JPH01133642A - Twin roll type continuous casting apparatus - Google Patents

Twin roll type continuous casting apparatus

Info

Publication number
JPH01133642A
JPH01133642A JP62292659A JP29265987A JPH01133642A JP H01133642 A JPH01133642 A JP H01133642A JP 62292659 A JP62292659 A JP 62292659A JP 29265987 A JP29265987 A JP 29265987A JP H01133642 A JPH01133642 A JP H01133642A
Authority
JP
Japan
Prior art keywords
roll
cooling
sleeve
continuous casting
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62292659A
Other languages
Japanese (ja)
Other versions
JPH07121440B2 (en
Inventor
Takashi Yabuki
矢葺 隆
Noboru Chiba
千葉 登
Tomoaki Kimura
智明 木村
Kazuo Hoshino
和夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Hitachi Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nisshin Steel Co Ltd filed Critical Hitachi Ltd
Priority to JP62292659A priority Critical patent/JPH07121440B2/en
Priority to DE3839110A priority patent/DE3839110A1/en
Priority to KR1019880015172A priority patent/KR890007816A/en
Publication of JPH01133642A publication Critical patent/JPH01133642A/en
Publication of JPH07121440B2 publication Critical patent/JPH07121440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0651Casting wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To control roll crown and to obtain a cast slab having uniform plate thickness to the plate width direction by arranging a pressurizing chamber for controlling roll shape between an inner layer sleeve and a roll body for cooling. CONSTITUTION:The pressurizing chamber 3 for controlling the roll shape is arranged at the gap between the inner layer sleeve 4 cutting off the part except both end parts, which supplying passage 1 for cooling fluid and discharging passage for cooling fluid are arranged, and the outer peripheral face of the roll body 5 for cooling. Pressurized fluid is supplied into the pressurizing chamber 3 from a pressurized fluid piping through a shaft-type rotary joint 12 and a pressurized fluid flow passage 9, and the inner layer sleeve 4 is expanded. By deformation of this sleeve, shape of an outer layer sleeve 2 bringing into contact with the outer periphery of the inner layer sleeve through passage wall is deformed, and the roll crown is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は双ロール大連続U造装置に係り、特に幅方向の
板厚差の少ない鋳片を得るに好適な双ロール式連続鋳造
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a twin-roll large continuous U-forming device, and more particularly to a twin-roll continuous casting device suitable for obtaining slabs with a small difference in plate thickness in the width direction. .

〔従来の技術〕[Conventional technology]

従来の双ロール式連続鋳造装置は、第4図に示すごとく
、向かい合って水平におかれそれぞれの軸のまわりに回
転する2本の冷却用ロールCの間に溶融金属aが注入さ
れ、該溶融金属aが前記冷却用ロールCによって冷却凝
固させられつつ前記冷却用ロールの間隙から該間隙を板
厚とし、冷却ロールが溶融金属と接する部分のロール母
線長さを板幅とする板状の鋳片として引き抜かれるもの
であり、前記冷却用ロールCは外周にスリーブが装着さ
れ、スリーブの内面が水冷されている。
As shown in Fig. 4, in a conventional twin-roll continuous casting device, molten metal a is injected between two cooling rolls C that are placed horizontally facing each other and rotate around their respective axes. While the metal a is being cooled and solidified by the cooling roll C, a plate-shaped casting is formed from the gap between the cooling rolls, with the plate thickness being the gap and the plate width being the length of the roll generatrix at the part where the cooling roll contacts the molten metal. A sleeve is attached to the outer periphery of the cooling roll C, and the inner surface of the sleeve is water-cooled.

上述の双ロール式連続鋳造装置においては、製品の板厚
が板幅方向の位置によって異なる、板クラウンという現
象を生ずる問題がある。板クラウンの発生原因は、第6
図に示す冷却用ロールの板幅方向、板厚方向の温度差に
よる冷却用ロールの外径の変化が原因であるロールクラ
ウンが主なものであることが計算および実測により明ら
かにされている。
The twin-roll continuous casting apparatus described above has a problem in that a phenomenon called plate crown occurs in which the plate thickness of the product varies depending on the position in the width direction of the plate. The cause of plate crown is the 6th.
Calculations and actual measurements have revealed that the main cause is roll crown, which is caused by changes in the outer diameter of the cooling roll due to temperature differences in the width direction and thickness direction of the cooling roll, as shown in the figure.

この問題に対処するために種々の板クラウン低減技術が
考案されている。特開昭60−第33857号公報に記
載の発明は、冷却用ロールが外周に負のクラウンを有し
かつ内周に溝を設けたスリーブを備え、該スリーブが冷
却液の圧力で膨張されることにより、ロールクラウンを
制御している。特開昭61−第38745号公報記載の
発明は、冷却用ロールを水冷式ドラムとし、ドラム内の
冷却水を加圧して該水冷式ドラムの形状を一制御してい
る。更に特開昭60−第27446号公報記載の発明は
、冷却用ロールのスリーブに冷却水流路がらせん状に設
けられており、該冷却用ロールの本体胴部両端に同心円
状に中央に近づくほど狭幅になるビス1−ン摺動空間が
設けられており、該ピストン摺動空間に環状のテーパー
ピストンが摺動自在に嵌合されている冷却用ロールを備
え、該テーパーピストンを油圧により冷却用ロール軸方
向に移動させ、楔作用により冷却用ロール本体の外周を
変形することによりロールクラウンを適宜変更できるよ
うにしている。
Various plate crown reduction techniques have been devised to address this problem. The invention described in JP-A-60-33857 discloses that the cooling roll is provided with a sleeve having a negative crown on the outer periphery and a groove on the inner periphery, and the sleeve is expanded by the pressure of the cooling liquid. This controls the roll crown. In the invention described in JP-A-61-38745, the cooling roll is a water-cooled drum, and the shape of the water-cooled drum is controlled by pressurizing the cooling water in the drum. Furthermore, in the invention described in JP-A No. 60-27446, the cooling water flow path is provided in the sleeve of the cooling roll in a spiral shape, and the cooling water flow path is provided concentrically at both ends of the main body body of the cooling roll as it approaches the center. A narrow screw sliding space is provided, and a cooling roll is provided in which an annular taper piston is slidably fitted into the piston sliding space, and the taper piston is cooled by hydraulic pressure. By moving the cooling roll in the axial direction and deforming the outer periphery of the cooling roll body by a wedge action, the roll crown can be changed as appropriate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

連続鋳造においては冷却用ロールとスリーブには多大な
入熱による大きな熱応力が加わり、またスリーブ冷却の
ために大きい冷却液流量が必要であるが、特開昭60−
第33857号公報および特開昭61−第38745号
公報に記載された発明においては、イ、クラウン制御に
冷却用液体の圧力を用いるため冷却用液体の圧力の変化
により冷却特性が変化して安定した鋳造の維持が難しい
In continuous casting, the cooling roll and sleeve are subjected to large thermal stress due to large heat input, and a large flow rate of cooling liquid is required to cool the sleeve.
In the inventions described in JP-A No. 33857 and JP-A-61-38745, (a) the pressure of the cooling liquid is used for crown control, so the cooling characteristics change and become stable due to changes in the pressure of the cooling liquid; Difficult to maintain cast iron.

口、冷却用ロールへの多大な入熱を冷却するため多量の
冷却液を流す必要があり、同時にクラウン制御に必要な
液圧変化に耐える構造にすることは容易ではない。
It is necessary to flow a large amount of cooling liquid to cool down the large amount of heat input to the mouth and cooling roll, and at the same time it is not easy to create a structure that can withstand the changes in hydraulic pressure required for crown control.

ハ、高圧液体を多量に供給しなければならず、そのため
のエネルギ消費量が大きい。
C. A large amount of high-pressure liquid must be supplied, which consumes a large amount of energy.

等の問題点があった。There were problems such as.

これらの問題点を解決するものとして、特開昭60−第
27446号公報に記載の発明が提案されているが、こ
の発明においては、 1、ロールクラウンの制御に際し、スリーブの温度分布
および該温度分布に起因する変形の防止が考慮されてお
らず、クラウン制御量が大となり、また熱応力上も制御
が難しくなる。
In order to solve these problems, the invention described in Japanese Patent Application Laid-Open No. 60-27446 has been proposed. In this invention, 1. When controlling the roll crown, the temperature distribution of the sleeve and the temperature Prevention of deformation due to distribution is not taken into account, the amount of crown control becomes large, and control of thermal stress becomes difficult.

2、冷却水流路がらせん状であるので流路長が大となり
、流体抵抗が大きくなって流量を大きくすることが難し
く、かつ、冷却水の温度が流路出口に近づくほど高くな
ってスリーブの幅方向温度差が大きくなる。
2. Since the cooling water flow path is spiral, the flow path length is large, and fluid resistance increases, making it difficult to increase the flow rate.In addition, the temperature of the cooling water increases as it approaches the flow path outlet, causing damage to the sleeve. The temperature difference in the width direction increases.

3、テーパーピストンの位置が加圧流体の圧力だけで定
まるのでなく、ロール端部のビス1−ン摺動空間の摺動
面の加工偏差、およびデーバーピストン自体の加工偏差
により、変動するのでロール変形が左右対称にならない
3. The position of the taper piston is not determined only by the pressure of the pressurized fluid, but also varies depending on the machining deviation of the sliding surface of the screw 1 sliding space at the end of the roll and the machining deviation of the Dever piston itself. Roll deformation is not symmetrical.

4、第5図に示すように、テーパーピストン位置よりロ
ール端側の変位は、ピストンにより反軸芯方向に拡げら
れる以前の状態にもどろうとして、スリーブ自身が軸芯
方向に撓み、スリーブの反軸芯方向への変位がテーパー
ピストン位置からロール端に向って、単純に増加しない
ので板幅端のクラウンが改善されず、むしろ悪化する。
4. As shown in Fig. 5, the displacement from the tapered piston position to the roll end side causes the sleeve itself to bend in the axial direction as it attempts to return to the state before being expanded in the anti-axial direction by the piston, causing the sleeve to deflect in the axial direction. Since the displacement in the axial direction does not simply increase from the taper piston position toward the roll end, the crown at the width end of the plate is not improved, but rather worsens.

