JPH01139750A - Far infrared radiator excellent in corrosion resistance and its production - Google Patents
Far infrared radiator excellent in corrosion resistance and its productionInfo
- Publication number
- JPH01139750A JPH01139750A JP29768987A JP29768987A JPH01139750A JP H01139750 A JPH01139750 A JP H01139750A JP 29768987 A JP29768987 A JP 29768987A JP 29768987 A JP29768987 A JP 29768987A JP H01139750 A JPH01139750 A JP H01139750A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- far infrared
- weight
- stainless steel
- infrared radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 17
- 230000007797 corrosion Effects 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 20
- 239000010935 stainless steel Substances 0.000 claims abstract description 20
- 238000005422 blasting Methods 0.000 claims abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 230000003746 surface roughness Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 2
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 claims 3
- 230000003647 oxidation Effects 0.000 abstract description 23
- 238000007254 oxidation reaction Methods 0.000 abstract description 23
- 238000011282 treatment Methods 0.000 abstract description 22
- 229910000831 Steel Inorganic materials 0.000 abstract description 16
- 239000010959 steel Substances 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 230000005855 radiation Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 239000003973 paint Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 235000013305 food Nutrition 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 Aj2203.5i02 Chemical compound 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は、耐食性に優れたFe Cr AQステン
レス鋼遠赤外線放射体に関するもので、遠赤外線を利用
する暖房機器や乾燥・加熱装置としてIII用される。Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a Fe Cr AQ stainless steel far-infrared radiator with excellent corrosion resistance, and is suitable for use as a heating device or drying/heating device that utilizes far-infrared rays. be done.
[従来の技術]
高嶋廣夫著「遠赤外線の利用技術とその応用例」 (応
用技術出版1986年)に述べられているように、遠赤
外線は人の体内深く浸透する特性により暖房装置に用い
られたり、塗料や食品などの有機物質に高効率で吸収さ
れ、迅速に加熱できる特性により、塗料乾燥や食品加熱
に用いられている。[Conventional technology] As stated in Hiroo Takashima's "Techniques for using far infrared rays and their application examples" (Applied Technology Publishing, 1986), far infrared rays are used in heating devices due to their ability to penetrate deeply into the human body. It is used for drying paints and heating foods because of its ability to be absorbed into paints, foods, and other organic substances with high efficiency, and to heat quickly.
ZrO2、Aj2203.5i02、TiO2などの金
属酸化物は加熱時に高効率で遠赤外線を放射するため、
一般に、これらの酸化物を主体としたセラミックスや、
これらの酸化物を金属基板にコーティングしたものが遠
赤外線放射体として用いられている。Metal oxides such as ZrO2, Aj2203.5i02, and TiO2 emit far-infrared rays with high efficiency when heated, so
Generally, ceramics based on these oxides,
Metal substrates coated with these oxides are used as far-infrared radiators.
しかし、セラミックス製の放射体は壊れやすいことや大
型のものを製造できないなどの問題があり、また、上記
のようなコーティングしたものはコーテイング物質が剥
離しやすいことや高価であるなどの問題があった。However, ceramic radiators have problems such as being easily broken and not being able to be manufactured in large sizes, and the coatings mentioned above have problems such as the coating material peeling off easily and being expensive. Ta.
これに対して、特開昭55−6433にはアルミニウム
を含有しない通常のステンレス鋼表面を粗度l〜10μ
mに粗くした後、各種の方法で該表面に酸化皮膜を形成
させた放射体が示されている。On the other hand, Japanese Patent Application Laid-Open No. 55-6433 describes the surface roughness of ordinary stainless steel that does not contain aluminum.
A radiator is shown in which an oxide film is formed on the surface by various methods after the surface is roughened to a depth of m.
[発明が解決しようとする問題点1
前述のステンレス鋼放射体は遠赤外線放射に優れ酸化皮
膜の剥離もないが、酸化皮膜の主成分がFeCr204
、Cr203のため耐食性が劣る。塗料乾燥や食品加
熱の場合、その加熱対象物から多砥の水蒸気が発生し、
高温多湿雰囲気になる。通常これらの加熱炉は一日の操
業が終了すると停止冷却され、雰囲気中の水蒸気がステ
ンレス鋼中放射体表面に結露する。この加熱−結露の繰
り返しを受け、放射体は短期間で発錆してしまう0発錆
が進むと銹が剥離して食品、布地などの加熱対象物に付
着し、製品を損なうため、この加熱炉は使用できなくな
る。[Problem to be solved by the invention 1 The above-mentioned stainless steel radiator has excellent far-infrared radiation and does not peel off the oxide film, but the main component of the oxide film is FeCr204.
, Cr203, the corrosion resistance is poor. When drying paint or heating food, a large amount of water vapor is generated from the heated object.
The atmosphere becomes hot and humid. Normally, these heating furnaces are stopped and cooled at the end of a day's operation, and water vapor in the atmosphere condenses on the surface of the stainless steel radiator. Due to repeated heating and dew condensation, the radiator will rust in a short period of time.As rust progresses, rust will peel off and adhere to objects to be heated such as food and fabrics, damaging the product. The furnace becomes unusable.
本発明はこのような問題を解消した遠赤外線放射体およ
びその製造方法を提供することを目的とする。It is an object of the present invention to provide a far-infrared radiator and a method for manufacturing the same that solve these problems.
r問題点を解決するための手段1
本発明者らは上述したステンレス鋼放射体の耐久性の低
さを改善するため研究を行い、Fe−(12〜28%)
Cr−(2〜6%)ARステンレスw4板が次の特性を
有するとき遠赤外線放射特性と耐食性に優れた遠赤外線
放射体を見出した。Means for Solving Problem 1 The present inventors conducted research to improve the low durability of the stainless steel radiator described above, and found that Fe-(12 to 28%)
We have found a far-infrared radiator with excellent far-infrared radiation characteristics and corrosion resistance when the Cr-(2-6%) AR stainless steel w4 plate has the following characteristics.
(lo)表面粗度Ra≧0.5μmであること。(lo) Surface roughness Ra≧0.5 μm.
(2)表面に2μm以上の長さのアルミナウィスカを有
すること。(2) Having alumina whiskers with a length of 2 μm or more on the surface.
またこのような鋼板の製造方法として、Fe−(12〜
28%)Cr−(2〜6%)Affステンレス鋼板に次
の処理を施こすことにより上記特性を付与することがで
きる。In addition, as a method for manufacturing such a steel plate, Fe-(12~
The above characteristics can be imparted to the 28%) Cr-(2 to 6%) Aff stainless steel plate by subjecting it to the following treatment.
(イ)ブラスト処理する。(b) Blast treatment.
(ロ)酸化性雰囲気中に850−1000℃、4時間以
上保持して高温酸化を行う。(b) High-temperature oxidation is carried out by holding in an oxidizing atmosphere at 850-1000°C for 4 hours or more.
または、 (イ)ブラスト処理する。or (b) Blast treatment.
(ロ)酸素濃度0.1%以下の雰囲気で700〜100
0℃、10秒間以上保持して予備酸化する。(b) 700 to 100 in an atmosphere with an oxygen concentration of 0.1% or less
Pre-oxidize by holding at 0°C for 10 seconds or more.
(ハ)大気雰囲気中に、850〜1000℃、4時間以
上保持して高温酸化を行う。(c) High-temperature oxidation is carried out by holding in the air at 850 to 1000°C for 4 hours or more.
〔作用j
本発明に用いるFe−Cr−Aにlステンレス鋼は、成
分を下記のように限定すること、および下記のような表
面性状を有することにより、すぐれた耐食性を呈する。[Operation j] The Fe-Cr-A stainless steel used in the present invention exhibits excellent corrosion resistance by limiting the ingredients as shown below and by having the following surface properties.
C:
Cは母材及び溶接部の靭性及び延性を劣化させる。この
ため本発明の素材を製造する過程で、扱切れ、耳割れ5
曲げ割れを生じ、著しく製造性を損なう。そのためCを
0.03重量%以下に限定する。C: C deteriorates the toughness and ductility of the base metal and weld zone. For this reason, in the process of manufacturing the material of the present invention, it is difficult to handle
Bending cracks occur, significantly impairing manufacturability. Therefore, C is limited to 0.03% by weight or less.
Sl:
Siは高温の耐酸化性を向上させるが、母材及び溶接部
の延性を著しく阻害するので、1Offiu%以下に限
定する。Sl: Although Si improves high-temperature oxidation resistance, it significantly impairs the ductility of the base metal and weld, so it is limited to 1 Offiu% or less.
Mn :
Mnは母材及び溶接部の靭性を劣化させ、かつ高温で耐
酸化性を損なうので、1.0重量%以下に限定する6
C「:
C「はステンレス鋼の必須元素であり、12ffi量%
未満では耐食性、耐酸化性がな(なる。またCrが28
重1%を超えると、鋼が脆(なり、敢財体に加工できな
くなるので12重量%以上28重量%以下に限定する。Mn: Mn deteriorates the toughness of the base metal and welded parts and impairs oxidation resistance at high temperatures, so it should be limited to 1.0% by weight or less. amount%
If the Cr content is less than 28%, the corrosion resistance and oxidation resistance will deteriorate.
If the weight exceeds 1%, the steel becomes brittle and cannot be processed into a durable material, so the content is limited to 12% by weight or more and 28% by weight or less.
八2 :
2.0重量%未満では高温酸化処理で形成される酸化皮
膜が、Fe、Cr酸化物主体となり、アルミナウィスカ
が生成されない。また、耐食性がなくなる。AQが多い
ほど、本発明の目的を達成することができるが、6.0
重量%を超えると鋼が脆くなり、鋼板の製造が困難とな
るため、2.0重量%以上6.0重量%以下に限定する
。82: If the amount is less than 2.0% by weight, the oxide film formed by high-temperature oxidation treatment will consist mainly of Fe and Cr oxides, and no alumina whiskers will be generated. Also, corrosion resistance is lost. The more AQ, the more the object of the present invention can be achieved, but 6.0
If it exceeds 2.0% by weight and 6.0% by weight, the steel becomes brittle and difficult to manufacture a steel plate.
一般にFe−Cr−Al2ステンレス鋼には鋼板の靭性
を高め製造しやすくするためと、耐酸化性を向上させる
目的で0.5重量%までのTi、Nb、Zrを添加した
り、酸化皮膜の耐剥離性を向上させる目的で0,3重量
%までのY、Ce、La、Ndなどの希土類元素を添加
したりするが、これらの元素を添加したFe−Cr−A
℃ステンレス鋼も本発明に好適である。Generally, up to 0.5% by weight of Ti, Nb, and Zr are added to Fe-Cr-Al2 stainless steel to increase the toughness of the steel sheet and make it easier to manufacture, and to improve oxidation resistance. Rare earth elements such as Y, Ce, La, and Nd are added up to 0.3% by weight for the purpose of improving peeling resistance.
°C stainless steel is also suitable for the present invention.
これらの鋼板は遠赤外線の放射面積を増やすために、表
面粗度を大きくすることが必要であり、その方法として
表面にブラスト処理を行う。ブラスト処理は粗度100
〜400番のアルミナや炭化珪素の砥粒や直径0.05
〜1.0 m mの鉄球や鉄グリッドを投射し、表面粗
度をRaで0.5μm以上に粗(する。In order to increase the radiation area of far-infrared rays, it is necessary to increase the surface roughness of these steel plates, and this is accomplished by subjecting the surface to blasting treatment. Blast treatment has a roughness of 100
~400 alumina or silicon carbide abrasive grains or diameter 0.05
A ~1.0 mm iron ball or iron grid is projected to roughen the surface to Ra of 0.5 μm or more.
次に大気などの酸化性雰囲気中で850〜1000°C
で4時間以上保持して高温酸化処理を行い、表面に長さ
2μm以上のアルミナウィスカを形成させることにより
、十分な遠赤外線放射特性を得る。Next, in an oxidizing atmosphere such as air, the temperature is 850-1000°C.
Sufficient far-infrared radiation characteristics are obtained by performing high-temperature oxidation treatment by holding for 4 hours or more to form alumina whiskers with a length of 2 μm or more on the surface.
この高温酸化処理温度は、850℃未満または1000
℃を超えると、アルミナウィスカが形成されず、酸化皮
膜は平滑なアルミナになり遠赤外線放射特性が得られな
いため、850 ’C以上1000℃以下に限定する。This high temperature oxidation treatment temperature is less than 850°C or 1000°C.
If the temperature exceeds 850° C., alumina whiskers will not be formed and the oxide film will become smooth alumina, making it impossible to obtain far-infrared radiation characteristics.
また処理時間は4時間未満の酸化処理ではアルミナウィ
スカの長さが2μm以上にならないので4時間以上とす
る。酸化処理の好ましい条件として920〜930°C
で16時間保持するのが好適である。Further, the treatment time is set to be 4 hours or more because the length of the alumina whisker will not become 2 μm or more if the oxidation treatment is performed for less than 4 hours. The preferred conditions for oxidation treatment are 920-930°C.
It is preferable to hold it for 16 hours.
ただし、鋼板のAε含有量が3重量%未満の場合や、ブ
ラスト処理の投射速度が遅く、鋼板表面に十分な加工歪
を与えられない場合、高温酸化処理のみではアルミナウ
ィスカの長さが短く、密度が低いことがある。この時に
は予備酸化処理として酸素濃度0.1%以下の雰囲気中
に700〜1000℃で10秒以上熱処理すると鋼板表
面に厚さ1000人未満の高純度のアルミナ酸化皮膜が
形成され、次に上記高温酸化処理を行うとアルミナウィ
スカが生成しやすくなる。However, when the Aε content of the steel plate is less than 3% by weight, or when the blasting speed is slow and sufficient processing strain cannot be applied to the steel plate surface, high-temperature oxidation treatment alone may result in short alumina whiskers. Density may be low. At this time, as a preliminary oxidation treatment, heat treatment is performed at 700 to 1000°C for 10 seconds or more in an atmosphere with an oxygen concentration of 0.1% or less to form a high purity alumina oxide film with a thickness of less than 1000 on the steel plate surface, and then the above-mentioned high temperature Oxidation treatment facilitates the formation of alumina whiskers.
上記予備酸化処理においては、雰囲気中の酸素濃度が0
.1%を超えると酸化皮膜にFeやCrが混入し、アル
ミナウィスカが形成しな(なるので0、1%以下とする
。また700℃未満や10秒間未満では生成酸化皮膜が
薄いので効果がな(,1000℃を超えると鋼板の結晶
粒が粗大化して脆くなり、加工することが不可能となる
ので700〜1000°Cで10秒以上に限定する。In the above preliminary oxidation treatment, the oxygen concentration in the atmosphere is 0.
.. If it exceeds 1%, Fe and Cr will be mixed into the oxide film and alumina whiskers will not be formed (so it should be 0.1% or less. Also, if it is below 700°C or for less than 10 seconds, the formed oxide film will be thin and will not be effective. (If the temperature exceeds 1000°C, the crystal grains of the steel plate will become coarse and brittle, making it impossible to process. Therefore, the temperature is limited to 10 seconds or more at 700 to 1000°C.
[実施例1
実施例1
第1表に示す記号A、B、Cの化学組成のFe−Cr−
Al2ステンレス鋼を忍製し、いずれも圧延により厚み
1. Om mの鋼板にした後、焼鈍−酸洗して供試し
た。また比較材としてり、Eの市販の5US304.4
30の厚み1. Om mの焼鈍−酸洗扱も供試した。[Example 1 Example 1 Fe-Cr- with chemical compositions of symbols A, B, and C shown in Table 1
Made of Al2 stainless steel, both are rolled to a thickness of 1. After making a steel plate of Om m, it was annealed and pickled and tested. In addition, as a comparison material, commercially available 5US304.4 of E
30 thickness 1. Om m annealing and pickling treatment were also tested.
これらのステンレス鋼板を10cm角に剪断し、第2表
に示す処理をブラスト、予備酸化、高温酸化の順に行な
った。These stainless steel plates were sheared into 10 cm squares and subjected to the treatments shown in Table 2 in the order of blasting, preliminary oxidation, and high temperature oxidation.
これらの試料はブラスト処理後(ただし試料7はブラス
ト処理なし)、触針式表面粗さ測定器LJrS BO
651)で中心線平均粗さ(Ra)LJIS BO6
01)を測定したが、ブラスト処理前ではり、EhSo
、2%m、A、B、Cが0.3μm程度であったが、ブ
ラスト処理後は鉄球ショット処理したものでは2.4〜
3.2%m。These samples were tested using a stylus surface roughness measuring instrument LJrS BO after blasting (however, sample 7 was not blasted).
651) and center line average roughness (Ra) LJIS BO6
01) was measured, but the EhSo
, 2% m, A, B, and C were about 0.3 μm, but after blasting, those treated with iron ball shot had a diameter of 2.4 to 2.4 μm.
3.2% m.
SiCサンドショット処理したものでは0.7〜0.8
%m程度になった。高温酸化処理は大気雰囲気中で行っ
た。0.7 to 0.8 for those treated with SiC sand shot
It became about %m. The high-temperature oxidation treatment was performed in an air atmosphere.
これらの試料を電子顕(a鏡で観察し、アルミナウィス
カのJfε成の有無を調査した。試料を60゜傾けて4
000倍で撒影し、写真のウィスカを測定し、実際の長
さの平均値を推定し、その値を第2表に示した。予備酸
化時の酸素濃度の高い試料8と高温酸化の温度が限定範
囲外の試料9、lOとA!含有量の低いC鋼を用いた試
料11にはアルミナウィスカが形成されなかった。These samples were observed using an electron microscope (A mirror) to investigate the presence or absence of Jfε formation in alumina whiskers.The samples were tilted at 60 degrees and
The whiskers were photographed at a magnification of 0.000x, the whiskers were measured, and the average actual length was estimated, and the values are shown in Table 2. Sample 8 with high oxygen concentration during preliminary oxidation and sample 9 with high temperature oxidation temperature outside the limited range, lO and A! No alumina whiskers were formed in Sample 11 using C steel with a low content.
また高温酸化の時間が1時間と短い試料6ではアルミナ
ウィスカの長さはIum程度であった。In addition, in sample 6 where the high-temperature oxidation time was short, 1 hour, the length of the alumina whisker was about Ium.
残りの試料1〜5および7ではアルミナウィスカは3μ
m以上の長さがあった。In the remaining samples 1 to 5 and 7, the alumina whiskers were 3μ
It was over m long.
電子顕微鏡写真の代表例として試料4を第1図(写真1
)に、試料6を第2図(写真2)に、試料9を第3図(
写真3)に示す。Sample 4 is shown in Figure 1 (Photo 1) as a representative example of an electron micrograph.
), Sample 6 is shown in Figure 2 (Photo 2), and Sample 9 is shown in Figure 3 (Photo 2).
Shown in Photo 3).
次にこれらの試験片を400°Cに加熱し、波長5〜1
5μmの遠赤外線放射強度を測定した。同一温度の黒体
放射との比(放射率)の平均を第2表に示す。Next, these specimens were heated to 400°C and a wavelength of 5 to 1
Far-infrared radiation intensity at 5 μm was measured. Table 2 shows the average ratio (emissivity) to blackbody radiation at the same temperature.
アルミナウィスカが生成しなかった試料8〜11、アル
ミナウィスカの長さが短い:i料6およびブラスト処理
をせず1表面が平滑な試料7では、放射率は0.5以下
であった。これに対し、実施例の試料1〜5は0.7以
上の良好な放射率を示した。ここでAJ2含有量が3重
量%のA鋼で予備処理しなかった試料2は、同一高温酸
化条件で予備処理をした試料lと比較してアルミナウィ
スカの密度が低く、放射率がO01程度低かった。Samples 8 to 11 in which no alumina whiskers were generated, sample 6 in which alumina whiskers were short in length, and sample 7 in which no blasting was performed and the surface was smooth had an emissivity of 0.5 or less. On the other hand, Samples 1 to 5 of Examples showed good emissivity of 0.7 or more. Here, sample 2, which was made of A steel with an AJ2 content of 3% by weight and was not pretreated, had a lower alumina whisker density and an emissivity of about O01 compared to sample 1, which was pretreated under the same high-temperature oxidation conditions. Ta.
Agを含有しない通常のステンレス鋼の表面を粗くし、
酸化皮膜を生成させた試料12.13も0.8以上の良
好な放射率を示した。Roughen the surface of ordinary stainless steel that does not contain Ag,
Sample 12.13 in which an oxide film was formed also showed a good emissivity of 0.8 or more.
次に耐食性を調べるために試料1〜5.12゜13に対
シテ、塩水噴霧試験(JIS Z2371)を4時間
行った。その結果を第2表に示した。試料1〜5には全
く発錆が見られなかったが、試料12.13は全面に激
しい発錆が見られた。・
このように本実施例による遠赤外線放射体は優れた放射
特性を示すとともに従来材に比較し、優れた耐食性を有
する。Next, in order to examine corrosion resistance, samples 1 to 5.12°13 were subjected to a 4-hour salt spray test (JIS Z2371). The results are shown in Table 2. No rust was observed in Samples 1 to 5, but severe rust was observed over the entire surface of Samples 12 and 13. - In this way, the far-infrared radiator according to this example exhibits excellent radiation characteristics and has excellent corrosion resistance compared to conventional materials.
実施例2
実施例1の試料1〜5に対して、比較材として第1表に
示すり、Hの市販の5US304.430の厚み1.0
mmの焼鈍酸洗板に、第3表に示す処理により、市販の
アルミナ・シリカ系遠赤外線塗料をコーティングし、供
試した。Example 2 For samples 1 to 5 of Example 1, as a comparison material, commercially available 5US304.430 of H, which is shown in Table 1 and has a thickness of 1.0
A commercially available alumina-silica far-infrared paint was coated on an annealed and pickled plate of 1.5 mm by the treatment shown in Table 3, and used as a test sample.
これらの試料の高温耐食性を調べるために、試料l〜5
.14.15に対し、次の加熱・冷却繰返試験を行った
。In order to investigate the high temperature corrosion resistance of these samples, samples l~5
.. 14.15, the following heating/cooling cyclic test was conducted.
■ 700℃に加熱した後、20分間空中放冷を繰返す
。■ After heating to 700°C, repeat cooling in the air for 20 minutes.
■ 700℃に加熱した後20分間霧吹水冷を繰返す。■ After heating to 700°C, repeat water cooling for 20 minutes.
その結果を第4表に示した。試料1〜5には全く銹の発
生や酸化皮膜の割れ、剥れが見られなかったが、試料1
4では700℃加熱、空中放冷の繰返し17回で、コー
ティングした塗料に剥れが発生し、また、試料15では
、700°C加熱、露吹き水冷5回で、コーティングし
た塗料に茶褐色斑点が発生した。The results are shown in Table 4. No rust generation, cracking or peeling of the oxide film was observed in samples 1 to 5, but sample 1
In Sample 4, the coated paint peeled after heating to 700°C and cooling in the air 17 times, and in Sample 15, brown spots appeared on the coated paint after heating to 700°C and cooling with dew water 5 times. Occurred.
この茶褐色斑点の発生した(芳ぞ4をX線マイクロアナ
ライザーで定性分析した結果、塗料成分以外に、Fe、
Cr、が検出され、基材であるステンレス鋼に発生した
銹が割れ銹として、塗膜の小穴を通って表面に現われた
ものであるとT、ll明した。As a result of qualitative analysis of Hozo 4, in which this brown spot occurred, using an X-ray microanalyzer, it was found that in addition to paint components, Fe,
Cr was detected, and it was revealed that the rust generated in the stainless steel base material appeared on the surface as cracked rust through small holes in the coating film.
このように、本実施例による遠赤外線放射体は、従来材
に比較して、極めて優れた高7品耐食はを有する。As described above, the far-infrared radiator according to the present example has extremely superior high-7 corrosion resistance compared to conventional materials.
[発明の効果1
以上説明したように、本発明のFe−Cr−へβステン
レス鋼は、遠赤外線放射率が高く、耐食性に優れており
、本発明方法によればこのような遠赤外線放射体を安価
に遺産することができる。[Effects of the Invention 1] As explained above, the Fe-Cr-β stainless steel of the present invention has a high far-infrared emissivity and excellent corrosion resistance, and the method of the present invention can produce such a far-infrared radiator. can be inherited cheaply.
第1図(写真l)、第2図(写真2)、第3図(写真3
)はそれぞれ本発明の実施例及び比較例の金属組織を示
す電子顕微鏡写真でありそれぞれ倍率40018である
。Figure 1 (Photo 1), Figure 2 (Photo 2), Figure 3 (Photo 3)
) are electron micrographs showing the metal structures of Examples and Comparative Examples of the present invention, each at a magnification of 40018.
Claims (1)
素地表面がRa≧0.5μmの表面粗度を有し、かつ、
該表面に長さ2μm以上のアルミナウィスカを有するこ
とを特徴とする耐食性に優れた遠赤外線放射体。 2 Cr:12〜28重量% Al:2〜6重量% を含有するFe−Cr−Alステンレス鋼板表面にブラ
スト処理を施こした後、酸化性雰囲気中に、850〜1
000℃、4時間以上保持することを特徴とする耐食性
に優れた遠赤外線放射体の製造方法。 3 Cr:12〜28重量% Al:2〜6重量% を含有するFe−Cr−Alステンレス鋼板表面にブラ
スト処理を施こした後、酸素濃度0.1%以下の雰囲気
中に、700〜1000℃、10秒間以上保持後、大気
雰囲気中に850〜1000℃、4時間以上保持するこ
とを特徴とする耐食性に優れた遠赤外線放射体の製造方
法。[Claims] 1 An Fe-Cr-Al stainless steel plate containing 12 to 28% by weight of Cr and 2 to 6% by weight of Al, comprising:
The substrate surface has a surface roughness of Ra≧0.5 μm, and
A far-infrared radiator with excellent corrosion resistance, characterized by having alumina whiskers with a length of 2 μm or more on the surface. 2 After blasting the surface of a Fe-Cr-Al stainless steel sheet containing 12 to 28% by weight of Cr and 2 to 6% by weight of Al, a
A method for producing a far-infrared radiator with excellent corrosion resistance, characterized by holding the material at 000°C for 4 hours or more. 3 After blasting the surface of a Fe-Cr-Al stainless steel plate containing Cr: 12 to 28% by weight and Al: 2 to 6% by weight, it was heated to 700 to 1000% by weight in an atmosphere with an oxygen concentration of 0.1% or less. A method for producing a far-infrared radiator having excellent corrosion resistance, which comprises holding the material at 850 to 1000° C. for 4 hours or more in an air atmosphere after holding the material at 850 to 1000° C. for 10 seconds or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62297689A JPH0788560B2 (en) | 1987-11-27 | 1987-11-27 | Far-infrared radiator excellent in corrosion resistance and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62297689A JPH0788560B2 (en) | 1987-11-27 | 1987-11-27 | Far-infrared radiator excellent in corrosion resistance and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01139750A true JPH01139750A (en) | 1989-06-01 |
