JPH01117363A - Vertical insulated gate field effect transistor - Google Patents

Vertical insulated gate field effect transistor

Info

Publication number
JPH01117363A
JPH01117363A JP62275261A JP27526187A JPH01117363A JP H01117363 A JPH01117363 A JP H01117363A JP 62275261 A JP62275261 A JP 62275261A JP 27526187 A JP27526187 A JP 27526187A JP H01117363 A JPH01117363 A JP H01117363A
Authority
JP
Japan
Prior art keywords
region
semiconductor region
drain
vertical
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275261A
Other languages
Japanese (ja)
Inventor
Noriyuki Takao
高尾 典行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62275261A priority Critical patent/JPH01117363A/en
Publication of JPH01117363A publication Critical patent/JPH01117363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a longitudinal IGFET wherein a parasitic transistor does not readily operate in the absence of an increase in ON-resistance by a method wherein a second semiconductor region of one conductivity type higher in impurity concentration than a first semiconductor region is formed on the lower section of a well region in contact with a drain region. CONSTITUTION:In contact with a drain region 6 positioned under a well region 2, a high-concentration second semiconductor region 1 is formed, which is same as the drain region 6 in conductivity type. In such a design, breakdown strength is lower in the second semiconductor region 1 than in the surface, which causes a breakdown current to flow not on the surface but through the second semiconductor region 1. No parasitic transistor operates because there is no current in a base resistor, which contributes to the prevention of a thermal runaway. There is no increase in ON-resistance because there is no change in the gate width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置分野に利用される。[Detailed description of the invention] [Industrial application field] The present invention is utilized in the field of semiconductor devices.

本発明は裏面にドレインを持つ縦型絶縁ゲート電界効果
トランジスタ(以下、縦型IGFETという。)に関し
、特に大電流の縦型IGFETに関する。
The present invention relates to a vertical insulated gate field effect transistor (hereinafter referred to as a vertical IGFET) having a drain on the back surface, and particularly to a large current vertical IGFET.

〔概要〕〔overview〕

本発明は、裏面にドレイン電極を有す縦型IGFETに
おいて、 ソース領域が形成されるドレイン領域とは反対導電型の
ウェル領域の下部の前記ドレイン領域と接する部分に、
前記ドレイン領域と同一の導電型で不純物濃度が前記ド
レイン領域より大なる半導体領域を形成することにより
、 オン抵抗を増加させることなく寄生トランジスタの動作
を防止できるようにしたものである。
The present invention provides, in a vertical IGFET having a drain electrode on the back surface, a portion in contact with the drain region below a well region of a conductivity type opposite to that of the drain region where the source region is formed.
By forming a semiconductor region having the same conductivity type as the drain region and a higher impurity concentration than the drain region, operation of the parasitic transistor can be prevented without increasing on-resistance.

〔従来の技術〕[Conventional technology]

従来の縦型ICFETの構造の一例を第6図に示す。 An example of the structure of a conventional vertical ICFET is shown in FIG.

第6図の従来例は、Nチャネル型の縦型IGFETを示
す。第6図において、2はドレイン領域となるN−エピ
タキシャル層6内に形成されたP゛ウエル領域、3はP
ベース領域、4はポリシリコンからなるゲート電極、5
はN゛ソース領域7は絶縁膜、8はソース電極、9はN
+基板および10はドレイン電極である。
The conventional example shown in FIG. 6 shows an N-channel vertical IGFET. In FIG. 6, 2 is a P well region formed in the N- epitaxial layer 6 which becomes a drain region, and 3 is a P well region.
a base region, 4 a gate electrode made of polysilicon, 5
is N, source region 7 is an insulating film, 8 is a source electrode, 9 is N
+substrate and 10 are drain electrodes.

この従来例の縦型IGFETにおいては、ドレイン電流
I、は、ソース電極8からソース領域5、ゲート電極4
下のチャネル領域およびドレイン領域を形成するN−エ
ピタキシャル層6を通り、N゛基板9を介してドレイン
電極10に流れる。
In this conventional vertical IGFET, the drain current I is from the source electrode 8 to the source region 5 to the gate electrode 4.
It flows through the N-epitaxial layer 6, which forms the underlying channel and drain regions, and via the N-substrate 9 to the drain electrode 10.