5、冷却用ロールは溶融金属に接触し、高温、高熱応力
状態で使用されるということが考慮されておらず、スリ
ーブ内面に冷却水溝が設けられているので、該冷却水溝
からクラックが伸展してロールが短期間で使えなくなり
、ロールにかかる費用が増加する。
5. No consideration was given to the fact that the cooling roll would be in contact with molten metal and would be used under high temperature and high thermal stress conditions, and since cooling water grooves were provided on the inner surface of the sleeve, cracks would not form from the cooling water grooves. Stretching causes the roll to become unusable in a short period of time, increasing the cost of the roll.

等の問題があった。There were other problems.

本発明の課題は、ロールクラウンを低減させ、さらに鋳
造開始時の過渡的なロールクラウン変化を打ち消し、幅
方向の厚み変化のない製品を生産する双ロール式連続鋳
造装置を提供するにある。
An object of the present invention is to provide a twin-roll continuous casting apparatus that reduces roll crown, cancels transient roll crown changes at the start of casting, and produces products with no thickness change in the width direction.

〔問題点を解決するための手段〕[Means for solving problems]

上記の課題は、冷却用ロールの本体外周に内外2層のス
リーブが装着されており、該スリーブ間に前記ロールの
軸方向に沿い冷却用流体流路が形成されていることと、
前記2層のスリーブの内の内層スリーブと冷却用ロール
本体との間に、ロール形状制御用加圧室が設けられてい
る双ロール式連続鋳造装置により達成される。
The above-mentioned problem is that a sleeve of two layers, an inner and outer layer, is attached to the outer periphery of the main body of the cooling roll, and a cooling fluid flow path is formed between the sleeves along the axial direction of the roll.
This is achieved by a twin-roll continuous casting apparatus in which a pressure chamber for controlling the roll shape is provided between the inner sleeve of the two-layer sleeve and the cooling roll body.

〔作用〕[Effect]

冷却用ロール本体外周に内外2層のスリーブが装着され
、前記2層のスリーブ間に前記冷却用ロールの軸方向に
沿う冷却用流体流路が形成されているので、流路長が短
くなると共に流路断面積が増大して冷却能力が大きくな
る。冷却能力が大きくなるので外層スリーブの温度上昇
が少なくなり、冷却用ロールの板幅方向の温度差が減っ
て、ロール膨張量およびロールクラウン量が低減される
Two layers of sleeves, an inner and outer layer, are attached to the outer periphery of the cooling roll main body, and a cooling fluid flow path along the axial direction of the cooling roll is formed between the two layers of sleeves, so that the flow path length is shortened and The cross-sectional area of the flow path increases and the cooling capacity increases. Since the cooling capacity is increased, the temperature rise in the outer sleeve is reduced, the temperature difference in the width direction of the cooling roll is reduced, and the amount of roll expansion and roll crown is reduced.

さらに冷却用ロール本体と内層スリーブとの間にロール
形状制御用加圧室が設けられて、該ロール形状制御用加
圧室に充填された加圧流体の圧力が制御されるので、冷
却用ロールの形状が制御され、ロールクラウン量が低減
される。
Further, a pressure chamber for controlling the roll shape is provided between the cooling roll body and the inner sleeve, and the pressure of the pressurized fluid filled in the pressure chamber for controlling the roll shape is controlled. shape is controlled and the amount of roll crown is reduced.

〔実施例〕〔Example〕

以下本発明を双ロール式連続鋳造装置の冷却用ロールに
適用した実施例を第1図〜第3図を参照して説明する。
An embodiment in which the present invention is applied to a cooling roll of a twin-roll continuous casting machine will be described below with reference to FIGS. 1 to 3.

第1−a図において、冷却用ロール本体5の外周には、
内層スリーブ4および外層スリーブ2が焼ばめされてお
り、1涌記冷却用ロ一ル本体5は前記冷却用ロールの胴
部両側に突出して設けられたロール軸受部に装着された
軸受6により回転自在に支持されている。前記内層スリ
ーブ4の内周面の軸方向中央部を薄肉として加圧流体充
填室3が設けられ、外周面には冷却用ロールの軸芯の方
向に沿う冷却用流体流路1が設けられている。前記外層
スリーブ2は熱伝導のよい銅系合金でできている。
In Fig. 1-a, on the outer periphery of the cooling roll body 5,
The inner sleeve 4 and the outer sleeve 2 are shrink-fitted, and the cooling roll main body 5 is supported by bearings 6 mounted on roll bearings protruding from both sides of the body of the cooling roll. It is rotatably supported. A pressurized fluid filling chamber 3 is provided with a thin wall in the axial center of the inner peripheral surface of the inner sleeve 4, and a cooling fluid flow path 1 is provided in the outer peripheral surface along the direction of the axis of the cooling roll. There is. The outer sleeve 2 is made of a copper alloy with good thermal conductivity.

外層スリーブ2の焼ばめ量は、溶融金属との接触による
熱膨張により焼ばめ効果が失われないよう、焼ばめ面直
径の1/700〜1/800とし、通常の焼ばめ量であ
る1/1000より大きくしである。
The amount of shrink fit of the outer sleeve 2 is set to 1/700 to 1/800 of the diameter of the shrink fit surface, so that the shrink fit effect is not lost due to thermal expansion due to contact with molten metal, and the amount of shrink fit is set to 1/700 to 1/800 of the diameter of the shrink fit surface. It is larger than 1/1000.