JPH0788560B2 JPH0788560B2 (en) | 1995-09-27 |
Family
ID=17849879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62297689A Expired - Lifetime JPH0788560B2 (en) | 1987-11-27 | 1987-11-27 | Far-infrared radiator excellent in corrosion resistance and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0788560B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556433A (en) * | 1978-06-28 | 1980-01-17 | Nisshin Steel Co Ltd | Stainless steel radiator and production thereof |
JPS62149862A (en) * | 1985-12-24 | 1987-07-03 | Kawasaki Steel Corp | Formation of alumina whisker on surface of stainless steel material containing aluminum |
-
1987
- 1987-11-27 JP JP62297689A patent/JPH0788560B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556433A (en) * | 1978-06-28 | 1980-01-17 | Nisshin Steel Co Ltd | Stainless steel radiator and production thereof |
JPS62149862A (en) * | 1985-12-24 | 1987-07-03 | Kawasaki Steel Corp | Formation of alumina whisker on surface of stainless steel material containing aluminum |
Also Published As
Publication number | Publication date |
---|---|
JPH0788560B2 (en) | 1995-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Man et al. | Analysis of laser gas nitrided titanium by X-ray photoelectron spectroscopy | |
JP2008231551A (en) | Stainless steel product excellent in temper coloring resistance and method for manufacturing the same | |
JPH04232246A (en) | Method and composition for protecting alpha-aluminide alloy sample to be exposed to high temperature oxidation | |
JPH01139750A (en) | Far infrared radiator excellent in corrosion resistance and its production | |
KR100970346B1 (en) | Ceramic layer coating method on the metallic substrates surface using ion beam mixing | |
JP2002371383A (en) | Heat resistant coated member | |
JPH0234765A (en) | High-emissivity far infrared emitter and its production | |
JPH04173952A (en) | Manufacture of far infrared radiator excellent in corrosion resistance | |
JPS61110758A (en) | Method for carburizing wc-co sintered hard alloy at low temperature | |
JPS6326335A (en) | Far infrared ray radiator and its production | |
JPH0247248A (en) | Stainless steel sheet excellent in water-repelling property | |
JPH0244149A (en) | Solar heat selective absorption plate and its manufacturing method | |
US6428849B1 (en) | Method for the co-deposition of silicon and nitrogen on stainless steel surface | |
JPH0234764A (en) | Far infrared emitter excellent in corrosion resistance and its production | |
JPH03285057A (en) | Infrared-ray emitter and its production | |
JPH04173999A (en) | Far infrared radiation emitter excellent in corrosion resistance and its production | |
Rajendran Pillai et al. | Diffusion annealing and laser surface alloying with aluminium to enhance oxidation resistance of carbon steels | |
JPH01184255A (en) | Far infrared radiator and its production | |
JPH02173206A (en) | Production of far infrared ray radiator | |
Boucheham et al. | Characterization of thermally oxidized Ti6Al4V alloys for dental application | |
JPH01184258A (en) | Far infrared radiator and its production | |
CN107841705A (en) | A kind of method for preparing anti-oxidant refractory metal coating | |
Masahashi et al. | Corrosion behavior of pre-treated Fe-Al alloys in aqueous acid solutions | |
JP3058936B2 (en) | Manufacturing method of enameled stainless steel sheet | |
JPH01184256A (en) | Far infrared radiator and its production |