このような縦型IGFETは、高速および高耐圧でかつ
大電流が流せる特徴を生かして、モータ駆動などの大電
流のスイッチングに盛んに用いられている。
Such vertical IGFETs are widely used for switching large currents such as in motor drives, taking advantage of their characteristics of high speed, high voltage resistance, and ability to flow large currents.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前述したモータ駆動などの大電流のスイッチ
ング動作においては、第7図に示すように、コイルが負
荷となることが多いため、コイルに発生する逆起電力に
よる縦型IGFETの熱的破壊が問題となる。第7図に
示すように、縦型IGFETがオン状態からオフ状態に
移る際に、コイルに大きな起電力が発生し縦型IGFE
Tがブレークダウンして、コイルに蓄えられた磁気エネ
ルギーを解放しようとする。
By the way, as shown in Figure 7, in large current switching operations such as motor drive mentioned above, the coil often acts as a load, so the vertical IGFET may be thermally destroyed by the back electromotive force generated in the coil. It becomes a problem. As shown in Figure 7, when the vertical IGFET changes from the on state to the off state, a large electromotive force is generated in the coil, causing the vertical IGFET to switch from the on state to the off state.
T breaks down and attempts to release the magnetic energy stored in the coil.

通常、縦型IGFETでは、第6図でA点の方がB点よ
りも耐圧が低いため、ブレークダウン時のドレイン電流
Inは、第6図中の破線のような経路で流れる。このた
め寄生トランジスタTRのベース抵抗Rに電流が流れて
ベース電圧が上昇し、寄生トランジスタTRがオン状態
となって熱的破壊に至る。
Normally, in a vertical IGFET, the withstand voltage at point A in FIG. 6 is lower than at point B, so the drain current In at the time of breakdown flows along a path as indicated by the broken line in FIG. Therefore, a current flows through the base resistor R of the parasitic transistor TR, the base voltage rises, and the parasitic transistor TR is turned on, leading to thermal breakdown.

すなわち、従来の縦型IGFETでは、第6図のA点の
耐圧が低いため、寄生トランジスタTRがオンしやすく
なっており、寄生トランジスタTRの熱的暴走によって
、ブレークダウン時に流せる最大電流が制限される欠点
がある。特に耐圧が数十ボルトの縦型IGFETでは、
第6図のA点付近の空乏層がつながりにくいため、A点
の耐圧が低く影響が大きい。これを避けるために、ポリ
シリコンゲートの幅を狭くして空乏層がつながりやすく
する方法があるが、電流経路が狭くなるためにオン抵抗
が大きくなる欠点がある。
In other words, in the conventional vertical IGFET, the withstand voltage at point A in FIG. 6 is low, so the parasitic transistor TR is easily turned on, and thermal runaway of the parasitic transistor TR limits the maximum current that can flow during breakdown. There are some drawbacks. Especially for vertical IGFETs whose withstand voltage is several tens of volts,
Since the depletion layer near point A in FIG. 6 is difficult to connect, the withstand voltage at point A is low and the influence is large. To avoid this, there is a method of narrowing the width of the polysilicon gate to make the depletion layer more easily connected, but this method has the disadvantage that the current path becomes narrower and the on-resistance increases.

本発明の目的は、前記の欠点を除去することにより、オ
ン抵抗を増加させることなく、寄生トランジスタのオン
しにくい縦型IGFETを提供することにある。
An object of the present invention is to provide a vertical IGFET in which the parasitic transistor is difficult to turn on without increasing the on-resistance by eliminating the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ドレイン領域を形成する一導電型の第一半導
体領域と、この第一半導体領域内に形成された反対導電
型のウェル領域とを備えた縦型絶縁ゲート電界効果トラ
ンジスタにおいて、前記ウェル領域下部の前記ドレイン
領域に接する部分に一導電型で前記第一半導体領域より
大なる不純物濃度を有する第二半導体領域を形成したこ
とを特徴とする。
The present invention provides a vertical insulated gate field effect transistor comprising a first semiconductor region of one conductivity type forming a drain region and a well region of an opposite conductivity type formed in the first semiconductor region. The semiconductor device is characterized in that a second semiconductor region of one conductivity type and having a higher impurity concentration than the first semiconductor region is formed in a lower part of the region in contact with the drain region.

