JPH01145205A - Radial tyre - Google Patents

Radial tyre

Info

Publication number
JPH01145205A
JPH01145205A JP62304077A JP30407787A JPH01145205A JP H01145205 A JPH01145205 A JP H01145205A JP 62304077 A JP62304077 A JP 62304077A JP 30407787 A JP30407787 A JP 30407787A JP H01145205 A JPH01145205 A JP H01145205A
Authority
JP
Japan
Prior art keywords
tire
tread
tyre
rubber
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304077A
Other languages
Japanese (ja)
Other versions
JP2565953B2 (en
Inventor
Yuichi Saito
祐一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP62304077A priority Critical patent/JP2565953B2/en
Publication of JPH01145205A publication Critical patent/JPH01145205A/en
Application granted granted Critical
Publication of JP2565953B2 publication Critical patent/JP2565953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To secure both excellent operating stable performance and riding comfort by forming a tread by means of using tread rubber whose ratio of a complex elastic modulus in the tyre axial direction to a complex elastic modulus in the tyre radial direction is specified. CONSTITUTION:A tyre 1 has a carcass 3, bead portions 5 with a pair of bead cores 4 made of metal wire, an annular treated 6 arranged radially outside the carcass 3 and side walls 7 connecting the bead portions 5 with both sides of the tread 6. In this structure, the tread 6 is made of reinforced rubber which is formed by means of combining rubber base material 11 with staple 12. The staple 12 is arranged in the tyre axial direction so that the ratio of a complex elastic modulus in the tyre axial direction to a complex elastic modulus in the tyre radial direction is set to be more than 1.5. With this arrangement, the lateral rigidity of the tyre 1 is larger than the longitudinal rigidity so as to secure both excellent operating stable performance and excellent riding comfort.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タイヤ軸方向とタイヤ半径方向の複素弾性率
が異なるトレッドゴムを用いることによって操縦安定性
能、乗心地性能の両立を可能としたラジアルタイヤに関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention makes it possible to achieve both steering stability and ride comfort by using tread rubber with different complex moduli of elasticity in the tire axial direction and in the tire radial direction. Regarding radial tires.

〔従来技術〕[Prior art]

ラジアルタイヤ、特に乗用車用のラジアルタイヤにおい
ては、安全に旋回できるコーナリング性−能などの操縦
安定性能に加えて、路面からの衝撃を緩和し快適な走行
を可能とするための乗心地性能が要求される。
Radial tires, especially radial tires for passenger cars, require not only stable handling performance such as cornering performance that allows safe turns, but also ride comfort performance that reduces impact from the road surface and enables comfortable driving. be done.

しかしながら、操縦安定性能を高めるべく、偏平率を低
減しかつタイヤ全体の剛性を高めるときには、路面から
の衝撃緩和性能を小とし、乗心地性能が低下するなど、
操縦安定性能と乗心地性能とは二律背反の性能であり、
従って従来、これらの妥協点に立ってゴム等の選択が行
われていた。
However, when reducing the aspect ratio and increasing the rigidity of the entire tire in order to improve steering stability, the impact mitigation performance from the road surface is reduced, resulting in a decrease in ride comfort.
Steering stability and ride comfort are antithetical performances.
Therefore, in the past, rubber etc. have been selected based on these compromises.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、このようなものでは、操縦安定性能、乗心地性
能を両立させて満足しうるタイヤとはなりえない、しか
しながら、コーナリング時における操縦安定性能は、タ
イヤ軸方向の剛性、即ち横剛性を高めることによって、
運転者の操縦官能を向上でき、又乗心地性能は一定の速
度での直進走行中に特にその良否が判断されしかも乗心
地の改善のためには路面の凹凸を通過する際の衝撃緩和
をはかるべくエンベロープ性能を高めればよく、これに
は縦剛性即ちタイヤ半径方向の剛性を低下させるのがよ
いのであり、このような原点に立退えってトレッドゴム
を再考したとき、このトレッドゴム自体によって、タイ
ヤ軸方向の剛性を高めると同時にタイヤ半径方向の剛性
を低下した、異方向性のゴムを用いることによって、操
縦安定性能と乗心地性能を両立させることに気付いたの
である。
Therefore, such a tire cannot be a tire that satisfies both handling stability performance and ride comfort performance. However, handling stability performance during cornering is achieved by increasing the tire's axial rigidity, that is, lateral rigidity. By this,
The driver's sense of control can be improved, and ride comfort performance can be judged especially when driving straight at a constant speed, and in order to improve ride comfort, it is possible to reduce the impact when passing over uneven road surfaces. It is better to improve the envelope performance as much as possible, and to do this, it is better to reduce the longitudinal stiffness, that is, the stiffness in the tire radial direction. They realized that they could achieve both handling stability and ride comfort by using rubber with different directional properties, which increases the tire's axial rigidity while simultaneously decreasing the tire's radial rigidity.

