JPH01113155A - Cooling pad for belt type continuous casting machine - Google Patents
Cooling pad for belt type continuous casting machineInfo
- Publication number
- JPH01113155A JPH01113155A JP26775887A JP26775887A JPH01113155A JP H01113155 A JPH01113155 A JP H01113155A JP 26775887 A JP26775887 A JP 26775887A JP 26775887 A JP26775887 A JP 26775887A JP H01113155 A JPH01113155 A JP H01113155A
- Authority
- JP
- Japan
- Prior art keywords
- belt
- cooling
- cooling pad
- water
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 80
- 238000009749 continuous casting Methods 0.000 title claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000000498 cooling water Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 abstract description 12
- 239000002184 metal Substances 0.000 abstract description 7
- 230000002706 hydrostatic effect Effects 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/068—Accessories therefor for cooling the cast product during its passage through the mould surfaces
- B22D11/0685—Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting belts
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はベルト駆動方式の連続鋳造機の冷却パッドに係
り、特にスラブ鋳片の板厚を高精度に維持しつるベルト
式連続鋳造機の冷却バンドに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cooling pad for a belt-driven continuous casting machine, and particularly to a cooling pad for a hanging belt-type continuous casting machine that maintains the thickness of a slab slab with high precision. Concerning the cooling band.
ベルト駆動方式の連続鋳造機は、相対して回転している
一対の可動ベルトを幅方向の鋳型として該ベルト間に溶
融金属を注入し、前記可動ベルトの背面に接して設けら
れた冷却パッドで、溶融金属によりベルトに加えられる
圧力を支持し、同時に該冷却パッドの給水孔より供給さ
れる冷却水で前記可動ベルトを介して前記溶融金属を冷
却凝固させつつ、前記可動ベルトの間隙を板厚として形
成される鋳片を前記可動ベルトの回転と同期させつつ溶
融金属の注入側と反対の方向である下方へ引き抜くもの
である。A belt-driven continuous casting machine uses a pair of movable belts that rotate opposite each other as widthwise molds, and injects molten metal between the belts, using a cooling pad provided in contact with the back side of the movable belts. , while supporting the pressure applied to the belt by the molten metal and simultaneously cooling and solidifying the molten metal via the movable belt with cooling water supplied from the water supply hole of the cooling pad, the gap between the movable belts is reduced to a plate thickness. The cast slab formed as a molten metal is pulled downward in a direction opposite to the molten metal injection side in synchronization with the rotation of the movable belt.
このようなベルト式連鋳装置の冷却パッドとして、特開
昭60−第166145号公報明細書および特公昭59
−第29345号公報明細書に記載されている、冷却水
流路に設けたリブ部材あるいは冷却水ガイド部材により
可動ベルトを接触支持する従来構造の冷却パッドが知ら
れているが、このような構造の冷却パッドにおいては前
記リブ部材あるいは冷却水ガイド部材と可動ベルトとの
接触による可動ベルト摩耗およびこの突出接触部での可
動ベルト冷却能力低下に伴うホットスポット発生が可動
ベルト損傷の原因になり易いことに対する考慮が充分で
はなかった。As a cooling pad for such a belt-type continuous casting device, Japanese Patent Application Publication No. 166145/1983 and Japanese Patent Publication No. 59/1989
- A cooling pad with a conventional structure in which a movable belt is supported in contact with a rib member provided in a cooling water flow path or a cooling water guide member is known, which is described in the specification of Publication No. 29345. In the cooling pad, the movable belt is abraded due to the contact between the rib member or the cooling water guide member and the movable belt, and hot spots occur due to the decrease in the movable belt cooling ability at this protruding contact area, which can easily cause damage to the movable belt. Not enough consideration was given.
これに対し、特開昭60−第129259号公報に記載
の装置においては、溶鋼静圧に釣り合うように冷却パッ
ドから静水圧をかけ、可動ベルトを浮上させるようにし
ている。On the other hand, in the apparatus described in Japanese Patent Application Laid-Open No. 129259/1980, hydrostatic pressure is applied from a cooling pad to balance the static pressure of molten steel, thereby floating the movable belt.
しかし、上記特開昭60−第129259号公報記載の
方式では冷却パッドの給水孔と排水孔との間に流動抵抗
調節機構がないので、上下方向(ベルト移動方向)の位
置によって異なる値をもつ溶鋼静圧に前記静水圧を釣り
合わせるために、排水孔部に絞りを設けたり、給水孔お
よび排水孔の大きさと流路距離および給水流量を冷却パ
ッドの上下方向の位置によって変化させることにより対
応していたが、可動ベルト冷却のための給水流量と可動
ベルト浮上のための静水圧とのバランスをとることが難
しい。しかもこの冷却−浮上系は、冷却パッドの同じ高
さに設けられている複数の給水孔が共通の給水へラグ−
につながっているので、可動ベルトの幅方向の位置によ
って冷却水流量のアンバランスが生じて可動ベルl−の
冷却パッド面からの浮上量が変動し、可動ベルトが変形
しやすく、−変度形すると静水圧の作用により更に可動
ベルトが変形する不安定な系となる場合がある。However, in the method described in JP-A-60-129259, there is no flow resistance adjustment mechanism between the water supply hole and the drain hole of the cooling pad, so the value varies depending on the position in the vertical direction (belt movement direction). In order to balance the hydrostatic pressure with the static pressure of molten steel, this can be done by providing a restriction in the drainage hole, or by changing the size and flow path distance of the water supply hole and drainage hole, as well as the water supply flow rate, depending on the vertical position of the cooling pad. However, it is difficult to balance the water supply flow rate for cooling the movable belt with the hydrostatic pressure for floating the movable belt. Moreover, this cooling-floating system has multiple water supply holes provided at the same height of the cooling pad that lug to a common water supply.
Since the position of the movable belt in the width direction causes an imbalance in the cooling water flow rate, the floating amount of the movable bell l- from the cooling pad surface fluctuates, and the movable belt is easily deformed. This may result in an unstable system in which the movable belt further deforms due to the action of hydrostatic pressure.
一方、可動ベルトの変形を少なくするために、冷却水に
よって可動ベルトと冷却パッドの間に形成されろ水膜の
厚みを小さくして水膜剛性(水膜厚を一定に保持しよう
とする力)を高くしようとすると、水膜が薄くなるにつ
れて流動抵抗が増加して冷却水量が急激に減少し、かつ
この水膜を形成する可動ベルトと冷却パッドとの平行部
を流れる冷却水の流れが、乱流から遷移領域又は層流領
域の流れとなり、可動ベルトと冷却水との間の熱伝達率
が低下し・て可動ベルト冷却性能が低下するので水膜剛
性を高めるにも限界があった。On the other hand, in order to reduce the deformation of the movable belt, the thickness of the water film formed between the movable belt and the cooling pad by cooling water is reduced to increase water film rigidity (the force that tries to keep the water film thickness constant). When trying to increase the water film, the flow resistance increases as the water film becomes thinner, and the amount of cooling water decreases rapidly. The flow changes from a turbulent flow to a transition region or a laminar flow region, and the heat transfer coefficient between the movable belt and the cooling water decreases, resulting in a decrease in the movable belt cooling performance, so there is a limit to increasing the water film rigidity.
しかもこの可動ベルトは、信頼性の面から頻繁に交換す
る消耗品として取扱われるので可動ベルトを加工して熱
伝達率向上を図る方法は経済的に不利である。In addition, this movable belt is treated as a consumable item that must be replaced frequently in terms of reliability, so a method of processing the movable belt to improve the heat transfer coefficient is economically disadvantageous.
また特開昭61−第37355号公報記載の発明のごと
く冷却パッドの給水孔の出口を帯状の凹部で連結したり
、特開昭59−第29345号公報記載の発明のごとく
冷却パッドに排水用の溝を可動ベルト幅方向に設けたの
みではベルトを浮上させることは難しく、しかも可動ベ
ルトと冷却パッドとの間隙を通って両サイドに冷却水が
流出するサイドリーク量が多くなるという欠点があった
。Also, as in the invention described in JP-A No. 61-37355, the outlet of the water supply hole of the cooling pad is connected with a strip-shaped recess, or as in the invention described in JP-A-59-29345, the cooling pad is provided with a drainage hole. If only grooves are provided in the width direction of the movable belt, it is difficult to levitate the belt, and there is also the disadvantage that there is a large amount of side leakage in which cooling water flows out to both sides through the gap between the movable belt and the cooling pad. Ta.
本発明の目的は、上述の可動ベルトの摩耗ならびに変形
を防止するとともに可動ベルトの均一な浮上と均一冷却
特性とを同時に満足するベルト式連鋳機の冷却パッドを
提供するにある。更に、可動ベルトの摩耗と変形を防止
し、可動ベルトの均一な浮上と均一冷却性能を満足する
とともに可動ベルトと冷却パッドとの隙間から幅方向へ
冷却水が洩れる量を少なくしたベルト式連鋳機の冷却パ
ッドを提供することにある。An object of the present invention is to provide a cooling pad for a belt-type continuous casting machine that prevents the abrasion and deformation of the movable belt described above and simultaneously satisfies uniform floating of the movable belt and uniform cooling characteristics. Furthermore, belt type continuous casting prevents wear and deformation of the movable belt, satisfies uniform floating of the movable belt and uniform cooling performance, and reduces the amount of cooling water leaking in the width direction from the gap between the movable belt and the cooling pad. Our goal is to provide cooling pads for machines.
上記の課題は、幅方向の鋳型を形成する一対の可動ベル
トそれぞれの背面を、給水孔から排水孔へ流れる冷却水
流からなる水膜を介して支持するベルト式連鋳機の冷却
パッドにおいて、前記冷却パッドの前記可動ベルトに対
向する面に前記冷却水の流れ方向に対して横方向に延在
し、かつ厚みが前記水膜の厚みを超えない帯状の突起を
備えたベルト式連鋳機の冷却パッドにより達成される。The above problem is solved in the cooling pad of a belt-type continuous casting machine that supports the back side of each of a pair of movable belts forming a mold in the width direction via a water film made of a cooling water flow flowing from a water supply hole to a drainage hole. A belt-type continuous casting machine comprising a belt-shaped protrusion extending transversely to the flow direction of the cooling water and having a thickness not exceeding the thickness of the water film on a surface of the cooling pad facing the movable belt. This is achieved by cooling pads.
また上記の他の課題は、前記帯状の突起を備え、かつ前
記帯状の突起の間に、給水孔1個につき少なくとも1個
の可動ベルトの幅方向に対して横方向に延在し、かつ厚
みが前記水膜の厚みを超えない第2の帯状の突起を備え
たベルト式連鋳機の冷却パッドにより達成される。The other problem described above is that the belt-shaped protrusions are provided, and that at least one of the belt-shaped protrusions extends transversely to the width direction of the movable belt for each water supply hole, and that the belt-shaped protrusions have a thickness. is achieved by a cooling pad of a belt caster equipped with a second band-shaped protrusion whose thickness does not exceed the thickness of the water film.
本発明は、冷却パッドに、可動ベルトを浮上させている
水膜厚みより厚みの小さい帯状の突起を冷却水の流れに
対して横方向に延在させたので、前記突起とベルトが接
触してベルトの摩耗を生ずることがなく、水膜の厚みを
小さくして水膜剛性を大きくし、可動ベルトの均一な浮
上と、冷却水流のアンバランス等によるベルト変形の低
減を行っても、前記突起により冷却水流の乱流化が促進
されて熱伝達率が向上するので、冷却能力の低下は生じ
ない。In the present invention, belt-shaped projections having a thickness smaller than the water film that levitates the movable belt are extended in a direction transverse to the flow of cooling water on the cooling pad, so that the projections and the belt are in contact with each other. Even if the belt does not wear out, the water film thickness is reduced, the water film rigidity is increased, the movable belt is floated uniformly, and belt deformation due to unbalanced cooling water flow is reduced. This promotes the turbulence of the cooling water flow and improves the heat transfer coefficient, so there is no reduction in cooling capacity.
更に本発明は、前記帯状の突起の間に、ベルトの幅方向
に対して横方向に延在し、厚みが前記水膜の厚みを超え
ない第2の帯状の突起を備えたので、冷却水流に対して
横方向に延在する前記帯状の突起による可動ベルト幅方
向に沿う冷却水の流れが防がれ、可動ベルトと冷却パッ
ドの間から冷却水が幅方向に漏れるサイドリーク量が低
減される。Furthermore, the present invention is provided with a second belt-shaped projection extending transversely to the width direction of the belt and having a thickness not exceeding the thickness of the water film between the belt-shaped projections, so that the cooling water flow is reduced. The band-shaped protrusions extending laterally to the movable belt prevent the cooling water from flowing along the width direction of the movable belt, and the amount of side leakage of cooling water leaking in the width direction from between the movable belt and the cooling pad is reduced. Ru.
以下本発明の一実施例を図面を用いて詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.
第1図に示された双ベルト式連続鋳造機は、タンデイツ
シュ1内の溶鋼2をノズル2を経て、対向する一組の可
動ベルト4および該可動ベルト4の幅方向端部に対向し
て設けられた一組の短片5で形成される鋳型内に注入し
、前記可動ベルト4の溶鋼と接する面の背面に設けられ
た冷却パッド6から噴出される冷却水によって7s鋼を
冷却凝固させ、ガイドローラ7とともに回転する前記可
動ベルト4と同期した鋳片8は鋳型の下方に取り出す構
成となっている。The twin-belt continuous casting machine shown in FIG. The 7s steel is injected into a mold formed by a pair of short pieces 5, and is cooled and solidified by cooling water jetted from a cooling pad 6 provided on the back of the surface of the movable belt 4 that contacts the molten steel. The slab 8, which is synchronized with the movable belt 4 rotating together with the roller 7, is taken out below the mold.
この連続鋳造機においては、溶鋼静圧が可動ベルトに加
おるため、この溶鋼静圧と釣り合うように可動ベルト4
の背面に加圧冷却水を冷却水給水孔9から噴出させて静
水圧を加え、可動ベルト4と冷却パッド6との間に水膜
10を形成せしめ該可動ベルト4と前記冷却パッド6の
間に隙間を保っている。In this continuous casting machine, the static pressure of molten steel is applied to the movable belt, so the movable belt 4 is
Pressurized cooling water is jetted out from the cooling water supply hole 9 on the back side of the movable belt 4 and the cooling pad 6 to form a water film 10 between the movable belt 4 and the cooling pad 6 by applying hydrostatic pressure. A gap is maintained between the two.
第2図および第3図は前記冷却パッドを詳細に示したも
ので、前記給水孔9は、可動ベルト4と冷却パッド6と
の間の水膜10の厚みと溶鋼静圧および冷却水量などに
より決定される必要最小限の間隔をもって冷却パッド6
上に前記可動ベルトの幅方向に平行、かつベルト移動方
向に所定の間隔をおいて設けられた直線上に列をなして
配置され、一般的にはベルト幅方向における給水孔間隔
がベルト移動方向における給水孔間隔より狭くなってい
る。給水孔9は冷却パッド6内の給水ヘッダー11と連
通しており、該給水ヘッダー11は機外の給水ポンプ(
図示せず)に接続されている。FIGS. 2 and 3 show the cooling pad in detail, and the water supply hole 9 is formed depending on the thickness of the water film 10 between the movable belt 4 and the cooling pad 6, the static pressure of molten steel, the amount of cooling water, etc. Cooling pad 6 with the determined minimum interval
The water supply holes are arranged in a row on a straight line that is parallel to the width direction of the movable belt and spaced at a predetermined interval in the belt movement direction, and generally the water supply holes are arranged in a row in the belt width direction in the belt movement direction. The spacing between the water supply holes is narrower than that in . The water supply hole 9 communicates with a water supply header 11 inside the cooling pad 6, and the water supply header 11 is connected to a water supply pump (
(not shown).
また、排水孔12は給水孔9の列の間に同様にべルト幅
方向の列をなして配置され、かつ、排水流路13と連通
している。本発明に係る乱流促進のための帯状の突起は
、冷却パッド6表面の各々の給水孔9と排水孔12との
間に各3個ずつ、可動ベルト4の幅方向に対し平行に配
置された帯状突起部材16からなり、偏流防止のための
第2の帯状の突起は、帯状突起部材16相互の間および
給水孔9相互の間それぞれに少なくとも給水孔1個に対
し一つは設けられたベルト幅方向に対して横方向に延在
する断続帯状突起部材18からなっている。また、これ
らの突起部材16.18は、前記水膜10の厚みよりも
薄い部材で作られており、ベルトが直接この突起部材1
6に接触しないようになっている。更に前記帯状突起部
材16と可動ベルト4とにより形成される冷却水の上下
方向流路断面積が前記給水孔9の流路断面積をベルト幅
方向に列をなして並ぶ給水孔の一列に対しすべて加算し
た給水孔群9′の冷却水流路総断面積よりも大きく、か
つ、前記排水孔12の流路断面積をベルト幅方向に沿っ
て列をなして並ぶ排水孔の一列に対しすべての加算した
排水孔群12′の冷却水流路総断面積よりも小さくなる
ように設定しである。Further, the drain holes 12 are similarly arranged in a row in the belt width direction between the rows of the water supply holes 9, and communicate with the drain flow path 13. Three belt-shaped protrusions for promoting turbulent flow according to the present invention are arranged parallel to the width direction of the movable belt 4 between each water supply hole 9 and drain hole 12 on the surface of the cooling pad 6. At least one second band-shaped projection for preventing drifting is provided for each water supply hole between each of the band-like projection members 16 and between each of the water supply holes 9. It consists of an intermittent band-shaped protrusion member 18 extending transversely to the belt width direction. Further, these projecting members 16 and 18 are made of a material thinner than the thickness of the water film 10, and the belt is directly connected to the projecting members 1.
6 so as not to come into contact with it. Furthermore, the vertical cross-sectional area of the cooling water formed by the band-like projection member 16 and the movable belt 4 is larger than the cross-sectional area of the water supply hole 9 in the vertical direction relative to one row of water supply holes arranged in a row in the belt width direction. It is larger than the total cross-sectional area of the cooling water flow path of the water supply hole group 9' added together, and the flow path cross-sectional area of the drain hole 12 is set to be larger than the total cross-sectional area of the cooling water flow path of the water supply hole group 9', and the flow path cross-sectional area of the drain hole 12 is set to be larger than the total cross-sectional area of the cooling water flow path of the water supply hole group 9'. It is set to be smaller than the total cross-sectional area of the cooling water flow path of the drain hole group 12'.
次に、本実施例における作用を説明する。給水ポンプ(
図示せず)により給水される加圧冷却水は、給水孔9よ
り溶鋼静圧に釣り合う圧力をもって噴出されて、可動ベ
ルト4を前記冷却パッド6の表面40から帯状突起16
および第2の帯状突起18の高さよりも高く浮上させ、
可動ベルト4と冷却パッド6表面に設けられた帯状突起
16とで形成された流路を通りつつ、可動ベルト4を冷
却した後、排水孔12を経て、排水流路13より機外へ
排出される。したがって、従来の連続鋳造機のように、
ベルト4と冷却パッド表面の突出物とが接触することが
ないため、ベルトが摩耗することもなく、また、冷却水
とベルトとの間の熱伝達率がこの帯状の突起16の乱流
促進効果により高くなり、ベルト冷却性能が向上する。Next, the operation of this embodiment will be explained. Water pump (
The pressurized cooling water supplied by the cooling pad (not shown) is ejected from the water supply hole 9 with a pressure that balances the static pressure of the molten steel, and moves the movable belt 4 from the surface 40 of the cooling pad 6 to the strip protrusion 16.
and floating higher than the height of the second band-shaped projection 18,
After cooling the movable belt 4 while passing through a flow path formed by the movable belt 4 and a belt-shaped protrusion 16 provided on the surface of the cooling pad 6, the water is discharged to the outside of the machine from a drainage flow path 13 through a drainage hole 12. Ru. Therefore, like a traditional continuous casting machine,
Since the belt 4 and the protrusions on the surface of the cooling pad do not come into contact with each other, the belt does not wear out, and the heat transfer coefficient between the cooling water and the belt is reduced by the turbulent flow promoting effect of the band-shaped protrusions 16. This increases the belt cooling performance.
しかも。Moreover.
従来装置のリブ部材あるいは冷却水ガイド部材に見られ
るようにベルトとの接触による突出接触部でのベルト冷
却能力低下に伴うベルトホットスポット発生を防止し、
より信頼性の高い連鋳機とすることができる。This prevents the occurrence of belt hot spots due to a decrease in belt cooling ability at protruding contact parts caused by contact with the belt, as seen in the rib members or cooling water guide members of conventional devices.
A more reliable continuous casting machine can be achieved.
また、本実施例では、帯状突起16と前記可動ベルト4
とにより形成される冷却水流路断面積が、前記給水孔群
9′の冷却水流路総断面積よりも大きく、かつ、前記排
水孔群12′の冷却水流路総断面積よりも小さくなるよ
うに設定しであるので、ベルト移動方向(連鋳機高さ方
向)の位置により異なる溶鋼静圧に冷却水の静水圧を釣
り合わせるとき、排水孔12に絞りを設けなくとも、前
記帯状の突起16による流動抵抗分布と水膜厚み10を
小さい値に選定して釣り合わせ、ベルト4の変形に対す
る復元力を大きくすることによりベルトの変形を防止で
きるとともに、水膜一定保持力(水膜剛性)の強い冷却
パッドを提供でき慝。Further, in this embodiment, the belt-like projection 16 and the movable belt 4
The cross-sectional area of the cooling water flow path formed by the cooling water flow path is larger than the total cross-sectional area of the cooling water flow path of the water supply hole group 9' and smaller than the total cross-sectional area of the cooling water flow path of the drain hole group 12'. Therefore, when balancing the hydrostatic pressure of the cooling water with the static pressure of molten steel, which varies depending on the position in the belt movement direction (continuous caster height direction), the strip-shaped protrusion 16 By selecting a small value for the flow resistance distribution and the water film thickness 10 to increase the restoring force against deformation of the belt 4, deformation of the belt can be prevented. We can provide a strong cooling pad.
本実施例においては、水膜厚さを減じて水膜剛性を高め
、その結果冷却水流量を減らしても、帯状の突起16の
可動ベルト対向面乱流促逼効果により、冷却水と可動ベ
ルトとの間の熱伝達率が著しく向上するので、高水膜剛
性と高冷却能力がともに得られる。高水膜剛性が得られ
るから可動ベルト4の変形が小さく、板厚精度のよい鋳
片を生産する連鋳機が得られる。In this embodiment, even if the water film thickness is increased to increase the water film rigidity and the cooling water flow rate is reduced as a result, the cooling water and the movable belt are Since the heat transfer coefficient between the two is significantly improved, both high water film rigidity and high cooling capacity can be obtained. Since high water film rigidity is obtained, the deformation of the movable belt 4 is small, and a continuous casting machine that produces slabs with good plate thickness accuracy can be obtained.
また鋳片幅方向の可動ベルトの変形に対しても。Also against deformation of the movable belt in the slab width direction.
本実施例においては、ベルト幅方向に対して横方向に延
在して冷却水のベルト幅方向の偏流を防止する第2の帯
状の突起が設けられているので、可動ベルト幅方向への
冷却水流抵抗が大きくなり、給水孔から噴出された冷却
水の可動ベルト幅方向へ偏流量が少なくなり、かつ、該
可動ベルトの幅方向端部へ流出するサイドリーグ量も少
なくなる。In this embodiment, since the second belt-shaped protrusion is provided which extends in the transverse direction to the belt width direction and prevents the cooling water from drifting in the belt width direction, cooling in the movable belt width direction is provided. The water flow resistance is increased, the amount of cooling water jetted from the water supply hole is reduced in the width direction of the movable belt, and the amount of side leakage flowing to the ends of the movable belt in the width direction is also reduced.
仮に可動ベルトと冷却パッド表面40との間の距離が、
可動ベルト幅方向で変動したとしても、給水孔9から噴
出される冷却水の静水圧が給水ヘッダ11により一定に
保持され、しかも給水孔9が冷却水流路断面の恐縮流部
となっている関係上、可動ベルト4にかかる溶鋼静圧に
より変形した該可動ベルトを復元する力が大きくなり、
前記可動ベルトを幅方向に均一に浮上させ、冷却する能
力が大幅に向上した。If the distance between the movable belt and the cooling pad surface 40 is
Even if the movable belt changes in the width direction, the hydrostatic pressure of the cooling water jetted from the water supply hole 9 is kept constant by the water supply header 11, and the water supply hole 9 is a small flow part of the cross section of the cooling water flow path. Above, the force for restoring the deformed movable belt due to the static pressure of molten steel applied to the movable belt 4 increases;
The ability to uniformly levitate the movable belt in the width direction and cool it has been greatly improved.
次に可動ベルト移動方向の該可動ベルト変形と復元力に
つき説明する。第4図は従来のベルト式連続鋳造機にお
ける冷却パッドの冷却水静水圧分布(実線)と溶鋼静圧
分布(破線)を示したものである。従来の連鋳機におい
ては冷却水の静水圧を溶鋼静圧に釣り合わせるために排
水孔径を縮小して排水孔部の静水圧を高めて、実線のよ
うな圧力分布となるように設計されていた。この場合、
ベルト4の該ベルト移動方向の形状が何らかの原因によ
り変形すると、排水孔合計断面積が給水孔合計断面積よ
り絞られているため、変形量の大きさにより、排水孔部
圧力が大きく変動し、変形を更に助長させる場合があり
、鋳片の板厚が精度よく保持されないばかりか、冷却水
流路が塞がれベルト温度が上昇しベルト4が焼付く場合
があった。Next, the deformation and restoring force of the movable belt in the moving direction of the movable belt will be explained. FIG. 4 shows the cooling water hydrostatic pressure distribution (solid line) and the molten steel static pressure distribution (broken line) of the cooling pad in a conventional belt-type continuous casting machine. Conventional continuous casters are designed to reduce the diameter of the drainage hole and increase the hydrostatic pressure at the drainage hole in order to balance the hydrostatic pressure of the cooling water with the static pressure of molten steel, resulting in a pressure distribution like the solid line. Ta. in this case,
If the shape of the belt 4 in the belt movement direction is deformed for some reason, the total cross-sectional area of the drain holes is narrower than the total cross-sectional area of the water supply holes, so the pressure at the drain hole portion will vary greatly depending on the amount of deformation. In some cases, the deformation is further promoted, and not only is the plate thickness of the slab not maintained accurately, but the cooling water flow path is blocked, the belt temperature rises, and the belt 4 may seize.
これに対し、第5図は本発明による静水圧分布を示した
もので1本発明の場合、ベルト4を支持するのは冷却パ
ッド6の表面に点在する給水孔部であり、排水孔部で静
圧を保持する必要がないため、静水圧は第5図の実線で
示した分布となり、ベルト4が多少変形しても静水圧分
布はベルト4を平衡位置まで回復させるように作用し、
ベルト変形量を助長させることなく、ベルト変形量を最
小限にすることができる。On the other hand, FIG. 5 shows the hydrostatic pressure distribution according to the present invention. In the case of the present invention, the belt 4 is supported by the water supply holes scattered on the surface of the cooling pad 6, and the water drain holes are Since there is no need to maintain static pressure at , the hydrostatic pressure has a distribution shown by the solid line in Figure 5, and even if the belt 4 is slightly deformed, the hydrostatic pressure distribution acts to restore the belt 4 to the equilibrium position.
The amount of belt deformation can be minimized without increasing the amount of belt deformation.
また、第6図および第7図は本発明の第2の実施例を示
したものである。第2の実施例は、冷却パッド6の給水
孔9と排水孔12との間に溝21が設けられ、該溝21
の中に乱流促進用の帯状の突起16と、少なくとも給水
孔1個に対し一つの断続帯状突起部材23からなる偏流
防止のための第2の帯状の突起とを備えたもので、前記
第1の実施例の帯状の突起16および第2の帯状の突起
18と全く同じ機能と効果を有する。Further, FIGS. 6 and 7 show a second embodiment of the present invention. In the second embodiment, a groove 21 is provided between the water supply hole 9 and the drainage hole 12 of the cooling pad 6.
A belt-shaped protrusion 16 for promoting turbulent flow and a second belt-shaped protrusion for preventing drifting consisting of one intermittent strip-shaped protrusion member 23 for at least one water supply hole are provided in the water supply hole. It has exactly the same functions and effects as the band-shaped projection 16 and the second band-shaped projection 18 of the first embodiment.
更に、第8図に示した第3の実施例は、第2図に示した
可動ベルト幅方向に連続している帯状突起部材16の代
りに、断続帯状突起部材30を設けたものであり、前記
帯状の突起16とほぼ同じ機能と効果を有する。この場
合は、むしろ、ベルト移動方向の流動抵抗が少なくなる
ので、前記偏流防止のための第2の帯状の突起18を省
略できる場合もあり得る。更に、第8図に示したごとく
、排水孔31をこのようにスリット状にしてさらに排水
の流動抵抗を小さくしてもよい。Furthermore, in the third embodiment shown in FIG. 8, an intermittent band-like protrusion member 30 is provided in place of the band-like protrusion member 16 that is continuous in the width direction of the movable belt shown in FIG. It has almost the same function and effect as the band-shaped projection 16. In this case, since the flow resistance in the belt movement direction is rather reduced, the second band-shaped protrusion 18 for preventing the drifting flow may be omitted in some cases. Furthermore, as shown in FIG. 8, the drain hole 31 may be formed into a slit shape to further reduce the flow resistance of the drain.
第9図は、乱流促進のための帯状の突起を、歪型突起部
材35の集合体として形成した第4の実施例を示し、こ
の歪型突起部材35は冷却パッド6の表面に斜めに溝を
多数・タスキ掛けに切削することにより製作できるので
、パッド製作費を安価 ・にできる効果がある。ベル
ト冷却浮上の性能はこの溝の大きさと深さを変えること
により乱流促進および偏流防止効果をもたせることがで
きるので、本実施例も前記第1の実施例とほぼ同様な機
能を有する。FIG. 9 shows a fourth embodiment in which a band-shaped protrusion for promoting turbulent flow is formed as an assembly of distorted protrusion members 35, and the distorted protrusion members 35 are arranged diagonally on the surface of the cooling pad 6. Since it can be manufactured by cutting multiple grooves in a row, it has the effect of reducing pad manufacturing costs. The performance of belt cooling flotation can be improved by changing the size and depth of this groove to promote turbulence and prevent drift, so this embodiment also has almost the same function as the first embodiment.
本発明によれば、ベルト式連鋳機の冷却パッドの可動ベ
ルトと対向する面に、冷却水の流れ方向に対して横方向
に延在し、かつ厚みが水膜の厚みを超えない帯状の突起
を備えたので、水膜厚を小さくして、水膜剛性を高めて
可動ベルトを精度よく均一に浮上させることが可能とな
り、可動ベルト変形を低減させ、鋳片の板厚精度を向上
させる効果がある。According to the present invention, on the surface of the cooling pad of a belt-type continuous casting machine facing the movable belt, a belt-shaped belt extending transversely to the flow direction of the cooling water and having a thickness not exceeding the thickness of the water film is provided. Equipped with protrusions, it is possible to reduce the water film thickness and increase the water film rigidity, allowing the movable belt to float accurately and uniformly, reducing movable belt deformation and improving slab thickness accuracy. effective.
更に、前記帯状の突起に加えて冷却水の可動ベルト幅方
向の偏流を防ぐ第2の帯状の突起を備えたので、前述の
効果に加え、冷却水の可動ベルト幅方向端部からの漏出
量を低減させ、冷却水ポンプの動力使用量を低減させる
効果がある。Furthermore, in addition to the band-shaped protrusions, a second band-shaped protrusion is provided to prevent the cooling water from drifting in the width direction of the movable belt, so in addition to the above-mentioned effect, the amount of leakage of the cooling water from the ends of the movable belt in the width direction is reduced. This has the effect of reducing the amount of power used by the cooling water pump.
第1図は本発明の第1の実施例を示す縦断面図で、第2
図は第1図の冷却パッドの詳細図で、第3図は第2図の
A−A線に沿う断面図で、第4図は従来のベルト式連鋳
機の静水圧分布を示す説明図で、第5図は本発明を適用
した連鋳機の静水圧分布を示す説明図で、第6図は本発
明の第2の実施例を示す冷却パッド詳細図で、第7図は
第6図のA−A線に沿う断面図で、第8図は本発明の第
3の実施例を示す図で、第9図は本発明の第4の実施例
を示す冷却パッド詳細図である。
4・・・可動ベルト、6・・・冷却パッド、9・・・給
水孔、12・・・排水孔、16・・・帯状の突起、18
・・・第2の帯状の突起。FIG. 1 is a vertical sectional view showing the first embodiment of the present invention, and the second embodiment
The figure is a detailed view of the cooling pad in Figure 1, Figure 3 is a sectional view taken along line A-A in Figure 2, and Figure 4 is an explanatory diagram showing the hydrostatic pressure distribution of a conventional belt type continuous casting machine. FIG. 5 is an explanatory diagram showing the hydrostatic pressure distribution of a continuous casting machine to which the present invention is applied, FIG. 6 is a detailed diagram of the cooling pad showing the second embodiment of the present invention, and FIG. 8 is a cross-sectional view taken along line A-A in the figure, FIG. 8 is a diagram showing a third embodiment of the present invention, and FIG. 9 is a detailed view of a cooling pad showing a fourth embodiment of the present invention. 4... Movable belt, 6... Cooling pad, 9... Water supply hole, 12... Drain hole, 16... Band-shaped projection, 18
...Second band-shaped protrusion.
Claims (1)
の背面を、給水孔から排水孔へ流れる冷却水流からなる
水膜を介して支持するベルト式連鋳機の冷却パッドにお
いて、前記冷却パッドの前記可動ベルトに対向する面に
、前記冷却水の流れ方向に対して横方向に延在し、かつ
厚みが前記水膜の厚みを超えない帯状の突起を備えてい
ることを特徴とするベルト式連鋳機の冷却パッド。 2、冷却パッドに備えられた帯状の突起と可動ベルト背
面で形成される冷却水流路の鋳型幅方向の断面積が、鋳
型幅方向に一列に配置された給水孔の断面積の和より大
きく、鋳型幅方向に一列に配置された排水孔の和よりも
小さいことを特徴とする特許請求の範囲第1項記載のベ
ルト式連鋳機の冷却パッド。 3、幅方向の鋳型を形成する一対の可動ベルトそれぞれ
の背面を、給水孔から排水孔へ流れる冷却水流からなる
水膜を介して支持するベルト式連鋳機の冷却パッドにお
いて、前記冷却パッドの前記可動ベルトに対向する面に
、前記冷却水の流れ方向に対して横方向に延在し、かつ
厚みが前記水膜の厚みを超えない帯状の突起を備え、前
記帯状の突起の間に給水孔1個につき少なくとも1個の
、可動ベルトの幅方向に対して横方向に延在し、かつ厚
みが前記水膜の厚みを超えない第2の帯状の突起を備え
ていることを特徴とするベルト式連鋳機の冷却パッド。 4、冷却パッドに備えられて帯状の突起と可動ベルト背
面で形成される冷却水流路の鋳型幅方向の断面積が、鋳
型幅方向に沿つて一列に配置された給水孔の断面積の和
よりも大きく、鋳型幅方向に沿つて一列に配置された排
水孔の和よりも小さいことを特徴とする特許請求の範囲
第3項記載のベルト式連鋳機の冷却パッド。 5、帯状の突起が、鋳型幅方向に対して平行に断続して
設けられていることを特徴とする特許請求の範囲第1〜
4項のいずれかの項に記載のベルト式連鋳機の冷却パッ
ド。 6、帯状の突起が、冷却パッドの可動ベルトに対向する
面に設けられた溝構造の中に設けられていることを特徴
とする特許請求の範囲第1〜5項のいずれかの項に記載
のベルト式連鋳機の冷却パッド。[Claims] 1. A cooling pad for a belt-type continuous casting machine that supports the back side of each of a pair of movable belts forming a mold in the width direction via a water film made of a cooling water flow flowing from a water supply hole to a drainage hole. In this method, the surface of the cooling pad facing the movable belt is provided with a band-shaped protrusion that extends transversely to the flow direction of the cooling water and whose thickness does not exceed the thickness of the water film. A cooling pad for a belt-type continuous casting machine featuring the following. 2. The cross-sectional area in the mold width direction of the cooling water flow path formed by the band-shaped projections provided on the cooling pad and the back surface of the movable belt is larger than the sum of the cross-sectional areas of the water supply holes arranged in a line in the mold width direction; The cooling pad for a belt-type continuous casting machine according to claim 1, wherein the cooling pad is smaller than the sum of the drainage holes arranged in a line in the mold width direction. 3. In a cooling pad for a belt-type continuous casting machine that supports the back side of each of a pair of movable belts forming a mold in the width direction via a water film made of a cooling water flow flowing from a water supply hole to a drainage hole, The surface facing the movable belt is provided with band-shaped protrusions that extend transversely to the flow direction of the cooling water and whose thickness does not exceed the thickness of the water film, and water is supplied between the band-shaped protrusions. Each hole is provided with at least one second band-shaped protrusion that extends transversely to the width direction of the movable belt and has a thickness that does not exceed the thickness of the water film. Cooling pad for belt type continuous casting machine. 4. The cross-sectional area in the mold width direction of the cooling water flow path provided on the cooling pad and formed by the band-shaped protrusions and the back surface of the movable belt is greater than the sum of the cross-sectional areas of the water supply holes arranged in a row along the mold width direction. 4. The cooling pad for a belt-type continuous casting machine according to claim 3, wherein the cooling pad is larger than the sum of the drainage holes arranged in a row along the mold width direction. 5. Claims 1 to 5, characterized in that the band-shaped protrusions are provided intermittently parallel to the width direction of the mold.
A cooling pad for a belt type continuous casting machine according to any one of Item 4. 6. According to any one of claims 1 to 5, the belt-shaped protrusion is provided in a groove structure provided on the surface of the cooling pad facing the movable belt. Cooling pad for belt type continuous casting machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26775887A JPH01113155A (en) | 1987-10-23 | 1987-10-23 | Cooling pad for belt type continuous casting machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26775887A JPH01113155A (en) | 1987-10-23 | 1987-10-23 | Cooling pad for belt type continuous casting machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01113155A true JPH01113155A (en) | 1989-05-01 |
Family
ID=17449179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26775887A Pending JPH01113155A (en) | 1987-10-23 | 1987-10-23 | Cooling pad for belt type continuous casting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01113155A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228497A (en) * | 1989-07-14 | 1993-07-20 | Hunter Engineering Company, Inc. | Roll casting machine crown control |
US5592987A (en) * | 1989-07-14 | 1997-01-14 | Fata Hunter, Inc. | System for a crown control roll casting machine |
US20180290204A1 (en) * | 2017-04-11 | 2018-10-11 | Hazelett Strip-Casting Corporation | System and method for continuous casting |
CN108687316A (en) * | 2017-04-11 | 2018-10-23 | 哈茨来特带钢公司 | A kind of system and method for continuous casting |
-
1987
- 1987-10-23 JP JP26775887A patent/JPH01113155A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228497A (en) * | 1989-07-14 | 1993-07-20 | Hunter Engineering Company, Inc. | Roll casting machine crown control |
US5592987A (en) * | 1989-07-14 | 1997-01-14 | Fata Hunter, Inc. | System for a crown control roll casting machine |
US20180290204A1 (en) * | 2017-04-11 | 2018-10-11 | Hazelett Strip-Casting Corporation | System and method for continuous casting |
CN108687316A (en) * | 2017-04-11 | 2018-10-23 | 哈茨来特带钢公司 | A kind of system and method for continuous casting |
JP2020512938A (en) * | 2017-04-11 | 2020-04-30 | ハゼル・ストリップ・キャスティング・コーポレーションHazelett Strip−Casting Corporation | Continuous casting apparatus and method |
US11000893B2 (en) * | 2017-04-11 | 2021-05-11 | Hazelett Strip-Casting Corporation | System and method for continuous casting |
JP2021087999A (en) * | 2017-04-11 | 2021-06-10 | ハゼル・ストリップ・キャスティング・コーポレーションHazelett Strip−Casting Corporation | Apparatus and method for continuous casting |
US11904384B2 (en) | 2017-04-11 | 2024-02-20 | Hazelett Strip-Casting Corporation | System and method for continuous casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4061178A (en) | Continuous casting of metal strip between moving belts | |
KR100802859B1 (en) | Belt-cooling and guiding means for continuous belt casting of metal strip | |
AU2001283736A1 (en) | Belt-cooling and guiding means for continuous belt casting of metal strip | |
US3937274A (en) | Belt back-up apparatus and coolant application means for twin-belt casting machines | |
JPH01113155A (en) | Cooling pad for belt type continuous casting machine | |
US20100243195A1 (en) | Side dam blocks for continuous strip casters | |
US4620583A (en) | Loop type continuous metal casting machine | |
JPH01162542A (en) | Mold for continuous casting machine | |
KR102400467B1 (en) | Segment for continuous casting and continuous casting apparatus having the same | |
JPH07112603B2 (en) | Twin belt type continuous casting machine | |
JPH0527506B2 (en) | ||
JPH024753Y2 (en) | ||
JPS62238050A (en) | Cooling apparatus for belt type continuous caster | |
JPH01218747A (en) | Continuous casting apparatus for cast strip | |
JP2894714B2 (en) | Metal strip continuous casting machine | |
JPS59189047A (en) | Casting mold for continuous casting machine for thin walled billet which permits change in width of billet during casting | |
JPS63203255A (en) | Belt type continuous casting machine | |
JPS61154746A (en) | Continuous casting device for thin ingot | |
JPH0199754A (en) | Belt caster | |
JP2651380B2 (en) | Twin belt continuous casting machine | |
JPH07110397B2 (en) | Twin belt type continuous casting machine | |
JPH0438932Y2 (en) | ||
JPH01237052A (en) | Continuous casting machine for cast strip | |
JPH0215854A (en) | Belt type continuous casting machine | |
JPH0513748B2 (en) |