〔作用〕[Effect]

ウェル領域下部のドレイン領域に接して、前記ドレイン
領域と同じ導電型の高濃度不純物領域である第二半導体
領域が形成されているので、耐圧は表面部(第6図A点
)よりも前記第二半導体領域(第6図B点に相当)の方
が低くなり、ブレークダウン電流は前記表面部は通らず
に前記第二半導体領域を通して流れるようになる。
Since the second semiconductor region, which is a highly doped impurity region of the same conductivity type as the drain region, is formed in contact with the drain region at the bottom of the well region, the withstand voltage is higher than that of the surface region (point A in FIG. 6). The second semiconductor region (corresponding to point B in FIG. 6) is lower in temperature, and the breakdown current flows through the second semiconductor region without passing through the surface portion.

従って、寄生トランジスタはベース抵抗に電流が流れな
いでオンすることはなくなり熱暴走が防、止される。ま
たゲート幅はそのままなのでオン抵抗が大きくなること
もない。
Therefore, the parasitic transistor does not turn on without current flowing through the base resistor, and thermal runaway is prevented. Furthermore, since the gate width remains the same, the on-resistance does not increase.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例を示す模式的縦断面図で、
Nチャネル型の場合を示す。水弟−実施例は、N型高不
純物濃度(N゛)を有する半導体基板であるN゛基板9
上に形成された、ドレイン領域となるN型低不純物濃度
(N−)の第一半導体領域としてのN−エピタキシャル
層6と、このN−エピタキシャル層6の所定部分に形成
されたP゛ウェル領域2と、このP゛ウェル領域2の両
側に形成されたPベース領域3と、P+ウェル領域2の
両側に一部のPベース領域3を含めて形成されたN+ソ
ース領域5と、ゲート絶縁膜を介して形成されたポリシ
リコンからなるゲート電極4と、ゲート電極4を覆う絶
縁膜7と、ソース電極8と、N+基板9の下面に形成さ
れたドレイン電極10と、P+ウェル領域2の下部でド
レイン領域となるN″″″エピタキシヤル層6する部分
に形成された第二半導体領域としてのN″″領域1とを
備えている。
FIG. 1 is a schematic longitudinal sectional view showing a first embodiment of the present invention.
The case of N-channel type is shown. The example is an N-type substrate 9 which is a semiconductor substrate having a high impurity concentration (N).
An N-epitaxial layer 6 as a first semiconductor region of N-type low impurity concentration (N-) formed on the drain region and a P well region formed in a predetermined portion of this N-epitaxial layer 6. 2, a P base region 3 formed on both sides of this P well region 2, an N+ source region 5 formed including a part of the P base region 3 on both sides of the P+ well region 2, and a gate insulating film. the gate electrode 4 made of polysilicon formed through the gate electrode 4, the insulating film 7 covering the gate electrode 4, the source electrode 8, the drain electrode 10 formed on the lower surface of the N+ substrate 9, and the lower part of the P+ well region 2. An N'''' region 1 is formed as a second semiconductor region in a portion where an N'''' epitaxial layer 6 is formed as a drain region.

第2図は、第1図のY−Y’断面における不純物濃度分
布図で、不純物濃度分布の概要を示す。
FIG. 2 is an impurity concentration distribution diagram in the YY' cross section of FIG. 1, and shows an outline of the impurity concentration distribution.

ここでN゛領域1の不純物濃度は、表面部(第6図A点
)とN゛領域1とN−エピタキシャル層6との接合部(
第6図B点に相当)との耐圧差が10V以上になるよう
に選んである。
Here, the impurity concentration of the N′ region 1 is determined from the surface portion (point A in FIG. 6) and the junction between the N′ region 1 and the N− epitaxial layer 6 (point A in FIG. 6).
(corresponding to point B in FIG. 6) is selected so that the withstand voltage difference is 10 V or more.

第3図(a)および(ハ)は本第二実施例の製造方法を
示すもので、N゛領域1の形成工程における模式的縦断
面図を示す。
3(a) and 3(c) show the manufacturing method of the second embodiment, and show schematic longitudinal cross-sectional views in the process of forming the N′ region 1. FIG.

まず、第2図(a)に示すように、N+基板9上にN″
″″エピタキシヤル層6成した後、N−エピタキシャル
層6上に絶縁膜7を形成し、N+領域1を形成する位置
の絶縁膜7を選択的にエツチングして除去し、例えばリ
ンをイオン注入することによりN+領域lを形成する。
First, as shown in FIG. 2(a), N'' is placed on the N+ substrate 9.
After forming the epitaxial layer 6, an insulating film 7 is formed on the N- epitaxial layer 6, and the insulating film 7 at the position where the N+ region 1 is to be formed is selectively etched and removed, and ion implantation of, for example, phosphorus is performed. By doing so, an N+ region l is formed.

゛  次に、第3図(ハ)に示すように、ボロンをイオ
ン注入した後、押し込みを行ってP“ウェル領域2を形
成する。
Next, as shown in FIG. 3(c), boron ions are implanted and then pushed in to form a P" well region 2.

このようにして、役゛領域1を形成した後で、Pベース
領域3、N゛ソース領域5、ゲート電極4、ソース電極
8およびドレイン電極10を形成することで、第1図に
示す縦型IGFETが得られる。
In this way, after forming the active region 1, the P base region 3, the N source region 5, the gate electrode 4, the source electrode 8, and the drain electrode 10 are formed. An IGFET is obtained.

第4図は本発明の第二実施例を示す模式的縦断面図で、
Pチャネル型の場合を示す。本第二実施例は第1図の第
一実施例の場合とは、第二半導体領域としてのP+領域
11の形成方法が異なるだけで他は実質的に同様である
FIG. 4 is a schematic vertical sectional view showing a second embodiment of the present invention.
The case of P channel type is shown. The second embodiment is substantially the same as the first embodiment shown in FIG. 1 except for the method of forming the P+ region 11 as the second semiconductor region.

第5図(a)、(b)および(C)は本第二実施例の製
造方法を示すもので、P“領域11の形成工程における
模式的縦断面図である。
FIGS. 5(a), 5(b), and 5(C) show the manufacturing method of the second embodiment, and are schematic longitudinal sectional views in the process of forming the P'' region 11.

まず、第5図(a)に示すように、P゛基板19上にP
−エピタキシャル層16を形成し、その上面からマスク
を使用せずに全面にボロンをイオン注入し、押し込みを
行ってP+領域11を形成する。
First, as shown in FIG. 5(a), P is placed on the P substrate 19.
- Form the epitaxial layer 16, and form the P+ region 11 by implanting boron ions into the entire surface of the epitaxial layer 16 from its upper surface without using a mask.

次に、第5図(ハ)に示すように、全面にリンをイオン
注入して押し込みを行い、所定の厚さのP+領域11を
残して、他はP−エピタキシャル層16と同程度かそれ
よりやや高い不純物濃度を有するP″″補償エピタキシ
ャル層16aを形成する。
Next, as shown in FIG. 5(c), phosphorus is ion-implanted into the entire surface to push it in, leaving a P+ region 11 with a predetermined thickness, and the rest being the same or similar to the P- epitaxial layer 16. A P″″ compensation epitaxial layer 16a having a slightly higher impurity concentration is formed.

次に、第5図(C)に示すように、上面に絶縁膜17を
形成し、選択的にリンをイオン注入し押し込みを行い、
その底面がP゛領域11内に位置するようにN゛ウェル
領域12を形成する。
Next, as shown in FIG. 5(C), an insulating film 17 is formed on the upper surface, and phosphorus is selectively implanted and pushed.
N well region 12 is formed so that its bottom surface is located within P region 11 .

後は、Nベース領域3、P゛ソース領域15、ゲート電
極14、ソース電極18およびドレイン電極20を形成
することで、第4図に示す縦型IGFETが得られる。
After that, by forming the N base region 3, the P source region 15, the gate electrode 14, the source electrode 18, and the drain electrode 20, the vertical IGFET shown in FIG. 4 is obtained.

本第二実施例においては、電流経路の濃度が上がってオ
ン抵抗低減に効果があることと、P゛領域11の形成に
マスクが不要である利点がある。
The second embodiment has the advantage that the concentration of the current path is increased, which is effective in reducing the on-resistance, and that no mask is required to form the P' region 11.

本発明の特徴は、第1図および第2図において、それぞ
れN+領域1およびP′″領域11を設けたことにある
A feature of the present invention is that an N+ region 1 and a P'' region 11 are provided in FIGS. 1 and 2, respectively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ウェル領域の下
部にドレイン領域と同一導電型の高不純物濃度領域を形
成することにより、オン抵抗を上げることなく、寄生ト
ランジスタがオンしにくい縦型IGFETが得られ、そ
の効果は大である。
As explained above, according to the present invention, by forming a high impurity concentration region of the same conductivity type as the drain region under the well region, a vertical IGFET in which the parasitic transistor is difficult to turn on can be achieved without increasing the on-resistance. obtained, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す模式的縦断面図。 第2図は第1図のY−Y’断面における不純物濃度分布
図。 第3図(a)およびら)は本発明の第一実施例のN゛領
域1の製造工程を示す模式的縦断面図。 第4図は本発明の第二実施例を示す模式的縦断面図。 第5図(a)、(社)および(C)は第二実施例におけ
るP゛領域11の製造工程を示す模式的縦断面図。 第6図は従来例を示す模式的縦断面図。 第7図はその動作回路の説明図。 1・・・N+領領域2・・・P゛ウエル領域3・・・P
ベース領域、4.14・・・ゲート電極、5・・・N゛
ソース領域6・・・N−エピタキシャル層、7.17・
・・絶縁膜、8・・・ソース電極、9・・・N゛基板1
0.20・・・ドレイン電極、11・・・P゛領域12
・・・N゛ウエル領域13・・・Nベース領域、15・
・・P゛ソース領域16・・・P−エピタキシャル層、
16a・・・P−補償エピタキシャル層、19・・・P
+基板、■、・・・ドレイン電流、R・・・ベース抵抗
、TR・・・寄生トランジスタ、VIlls・・・ソー
スドレイン間電圧。 特許出願人 日本電気株式会社1.。 代理人  弁理士 井 出 直 孝 不−大劇汐υの千に物濃度分部 ′M 2 回 6 : N−エピ74%4 7 :肩囲り奨 9:N”JL板 フ 芹−芙材例〇二脛軒面図 M 3 図 11:P”領域         16二P−二ピタキ
ンヤム看12  :  r/ウシレ啼艶堵(16α:P
″″揃1富エピタキンヤ113: Nσ−入頒−(18
:ソー入電上114:ゲート電M        19
 : P”JU校15:ビソー又糟flA      
20: ドしイン電量爪二大罰例11 冒 4 回 IT :  p”預入16a:  P−編慣二ビタキン
マル112 :  N”ウェル慢Q     17:菜
り鴨明罠16 、P−エピタキン〒ル層   19゛ 
ρ”!第二大廁例の工程Fr面図 扇 5 回 2 P4ウエノ1.領域 3・P  −(−−ス4Iへ 箔 6 口 従来例の動作回路 W57 図
FIG. 1 is a schematic vertical sectional view showing a first embodiment of the present invention. FIG. 2 is an impurity concentration distribution diagram in the YY' cross section of FIG. FIGS. 3(a) and 3(a) are schematic vertical cross-sectional views showing the manufacturing process of the N' region 1 of the first embodiment of the present invention. FIG. 4 is a schematic vertical sectional view showing a second embodiment of the present invention. FIGS. 5A, 5C, and 5C are schematic vertical cross-sectional views showing the manufacturing process of the P' region 11 in the second embodiment. FIG. 6 is a schematic vertical sectional view showing a conventional example. FIG. 7 is an explanatory diagram of its operating circuit. 1...N+ territory area 2...P゛well area 3...P
Base region, 4.14... Gate electrode, 5... N source region 6... N- epitaxial layer, 7.17.
...Insulating film, 8...Source electrode, 9...N゛Substrate 1
0.20...Drain electrode, 11...P' region 12
...N well region 13...N base region, 15.
...P source region 16...P- epitaxial layer,
16a...P-compensation epitaxial layer, 19...P
+Substrate, ■,...drain current, R...base resistance, TR...parasitic transistor, VIlls...source-drain voltage. Patent applicant: NEC Corporation 1. . Agent Patent Attorney Nao Ide Takafu - Daigekishio υ's thousand concentration part'M 2 times 6: N-Epi 74% 4 7: Shoulder circumference recommendation 9: N''JL board Fusen - Fu material Example〇Two-legged eave plan M3 Figure 11: P” area 162P-Nipitakinyam view12: r/Usile eaves (16α:P
″″All 1 wealth epitakinya 113: Nσ-Iruri-(18
: Saw power input 114: Gate power M 19
: P”JU School 15: Biseau Matakasu flA
20: Two major punishments for power consumption nails example 11 Attack 4 times IT: p” deposit 16a: P-editing two bits and pieces 112: N” well arrogance Q 17: Narikamo Akira trap 16, P-epitarchine layer 19゛
ρ"! Process Fr side diagram of the second major example 5 times 2 P4 Ueno 1. Area 3・P - (--Foil to space 4I 6 Mouth Operation circuit of conventional example W57 Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)ドレイン領域を形成する一導電型の第一半導体領
域(6、16)と、この第一半導体領域内に形成された
反対導電型のウェル領域(2、12)とを備えた縦型絶
縁ゲート電界効果トランジスタにおいて、 前記ウェル領域下部の前記ドレイン領域に接する部分に
一導電型で前記第一半導体領域より大なる不純物濃度を
有する第二半導体領域(1、11)を形成したこと を特徴とする縦型絶縁ゲート電界効果トランジスタ。
(1) Vertical type comprising a first semiconductor region (6, 16) of one conductivity type forming a drain region and a well region (2, 12) of the opposite conductivity type formed within this first semiconductor region The insulated gate field effect transistor is characterized in that a second semiconductor region (1, 11) of one conductivity type and having a higher impurity concentration than the first semiconductor region is formed in a portion below the well region in contact with the drain region. Vertical insulated gate field effect transistor.
JP62275261A 1987-10-30 1987-10-30 Vertical insulated gate field effect transistor Pending JPH01117363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62275261A JPH01117363A (en) 1987-10-30 1987-10-30 Vertical insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275261A JPH01117363A (en) 1987-10-30 1987-10-30 Vertical insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPH01117363A true JPH01117363A (en) 1989-05-10

Family

ID=17552949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275261A Pending JPH01117363A (en) 1987-10-30 1987-10-30 Vertical insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPH01117363A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521792A (en) * 1991-07-10 1993-01-29 Mels Corp Zero-cross switching element
JP2001521281A (en) * 1997-10-17 2001-11-06 ハリス コーポレイション Method of manufacturing power semiconductor device having merged split well region and device manufactured by the method
WO2004061974A3 (en) * 2002-12-20 2004-09-23 Cree Inc Silicon carbide power mos field effect transistors and manufacturing methods
JP2005057049A (en) * 2003-08-04 2005-03-03 Renesas Technology Corp Semiconductor device and its manufacturing method
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9064840B2 (en) 2007-02-27 2015-06-23 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
JP2015233141A (en) * 2014-06-09 2015-12-24 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Power semiconductor device
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US10141302B2 (en) 2011-09-11 2018-11-27 Cree, Inc. High current, low switching loss SiC power module
US10153364B2 (en) 2011-09-11 2018-12-11 Cree, Inc. Power module having a switch module for supporting high current densities
US11171229B2 (en) 2011-09-11 2021-11-09 Cree, Inc. Low switching loss high performance power module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998557A (en) * 1982-11-27 1984-06-06 Nissan Motor Co Ltd Mos transistor
JPS62176168A (en) * 1986-01-30 1987-08-01 Nippon Denso Co Ltd Vertical mos transistor
JPS63299279A (en) * 1987-05-29 1988-12-06 Nissan Motor Co Ltd Vertical mosfet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998557A (en) * 1982-11-27 1984-06-06 Nissan Motor Co Ltd Mos transistor
JPS62176168A (en) * 1986-01-30 1987-08-01 Nippon Denso Co Ltd Vertical mos transistor
JPS63299279A (en) * 1987-05-29 1988-12-06 Nissan Motor Co Ltd Vertical mosfet

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521792A (en) * 1991-07-10 1993-01-29 Mels Corp Zero-cross switching element
JP2001521281A (en) * 1997-10-17 2001-11-06 ハリス コーポレイション Method of manufacturing power semiconductor device having merged split well region and device manufactured by the method
KR101020344B1 (en) * 2002-12-20 2011-03-08 크리 인코포레이티드 Silicon carbide power MOS field effect transistors and manufacturing methods
WO2004061974A3 (en) * 2002-12-20 2004-09-23 Cree Inc Silicon carbide power mos field effect transistors and manufacturing methods
JP2006511961A (en) * 2002-12-20 2006-04-06 クリー インコーポレイテッド Vertical JFET Restricted Silicon Carbide Power Metal Oxide Semiconductor Field Effect Transistor and Method for Manufacturing Vertical JFET Restricted Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor
US7221010B2 (en) 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
JP2013102245A (en) * 2002-12-20 2013-05-23 Cree Inc Vertical jfet limited silicon carbide power metal-oxide semiconductor field effect transistors, and method of manufacturing vertical jfet limited silicon carbide metal-oxide semiconductor field effect transistors
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7381992B2 (en) 2003-04-24 2008-06-03 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions
JP2005057049A (en) * 2003-08-04 2005-03-03 Renesas Technology Corp Semiconductor device and its manufacturing method
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7705362B2 (en) 2004-06-22 2010-04-27 Cree, Inc. Silicon carbide devices with hybrid well regions
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US9142663B2 (en) 2005-05-24 2015-09-22 Cree, Inc. Silicon carbide devices having smooth channels
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US8859366B2 (en) 2005-05-24 2014-10-14 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US8188483B2 (en) 2005-05-24 2012-05-29 Cree, Inc. Silicon carbide devices having smooth channels
US9064840B2 (en) 2007-02-27 2015-06-23 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US9865750B2 (en) 2011-09-11 2018-01-09 Cree, Inc. Schottky diode
US10141302B2 (en) 2011-09-11 2018-11-27 Cree, Inc. High current, low switching loss SiC power module
US10153364B2 (en) 2011-09-11 2018-12-11 Cree, Inc. Power module having a switch module for supporting high current densities
US11024731B2 (en) 2011-09-11 2021-06-01 Cree, Inc. Power module for supporting high current densities
US11171229B2 (en) 2011-09-11 2021-11-09 Cree, Inc. Low switching loss high performance power module
JP2015233141A (en) * 2014-06-09 2015-12-24 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Power semiconductor device
US9577080B2 (en) 2014-06-09 2017-02-21 Infineon Technologies Ag Power semiconductor device

Similar Documents

Publication Publication Date Title
US5274259A (en) High voltage transistor
JPH01117363A (en) Vertical insulated gate field effect transistor
JP2932429B2 (en) MOS field effect transistor and method of manufacturing the same
US5710455A (en) Lateral MOSFET with modified field plates and damage areas
US4866495A (en) High power MOSFET and integrated control circuit therefor for high-side switch application
KR100393201B1 (en) High voltage lateral DMOS transistor having low on-resistance and high breakdown voltage
JP2585331B2 (en) High breakdown voltage planar element
JP4772843B2 (en) Semiconductor device and manufacturing method thereof
EP2362422A2 (en) Vertical power semiconductor device and method of making the same
US8476697B1 (en) Short-channel silicon carbide power MOSFET
EP0097442A2 (en) Lateral bi-directional notch fet
EP0099175A2 (en) Split gate EFET
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
KR100317458B1 (en) Semiconductor component with linear current-to-voltage characteristics
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
SE513284C3 (en) Semiconductor component with linear current-to-voltage characteristics
US4574208A (en) Raised split gate EFET and circuitry
EP0205641A1 (en) High density, high voltage FET
EP0211972A1 (en) Raised gate efet
EP0222326A2 (en) Method of fabricating an improved insulated gate semiconductor device
JPH0855860A (en) Semiconductor device
JPS6180858A (en) Power mosfet
EP0776048B1 (en) Method of manufacturing a MOS device having a base region with high breakdown resistance
JP3489362B2 (en) Semiconductor device and manufacturing method thereof
JP3376294B2 (en) Semiconductor device