前記ロール軸受部には、冷却用流体の入口である原型ロ
ータリージヨイント1oおよび冷却用流体の出口である
原型ロータリージヨイント11が設けられ、前記環環ロ
ータリージョイン1へ10と前記冷却流体用流路1を連
通ずる冷却流体供給路7、および前記冷却用流体流路1
と原型ロータリージヨイント11とを連通ずる冷却流体
排出路8が前記冷却用ロール本体5内に設けられている
The roll bearing section is provided with a prototype rotary joint 1o, which is an inlet for cooling fluid, and a prototype rotary joint 11, which is an outlet for cooling fluid. A cooling fluid supply path 7 communicating with the path 1, and the cooling fluid flow path 1
A cooling fluid discharge passage 8 is provided in the cooling roll body 5, which communicates with the prototype rotary joint 11.

さらにロール軸受部の一方の端に加圧流体の入口である
軸型ロータリージヨイント12が設けられ。
Furthermore, a shaft-type rotary joint 12, which is an inlet for pressurized fluid, is provided at one end of the roll bearing section.

該軸型ロータリージヨイント12と前記ロール形状制御
用加圧室3とを連通ずる加圧流体流路9が前記冷却用ロ
ール本体5内に設けられている。前記原型ロータリージ
ヨイント10,11、軸型ロータリージヨイント12は
、それぞれ、図示されていない冷却用流体供給配管、冷
却用流体排出配管、加圧流体配管に接続されている。冷
却用流体としては水を用い、加圧流体としては油圧装置
用の油を用いている。
A pressurized fluid flow path 9 is provided in the cooling roll body 5, which communicates the shaft type rotary joint 12 with the roll shape control pressurizing chamber 3. The prototype rotary joints 10 and 11 and the shaft type rotary joint 12 are connected to cooling fluid supply piping, cooling fluid discharge piping, and pressurized fluid piping, respectively, which are not shown. Water is used as the cooling fluid, and oil for hydraulic equipment is used as the pressurizing fluid.

上記冷却用ロールにおいて、冷却用流体供給管より供給
された冷却用流体は、原型ロータリージヨイント10、
冷却用流体供給路7を経て冷却用流体流路を流れつつ外
層スリーブ2を介して溶融金属を冷却し、次いで冷却用
流体排出路8、原型ロータリージヨイント11を経て、
冷却用流体排出配管へ排出される。
In the cooling roll, the cooling fluid supplied from the cooling fluid supply pipe is connected to the original rotary joint 10,
The molten metal is cooled through the outer layer sleeve 2 while flowing through the cooling fluid flow path through the cooling fluid supply path 7, and then through the cooling fluid discharge path 8 and the prototype rotary joint 11.
It is discharged to the cooling fluid discharge piping.

冷却用流体流路1は第2図に示すごとく、ロール軸の方
向に沿って設けられているので、流路長が短くて圧力損
失が少なくなり、多量の冷却用流体を流せるので、冷却
能力が大きくなって外層スリーブの温度上昇が少なくな
ると共に冷却用ロール軸方向の温度差が少なくなる。さ
らに外層スリーブ2に熱伝達率のよい銅系合金が用いら
れているので、tll製スリーブに比較し、スリーブ温
度上昇は小さくロール軸方向温度差をも小さい。また、
冷却用流体流路は第2図に示すごとく、内層スリーブの
外周面にロール軸方向に沿って形成されているが完全に
該ロール軸に平行ではなく、前記スリーブ外周面の母線
に対して該流路方向をわずかに傾斜させ、冷却用流体流
路の入口と出口の間で、流路幅Bに流路壁幅すを加えた
幅に等しい長さだけ、前記流路のスリーブの円周上の位
置をらせん状にずらせである。冷却用流体流路が上述の
ごとくスリーブ母線の方向に対して傾斜して設けられて
いるので、冷却用ロールの外周のどの母線部分が冷却用
ロール間隙が最小である場所(ロールギャップ)に位置
しても、該母線位置で内外層スリーブ間に流路壁が存在
し、該流路壁13が外層スリーブに加わる鋳片の反力に
よる外層スリーブの変形を防いでいる。
As shown in Fig. 2, the cooling fluid flow path 1 is provided along the direction of the roll axis, so the flow path length is short, reducing pressure loss, and a large amount of cooling fluid can flow, increasing the cooling capacity. is increased, the temperature rise of the outer sleeve is reduced, and the temperature difference in the axial direction of the cooling roll is reduced. Furthermore, since the outer layer sleeve 2 is made of a copper-based alloy with good heat transfer coefficient, the rise in temperature of the sleeve is small and the temperature difference in the roll axis direction is also small, compared to a sleeve made of TLL. Also,
As shown in Fig. 2, the cooling fluid flow path is formed on the outer circumferential surface of the inner layer sleeve along the roll axis direction, but is not completely parallel to the roll axis, but parallel to the generatrix of the sleeve outer circumferential surface. The direction of the flow path is slightly inclined, and between the inlet and outlet of the cooling fluid flow path, the circumference of the sleeve of the flow path is increased by a length equal to the width of the flow path width B plus the flow path wall width. The upper position is shifted in a spiral manner. Since the cooling fluid flow path is provided at an angle with respect to the direction of the sleeve generatrix as described above, which generatrix on the outer periphery of the cooling roll is located at the place where the cooling roll gap is the smallest (roll gap). Even when the outer sleeve is in contact with the outer sleeve, a flow passage wall exists between the inner and outer sleeves at the generatrix position, and the flow passage wall 13 prevents the outer sleeve from being deformed due to the reaction force of the slab applied to the outer sleeve.