さらに、短繊維を所定方向に配列することによってゴム
の剛性をその方向によって異ならせることも見出した。
Furthermore, they have also discovered that by arranging short fibers in a predetermined direction, the stiffness of the rubber can be made to vary depending on the direction.

従って本発明は、タイヤ軸方向の剛性を高めかつタイヤ
半径方向の剛性を低下しうる異方向性のトレッドゴムを
用いることによって、操縦安定性能と乗心地性能とを両
立させうるラジアルタイヤの提供を目的としている。
Therefore, the present invention aims to provide a radial tire that can achieve both handling stability performance and ride comfort performance by using a tread rubber with different directions that can increase the rigidity in the tire axial direction and reduce the rigidity in the tire radial direction. The purpose is

c問題点を解決するための手段〕 本発明は、トレンドを、タイヤ軸方向の複素弾性率Ea
”とタイヤ半径方向の複素弾性率Eb”の比Ea”/E
b”が1.5よりも大なるトレッドゴムを用いて形成し
てなるラジアルタイヤである。
Means for Solving Problem c] The present invention calculates the trend using the complex modulus of elasticity Ea in the tire axial direction.
Ratio of ``and complex modulus of elasticity in the tire radial direction Eb''Ea''/E
This is a radial tire formed using tread rubber with b'' greater than 1.5.

以下本発明の一実施例を図面に基づき説明する。An embodiment of the present invention will be described below based on the drawings.

正規リムRに組まれかつ正規内圧を充填された状態を示
す第1図において、タイヤ1は、カーカス3と、金属ワ
イヤからなる一対のビードコア4.4を有するビード部
5.5と、カーカスの半径方向外方に配した環状のトレ
ンド6と、前記ビード部5とトレッド6両側とを継ぐサ
イドウオール7.7とを有し、カーカス3のタイヤ半径
方向外側にはベルト9を設けるとともに、ビード部5に
はビードコア4.4からタイヤ半径方向外方にのびるビ
ードエーペックス10.10が配置される。
In FIG. 1, which shows the tire 1 assembled on a regular rim R and filled with a regular internal pressure, the tire 1 includes a carcass 3, a bead portion 5.5 having a pair of bead cores 4.4 made of metal wire, and a carcass. It has an annular trend 6 disposed outward in the radial direction, and sidewalls 7.7 connecting the bead portion 5 and both sides of the tread 6, and a belt 9 is provided on the outside of the carcass 3 in the tire radial direction. A bead apex 10.10 is arranged in the section 5 and extends radially outward from the bead core 4.4.

又本例ではタイヤ1は、最大重Wと、タイヤ断面高さH
との比H/Wが0.7以下の偏平タイヤとして形成され
る。
Furthermore, in this example, the tire 1 has a maximum weight W and a tire cross-sectional height H.
It is formed as a flat tire with a ratio H/W of 0.7 or less.

前記カーカス3は、合成樹脂等の有機繊維コード又は金
属等の無機繊維コードを半径方向に配列した少な(とも
1ブライのコード層からなり、又該カーカス3は、サイ
ドウオール7、トレンド6を通りビード部5のビードコ
ア4で巻返されることにより、本体部3Aと巻返し部3
Bとを形成しており、又本体部3Aと巻返し部3Bとの
間には前記ビードエーペックス10が配置される。
The carcass 3 is made up of a few cord layers (all 1 braid) in which organic fiber cords such as synthetic resin or inorganic fiber cords such as metal are arranged in the radial direction. By being rewound by the bead core 4 of the bead portion 5, the body portion 3A and the rewound portion 3 are
The bead apex 10 is arranged between the main body portion 3A and the turned-up portion 3B.

又前記ベルト9は、本例ではカーカス3側に位置する内
側プライ9aとその外側に配される外側プライ9bとを
有し、各プライ9a、9bは、夫々平行かつ周方向に対
し10〜35度の角度で傾斜してベルトコード11を配
したコード層により形成される。又内側プライ9aのベ
ルトコード11と外側プライ9bのベルトコード11は
互いに交差する向きに配列され、さらに前記ベルトコー
ド11は、スチール等の金属材からなる素線12−の撚
り合わせ体からなる。
In this example, the belt 9 has an inner ply 9a located on the carcass 3 side and an outer ply 9b disposed outside of the inner ply 9a, and each ply 9a, 9b is parallel and has a diameter of 10 to 35 It is formed by a cord layer in which belt cords 11 are arranged inclined at an angle of .degree. The belt cords 11 of the inner ply 9a and the belt cords 11 of the outer ply 9b are arranged in a direction that intersects with each other, and the belt cord 11 is made of a twisted body of wires 12- made of a metal material such as steel.

前記サイドウオール7は、通常の等方向性をゴムを用い
て形成されるとともに、トレッド6は、前記したごと(
、異方向性のトレッドゴムを用いている。
The sidewall 7 is formed using ordinary isotropic rubber, and the tread 6 is made of rubber as described above.
, using unidirectional tread rubber.

トレツドゴムは、本例では、ゴム基材11に短繊維12
を配合した強化ゴム材を用いており、又短繊維12はタ
イヤ軸方向に配向させ、これによって、タイヤ軸方向の
複素弾性率Ea*とタイヤ半径方向の複素弾性率Eb*
の比Ea”/Eb’″を1,5よりも大とし、これによ
って、縦剛性に比して横剛性が大となる。なお複素弾性
率は若木製作所性粘弾性スペクトロメータを用いて、タ
イヤのトレッドからタイヤ軸方向、タイヤ半径方向に巾
4fi、長さ30鶴、厚さ2fiの試料を切り出し、周
波数10Hz、温度70℃、動歪2%にて測定している
In this example, the treaded rubber has short fibers 12 on a rubber base material 11.
The short fibers 12 are oriented in the axial direction of the tire, thereby increasing the complex modulus of elasticity Ea* in the axial direction of the tire and the complex modulus Eb* in the radial direction of the tire.
The ratio Ea''/Eb''' is set to be greater than 1.5, thereby increasing the lateral stiffness compared to the longitudinal stiffness. The complex modulus of elasticity was measured using a viscoelasticity spectrometer made by Wakagi Seisakusho.A sample with a width of 4fi, a length of 30mm, and a thickness of 2fi was cut out from the tire tread in the tire axial direction and tire radial direction, and the frequency was 10Hz and the temperature was 70°C. , measured at a dynamic strain of 2%.

前記ゴム基材11は、天然ゴム、ポリイソプレンゴム、
スチレンブタジェンゴム、ポリブタジェン系ゴムなどの
少なくとも1種又は複数種類を混合したものであり、又
ゴム基材には、カーボンブラック、シリカなどの強化材
とともに、老化防止材等適宜の添加材が混合される。
The rubber base material 11 is made of natural rubber, polyisoprene rubber,
It is a mixture of at least one or more types of styrene-butadiene rubber, polybutadiene rubber, etc. In addition, the rubber base material is mixed with reinforcing materials such as carbon black and silica, as well as appropriate additives such as anti-aging materials. be done.

又短繊維12は、ナイロン、レーヨン、ポリエステル、
芳香族ポリアミド結晶性ポリブタジェン炭素繊維などの
有機材料からなる繊維、ガラス繊維、金属繊維、ウィス
カ、ボロンなどの無機材料からなる繊維を用いることが
でき、又短繊維12として、20μm〜2u程度の長さ
、又直径が0゜1μm〜0.1fl程度の各種のものが
、前記複素弾性率の比Ea“/Eb”が1.5よりも大
であって、しかもタイヤ軸方向の複素弾性率Ea”を7
0〜130kg/cd程度とし、又タイヤ半径方向の複
素弾性率Eb*を50〜80kg/−の範囲となるよう
に配合される。
The short fibers 12 are nylon, rayon, polyester,
Fibers made of organic materials such as aromatic polyamide crystalline polybutadiene carbon fibers, fibers made of inorganic materials such as glass fibers, metal fibers, whiskers, and boron can be used. In addition, various tires with a diameter of about 0°1 μm to 0.1 fl have the complex modulus ratio Ea/Eb larger than 1.5, and the complex modulus Ea in the axial direction of the tire 7
It is blended so that the complex elastic modulus Eb* in the tire radial direction is in the range of 50 to 80 kg/-.

複素弾性率Ea” % Eb”をこのような比とするこ
とによってタイヤの横剛性を縦剛性よりも大とし、コー
ナリング時の横力に対する抵抗性を増し操縦安定性を向
上すると同時に、縦剛性を増大させないことによってエ
ンベロープ特性を増し、乗心地性能を向上しうるのであ
って特に本例のごと(、偏平率が0.7以下のタイヤに
おいて、優れた効果を奏しうる。
By setting the complex modulus of elasticity Ea" % Eb" to such a ratio, the lateral stiffness of the tire is made larger than the longitudinal stiffness, increasing the resistance to lateral force during cornering and improving steering stability, while at the same time increasing the longitudinal stiffness. By not increasing the profile, the envelope characteristics can be increased and the ride comfort performance can be improved, and this can be particularly effective in tires with an aspect ratio of 0.7 or less, as in this example.

又前記比Ea”/Eb”が1.5よりも小であるとき、
このような改善効果は低下する。さらにタイヤ軸方向の
複素弾性率Ea*を70kg/−以上とすることにより
、従来タイヤよりもコーナリングを向上し、又タイヤ半
径方向の複素弾性率Eb”を60kg/a11以下とす
ることにより乗心地が改善される。
Further, when the ratio Ea''/Eb'' is smaller than 1.5,
Such improvement effect is reduced. Furthermore, by setting the complex modulus of elasticity Ea* in the tire axial direction to 70 kg/- or more, cornering is improved compared to conventional tires, and by setting the complex modulus of elasticity Eb'' in the tire radial direction to 60 kg/a11 or less, ride quality is improved. is improved.

なお前記異方向性のトレッドゴム形成用の結晶性ポリブ
タジェンとして、例えば商品名VCR(宇部興産株式会
社製)等がある。
Note that as the crystalline polybutadiene for forming the above-mentioned anisotropic tread rubber, there is, for example, VCR (trade name, manufactured by Ube Industries, Ltd.) and the like.

さらにトレッドゴムは、例えば第2図に示すように、カ
レンダーロールによる成型、又は押出しによって短繊維
12の配向を押出し方向に列理させてゴム基材11に埋
設したシート体重5を、その長手方向と直角に切断した
シート片16として形成でき、このシート片16をタイ
ヤ円周方向に添設することによって、短繊維12がタイ
ヤ軸方向に配向したトレッド6を形成しうる。
Furthermore, as shown in FIG. 2, for example, the tread rubber is made by molding with a calender roll or by extrusion, so that the orientation of the short fibers 12 is arranged in the extrusion direction, and the sheet weight 5 is embedded in the rubber base material 11 in the longitudinal direction. By attaching this sheet piece 16 in the circumferential direction of the tire, the tread 6 in which the short fibers 12 are oriented in the axial direction of the tire can be formed.

〔実施例〕〔Example〕

タイヤサイズ185/60R14のスチールラジアルタ
イヤを、第1表に示す仕様により製作した。又同様に第
1表に示す比較別品を製造し、ともに乗用車に装着し運
転者による官能試験を行い、5段階評価を行った。比較
例等を基準3とし、点数が高いほうが良好であることを
示している。こ第  1  表 の結果、実施例1の結晶性ポリブタジェン(VCR)を
混合したタイヤは特に乗心地性に優れており、又短繊維
としてナイロン埋込み天然ゴム(商品名FRR宇部興産
株式会社製)を用いた実施例2のものは操縦安定性に優
れ、ともに操縦安定性能と、乗心地性能とを両立させて
いることがわかる。
Steel radial tires with a tire size of 185/60R14 were manufactured according to the specifications shown in Table 1. Similarly, comparative products shown in Table 1 were produced, both were installed in a passenger car, and a sensory test was conducted by a driver to evaluate them on a five-point scale. Comparative examples and the like are set as standard 3, and higher scores indicate better results. As a result of Table 1, the tire mixed with crystalline polybutadiene (VCR) of Example 1 was particularly excellent in ride comfort, and the tire containing nylon-embedded natural rubber (trade name: FRR, manufactured by Ube Industries, Ltd.) as short fibers was found to be It can be seen that the vehicle used in Example 2 has excellent handling stability and achieves both handling stability performance and ride comfort performance.

なお第1表に配合数値はいずれも重量部で示し、又実施
例1のVCRは、前記したごとく、宇部興産製の結晶性
ポリブタジェン、又実施例2のFRは、同社製のナイロ
ン短繊維複合材であって、ナイロン短繊維と天然ゴムと
を、予め1:2の割合で混合している。
In Table 1, all compounding values are shown in parts by weight, and as mentioned above, the VCR of Example 1 was made of crystalline polybutadiene made by Ube Industries, and the FR of Example 2 was made of nylon short fiber composite made by the same company. Nylon short fibers and natural rubber are mixed in advance at a ratio of 1:2.

〔発明の効果〕〔Effect of the invention〕

このように本発明のラジアルタイヤは、タイヤ軸方向の
複素弾性率をタイヤ半径方向の複素弾性率に比べて1.
5よりも大としているため、タイヤ半径方向の剛性を高
めることなくタイヤ軸方向の閘性を大としており、従っ
て二律背反の特性といわれる操縦安定性能と乗心地性能
とを両立させつつともに向上することが可能となる。
As described above, the radial tire of the present invention has a complex modulus of elasticity in the tire axial direction of 1.
5, the stiffness in the axial direction of the tire is increased without increasing the rigidity in the tire radial direction. Therefore, it is possible to balance and improve both steering stability performance and ride comfort performance, which are said to be antinomic characteristics. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図はトレ
ツドゴムの製造方法を略示する斜視図である。 6−・トレッド、  11・−・ゴム基材、12−短繊
維。 特許出願人    住友ゴム工業株式会社代理人 弁理
士  苗  村     正第2wI
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a perspective view schematically showing a method for manufacturing tread rubber. 6--Tread, 11--Rubber base material, 12- Short fiber. Patent applicant Sumitomo Rubber Industries Co., Ltd. Agent Patent attorney Tadashi Naemura 2nd wI

Claims (3)

【特許請求の範囲】[Claims] (1)トレッドをタイヤ軸方向の複素弾性率Ea^*と
タイヤ半径方向の複素弾性率Eb^*の比Ea^*/E
b^*が1.5よりも大なるトレツドゴムを用いて形成
してなるラジアルタイヤ。
(1) The ratio of the tread's complex elastic modulus Ea^* in the tire axial direction to the complex elastic modulus Eb^* in the tire radial direction Ea^*/E
A radial tire formed using treaded rubber with b^* greater than 1.5.
(2)前記トレッドゴムは、短繊維を含んでなる特許請
求の範囲第1項記載のラジアルタイヤ。
(2) The radial tire according to claim 1, wherein the tread rubber contains short fibers.
(3)前記トレッドゴムは、結晶性ポリブタジエンを含
んでなることを特徴とする特許請求の範囲第1項記載の
ラジアルタイヤ。
(3) The radial tire according to claim 1, wherein the tread rubber contains crystalline polybutadiene.
JP62304077A 1987-11-30 1987-11-30 Radial tire Expired - Fee Related JP2565953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304077A JP2565953B2 (en) 1987-11-30 1987-11-30 Radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304077A JP2565953B2 (en) 1987-11-30 1987-11-30 Radial tire

Publications (2)

Publication Number Publication Date
JPH01145205A true JPH01145205A (en) 1989-06-07
JP2565953B2 JP2565953B2 (en) 1996-12-18

Family

ID=17928752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304077A Expired - Fee Related JP2565953B2 (en) 1987-11-30 1987-11-30 Radial tire

Country Status (1)

Country Link
JP (1) JP2565953B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526859A (en) * 1992-12-14 1996-06-18 Sumitomo Rubber Industries, Ltd. Radial tires including short fibers
EP0719820A1 (en) * 1994-12-28 1996-07-03 Sumitomo Rubber Industries Limited Composition for tread rubber of tires
EP1688275A1 (en) * 2005-02-04 2006-08-09 Sumitomo Rubber Industries Ltd. Pneumatic radial tire
JP2008068831A (en) * 2006-09-15 2008-03-27 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2008149928A (en) * 2006-12-19 2008-07-03 Toyo Tire & Rubber Co Ltd Pneumatic tire
US20110259492A1 (en) * 2010-04-26 2011-10-27 Richard Mbewo Samwayeba Fosam Pneumatic tire with anisotropic tread

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2788398B2 (en) 1992-10-08 1998-08-20 住友ゴム工業株式会社 tire
EP2408629A1 (en) * 2009-03-20 2012-01-25 E. I. du Pont de Nemours and Company Tire tread block composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132905A (en) * 1978-04-06 1979-10-16 Bridgestone Corp Pneumatic tire with improved anti-chipping property
JPS61119409A (en) * 1984-11-15 1986-06-06 Bridgestone Corp Pneumatic tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132905A (en) * 1978-04-06 1979-10-16 Bridgestone Corp Pneumatic tire with improved anti-chipping property
JPS61119409A (en) * 1984-11-15 1986-06-06 Bridgestone Corp Pneumatic tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526859A (en) * 1992-12-14 1996-06-18 Sumitomo Rubber Industries, Ltd. Radial tires including short fibers
EP0719820A1 (en) * 1994-12-28 1996-07-03 Sumitomo Rubber Industries Limited Composition for tread rubber of tires
US5852097A (en) * 1994-12-28 1998-12-22 Sumitomo Rubber Industries, Ltd. Composition for tread rubber of tires
EP1688275A1 (en) * 2005-02-04 2006-08-09 Sumitomo Rubber Industries Ltd. Pneumatic radial tire
US7766062B2 (en) 2005-02-04 2010-08-03 Sumitomo Rubber Industries, Ltd. Pneumatic radial tire having base tread and cap tread with the base tread including kraft paper ground product
JP2008068831A (en) * 2006-09-15 2008-03-27 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2008149928A (en) * 2006-12-19 2008-07-03 Toyo Tire & Rubber Co Ltd Pneumatic tire
US20110259492A1 (en) * 2010-04-26 2011-10-27 Richard Mbewo Samwayeba Fosam Pneumatic tire with anisotropic tread
CN102233793A (en) * 2010-04-26 2011-11-09 固特异轮胎和橡胶公司 Pneumatic tire with anisotropic tread

Also Published As

Publication number Publication date
JP2565953B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US20060231186A1 (en) Pneumatic radial tire
EP1798060A1 (en) Pneumatic tire
JP2001071715A (en) Pneumatic tire
JPWO2005120866A1 (en) Pneumatic radial tire for motorcycles
WO2016190048A1 (en) Reinforcement member for tires, and tire using same
EP0928704B1 (en) High transverse curvature tyre for two-wheeled vehicles
JP2002103925A (en) Pneumatic run-flat radial tire
JPH08108706A (en) Radial pneumatic tyre
US20020014292A1 (en) Pneumatic tire
KR100572048B1 (en) Tyre with high transverse curvature coefficient, in particular for a two-wheeled vehicle
EP0592218A1 (en) Tyres
JPS62279108A (en) Radial-ply tire for passenger car
JP4377934B2 (en) Pneumatic tire
US6691755B2 (en) High transverse-curvature tire for two-wheeled vehicles including specified belt structure
JPH01145205A (en) Radial tyre
JP2022177709A (en) tire
JP3733056B2 (en) Pneumatic radial tire
JP3079028B2 (en) Pneumatic tire
JP4349607B2 (en) Pneumatic tires for motorcycles
CN112118969A (en) Tire with improved wear and rolling resistance properties
JPH08318713A (en) Pneumatic tire
JP6790547B2 (en) Pneumatic tires
JP3774107B2 (en) Pneumatic tire
JP2788398B2 (en) tire
JP4521742B2 (en) Pneumatic radial tire with specified rotation direction

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees