JPH01138242A - Surface modification of polymer resin - Google Patents

Surface modification of polymer resin

Info

Publication number
JPH01138242A
JPH01138242A JP29724387A JP29724387A JPH01138242A JP H01138242 A JPH01138242 A JP H01138242A JP 29724387 A JP29724387 A JP 29724387A JP 29724387 A JP29724387 A JP 29724387A JP H01138242 A JPH01138242 A JP H01138242A
Authority
JP
Japan
Prior art keywords
electrode
discharge
polymer resin
film
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29724387A
Other languages
Japanese (ja)
Other versions
JPH0474372B2 (en
Inventor
Kenji Hatada
研司 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29724387A priority Critical patent/JPH01138242A/en
Publication of JPH01138242A publication Critical patent/JPH01138242A/en
Publication of JPH0474372B2 publication Critical patent/JPH0474372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/12Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment in an environment other than air

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To modify a polymer resin so that its surface may be excellent in adhesiveness and long-term stability and that it may be free of defects such as blocking, by treating the surface of the polymer resin with a high-voltage discharge under specified conditions. CONSTITUTION:A film 1 of a heat-resistant polymer resin (e.g., aromatic polyimide) of a glass transition point >=100 deg.C, a melting point >=300 deg.C or a max. allowable temperature in long-term continuous use >=121 deg.C is supported on the surface of a drum electrode 4 opposed to a high-voltage application electrode 3 comprising a metal pipe whose outer surface is coated with a 0.1-5mm-thick dielectric (e.g., glass) and which is cooled by passing a coolant (e.g., water) through its inside, said electrode 4 having a diameter at least twice as large as that of the electrode 3 and being coated with the same dielectric as that of the application electrode 3, in a discharge treatment zone 9 having a gas atmosphere of 100-1000Torr containing at least 20mol% rare gas element (e.g., Ar) supplied from a gas feed system 8; a high voltage of a frequency of 20KHz-100MHz is applied to the electrode 3 from a high-voltage source 5 through a transformer 6 to generate a discharge, and the film is treated with this discharge while it is wound around a roller 7 so that the electric power density in the treatment of the polymer resin may be at least 200W.min/m<2>.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラスチックフィルムなどの高分子樹脂表面の
改質方法に関するものであり、更に詳しくは耐熱性高分
子樹脂の表面改質方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for modifying the surface of a polymer resin such as a plastic film, and more specifically to a method for modifying the surface of a heat-resistant polymer resin. be.

[従来の技術] 今日、高分子樹脂は広範に使用されているが、種々の用
途において、高分子樹脂表面の接着性が乏しいことが常
に問題になっている。このためコロナ放電処理、プラズ
マ処理、あるいはケミカルエツチング処理、サンドブラ
スト処理など種々の技術を用いて表面改質の検討がなさ
れている。中でも、耐熱性高分子樹脂は他の樹脂に比べ
て、成形時の条件によって表面特性、特に接着性が著し
く変化するうえ、同じ処理技術を用いても、改質の効果
が低く、極めて改質しにくい樹脂として知られている。
[Prior Art] Polymer resins are widely used today, but in various applications, poor adhesion of the surface of the polymer resin has always been a problem. For this reason, surface modification is being investigated using various techniques such as corona discharge treatment, plasma treatment, chemical etching treatment, and sandblasting treatment. Among these, heat-resistant polymer resins have surface properties, especially adhesion, that change significantly depending on the molding conditions compared to other resins, and even if the same processing technology is used, the modification effect is low, making it extremely difficult to modify. It is known as a resin that is difficult to mold.

このことは逆に耐熱性高分子樹脂の改質に有効な技術は
他の樹脂の表面改質にも有効な技術となるものと考えら
れる。
This means that, conversely, techniques that are effective for modifying heat-resistant polymer resins are also considered to be effective techniques for surface modification of other resins.

さて、このような表面改質しにくい耐熱性高分子樹脂に
対し、いくつかの改質技術が提案され、あるいは実施さ
れている。
Now, several modification techniques have been proposed or implemented for such heat-resistant polymer resins that are difficult to surface modify.

特開昭61−141532および特開昭61−2293
88には芳香族ポリイミドフィルムを低温プラズマで処
理により改質する技術が提案されている。一方、該芳香
族ポリイミドフィルム′に対して、サンドブラスト処理
技術が開発され、従来より広く使用されている。ざらに
特開昭62−184842、特開昭62−162542
にはフィルム表面を機械的にふきとる方法およびコロナ
放電処理による方法が開示されている。
JP-A-61-141532 and JP-A-61-2293
No. 88 proposes a technique for modifying an aromatic polyimide film by treating it with low-temperature plasma. On the other hand, a sandblasting technique has been developed for the aromatic polyimide film and has been widely used. Zarani JP 62-184842, JP 62-162542
discloses a method of mechanically wiping the film surface and a method of corona discharge treatment.

しかしながら、これらの方法には各々次のような問題点
がおる。
However, each of these methods has the following problems.

まず上記低温プラズマ処理による方法は、特開昭61−
141532にも記載されているように、3X10’〜
30Torr、好ましくは0901〜10丁orrの低
圧力下において発生する放電によって処理するものでお
り、この方法は、容易に安定した放電であるグロー放電
が形成されるため、安定した品質の表面改質がなされる
利点がある。しかしながら、この低温プラズマ処理によ
る方法は、低圧力雰囲気域を形成する必要があるため、
真空容器および大きな排気設煤を必要とし、著しくコス
ト高になるうえ、所定の圧力雰囲気の調節あるいは条件
変更などに長時間を要するなどの問題がおるため、処理
費用がかざみむ等の難点がある。
First, the method using low-temperature plasma treatment is
As described in 141532, 3X10'~
The treatment is performed by electric discharge generated under a low pressure of 30 Torr, preferably 0901 to 10 Torr, and this method easily forms a stable glow discharge, so surface modification with stable quality can be achieved. There is an advantage that this can be done. However, this low-temperature plasma treatment method requires the creation of a low-pressure atmosphere area;
It requires a vacuum container and a large soot exhaust system, which is extremely costly, and it also takes a long time to adjust the predetermined pressure atmosphere or change the conditions, so there are disadvantages such as high processing costs. be.

これに対して、サンドブラスト処理は比較的安価に処理
できるため広く行なわれているが、この方法の場合、処
理フィルム表面や表層中に砂が残るため、処理後洗浄処
理が必要であり、その際どの程度洗浄すればよいか明確
に規定できず、生産工程で品質管理が極めて困難である
などの問題がある。またサンドプラス1へ処理は接着性
のバラツキをなくし、芳香族ポリイミドのもつ本来の接
着力を回復させる点では効果があるが、接着力そのもの
の向上にはそれ程効果がないという問題がある。
On the other hand, sandblasting is widely used because it is a relatively inexpensive process, but with this method, sand remains on the surface of the treated film and in the surface layer, so post-treatment cleaning is required. There are problems such as it is not possible to clearly specify how much cleaning should be done, and quality control during the production process is extremely difficult. Furthermore, although the Sandplus 1 treatment is effective in eliminating variations in adhesiveness and restoring the original adhesive strength of aromatic polyimide, there is a problem in that it is not so effective in improving the adhesive strength itself.

さらにこの方法は、砂を強い力でふきつけるため、砂が
フィルムにつきざざり、薄いフィルムでは砂が貫通し、
ピンホールを生じたり、あるいはサンドブラスト処理の
ため表層が削られるため、フィルムの強伸度が低下する
などの問題がおる。特開昭62−184842で開示さ
れた方法は、実用的であるが、改質効果がかなり低く、
たかだかサンドプラス。ト並であるうえ、ふきとる際、
静電気などによるゴミの付着、つまり■汚染が懸念され
、生産工程での品質管理が難しいという欠点がおる。さ
らに特開昭62−162542による方法は、20〜3
00W/Tn2/分の放電電力密度でコロナ放電する方
法法であり、この方法では十分な改質効果が上げられな
いという問題がおる。− [発明が解決しようとする問題点] 本発明はかかる従来技術の諸欠点に鑑み創案されたもの
であり、その目的は品質、コストおよび生産性とも良好
な実用性の高い高分子樹脂の表面処理技術、特に耐熱性
高分子樹脂を■低温プラズマ処理によって改質されたと
同様の優れた接着性を有するように改質可能で、■かつ
経時的に安定な改質面を1与ることができ、■しかもブ
ロッキングなどの問題のない表面改質方法を得る方法を
提供することにある。
Furthermore, this method blows the sand with strong force, so the sand sticks to the film, and if the film is thin, the sand may penetrate.
There are problems such as pinholes being formed or the surface layer being scraped due to sandblasting, which reduces the strength and elongation of the film. The method disclosed in JP-A-62-184842 is practical, but the reforming effect is quite low.
At least Sand Plus. In addition to being on par with
There is a concern about the adhesion of dust due to static electricity, that is, contamination, and the drawback is that quality control during the production process is difficult. Furthermore, the method according to JP-A-62-162542 is 20 to 3
This is a method in which corona discharge is performed at a discharge power density of 00 W/Tn2/min, and there is a problem that a sufficient reforming effect cannot be achieved with this method. - [Problems to be Solved by the Invention] The present invention was devised in view of the various drawbacks of the prior art, and its purpose is to provide a highly practical polymer resin surface with good quality, cost, and productivity. Processing technology, especially heat-resistant polymer resins, can be modified to have excellent adhesion similar to that modified by low-temperature plasma treatment, and provide a modified surface that is stable over time. The object of the present invention is to provide a method for obtaining a surface modification method that is possible and free from problems such as blocking.

[問題点を解決するための手段] かかる本発明の目的は、高分子樹脂表面を改質するに際
し、少なくとも20モル%以上の希ガス類元素を含有す
る、100〜1000TOrrのガス雰囲気中において
、表面が誘電体によって被覆された電極と、上記高分子
樹脂を支持する誘電体被覆電極との間に印加された高電
圧によって形成される放電によって、上記高分子樹脂表
面を処理することを特徴とする高分子樹脂表面の改質方
法により達成される。
[Means for Solving the Problems] The object of the present invention is to modify the surface of a polymer resin in a gas atmosphere of 100 to 1000 TOrr containing at least 20 mol% or more of a rare gas element. The polymer resin surface is treated by a discharge formed by a high voltage applied between an electrode covered with a dielectric and a dielectric-covered electrode supporting the polymer resin. This is achieved by a method of modifying the molecular resin surface.