内層スリーブ4の内周面の、冷却用流体供給路および冷
却用流体排出路が設けられている両端部を除いた部分が
、削りこまれて冷却用ロール本体5の外周面との間に空
洞部を形成し、該空洞部は前記図示されていない加圧流
体配管から、軸型ロータリージヨイント12、加圧流体
流路9を経て加圧流体を供給されるロール形状制御用加
圧室3となっている。
The inner peripheral surface of the inner sleeve 4, excluding both ends where the cooling fluid supply path and the cooling fluid discharge path are provided, is cut down to form a cavity between it and the outer peripheral surface of the cooling roll body 5. The cavity forms a roll shape control pressurizing chamber 3 to which pressurized fluid is supplied from the pressurized fluid piping (not shown) through the shaft-type rotary joint 12 and the pressurized fluid passage 9. It becomes.

前述の銅合金製外層スリーブおよび冷却用流体流路によ
り、スリーブ板幅方向および板厚方向温度分布に起因す
るロールクラウンが減少された。
The aforementioned copper alloy outer layer sleeve and cooling fluid flow path reduced roll crown caused by temperature distribution in the width direction and thickness direction of the sleeve.

これに加えて、ロール形状制御用加圧室3に加圧流体が
充填されて加圧され、内層スリーブが赤肌変形する。内
層スリーブの変形に伴って、該内層スリーブの外周に流
路壁13を介して接している外層スリーブの形状も変形
されるので、加圧圧力の調節により外層スリーブの変形
、すなわちロールクラウン・が制御される。
In addition to this, the roll shape control pressurizing chamber 3 is filled with pressurized fluid and pressurized, causing the inner sleeve to become red-skinned. As the inner sleeve deforms, the shape of the outer sleeve, which is in contact with the outer periphery of the inner sleeve via the channel wall 13, is also deformed. Therefore, by adjusting the pressurizing pressure, the deformation of the outer sleeve, that is, the roll crown, is reduced. controlled.

ロールクラウンは前述のように冷却用ロールの不均一な
温度上昇に起因するものであり、鋳造開始から1〜3分
間は、クラウンは徐々に増加する。
As mentioned above, the roll crown is caused by the uneven temperature rise of the cooling roll, and the crown gradually increases for 1 to 3 minutes from the start of casting.

これを打ち消すために、 イ、ロール形状制御用加圧室3内の流体圧力が所定の値
のときに冷却用ロール表面が平坦となるように外層スリ
ーブ2の外周面を仕上げ、口、鋳造開始時、加圧流体圧
力を前記所定の値に保って冷却用ロールの温度が上昇し
ていない状態での冷却用ロール外周を平坦な形状に保持
し、ハ、U造時間の経過と共に温度上昇によって大きく
なる冷却用ロールの中央部外径を加圧流体の圧力を低減
して減少させ、冷却用ロール外周を平坦な状態に保持し
た。
In order to counteract this, a. Finish the outer peripheral surface of the outer sleeve 2 so that the surface of the cooling roll becomes flat when the fluid pressure in the pressure chamber 3 for controlling the roll shape is at a predetermined value, and then start casting. At the time, the pressurized fluid pressure is maintained at the predetermined value and the outer periphery of the cooling roll is maintained in a flat shape while the temperature of the cooling roll is not rising. The increasing outer diameter of the central portion of the cooling roll was reduced by reducing the pressure of the pressurized fluid, and the outer periphery of the cooling roll was kept flat.

ので、鋳造開始当初から幅方向板厚が均一な鋳片が得ら
れ、歩留りが向上した。
As a result, slabs with uniform thickness in the width direction were obtained from the beginning of casting, improving yield.

本実施例においては、冷却用ロールは外径800m、面
長600m、外層スリーブの厚さ30no、内層スリー
ブの厚さ50mm、加圧流体充填室部の内層スリーブ厚
さ20nwa、冷却用流体流路内の冷却水流速5m/s
、加圧流体圧力200kg/a#として、ステンレス鋼
を鋳造し、良好なりラウン制御特性を得られた。
In this example, the cooling roll has an outer diameter of 800 m, a surface length of 600 m, an outer sleeve thickness of 30 mm, an inner sleeve thickness of 50 mm, an inner sleeve thickness of 20 nwa in the pressurized fluid filling chamber, and a cooling fluid flow path. Cooling water flow rate within 5m/s
, stainless steel was cast with a pressurized fluid pressure of 200 kg/a#, and good round control properties were obtained.

第1−b図は本発明の第2の実施例を示し、鋳造条件に
合わせてロール形状制御用加圧室を二つの部分に分ける
と共に、冷却流体供給、排出路をスリーブの端面に設け
たものであり、前記第1の実施例と同様の符号を付した
ので説明は省略する。
Figure 1-b shows a second embodiment of the present invention, in which the pressure chamber for controlling the roll shape is divided into two parts according to the casting conditions, and cooling fluid supply and discharge passages are provided on the end face of the sleeve. The same reference numerals as in the first embodiment are used, and the explanation thereof will be omitted.

本発明を適用可能な双ロール式連続鋳造装置に用いられ
る冷却用ロールは、直径が600 ++yn〜1200
mm5面長が6001TI11〜160011w11で
あり、板厚2〜501TIlの普通鋼、ステンレス鋼、
銅、アルミニウム等の鋳片を鋳造速度1〜60m/分で
製造する。
The cooling roll used in the twin-roll continuous casting apparatus to which the present invention is applicable has a diameter of 600 ++yn to 1200 yen.
Ordinary steel, stainless steel with a surface length of 6001TI11 to 160011w11 in mm5 and a plate thickness of 2 to 501TIl,
Cast slabs of copper, aluminum, etc. are manufactured at a casting speed of 1 to 60 m/min.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷却用ロール本体の外周に内外2層の
スリーブを装着し、該2層のスリーブの間に前記ロール
の軸の方向に沿う冷却用流体流路が設けられたので冷却
用流体流路が短くなってロール軸方向゛のスリーブ表面
での温度差が少なくなって、ロールクラウンが減少する
と共に、内層スリーブと冷却用ロール本体との間にロー
ル形状制部用加圧室が設けられたので、該ロール形状制
御用加圧室の流体を加圧して内層スリーブを介して外層
スリーブの形状すなわちロールクラウンを制御すること
が可能となり、板幅方向の板厚が均一な鋳片が生産され
る効果がある。
According to the present invention, a sleeve of two layers, an inner and outer layer, is attached to the outer periphery of the cooling roll body, and a cooling fluid flow path along the axis of the roll is provided between the two layers of the sleeve. The fluid flow path is shortened, the temperature difference on the sleeve surface in the roll axis direction is reduced, the roll crown is reduced, and a pressurized chamber for roll shape control is created between the inner layer sleeve and the cooling roll body. As a result, it is possible to control the shape of the outer sleeve, that is, the roll crown, through the inner sleeve by pressurizing the fluid in the pressure chamber for controlling the roll shape, and to produce slabs with uniform thickness in the width direction. This has the effect of producing

【図面の簡単な説明】[Brief explanation of the drawing]

第1−a図は本発明の第1の実施例を示す断面図であり
、第1−b図は本発明の第2の実施例を示す断面図であ
り、第2図は第1−a図の内層スリーブを示す側面図で
あり、第3図は第2図の1−■線に沿ってみた正面図で
あり、第4図は双ロール式連続鋳造装置を示す説明図で
あり、第5図はテーパーピストンを用いてロールクラウ
ン制御を行う従来技術の例を示す断面図であり、第6−
a図、第6−b図および第6−c図は双ロール式連続鋳
造装置操業中の冷却用ロール外層スリーブに生ずる温度
分布を示す図である。 1・・・冷却用流体流路、2・・・外層スリーブ、3・
・・ロール形状制御用加圧室、4・・・内層スリーブ、
5・・・冷却用ロール本体。
FIG. 1-a is a sectional view showing a first embodiment of the present invention, FIG. 1-b is a sectional view showing a second embodiment of the present invention, and FIG. 2 is a sectional view showing a second embodiment of the present invention. 3 is a front view taken along line 1-■ in FIG. 2; FIG. 4 is an explanatory diagram showing a twin-roll continuous casting device; FIG. FIG. 5 is a sectional view showing an example of a conventional technology that performs roll crown control using a tapered piston, and FIG.
Figures 6-a, 6-b, and 6-c are diagrams showing the temperature distribution occurring in the outer sleeve of the cooling roll during operation of the twin-roll continuous casting apparatus. DESCRIPTION OF SYMBOLS 1... Cooling fluid flow path, 2... Outer layer sleeve, 3...
... Pressure chamber for roll shape control, 4... Inner layer sleeve,
5... Cooling roll body.

Claims (1)

【特許請求の範囲】 1、向いあつて水平におかれそれぞれの軸のまわりに回
転する2本の冷却用ロールの間に溶融金属が注入され、
該溶融金属が前記冷却用ロールによつて冷却凝固させら
れつつ前記冷却用ロールの間隙から板状の鋳片として引
き抜かれる双ロール式連続鋳造装置において、 前記冷却用ロールの本体外周に内外2層のスリーブが装
着されており、該スリーブ間に前記ロールの軸方向に沿
う複数の冷却用流体流路が形成されていることと、前記
2層のスリーブの内の内層スリーブと冷却用ロール本体
との間にロール形状制御用加圧室が設けられていること
を特徴とする双ロール式連続鋳造装置。 2、冷却用流体流路が内層スリーブに設けられているこ
とを特徴とする特許請求の範囲第1項記載の双ロール式
連続鋳造装置。 3、冷却用流体流路の方向がスリーブの母線に対してら
せん状に傾斜しており、該流路が入口と出口の間で少な
くとも前記冷却用流体流路の幅と、前記冷却用流体流路
を隔てる流路壁の幅とを加えた長さだけスリーブ円周上
の位置がずれていることを特徴とする特許請求の範囲第
1〜2項のいずれかの項に記載の双ロール式連続鋳造装
置。 4、内層スリーブの軸方向中央部を薄肉として冷却用ロ
ール本体との間に空洞部を設け、該空洞部をロール形状
制御用加圧室としたことを特徴とする特許請求の範囲第
1〜3項のいずれかの項に記載の双ロール式連続鋳造装
置。
[Claims] 1. Molten metal is injected between two cooling rolls that are placed horizontally facing each other and rotate around their respective axes,
In a twin-roll continuous casting device in which the molten metal is cooled and solidified by the cooling rolls and is drawn out as a plate-shaped slab from the gap between the cooling rolls, there are two layers on the outer periphery of the main body of the cooling rolls, an inner and outer layer. A plurality of cooling fluid passages are formed between the sleeves along the axial direction of the roll, and an inner sleeve of the two-layer sleeve and the cooling roll body are connected to each other. A twin-roll continuous casting device characterized in that a pressure chamber for controlling roll shape is provided between the two rolls. 2. The twin-roll continuous casting apparatus according to claim 1, wherein the cooling fluid flow path is provided in the inner sleeve. 3. The direction of the cooling fluid flow path is spirally inclined with respect to the generatrix of the sleeve, and the flow path has a width of at least the width of the cooling fluid flow path and the cooling fluid flow between the inlet and the outlet. The twin roll type according to any one of claims 1 to 2, characterized in that the position on the circumference of the sleeve is shifted by a length equal to the width of the channel wall separating the channels. Continuous casting equipment. 4. Claims 1 to 4, characterized in that the inner sleeve has a thinner axial center portion and a cavity is provided between it and the cooling roll body, and the cavity is used as a pressurizing chamber for controlling the roll shape. The twin roll continuous casting device according to any one of Item 3.
JP62292659A 1987-11-19 1987-11-19 Twin roll type continuous casting machine Expired - Fee Related JPH07121440B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62292659A JPH07121440B2 (en) 1987-11-19 1987-11-19 Twin roll type continuous casting machine
DE3839110A DE3839110A1 (en) 1987-11-19 1988-11-18 Duo-roll continuous casting installation
KR1019880015172A KR890007816A (en) 1987-11-19 1988-11-18 Twin Roll Continuous Casting Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292659A JPH07121440B2 (en) 1987-11-19 1987-11-19 Twin roll type continuous casting machine

Publications (2)

Publication Number Publication Date
JPH01133642A true JPH01133642A (en) 1989-05-25
JPH07121440B2 JPH07121440B2 (en) 1995-12-25

Family

ID=17784643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292659A Expired - Fee Related JPH07121440B2 (en) 1987-11-19 1987-11-19 Twin roll type continuous casting machine

Country Status (3)

Country Link
JP (1) JPH07121440B2 (en)
KR (1) KR890007816A (en)
DE (1) DE3839110A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592987A (en) * 1989-07-14 1997-01-14 Fata Hunter, Inc. System for a crown control roll casting machine
JPH11239850A (en) * 1998-02-19 1999-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cooling roll
WO2002005987A1 (en) * 2000-07-19 2002-01-24 Mitsubishi Heavy Industries, Ltd. Dual drum type continuous casting device and method for continuous casting
JP2003019544A (en) * 2001-07-04 2003-01-21 Nippon Steel Corp Method for controlling crown in cast strip
JP2007196260A (en) * 2006-01-26 2007-08-09 Ishikawajima Harima Heavy Ind Co Ltd Twin-roll casting machine
CN103611898A (en) * 2013-12-10 2014-03-05 青岛云路新能源科技有限公司 Manufacturing method for copper bush
US9222160B2 (en) 2010-03-30 2015-12-29 Sumitomo Electric Industries, Ltd. Coil material and method for manufacturing the same
CN112045156A (en) * 2020-09-16 2020-12-08 无锡天德金属制品有限公司 Roll sleeve structure for high-strength aluminum alloy casting and rolling and use method thereof
CN113198988A (en) * 2021-04-07 2021-08-03 太原理工大学 High-efficiency heat exchange cooling roller capable of improving axial temperature and thermal deformation uniform distribution
CN116001161A (en) * 2023-01-17 2023-04-25 浙江凯阳新材料股份有限公司 Manufacturing equipment and process method of hydrolysis-resistant TPU film

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993478A (en) * 1990-03-16 1991-02-19 Battelle Development Corporation Uniformly-cooled casting wheel
DE4026075A1 (en) * 1990-08-17 1992-02-20 Sundwiger Eisen Maschinen CASTING WHEEL, ESPECIALLY FOR A ROLLING CASTING MACHINE
GB9100151D0 (en) * 1991-01-04 1991-02-20 Davy Distington Ltd Strip caster roll
JPH06182499A (en) * 1992-12-22 1994-07-05 Mitsubishi Heavy Ind Ltd Cooling roll in continuous casting apparatus and manufacture thereof
EP0680795A1 (en) * 1994-05-02 1995-11-08 Siemens Aktiengesellschaft In roll pins supported roll for a continuous casting installation producing metal strips
EP0687515B1 (en) * 1994-06-13 2000-09-20 Mitsubishi Jukogyo Kabushiki Kaisha Cooling drum for a continuous casting system and method for manufacturing the same
AUPN053695A0 (en) * 1995-01-13 1995-02-09 Bhp Steel (Jla) Pty Limited Casting roll
IT1276656B1 (en) * 1995-04-03 1997-11-03 Innocenti Eng Spa ROLLER FOR CONTINUOUS CASTING MOLD WITH COUNTER-ROTATING ROLLERS FOR THIN THICKNESS
FR2758282B1 (en) * 1997-01-16 1999-04-09 Usinor CYLINDER FOR A ROLLING OR CONTINUOUS CASTING INSTALLATION OF METALS
GB9710663D0 (en) * 1997-04-24 1997-07-16 Kvaerner Clecim Cont Casting A casting roll and roll stand
AT408199B (en) 1999-09-06 2001-09-25 Voest Alpine Ind Anlagen CASTING ROLLER
DE10059304A1 (en) * 2000-11-29 2002-06-06 Sms Demag Ag Casting roller for casting and / or supporting a casting strand, in particular for a two-roller casting machine
KR100490990B1 (en) * 2000-12-20 2005-05-24 주식회사 포스코 structure for cooling the roll in twin strip caster
CN1244424C (en) * 2000-12-21 2006-03-08 Sms迪马格股份公司 Casting roller with variable profile for casting metal strip in casting roller plant
CH696063A5 (en) * 2001-09-18 2006-12-15 Main Man Inspiration Ag Casting roll for a twin-roll casting machine.
CH695089A5 (en) 2001-09-18 2005-12-15 Main Man Inspiration Ag Casting roll for a twin-roll casting machine.
US7165962B2 (en) 2004-12-21 2007-01-23 Hanson Dana R Web handling roll stand
DE102006055769A1 (en) 2006-11-25 2008-05-29 Sms Demag Ag Casting roller with active profile control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035221B2 (en) * 1982-10-12 1985-08-13 石川島播磨重工業株式会社 Metal strip continuous casting method and device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592987A (en) * 1989-07-14 1997-01-14 Fata Hunter, Inc. System for a crown control roll casting machine
JPH11239850A (en) * 1998-02-19 1999-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cooling roll
WO2002005987A1 (en) * 2000-07-19 2002-01-24 Mitsubishi Heavy Industries, Ltd. Dual drum type continuous casting device and method for continuous casting
US7147033B2 (en) 2000-07-19 2006-12-12 Mitsubishi Heavy Industries, Ltd. Dual drum type continuous casting device and method for continuous casting
JP2003019544A (en) * 2001-07-04 2003-01-21 Nippon Steel Corp Method for controlling crown in cast strip
JP4535644B2 (en) * 2001-07-04 2010-09-01 新日本製鐵株式会社 Crown control method for ribbon slab
JP2010516467A (en) * 2006-01-26 2010-05-20 キャストリップ・リミテッド・ライアビリティ・カンパニー Twin roll casting machine
JP2007196260A (en) * 2006-01-26 2007-08-09 Ishikawajima Harima Heavy Ind Co Ltd Twin-roll casting machine
US9222160B2 (en) 2010-03-30 2015-12-29 Sumitomo Electric Industries, Ltd. Coil material and method for manufacturing the same
CN103611898A (en) * 2013-12-10 2014-03-05 青岛云路新能源科技有限公司 Manufacturing method for copper bush
CN112045156A (en) * 2020-09-16 2020-12-08 无锡天德金属制品有限公司 Roll sleeve structure for high-strength aluminum alloy casting and rolling and use method thereof
CN113198988A (en) * 2021-04-07 2021-08-03 太原理工大学 High-efficiency heat exchange cooling roller capable of improving axial temperature and thermal deformation uniform distribution
CN116001161A (en) * 2023-01-17 2023-04-25 浙江凯阳新材料股份有限公司 Manufacturing equipment and process method of hydrolysis-resistant TPU film

Also Published As

Publication number Publication date
JPH07121440B2 (en) 1995-12-25
DE3839110A1 (en) 1989-06-01
KR890007816A (en) 1989-07-06

Similar Documents

Publication Publication Date Title
JPH01133642A (en) Twin roll type continuous casting apparatus
US5887644A (en) Roll cooling structure for twin roll continuous caster
CN107000043B (en) Method and apparatus for continuously casting cast strip by controlling roll crown
US5996680A (en) Twin roll casting
CN110214060B (en) Casting roll and method for casting metal strip with crown control
CN101376164B (en) Control method of roll forming of twin-roll thin strip continuous casting cooling roll
US5592987A (en) System for a crown control roll casting machine
US8607848B2 (en) Method for casting metal strip with dynamic crown control
KR102469642B1 (en) Metal strip casting method with crown control
CN110944771A (en) Method for casting metal strip with edge control
WO1997009138A1 (en) Molten steel thin cast piece and method for producing the same and cooling drum for a thin cast piece continuous casting device
US2850776A (en) Roll constructions for continuous casting machines
US6619375B2 (en) Casting roll
JPH0299253A (en) Assembling type roll for continuous casting slab
JPS5956950A (en) Continuous casting method of metallic plate
GB2316639A (en) Cooling continuously cast metal strip
US4546816A (en) Method and apparatus of continuously casting hollow round billets with a hypocycloidal mandrel and an inside rolling process
CN118403898B (en) High-speed wide cast rolling equipment and method with cast roller partition temperature control function
JPH06590A (en) Twin roll continuous caster and method for cooling roll
JPS625813Y2 (en)
JPS58188551A (en) Procuction of clad steel plate
JPS61108454A (en) Cooling roll
RU2315682C1 (en) Roll-crystallizer of plants for continuous casting - rolling metals
JP2702491B2 (en) Cooling drum for continuous strip casting machine
JP2024097612A (en) Continuous casting rod and production method of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees