエチレン
グリコールジブチルエーテル17gに代え、比較例1と
同様に反応した。この場合の転化率は78.5%であっ
た。
Comparative Example 2 In Comparative Example 1, dimethyl sulfoxide was replaced with 17 g of diethylene glycol dibutyl ether, and the reaction was carried out in the same manner as in Comparative Example 1. The conversion rate in this case was 78.5%.

比較例3 比較例1において、ジメチルスルホキシドを添加しない
他は比較例1と同様に反応した。この場合の転化率は7
4.6%であった。
Comparative Example 3 In Comparative Example 1, the reaction was carried out in the same manner as in Comparative Example 1 except that dimethyl sulfoxide was not added. The conversion rate in this case is 7
It was 4.6%.

〔発明の効果〕〔Effect of the invention〕

感熱記録材の増感剤として有用な4−ビフェニルp−)
リルエーテルを製造するに当たり、特定のジアリールエ
ーテルの製造に厳格な条件のもとで、溶媒として使用で
きることしか認識されていなかった1、3−ジメチル−
2−イミダゾリジノを ンが反応促進剤として使用することにより、上述の実施
例および比較例を含む明細書の記載から明らかなように
、従来の製法に比べて目的物を低い反応温度、短い反応
時間、高い収率で得ることができるとともに、従来の1
.3−ジメチル−2−イミダゾリジノンのジアリールエ
ーテル反応への利用方法に比べ、非常に筒便な操作で本
発明の目的物を得られるという利点を有する。
4-biphenyl p-) useful as a sensitizer for heat-sensitive recording materials
In producing lylether, it was only recognized that 1,3-dimethyl- could be used as a solvent under strict conditions for producing specific diaryl ethers.
By using 2-imidazolidino as a reaction accelerator, it is possible to produce the desired product at a lower reaction temperature and in a shorter reaction time than with conventional production methods, as is clear from the description of the specification including the above-mentioned Examples and Comparative Examples. , can be obtained in high yield and at the same time as conventional 1
.. Compared to the method of using 3-dimethyl-2-imidazolidinone for diaryl ether reaction, this method has the advantage that the object of the present invention can be obtained with a very convenient operation.

Claims (1)

【特許請求の範囲】[Claims] p−フェニルフェノールとp−クロロトルエンとを銅触
媒の存在下、反応促進剤として1,3−ジメチル−2−
イミダゾリジノンを用いて反応させることを特徴とする
4−ビフェニルp−トリルエーテルの製造法。
p-phenylphenol and p-chlorotoluene were reacted in the presence of a copper catalyst with 1,3-dimethyl-2-
A method for producing 4-biphenyl p-tolyl ether, which comprises reacting with imidazolidinone.
JP62319384A 1987-12-16 1987-12-16 Production of 4-biphenyl p-tolyl ether Granted JPH01160935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319384A JPH01160935A (en) 1987-12-16 1987-12-16 Production of 4-biphenyl p-tolyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319384A JPH01160935A (en) 1987-12-16 1987-12-16 Production of 4-biphenyl p-tolyl ether

Publications (2)

Publication Number Publication Date
JPH01160935A true JPH01160935A (en) 1989-06-23
JPH0541616B2 JPH0541616B2 (en) 1993-06-24

Family

ID=18109557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319384A Granted JPH01160935A (en) 1987-12-16 1987-12-16 Production of 4-biphenyl p-tolyl ether

Country Status (1)

Country Link
JP (1) JPH01160935A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982010A (en) * 1989-10-31 1991-01-01 Yoshitomi Pharmaceutical Industries, Ltd. Method of producing 4-biphenyl p-tolyl ether
JPH03148235A (en) * 1989-11-01 1991-06-25 Yoshitomi Pharmaceut Ind Ltd Preparation of 4-biphenyl-p-tolyl ether
JP2009132713A (en) * 2007-11-30 2009-06-18 Saltigo Gmbh Improved method for catalytic synthesis of diaryl ether

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982010A (en) * 1989-10-31 1991-01-01 Yoshitomi Pharmaceutical Industries, Ltd. Method of producing 4-biphenyl p-tolyl ether
JPH03148235A (en) * 1989-11-01 1991-06-25 Yoshitomi Pharmaceut Ind Ltd Preparation of 4-biphenyl-p-tolyl ether
JP2009132713A (en) * 2007-11-30 2009-06-18 Saltigo Gmbh Improved method for catalytic synthesis of diaryl ether

Also Published As

Publication number Publication date
JPH0541616B2 (en) 1993-06-24

Similar Documents

Publication Publication Date Title
JPS6225138B2 (en)
JP3085722B2 (en) Method for producing alkylene carbonate
CA2517395C (en) A process for the preparation of 4-fluoro-1,3-dioxolan-2-one
JP2829342B2 (en) Improved method for producing 3,5,6-trichloropyridin-2-ol
JP2006518734A (en) Method for producing oxydiphthalic anhydride using bicarbonate as catalyst
JPH01160935A (en) Production of 4-biphenyl p-tolyl ether
US4093667A (en) Preparation of 4-n-hexylresorcinol
JPS5839135B2 (en) Manufacturing method of polyfluoroalcohols
JP4474921B2 (en) Method for producing 2,5-bis (trifluoromethyl) nitrobenzene
JP2585628B2 (en) Production method of halogen alcohol
JPS597699B2 (en) Method for producing indolines
JPS6147825B2 (en)
JP3960048B2 (en) Process for producing substituted benzenes
JPH0357890B2 (en)
CN110003064B (en) Preparation method of p-methylsulfonyl benzaldehyde
US4982010A (en) Method of producing 4-biphenyl p-tolyl ether
JPH07258176A (en) Manufacturing of arylbenzylamine
JP2003221360A (en) Method for manufacturing 2-fluoro-2-methylpropionic acids
JPS5835977B2 (en) Production method of pivalic acid chloride and aromatic carboxylic acid chloride
JPH03215448A (en) Production of 4-biphenyl-p-tolyl ether
JPH03148235A (en) Preparation of 4-biphenyl-p-tolyl ether
JPS6248665B2 (en)
JPH0820592A (en) Production of 2-diphenylphosphinopyridine
JPH0456815B2 (en)
JPH0283364A (en) Production of fluorobenzenesulfonyl fluoride derivative