本発明において使用される高分子樹脂としては、公知の
ものがすべて使用できるが、改質効果の点からは耐熱性
高分子樹脂でおることが好ましい。
All known polymer resins can be used as the polymer resin used in the present invention, but heat-resistant polymer resins are preferred from the viewpoint of modification effects.

ここで耐熱性高分子樹脂としては、ガラス転移点(TC
I>が100℃以上のもの、または融点(Tm)が30
0℃以上のもの、あるいはJISC4003で規定され
る長期連続使用温度の最高許容温度が121°C以上の
もののいずれかの条件を満足する高分子樹脂であればよ
い。
Here, as the heat-resistant polymer resin, the glass transition point (TC
I> is 100℃ or higher, or melting point (Tm) is 30
Any polymer resin may be used as long as it satisfies either of the following conditions: 0°C or higher, or a maximum permissible long-term continuous use temperature specified by JISC4003 of 121°C or higher.

これらの高分子樹脂としては、ビスフェノール類の芳香
族ジカルボン酸の縮合物で必るボリアリレート、ポリス
ルホンまたはポリニーデルスルホンに代表されるポリア
リルスルホン、ベンゾフェノンテトラカルボン酸と芳香
族イソシアナートとの縮合物、あるいはビスフェノール
類、芳香族ジアミン、ニトロフタル酸の反応から得られ
る熱硬化性ポリイミド、芳香族ポリイミド、芳香族ポリ
アミド、芳香族ポリエーテルアミド、ポリフエニレンス
ルフフイド、ポリアリルエーテルケトン、液晶性ポリエ
ステル、ポリアミドイミド、ポリテトラフロロエチレン
、四フッ化エチレンー六フッ化プロピレン共重合体など
のフッ素系樹脂などが挙げられる。これら耐熱性高分子
樹脂については「最新・耐熱性高分子(三田進監修、(
株)総合技術センター出版、昭和62年発明の詳細な説
明されている。
These polymer resins include polyarylate which is a condensation product of aromatic dicarboxylic acids of bisphenols, polyallylsulfone represented by polysulfone or polyneedle sulfone, and condensation of benzophenone tetracarboxylic acid with aromatic isocyanate. thermosetting polyimide, aromatic polyimide, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, liquid crystalline Examples include fluororesins such as polyester, polyamideimide, polytetrafluoroethylene, and tetrafluoroethylene-hexafluoropropylene copolymer. Regarding these heat-resistant polymer resins, please refer to “Latest Heat-resistant Polymers” (supervised by Susumu Mita,
Published by Sogo Gijutsu Center Co., Ltd., 1986. Detailed explanation of the invention.

これらの耐熱性高分子樹脂の中でも、芳香族ポリイミド
、芳香族ポリアミド、ポリフェニレンスルファイド、お
よびフッ素系樹脂は成形時に高温にさらすために表面特
性が著しく変化したり、あるいは樹脂が本質的に接着性
を有していないなどのため、表面改質が困難でおるが、
これらの樹脂は本発明の方法によって優れた改質効果が
得られる好ましい樹脂である。特にピロメリット酸二無
水物、おるいはビフェニルテトラカルボン酸二無水物と
ジアミノジフェニルエーテルなどの芳香族ジアミンとの
縮合物である芳香族ポリイミドは、本発明の方法によっ
て特に顕著な改質効果が認められる好ましい樹脂である
Among these heat-resistant polymer resins, aromatic polyimide, aromatic polyamide, polyphenylene sulfide, and fluororesin are exposed to high temperatures during molding, resulting in significant changes in surface properties, or the resin is inherently adhesive. Although it is difficult to modify the surface because it does not have
These resins are preferred resins from which excellent modification effects can be obtained by the method of the present invention. In particular, aromatic polyimides, which are condensates of pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, and aromatic diamines such as diaminodiphenyl ether, have a particularly remarkable modification effect by the method of the present invention. This is a preferred resin.

なお当然のことながらこれらの樹脂には無機フィラーな
どの添加剤が加えられていてもよい。
Note that, as a matter of course, additives such as inorganic fillers may be added to these resins.

これらの高分子樹脂の形態は特に限定されるものではな
く、ブロック状、板状、シート状、フィルム状、棒状、
チューブ状など各種形態が取りうるが、特にフィルム状
が好ましい。
The form of these polymer resins is not particularly limited, and may be block-like, plate-like, sheet-like, film-like, rod-like,
It can take various forms such as a tube shape, but a film shape is particularly preferable.

本発明における放電は、内部に冷媒を流すことによって
10〜100℃程度に冷却された金属管などの導体の表
面を誘電体で被覆した高電圧印加電極と、該電極に対向
して設(プられ、放電が形成される面が誘電体で被覆さ
れた、被処理物を支持するための電極との間で形成され
る。
Discharge in the present invention involves a high-voltage applying electrode that is made by coating a dielectric material on the surface of a conductor such as a metal tube that has been cooled to about 10 to 100 degrees Celsius by flowing a refrigerant inside, and a The surface on which discharge is formed is formed between the electrode and the electrode for supporting the object, the surface of which is covered with a dielectric material.

高電圧印加電極としては中空棒状M4造を有するものが
好ましく、内部を流す冷媒としては空気、フレオンまた
は水などが挙げられるが、水が好ましい。導体の表面を
覆う誘電体としてはゴム、ガラス、セラミックなどが挙
げられるが、ガラスが好ましく、その厚さは0.1〜5
rnmが好ましい。
The high voltage application electrode preferably has a hollow rod-like M4 structure, and the coolant flowing inside the electrode includes air, Freon, water, etc., and water is preferable. Examples of the dielectric material covering the surface of the conductor include rubber, glass, and ceramic, but glass is preferable, and its thickness is 0.1 to 5.
rnm is preferred.

誘電体の材質は印加される電圧に対し、十分な耐電圧を
もつものを選択するのがよい。
It is preferable to select a dielectric material that has sufficient withstand voltage for the applied voltage.

被処理物を支持する電極の形状は、被処理物の形態に応
じて選択されるが、フィルムなどの長尺物の場合は被処
理物を搬送自在に支持できるドラム状電極であることが
好ましく、その大きさは例えば前記棒状高電圧印加電極
の直径に対し、2倍以上の直径をもつように形成するの
がよい。ドラム状電極の少なくとも放電が形成される面
は同様に誘電体で被覆することが重要でおり、該誘電体
の厚さ、材質など棒状電極の場合と同様のものが使用さ
れる。
The shape of the electrode that supports the object to be processed is selected depending on the form of the object to be processed, but in the case of a long object such as a film, a drum-shaped electrode that can support the object to be processed is preferable. The size thereof is preferably formed to have a diameter twice or more, for example, the diameter of the rod-shaped high voltage applying electrode. It is also important to cover at least the surface of the drum-shaped electrode with a dielectric material, and the thickness and material of the dielectric material are the same as in the case of the rod-shaped electrode.

高電圧印加電極と被処理物を支持する電極とは同数であ
る必要はなく、被処理物を支持する電極1個に対し、高
電圧印加電極を2個以上設けるのがよい。
The number of high voltage applying electrodes and the electrodes supporting the object to be processed does not need to be the same, and it is preferable to provide two or more high voltage applying electrodes for one electrode supporting the object to be processed.

高電圧印加電極に印加する高電圧の周波数は20kH7
〜100MHzの範囲で選択するのが好ましい。20k
Hz未満では放電が開始しにくく、100MHz以上で
は整合をとることが困難である。より好ましい周波数は
50kHz〜500kH2でおる。
The frequency of the high voltage applied to the high voltage application electrode is 20kHz7
It is preferable to select it in the range of ~100 MHz. 20k
Below Hz, it is difficult to start a discharge, and above 100 MHz, it is difficult to achieve matching. A more preferable frequency is 50kHz to 500kHz.

被処理物を支持する電極は接地していてもよいし、ある
いは該電極を大地より浮かし、高電圧電源の高電圧電極
との結線端子の対となる出力端子と結線してもよい。
The electrode supporting the object to be processed may be grounded, or it may be floated above the ground and connected to an output terminal that is a pair of connection terminals to the high voltage electrode of the high voltage power source.

また当然のことながら、高電圧電源は整合回路をもって
いることが好ましい。
Naturally, it is also preferable that the high voltage power supply has a matching circuit.

本発明においては、雰囲気のガス組成が極めて重要であ
り、上記装置を用い、希ガス元素を少なくとも20モル
%以上含有する、100〜1000TOrrのガス雰囲
気中で放電すると、放電が通常の火花放電(当業者間で
はコロナ放電と呼ばれている)でなく、真空下で起るグ
ロー放電に似た放電になり、この放電は火花放電に比べ
多くの電力を放電に供給することができ、かつ耐熱性高
分子に対し処理効果が著しく、またブロッキングなどの
欠点が生じない利点がある。
In the present invention, the gas composition of the atmosphere is extremely important, and when the above device is used to discharge in a gas atmosphere of 100 to 1000 TOrr containing at least 20 mol% of rare gas elements, the discharge becomes a normal spark discharge ( This discharge is similar to a glow discharge that occurs in a vacuum, rather than a corona discharge (known to those skilled in the art as a corona discharge), and this discharge can supply more power than a spark discharge, and is heat resistant. It has the advantage that it has a remarkable treatment effect on polymers and does not cause drawbacks such as blocking.

本発明で使用される希ガス元素としてはHe、Ne、A
r5KrS)(e、Rnなどが挙げられるが、Arが最
も好ましい。かかる希ガスは雰囲気ガス中に少なくとも
20モル%以上含まれている必要がおる。希ガスが20
モル%未満では放電が火花放電になり、通常のコロナ放
電と同様処理効果が低く、かつ裏うつつや、ブロッキン
グが生じるため好ましくない。より好ましくは雰囲気ガ
ス中に希ガスを50モル%以上含有させるのがよい。
The rare gas elements used in the present invention include He, Ne, and A.
r5KrS) (e, Rn, etc., but Ar is most preferred. Such a rare gas must be contained in the atmospheric gas at least 20 mol%.
If the amount is less than mol %, the discharge becomes a spark discharge, which is not preferable because the treatment effect is low like normal corona discharge, and backing or blocking occurs. More preferably, the atmospheric gas contains 50 mol% or more of the rare gas.

希ガスと混合して使用できるガスとしては、CO2、N
2、メタンなどの有機物ガスが挙げられ、これらに限定
されない。ただし、02ガスの混入は極力少なくするこ
とが処理効果を高める点から好ましい。
Gases that can be used in combination with rare gases include CO2, N
2. Examples include, but are not limited to, organic gases such as methane. However, it is preferable to reduce the amount of 02 gas mixed in as much as possible in order to enhance the processing effect.

雰囲気の圧力は’100〜1000Torrの範囲で選
択することが重要であり、100Torr未満では高度
の真空排気装置などを必要とする等の問題があり、また
’1000Torr以上では放電が開始しにくくなる。
It is important to select the pressure of the atmosphere within the range of 100 to 1000 Torr; if it is less than 100 Torr, there will be problems such as the need for a high-grade evacuation device, and if it is more than 1000 Torr, it will be difficult to start discharge.

より好ましくは600〜900TOrrの圧力範囲で選
択するのがよい。
More preferably, the pressure is selected in the range of 600 to 900 TOrr.

高分子樹脂に対する処理強度は処理を施すべき高分子樹
脂に応じて選択するのがよいが、耐熱性高分子樹脂の場
合は、200W−min/Tr12以上の処理電力密度
で処理するのがよく、より好ましくは500W”min
/m2以上、さらに好ましくは1001000W−/−
rn2以上の処理電力密度で処理するのがよい。通常の
コロナ放電処理では500W−min/TT12以上の
電力密度で処理すると放電がアーク放電になり、被処理
高分子フィルムやドラム状電極の被覆誘電体にピンホー
ルが生じるが、本発明の方法ではそのような現象が全く
見られず、大電力を供給できる利点がある。なおここで
いう処理電力密度とは出力を放電部分の幅(ドラム状電
極の軸長方向)とフィルムの処理速度で割った1直であ
る。
The treatment strength for polymer resins should be selected depending on the polymer resin to be treated, but in the case of heat-resistant polymer resins, it is better to treat with a treatment power density of 200 W-min/Tr12 or more, More preferably 500W”min
/m2 or more, more preferably 1001000W-/-
It is preferable to perform processing at a processing power density of rn2 or higher. In normal corona discharge treatment, if the treatment is performed at a power density of 500 W-min/TT12 or more, the discharge becomes an arc discharge, and pinholes occur in the polymer film to be treated and the coating dielectric of the drum-shaped electrode, but in the method of the present invention, Such a phenomenon is not observed at all, and there is an advantage that a large amount of power can be supplied. It should be noted that the processing power density here is the power divided by the width of the discharge portion (in the axial direction of the drum-shaped electrode) and the processing speed of the film.

次に本発明方法を実施装置の1例を用いて説明する。Next, the method of the present invention will be explained using an example of an implementation apparatus.

図において、高分子樹脂フィルム1は送り出しロール2
により放電処理部9へ送り出される。放電処理部9には
ガス導入系8より、所定組成のガスが供給され、ここで
図示していない簡単な排気装置によって所定のガス圧力
に維持される。フィルム1は放電処理部において、高圧
印加電極3に高電圧電源5より整合トランス6を介して
印加された高周波高電圧によって、接地されたドラム状
電極4との間で形成される放電によって処理された後、
巻き取りローラ7に巻き取られる。
In the figure, the polymer resin film 1 is shown on the feed roll 2.
is sent to the discharge processing section 9. A gas of a predetermined composition is supplied to the discharge treatment section 9 from a gas introduction system 8, and is maintained at a predetermined gas pressure by a simple exhaust device (not shown). In the discharge treatment section, the film 1 is treated by a high-frequency high voltage applied to the high-voltage application electrode 3 from a high-voltage power supply 5 via a matching transformer 6, and by a discharge formed between it and the grounded drum-shaped electrode 4. After
It is wound up on a winding roller 7.

[実施例] 以下実施例により本発明を具体的に説明するが、実施例
中の物性はそれぞれ次の方法で測定したものでおる。
[Example] The present invention will be specifically explained below with reference to Examples, and the physical properties in the Examples were measured by the following methods.

[物性の測定方法、評価基準] ■ 処理フィルムの処理面へ熱硬化型のアクリル系接着
剤、またはポアミド系接着剤を塗布後、ラミネーターで
銅箔と張り合せた。
[Method for measuring physical properties, evaluation criteria] ■ After applying a thermosetting acrylic adhesive or poamide adhesive to the treated surface of the treated film, it was laminated with copper foil using a laminator.

■接着力の測定 万能引張り試験機(東洋ボールドウィン製、テンシロン
)を用い、フィルムと銅箔との間の接着力を測定した。
■Measurement of Adhesive Strength The adhesive strength between the film and the copper foil was measured using a universal tensile testing machine (manufactured by Toyo Baldwin, Tensilon).

■ ブロッキング性の評価 処理フィルムの処理面同志を合せ、その上に5000の
荷重をかけ、60℃90%の雰囲気下に1週間放置後、
このフィルムを取り出し、軽くふつてフィルム同志が剥
げる場合を良、剥がれにくい、また剥がれない場合を不
良と判定した。
■Evaluation of Blocking Property The treated surfaces of the treated films were placed together, a load of 5,000 yen was applied thereto, and the film was left in an atmosphere at 60°C and 90% for one week.
When this film was taken out and gently rolled, it was judged as good if the films peeled off from each other, difficult to peel off, and bad if the films did not peel off.

実施例1〜5、比較例1〜6 被処理高分子樹脂として、ピロメリット酸二無水物と4
.4′−ジアミノジフェニルエーテルの縮合物から形成
された厚さ25μm1幅508mmの芳香族ポリイミド
フィルム(東し・デュポン(株)製“カプトン″)を、
図の装置を用い、Arガス、760Torrの雰囲気下
で、15mZminのフィルム速度で、処理電力密度を
表1のごとく変えて処理を行なった。なお高電圧印加電
極3としては約1mmの厚さのガラスを被覆した鉄製の
棒状電極を、またドラム状電極4としてはドラム面と側
面が約1mmのゴムで被覆された鉄製電極を用い、冷媒
はいずれも水を用いた。
Examples 1 to 5, Comparative Examples 1 to 6 Pyromellitic dianhydride and 4
.. An aromatic polyimide film (“Kapton” manufactured by DuPont Azuma) with a thickness of 25 μm and a width of 508 mm formed from a condensate of 4′-diaminodiphenyl ether was prepared.
Using the apparatus shown in the figure, processing was carried out in an atmosphere of Ar gas at 760 Torr, at a film speed of 15 mZmin, and with the processing power density changed as shown in Table 1. As the high voltage application electrode 3, an iron rod-shaped electrode covered with glass of about 1 mm thickness was used, and as the drum-shaped electrode 4, an iron electrode whose drum surface and side surfaces were covered with rubber of about 1 mm thick was used. Water was used in both cases.

比較例として空気を用いて通常のコロナ放電処理(高電
圧印加電極としてタングステンワイヤを使用〉 (比較
例1〜3)および空気の代りにArを用いた以外は比較
例1と同様にして処理したく比較例4〜6)。
As a comparative example, a normal corona discharge treatment using air (tungsten wire was used as a high voltage applying electrode) (Comparative Examples 1 to 3) and treatment in the same manner as in Comparative Example 1 except that Ar was used instead of air. Comparative Examples 4 to 6).

熱硬化性のアクリル系接着剤を用い、各々の処理フィル
ムと銅箔との接着力を測定し、結果を表1に示した。
The adhesive strength between each treated film and copper foil was measured using a thermosetting acrylic adhesive, and the results are shown in Table 1.

なお実施例1〜5および比較例1〜6ともドラム状の接
地電極は面長600mmで、放電はこの面長全域で形成
されるため、放電部分の幅は0゜6mとして、放電電力
密度をWi算した。
In addition, in Examples 1 to 5 and Comparative Examples 1 to 6, the drum-shaped ground electrode had a surface length of 600 mm, and the discharge was formed over the entire surface length, so the width of the discharge portion was set to 0°6 m, and the discharge power density was I calculated it.

表1のごとく、本発明の方法で処理したフィルムはいず
れもフレギシブルプリント回路用として、ポリイミドフ
ィルムに要求される接着力レベル(1,5kca/cm
)以上の接着力を示し、未処理フィルムに比べ著しい改
質効果が認められた。
As shown in Table 1, the films treated by the method of the present invention can be used for flexible printed circuits at the adhesive strength level required for polyimide films (1.5 kca/cm).
), and a remarkable modification effect was observed compared to the untreated film.

これに対して、比較例1〜3および比較例4〜6のコロ
ナ放電処理では、若干の改質効果が認められるものの、
放電電力密度を大きくしても、その向上は僅かであった
。なお500W−min/m2の電力を投入すると、放
電がアーク放電になり、フィルムやドラム状電極の誘電
体が絶縁破壊され、ピンホールが生じた。
On the other hand, in the corona discharge treatments of Comparative Examples 1 to 3 and Comparative Examples 4 to 6, although some modification effects were observed,
Even if the discharge power density was increased, the improvement was slight. Note that when a power of 500 W-min/m2 was applied, the discharge became an arc discharge, dielectric breakdown of the film and the dielectric of the drum-shaped electrode occurred, and pinholes were generated.

比較例1〜3で処理したフィルムは強くブロッキングし
、比較例4〜6では比較例1〜3に比べやや弱いが、ブ
ロッキングを示した。これに対して、本発明ではほとん
どブロッキングは認められなかった。
The films treated in Comparative Examples 1 to 3 showed strong blocking, and Comparative Examples 4 to 6 showed blocking, although slightly weaker than Comparative Examples 1 to 3. In contrast, almost no blocking was observed in the present invention.

ざらに本発明の処理フィルムを熱硬化性のポリアミド系
接着剤を用い銅箔と貼合せたところ、表1に示したもの
と同様の接着力が得られた。
When the treated film of the present invention was laminated to copper foil using a thermosetting polyamide adhesive, adhesive strength similar to that shown in Table 1 was obtained.

比較例7.8 実施例1で用いた芳香族ポリイミドフィルムを図の装置
を用い、Ar−N2 (10モル%二90モル%)(比
較例7)、およびAr−N2 (19モル%=81モル
%)(比較例8〉の混合ガスをそれぞれ実施例1と同一
条件で100100OW−/l112の電力密度で処理
した。
Comparative Example 7.8 The aromatic polyimide film used in Example 1 was treated with Ar-N2 (10 mol% to 90 mol%) (Comparative Example 7) and Ar-N2 (19 mol% = 81 mol %) (Comparative Example 8) was treated under the same conditions as in Example 1 at a power density of 100100 OW-/l112.

各々の処理フィルムの接着力とブロッキング性を調べた
ところ、比較例7では1.9kg/Cmの接着力を有し
ていたが、強いブロッキングを示した。比較例8も2.
0kC]/Cmと良好な接着力を示したが、比較例7に
比べると程度は弱いがブロッキングを示した。
When the adhesive strength and blocking properties of each treated film were examined, Comparative Example 7 had an adhesive strength of 1.9 kg/Cm, but showed strong blocking. Comparative example 8 is also 2.
0kC]/Cm, but showed blocking although the degree was weaker than in Comparative Example 7.

実施例6 26μmの四フッ化エチレンと六フッ化プロピレン共重
合体のフィルムを表面処理して、光電子分光法(YGサ
イエンティフィック社MESCALΔB−5使用)によ
りで測定した表面の原子組成が、F/C=1.57、O
/C=0.040の改質表面をもつフッ素フィルムを作
った。
Example 6 A 26 μm film of tetrafluoroethylene and hexafluoropropylene copolymer was surface-treated, and the atomic composition of the surface measured by photoelectron spectroscopy (using YG Scientific MESCALΔB-5) was F. /C=1.57, O
A fluorine film with a modified surface of /C=0.040 was produced.

次いで実施例1で用いたものと同じポリイミドフィルム
を実施例1と同様にして、Ar−C02(90モル%:
10モル%)の混合ガス中で1001000W−/TT
12の電力密度で処理した。
Next, the same polyimide film used in Example 1 was used in the same manner as in Example 1, and Ar-C02 (90 mol%:
1001000W-/TT in a mixed gas of 10mol%)
Processed at a power density of 12.

次に得られた両方のフィルムの処理面同志を合せ、ロー
ル温度260’Cに調整したロールラミネータを用い、
ラミネート速度0.5m/mi n、線圧10kg/c
mで貼り合せた。このフィルムのフィルム間の接着力を
測定したところ、0.4kg/Cm以上の接着力を示し
、フッ素フィルムがネッキングを起した。
Next, the treated surfaces of both films obtained were brought together, and using a roll laminator whose roll temperature was adjusted to 260'C,
Lamination speed 0.5m/min, linear pressure 10kg/c
Pasted with m. When the adhesive strength between the films of this film was measured, it was found that the adhesive strength was 0.4 kg/Cm or more, and necking occurred in the fluorine film.

なお未処理のポリイミドフィルムを用いた場合、260
’Cのロール温度でのラミネートでは数10q以下の極
めて弱い接着力しか得られなかった。
In addition, when using untreated polyimide film, 260
When laminating at a roll temperature of 'C, only an extremely weak adhesive strength of several tens of q or less was obtained.

表1 [発明の効果] 本発明は上述のごとく構成したので、耐熱性高分子のご
とき、表面改質しにくい樹脂に対しても顕著な改質効果
を達成することができるうえ、従来の方法に比べて経時
的安定性に優れ、ブロッキングなどの欠点のない表面処
理を可能とすることができる。また本発明は常圧または
常圧に近い雰囲気下で処理することができるため、装置
的に簡単かつ安価であり、極めて実用効果の高い表面処
理技術ということができる。
Table 1 [Effects of the Invention] Since the present invention is configured as described above, it is possible to achieve a remarkable modification effect even on resins that are difficult to surface modify, such as heat-resistant polymers, and it is possible to achieve remarkable modification effects using conventional methods. It has superior stability over time compared to other materials, and enables surface treatment without defects such as blocking. Furthermore, since the present invention can be treated under normal pressure or an atmosphere close to normal pressure, it is simple and inexpensive in terms of equipment, and can be said to be a surface treatment technique with extremely high practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施する際に使用する装置の1例を示すも
のである。 1:被処理高分子樹脂、 3:高電圧印加電極、 4:被処理高分子樹脂支持電極、 9:放電処理部。
The figure shows one example of an apparatus used in carrying out the present invention. 1: Polymer resin to be treated, 3: High voltage application electrode, 4: Support electrode for polymer resin to be treated, 9: Discharge treatment section.

Claims (1)

【特許請求の範囲】[Claims] (1)高分子樹脂の表面を改質するに際し、少なくとも
20モル%以上の希ガス類元素を含有する、100〜1
000Torrのガス雰囲気中において、表面が誘電体
によって被覆された電極と、上記高分子樹脂を支持する
誘電体被覆電極との間に印加された高電圧によつて形成
される放電によって、上記高分子樹脂表面を処理するこ
とを特徴とする高分子樹脂表面の改質方法。
(1) When modifying the surface of a polymer resin, 100-1 containing at least 20 mol% or more of a rare gas element
In a gas atmosphere of 000 Torr, the polymer resin A method for modifying the surface of a polymer resin, the method comprising treating the resin surface.
JP29724387A 1987-11-24 1987-11-24 Surface modification of polymer resin Granted JPH01138242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29724387A JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29724387A JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Publications (2)

Publication Number Publication Date
JPH01138242A true JPH01138242A (en) 1989-05-31
JPH0474372B2 JPH0474372B2 (en) 1992-11-26

Family

ID=17844016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29724387A Granted JPH01138242A (en) 1987-11-24 1987-11-24 Surface modification of polymer resin

Country Status (1)

Country Link
JP (1) JPH01138242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215171A (en) * 1988-07-04 1990-01-18 Res Dev Corp Of Japan Method and device for atmospheric plasma reaction
JPH03219082A (en) * 1989-11-30 1991-09-26 Sumitomo Precision Prod Co Ltd Blowoff-type surface treating device
WO1999006204A1 (en) * 1997-07-30 1999-02-11 Tdz Gesellschaft Für Innovative Oberflächenbehandlung Mbh Corona-type device for treating a substrate surface
JP2002361667A (en) * 2001-06-06 2002-12-18 Nipro Corp Method for manufacturing laminate rubber plug
WO2016035894A1 (en) * 2014-09-05 2016-03-10 国立大学法人大阪大学 Method for manufacturing surface-modified molded article, and method for manufacturing composite using surface-modified molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101069A (en) * 1977-02-16 1978-09-04 Ebauches Sa Preparation of plastic base plate for plating
JPS55131087U (en) * 1979-03-12 1980-09-17
JPS56147590U (en) * 1980-04-07 1981-11-06
JPS57164132A (en) * 1981-01-23 1982-10-08 Uop Inc Increase of metal-coated polymer peeling strength
JPS5846340A (en) * 1981-09-01 1983-03-17 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Method and apparatus for pretreating photographic substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101069A (en) * 1977-02-16 1978-09-04 Ebauches Sa Preparation of plastic base plate for plating
JPS55131087U (en) * 1979-03-12 1980-09-17
JPS56147590U (en) * 1980-04-07 1981-11-06
JPS57164132A (en) * 1981-01-23 1982-10-08 Uop Inc Increase of metal-coated polymer peeling strength
JPS5846340A (en) * 1981-09-01 1983-03-17 アグフア−ゲヴエルト・アクチエンゲゼルシヤフト Method and apparatus for pretreating photographic substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215171A (en) * 1988-07-04 1990-01-18 Res Dev Corp Of Japan Method and device for atmospheric plasma reaction
JPH0672308B2 (en) * 1988-07-04 1994-09-14 新技術事業団 Atmospheric pressure plasma reaction method
JPH03219082A (en) * 1989-11-30 1991-09-26 Sumitomo Precision Prod Co Ltd Blowoff-type surface treating device
WO1999006204A1 (en) * 1997-07-30 1999-02-11 Tdz Gesellschaft Für Innovative Oberflächenbehandlung Mbh Corona-type device for treating a substrate surface
JP2002361667A (en) * 2001-06-06 2002-12-18 Nipro Corp Method for manufacturing laminate rubber plug
WO2016035894A1 (en) * 2014-09-05 2016-03-10 国立大学法人大阪大学 Method for manufacturing surface-modified molded article, and method for manufacturing composite using surface-modified molded article
US10730253B2 (en) 2014-09-05 2020-08-04 Osaka University Process for producing surface-modified molded article, and process for producing composite using surface-modified molded article

Also Published As

Publication number Publication date
JPH0474372B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
US3627624A (en) Laminar structures of polyimides and method of manufacture
JPH01138242A (en) Surface modification of polymer resin
JP2001049002A (en) Thermoplastic liquid crystal polymer film and its preparation
JP3335304B2 (en) Method for producing surface-modified polyimide film
JPH08276547A (en) Modified polyimide/fluoroplastic laminated film
JP2007197696A (en) Low heat-shrinking and highly adhesive polyimide film
JP3750044B2 (en) Method for producing heat resistant film and heat resistant film
JPS63311794A (en) Manufacture of flexible wiring board
JP2961444B2 (en) Surface modification method for polyimide resin
JPH115264A (en) Spiral tubular product and its manufacture
JPH01214096A (en) Manufacture of flexible printed circuit board
JP2021054012A (en) Laminate for printed wiring board
JP2007197697A (en) Low heat-shrinking and highly adhesive polyimide film
JP3134001B2 (en) Method for surface modification of fluorine film
JP5871291B2 (en) Polyimide film
JPH11176562A (en) Spiral tubular heater and manufacture thereof
JPH11279302A (en) Dielectric roll for corona discharge treatment
JP2008222926A (en) Low thermally shrinkable highly adhesive polyimide film
KR20070066989A (en) Highly-adhesive polyimide film and method of manufacturing the same
JPH0438773B2 (en)
JP2007191704A (en) Highly adhesive polyimide film and its manufacturing method
JP2008222922A (en) Low thermally shrinkable highly adhesive polyimide film and method for producting the same
JP2008222924A (en) Low thermally shrinkable highly adhesive polyimide film and method for producting the same
WO1996031344A1 (en) Modified polyimide-fluororesin laminate film
JPH0841225A (en) Method for improving adhesivity of polyimide film and polyimide film improved in adhesivity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term