JPH01101372A - Electrically conductive composite resin composition - Google Patents

Electrically conductive composite resin composition

Info

Publication number
JPH01101372A
JPH01101372A JP62257438A JP25743887A JPH01101372A JP H01101372 A JPH01101372 A JP H01101372A JP 62257438 A JP62257438 A JP 62257438A JP 25743887 A JP25743887 A JP 25743887A JP H01101372 A JPH01101372 A JP H01101372A
Authority
JP
Japan
Prior art keywords
fiber
nitric acid
graphite
resin composition
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62257438A
Other languages
Japanese (ja)
Inventor
Setsujirou Hashimoto
橋本 節二郎
Masahiro Kanda
政博 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP62257438A priority Critical patent/JPH01101372A/en
Publication of JPH01101372A publication Critical patent/JPH01101372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain an electrically conductive composite resin composition having excellent electrical conductivity and moldability and stabilized quality, by treating a graphite fiber having a specific crystal structure with nitric acid and dispersing the obtained interlaminar compound fiber in a synthetic resin matrix. CONSTITUTION:Milled carbon fiber is heat-treated at 1,500-3,500 deg.C, preferably 2,500-3,000 deg.C for 20-120min, preferably 30-60min in an inert gas atmosphere (e.g. argon) to obtain graphite fiber having crystal structure characterized by a hexagonal carbon network plane concentrically oriented parallel to the fiber axis. The graphite fiber is made to contact with nitric acid (preferably fuming nitric acid having a concentration of >=99%) at 0-80 deg.c, preferably 5-60 deg.C for <=20hr. The obtained interlaminar compound fiber having the recurring period of the crystal of 21-25Angstrom in the direction of C axis is dispersed in a synthetic resin matrix. The amount of the interlaminar compound fiber is 5-200 pts.wt. per 100pts.wt. of the synthetic resin matrix.

Description

【発明の詳細な説明】 〔発明の目的〕 皮栗上■且厘分立 本発明は導電性の成形品や塗料、接着剤などに有用な逐
電性の複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a charge-pulsating composite material useful for conductive molded products, paints, adhesives, etc.

従来■孜亘 エレクトロニクス技術の発展に伴い、静電気や電磁液の
シールド材として軽量で高導電性の材料が求められるよ
うになってきた。このような材料として金属や炭素等の
粉末や繊維等をゴムやプラスチック等と配合した樹脂複
合材料があるが、金属を用いたものは重くかつ高価であ
るという欠点がある。また、炭素系の導電材料は金属よ
りも感電性が低く、たとえばカーボンブラック等の粒子
状炭素材料によって高4電性のものを得ようとすると配
合量を多くする必要があり、加工性が著しく低いばかり
でな(混練時または成形時のせん断力によって導電性が
変化しやすく、性能の安定した製品が得にくい欠点、が
ある。
Conventional ■Takanobu With the development of electronics technology, there has been a demand for lightweight, highly conductive materials as shielding materials for static electricity and electromagnetic fluids. As such materials, there are resin composite materials in which powders or fibers of metals, carbon, etc. are blended with rubber, plastics, etc. However, materials using metals have the drawback of being heavy and expensive. In addition, carbon-based conductive materials have lower electric sensitivity than metals, so if you try to obtain a high 4-electrode material using a particulate carbon material such as carbon black, it is necessary to increase the blending amount, which significantly reduces processability. Not only is it low (conductivity easily changes due to shear force during kneading or molding), but it also has the disadvantage that it is difficult to obtain products with stable performance.

一方、黒鉛化炭素繊維を導電材料として用いようとする
と、たとえばポリアクリロニトリル繊維やピッチなどを
炭素化し更に黒鉛化して得たものでは感電性が不充分で
あるうえ加工性も低い。これに対して、特定の有機金属
化合物を触媒として炭化水素を熱分解して得られた、直
径0.05〜4μm、アスペクト比が20〜1000で
枝分れの殆んどない均一な太さの、炭素の層が長手軸に
平行に年輪状に配列して形成された炭素繊維を用いるこ
とにより樹脂組成物の導電性及び複合化操作性を改善す
ることが提案されている(特開昭6l−218661)
。しかし、これとても電気抵抗率は10−2Ω・備の水
準にしか達せず、またこのような値を得るためには炭素
繊維を多量に配合しなけれレンならないので加工性が悪
くなり実用に供し得ないという問題があった。
On the other hand, when attempting to use graphitized carbon fiber as a conductive material, for example, those obtained by carbonizing polyacrylonitrile fibers or pitch and then graphitizing the fibers have insufficient electrical sensitivity and are also low in processability. On the other hand, those obtained by thermally decomposing hydrocarbons using a specific organometallic compound as a catalyst have a diameter of 0.05 to 4 μm, an aspect ratio of 20 to 1000, and a uniform thickness with almost no branching. It has been proposed to improve the conductivity and compounding operability of resin compositions by using carbon fibers in which carbon layers are arranged parallel to the longitudinal axis in the form of tree rings (Japanese Patent Application Laid-Open No. 6l-218661)
. However, the electrical resistivity of this material only reaches a level of 10-2 Ω, and in order to obtain such a value, a large amount of carbon fiber must be added, resulting in poor processability and impractical use. The problem was that there was no.

テしようとする。i 占 そこで本発明は、このような従来技術の組成物より更に
導電性および加工性に優れかつ性能の安定した、炭素質
繊維−樹脂系の導電性組成物を提供することを目的とし
たものである。
try to do it. Therefore, it is an object of the present invention to provide a carbonaceous fiber-resin-based conductive composition that has better conductivity and processability than the compositions of the prior art and has stable performance. It is.

〔発明の構成〕[Structure of the invention]

。 占’cMンするための− 前述のような本発明の目的は、炭素六角網面が繊維軸に
対して実質的に平行でかつ年輪状に配向した結晶構造を
有する黒鉛繊維を硝酸処理してなる眉間化合物繊維であ
って結晶のC軸方向の繰返し周期の長さが21〜25オ
ングストロームの範囲内にあるものが、合成樹脂マトリ
ックス中に分散されている4電性複合樹脂組成物によっ
て達成される。
. The purpose of the present invention as described above is to treat graphite fibers having a crystal structure in which the carbon hexagonal network planes are substantially parallel to the fiber axis and oriented in the form of tree rings by treating them with nitric acid. A glabellar compound fiber having a repetition period length in the C-axis direction of the crystal within a range of 21 to 25 angstroms is achieved by a tetraelectric composite resin composition dispersed in a synthetic resin matrix. Ru.

本発明において導電材料として用いられる炭素質の眉間
化合物繊維は、炭素六角網面が繊維軸に対して実質的に
平行でかつ年輪状に配向した結晶構造を有する黒鉛繊維
を硝酸処理することによって得られる。
The carbonaceous compound fiber used as a conductive material in the present invention is obtained by treating graphite fiber with nitric acid, which has a crystal structure in which the carbon hexagonal network plane is substantially parallel to the fiber axis and oriented in the form of annual rings. It will be done.

本発明における黒鉛繊維の材料となる炭素繊維は、トル
エン、ベンゼン、ナフタレン等の芳香族炭化水素やプロ
パン、エタン、エチレン等の脂肪族炭化水素などの炭化
水素化合物、好ましくはベンゼンまたはナフタレンを原
料として用い、かかる原料をガス化して水素などのキャ
リヤガスと共に900〜1500℃で超微粒金属からな
る触媒、たとえば粒径100〜300オングストローム
の鉄、ニッケル、鉄−ニッケル合金などをセラミックス
や黒鉛などからなる基体上に塗布したものなど、と接触
、分解させることにより得られるものである。
The carbon fiber that is the material of the graphite fiber in the present invention is made from a hydrocarbon compound such as an aromatic hydrocarbon such as toluene, benzene, or naphthalene, or an aliphatic hydrocarbon such as propane, ethane, or ethylene, preferably benzene or naphthalene. The raw material is gasified and heated at 900 to 1500°C with a carrier gas such as hydrogen to a catalyst made of ultrafine metal, such as iron, nickel, or iron-nickel alloy with a particle size of 100 to 300 angstroms, made of ceramics or graphite. It is obtained by contacting and decomposing something coated on a substrate.

こうして得た炭素繊維は必要に応じてボールミル、ロー
タースピードミルその他の適宜の粉砕機を用いて粉砕す
る。かかる粉砕は必須ではないが、複合材料などに利用
するに際して分散性を向上させるのに有効である。
The carbon fibers thus obtained are pulverized using a ball mill, rotor speed mill, or other suitable pulverizer, if necessary. Although such pulverization is not essential, it is effective in improving dispersibility when used in composite materials and the like.

更に、こうして得た炭素繊維を、1500〜3500℃
、好ましくは2500〜3000℃の温度で、20〜1
20分間、好ましくは30〜60分間、アルゴン等の不
活性ガスの雰囲気下で熱処理することにより、炭素六角
網面が繊維軸に対して実質的に平行で年輪状に配向した
結晶構造を有する黒鉛繊維が得られる。この場合、熱処
理温度が1500℃より低いと、炭素の結晶構造が充分
に発達せず、一方3500℃を超えても特に効果は増進
せず経済的でない。また、熱処理時間が20分間より短
いと熱処理効果が充分でなく結晶構造の発達度合のばら
つきが大きく、一方120分間を超えても更なる改善は
みられない。
Furthermore, the carbon fiber thus obtained is heated at 1500 to 3500°C.
, preferably at a temperature of 2500 to 3000°C, 20 to 1
By heat-treating for 20 minutes, preferably 30 to 60 minutes, in an atmosphere of an inert gas such as argon, graphite has a crystal structure in which the carbon hexagonal network planes are substantially parallel to the fiber axis and oriented in the form of annual rings. Fiber is obtained. In this case, if the heat treatment temperature is lower than 1,500°C, the carbon crystal structure will not develop sufficiently, while if it exceeds 3,500°C, the effect will not be particularly enhanced and it is not economical. Further, when the heat treatment time is shorter than 20 minutes, the heat treatment effect is not sufficient and the degree of development of the crystal structure varies greatly, while on the other hand, when the heat treatment time exceeds 120 minutes, no further improvement is observed.

このようにして得た黒鉛繊維を硝酸処理するに当っては
、温度0〜80℃において20時間を超えない範囲で硝
酸を接触させる。
When treating the graphite fibers thus obtained with nitric acid, the fibers are brought into contact with nitric acid at a temperature of 0 to 80° C. for no more than 20 hours.

この際に使用される硝酸は、できるだけ濃度の高いもの
が好ましく、できれば水を含まないものがよ<、濃度9
9%以上の発煙硝酸などを用いることが適当である。か
かる硝酸は黒鉛繊維と接触させるに当って液状であって
もよく、または蒸気状であってもよい。液状の場合には
黒鉛繊維を液状の硝酸中に罎漬するなどの方法が用いら
れるが、硝酸中に含有される不純物も黒鉛繊維と接触す
るから、硝酸イオンが黒鉛結晶層間に浸透拡散すること
を阻害したり、それ自身が黒鉛結晶層間に入るような不
純物は避けることが望ましい。一方、硝酸蒸気を使用す
る場合にも、前記同様の注意が必要であるが、不揮発性
の不純物は自然に排除されるから、硝酸蒸気の発生源の
純度や形態に対する制約が少いという科点がある。
The nitric acid used at this time is preferably one with as high a concentration as possible, preferably one that does not contain water.
It is appropriate to use 9% or more fuming nitric acid. Such nitric acid may be in a liquid state or in a vapor state when brought into contact with the graphite fibers. In the case of liquid, methods such as immersing graphite fibers in liquid nitric acid are used, but since impurities contained in nitric acid also come into contact with graphite fibers, nitrate ions can penetrate and diffuse between graphite crystal layers. It is desirable to avoid impurities that would inhibit the graphite crystals or would themselves enter between the graphite crystal layers. On the other hand, when using nitric acid vapor, the same precautions as above are required, but since non-volatile impurities are naturally eliminated, there are fewer restrictions on the purity and form of the source of nitric acid vapor. There is.

黒鉛繊維と硝酸との接触に当っては、温度が0〜80℃
、好ましくは5〜60℃であり、接触時間が20時間を
超えないことが必要である。温度が低すぎるときは、硝
酸イオシの黒鉛結晶層内への拡散に長時間を要するのみ
ならず温度管理が困難である不利があり、温度が高すぎ
るときは、繊維の破壊が起り易くまた破壊しないまでも
機械的強度が損われる。
When contacting graphite fibers with nitric acid, the temperature is between 0 and 80°C.
, preferably 5 to 60°C, and the contact time should not exceed 20 hours. If the temperature is too low, it not only takes a long time for the nitrate sulfur to diffuse into the graphite crystal layer, but it also has the disadvantage of making temperature control difficult. Even if it does not, the mechanical strength will be impaired.

黒鉛繊維と硝酸との接触時間は20時間を超えないこと
が必要であり、好ましくは15時間以内である。これ以
上の長時間にわたっ°ζ接触させると、生成する硝酸処
理黒鉛繊維の結晶構造が21〜25オングストロームの
範囲を外れるC軸方向の繰返し周期の長さを持つように
なり、結果として導電性の低下を招くばかりでなく熱や
湿度に対する安定性もまた低下し、室内に保存したとき
でも性状の経時変化が大きくなる。また、接触時間が短
かすぎるときは品質のばらつきが大きいから、少くとも
0.1時間以上接触させることが望ましい。
The contact time of the graphite fibers with nitric acid must not exceed 20 hours, preferably within 15 hours. If the contact is carried out for a longer period of time, the crystal structure of the resulting nitric acid-treated graphite fibers will have a repeating period length in the C-axis direction that is outside the range of 21 to 25 angstroms, resulting in conductivity. Not only does this lead to a decrease in the temperature, but also the stability against heat and humidity decreases, and even when stored indoors, the properties change significantly over time. Furthermore, if the contact time is too short, the quality will vary greatly, so it is desirable to allow contact for at least 0.1 hour or more.

しかしながら、これ以下の接触時間では、操作上意味の
ある時間制御は不可能であり、また接触時間を短縮して
も経済上の利点は殆んどないから、好ましい接触時間と
しては0.2時間以上であり、この範囲内で生成する硝
酸処理黒鉛繊維の結晶構造はC軸方向の繰返し周期の長
さが21〜25オングストロームであるものとなる。し
かし、このような硝酸処理黒鉛繊維の品質のばらつきを
満足できる程度まで減少させるのに必要な接触時間は、
液状硝酸を使用する場合が最も短くてよく、蒸気状硝酸
を使用する場合は、その蒸気の濃度が低くなるに従って
長時間を要する。従って、夫々硝酸の濃度や温度などの
製造条件に応じて、必要最短の接触時間を選択するのが
よい。
However, if the contact time is shorter than this, it is impossible to achieve operationally meaningful time control, and there is almost no economic advantage even if the contact time is shortened, so the preferred contact time is 0.2 hours. The crystal structure of the nitric acid-treated graphite fiber produced within this range has a repetition period length of 21 to 25 angstroms in the C-axis direction. However, the contact time required to satisfactorily reduce the quality variation of such nitric acid-treated graphite fibers is
The shortest time is required when using liquid nitric acid, and when using vaporized nitric acid, the longer time is required as the concentration of the vapor decreases. Therefore, it is preferable to select the shortest necessary contact time depending on the manufacturing conditions such as the concentration and temperature of nitric acid.

このようにして得た硝酸処理黒鉛繊維は合成樹脂マトリ
ックス中に添加分散されて本発明の組成物が得られる。
The nitric acid-treated graphite fibers thus obtained are added and dispersed in a synthetic resin matrix to obtain the composition of the present invention.

ここで用いられる合成樹脂としては、たとえばポリエチ
レン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン
、エチレン・酢酸ビニル共重合樹脂、エチレン・アクリ
ル酸エステル共重合樹脂などの熱可塑性プラスチックス
、たとえばシリコーン樹脂、フェノール樹脂、尿素樹脂
、エポキシ樹脂、ウレタン樹脂などの熱硬化性プラスチ
ックス、またたとえばクロロスルホン化ポリエチレン、
塩素化ポリエチレン、エチレン・プロピレンゴム、クロ
ロブレンゴム、アクリルゴム、シリコーンゴム、フッ素
ゴムなどのゴムが使用できる。
Examples of synthetic resins used here include thermoplastics such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, ethylene/vinyl acetate copolymer resin, ethylene/acrylate copolymer resin, silicone resin, phenol resin, Thermosetting plastics such as urea resins, epoxy resins, and urethane resins, as well as chlorosulfonated polyethylene,
Rubbers such as chlorinated polyethylene, ethylene/propylene rubber, chloroprene rubber, acrylic rubber, silicone rubber, and fluororubber can be used.

このような合成樹脂に対して硝酸処理黒鉛繊維を分散さ
せる方法には特に制限はないが、たとえば2本ロール、
ニーグー、インターミックス、バンバリーミキサ−など
の公知の混練機が使用できる。
There are no particular restrictions on the method of dispersing nitric acid-treated graphite fibers in such synthetic resins, but for example, two rolls,
Known kneading machines such as Nigoo, Intermix, and Banbury mixer can be used.

また、硝酸処理黒鉛繊維と合成樹脂との配合割合は特に
制限はないが、電気抵抗率および加工成形性の面から、
樹脂100重量部に対して繊維が5〜200重量部程重
量上程、更には10〜100重量部であるのが好ましい
In addition, there is no particular restriction on the blending ratio of nitric acid-treated graphite fiber and synthetic resin, but from the viewpoint of electrical resistivity and processability,
It is preferable that the fiber content is about 5 to 200 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the resin.

このような本発明の樹脂組成物には、それぞれ使用した
樹脂の種類に応じて充填剤、加工助剤、可塑剤、酸化防
止剤、架橋剤等の適宜の添加剤や配合剤または溶剤など
が含有されていて差支えない。また、本発明の樹脂組成
物は、押出し成形、射出成形、トランスファー成形、プ
レス成形等、適宜の成形方法を選択して所望の形状の物
品等を形成することができる。
The resin composition of the present invention may contain appropriate additives, compounding agents, or solvents such as fillers, processing aids, plasticizers, antioxidants, and crosslinking agents, depending on the type of resin used. There is no problem if it is contained. Further, the resin composition of the present invention can be formed into articles of a desired shape by selecting an appropriate molding method such as extrusion molding, injection molding, transfer molding, press molding, or the like.

!施Aよ ムライト質セラミックス板上に粒径100〜300オン
グストロームの金属鉄触媒を塗布したものを横型管状電
気炉中に置き、温度を1000〜1100℃に調節して
ベンゼンと水素の混合ガスを導入して分解させ、長さ2
〜101−1径lO〜5−0μmの炭素繊維を得た。次
に、この炭素繊維を遊星型ボールミル(フリソチュ・ジ
ャパン株式会社、P−5型)を用いて回転数50ORP
Mで5分間粉砕した。
! A: A mullite ceramic plate coated with a metal iron catalyst with a particle size of 100 to 300 angstroms is placed in a horizontal tubular electric furnace, the temperature is adjusted to 1000 to 1100°C, and a mixed gas of benzene and hydrogen is introduced. length 2
Carbon fibers with a diameter of ~101-1 ~5-0 μm were obtained. Next, this carbon fiber was processed using a planetary ball mill (Flisochu Japan Co., Ltd., P-5 type) at a rotational speed of 50 ORP.
The mixture was ground with M for 5 minutes.

この粉砕炭素繊維を電気炉に入れ、アルゴン雰囲気下で
2960〜3000℃に30分間保持して黒鉛化した。
This pulverized carbon fiber was placed in an electric furnace and maintained at 2960 to 3000°C for 30 minutes in an argon atmosphere to graphitize it.

得られた繊維は、X線回折および電子顕微鏡によって、
炭素六角網面が繊維軸に平行で年輪状に配向した結晶構
造を有しており、長さが70〜100μmに粉砕されて
いることが確かめられた。
The obtained fibers were analyzed by X-ray diffraction and electron microscopy.
It was confirmed that the carbon hexagonal mesh plane had a crystal structure parallel to the fiber axis and oriented in the shape of annual rings, and was crushed to a length of 70 to 100 μm.

こうして得た黒鉛化繊維を、発煙硝酸(濃度99%)を
入れた容器中に密閉し、23℃で3時間保持した。所定
時間経過後硝酸中から黒鉛繊維を濾過分離し、蒸留水に
より充分洗浄し、デシケータ中で24時間乾燥した。
The graphitized fiber thus obtained was sealed in a container containing fuming nitric acid (concentration 99%) and kept at 23° C. for 3 hours. After a predetermined period of time, the graphite fibers were separated from the nitric acid by filtration, thoroughly washed with distilled water, and dried in a desiccator for 24 hours.

得られた硝酸処理黒鉛繊維についてX線回折法により測
定した結晶のC軸方向の繰返し周期の長さは24.6オ
ングストロームであった。
The length of the repetition period in the C-axis direction of the crystal measured by X-ray diffraction of the obtained nitric acid-treated graphite fiber was 24.6 angstroms.

こうして得た硝酸処理黒鉛繊維を、付加反応型液状シリ
コーンゴム(トーμ・シリコーン社、DY35−055
)に対して第、1表に示す配合に従って添加し、6イン
チロールミルで30分間混練した。次に架橋速度制御用
のインヒビター(トーμ・シリコーン社、MR−23)
および架橋触媒(トーμ・シリコーン社、5RX−21
2)を第1表の配合に従って添加し、均一混練して導電
性シリコーンゴム組成物を得た。ただし、配合の数字は
重量部である。
The nitric acid-treated graphite fibers obtained in this way were coated with an addition reaction type liquid silicone rubber (TOμ Silicone Co., Ltd., DY35-055).
) according to the formulation shown in Table 1 and kneaded for 30 minutes with a 6-inch roll mill. Next, an inhibitor for controlling the crosslinking rate (To-μ Silicone Co., Ltd., MR-23)
and a crosslinking catalyst (TOμ Silicone Co., Ltd., 5RX-21
2) was added according to the formulation shown in Table 1 and kneaded uniformly to obtain a conductive silicone rubber composition. However, the numbers in the formulation are parts by weight.

また、比較のために前述のようにして得た黒鉛繊維で硝
酸処理を行わないもの、導電性カーボンブランク(ライ
オンアクゾ社、ケッチエンブラックEC)、およびPA
N系炭素繊維の粉砕品(東し社、MLD−300)につ
いても第1表の配合に従い、同様に混練を行なってそれ
ぞれシリコーンゴム組成物を調製した。
For comparison, graphite fibers obtained as described above without nitric acid treatment, conductive carbon blanks (Lion Akzo Co., Ltd., Ketchen Black EC), and PA
Crushed products of N-based carbon fiber (MLD-300, Toshisha Co., Ltd.) were kneaded in the same manner according to the formulations in Table 1 to prepare silicone rubber compositions.

これらのシリコーンゴム組成物をモールド中で100℃
、20分間プレス成形して100龍×IQ am X 
l ++nの架橋シートを作成し、それらの体積固有抵
抗を測定した。その結果は第1表に示す通りである。
These silicone rubber compositions were heated at 100°C in a mold.
, press molded for 20 minutes to obtain 100 dragons x IQ am
Crosslinked sheets of l++n were prepared and their volume resistivity was measured. The results are shown in Table 1.

次に、前記のシリコーンゴム組成物を径180μmの芳
香族ポリアミド繊維(デュポン社、ゲブラー)3本から
なる撚芯線上に押出し被覆し、200℃で30秒間加熱
して外径0.90 amの線状架橋体を得た。このよう
にして組成物B、D、F、およびHについて成形試験を
行ない成形性の評価を行なった。その結果は第2表に示
す通りである。
Next, the silicone rubber composition described above was extruded and coated on a twisted core wire consisting of three aromatic polyamide fibers (DuPont, Gebler) with a diameter of 180 μm, and heated at 200° C. for 30 seconds to form an outer diameter of 0.90 μm. A linear crosslinked product was obtained. In this manner, molding tests were conducted on compositions B, D, F, and H to evaluate moldability. The results are shown in Table 2.

第  1  表 A B C” D” E” F” G” )I”シリコ
ーンゴム100 100 100 100 100 1
00 100 100カーボンブラツク       
       2040PAN系炭素繊IS     
                 20  40イン
ヒビター    o、o70.07  o、o’r  
o、o′7o、rfIo、ff7o、m  o、o’y
架橋触媒  11111111 体f貞固有を氏抗 1.130.0247.10.36
31.4 5.943.99.63(Ω・− 第1表より、硝酸処理黒鉛繊維を配合したものは、体積
固有抵抗が非常に小さいことが判る。
Table 1 A B C"D"E"F"G")I" Silicone rubber 100 100 100 100 100 1
00 100 100 carbon black
2040PAN carbon fiber IS
20 40 inhibitor o, o70.07 o, o'r
o, o'7o, rfIo, ff7o, m o, o'y
Crosslinking catalyst 11111111 1.130.0247.10.36
31.4 5.943.99.63 (Ω・− From Table 1, it can be seen that the volume resistivity of the product containing nitric acid-treated graphite fiber is extremely small.

第  2  表 結果 8 5時間連続運転問題なし、外観も良好D1  同上 F”  5時間連続運転問題なし。架橋物表面に微少亀
裂有。
Table 2 Results 8 Continuous operation for 5 hours, no problems, appearance is good D1 Same as above F'' Continuous operation for 5 hours, no problems. There are slight cracks on the surface of the crosslinked product.

H”  5時間連続運転問題なし。但し、表面にザラツ
キ有。
H” Continuous operation for 5 hours without any problems.However, there is some roughness on the surface.

第2表より、本発明品は成型性も非常に優れていること
が判る。
From Table 2, it can be seen that the products of the present invention also have very excellent moldability.

実脩舅1 実施例1で用いた硝酸処理黒鉛繊維を、クロロスルホン
化ポリエチレン(デュポン社、ハイパロン45)に対し
第3表の配合に従って添加し、酸化防止剤(チバガイギ
ー社、イルガノックス1035)を加えて2本ロールで
充分に混練したのち撹拌機に移し、トルエンを加えて4
8時間練り、固形分25%の導電性塗料を調製した。
The nitric acid-treated graphite fibers used in Example 1 were added to chlorosulfonated polyethylene (DuPont, Hypalon 45) according to the formulation in Table 3, and an antioxidant (Ciba Geigy, Irganox 1035) was added. In addition, after thoroughly kneading with two rolls, transfer to a stirrer, add toluene, and mix thoroughly.
After kneading for 8 hours, a conductive paint with a solid content of 25% was prepared.

また、比較のために実施例1におけると同様に硝酸処理
しない黒鉛繊維およびPAN系炭素繊維の粉砕品を用い
、第3表の配合に従って同様に混練し、それぞれ導電性
塗料を調製した。
For comparison, ground graphite fibers and PAN-based carbon fibers that were not treated with nitric acid were used in the same manner as in Example 1, and were kneaded in the same manner according to the formulations shown in Table 3 to prepare conductive paints.

これらの塗料をポリエステルフィルム上にアプリケータ
を用いて塗付し、乾燥させて厚さ400μm程度の塗膜
を形成した。それぞれの塗膜について体積固有抵抗を測
定した結果を、第3表に合わせて示した。
These paints were applied onto a polyester film using an applicator and dried to form a coating film with a thickness of about 400 μm. The results of measuring the volume resistivity of each coating film are shown in Table 3.

第3表 I  J” K” クロロスルホン化ポリエチレン  100  100 
 100酸化防止剤  2.5 2.5 2.5硝酸処
理黒鉛繊維     団 未処理黒鉛繊維       団 PAN系炭素炭素繊維         団トルエン 
   458 458 458*は比較例である。
Table 3 I J” K” Chlorosulfonated polyethylene 100 100
100 Antioxidant 2.5 2.5 2.5 Nitric acid treated graphite fiber Group untreated graphite fiber Group PAN type carbon carbon fiber Group Toluene
458 458 458* is a comparative example.

この結果から本発明品は非常に高い電導性を示すことが
わかる。
This result shows that the product of the present invention exhibits extremely high conductivity.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明の導電性複合樹脂組成物は優れた加
工性および成形性を有し、また極めて高い電導性を備え
ており、従来より格段に高品質で安定した導電性複合材
料を容易に提供することができる。
As described above, the conductive composite resin composition of the present invention has excellent processability and moldability, as well as extremely high conductivity, making it easier to produce conductive composite materials of much higher quality and stability than before. can be provided to

Claims (1)

【特許請求の範囲】[Claims]  炭素六角網面が繊維軸に対して実質的に平行でかつ年
輪状に配向した結晶構造を有する黒鉛繊維を硝酸処理し
てなる層間化合物繊維であって結晶のc軸方向の繰返し
周期の長さが21〜25オングストロームの範囲内にあ
るものが、合成樹脂マトリックス中に分散されているこ
とを特徴とする導電性複合樹脂組成物。
An interlayer compound fiber obtained by treating graphite fiber with nitric acid with a crystal structure in which the carbon hexagonal mesh plane is substantially parallel to the fiber axis and oriented in the form of annual rings, and the length of the repetition period in the c-axis direction of the crystal. 1. An electrically conductive composite resin composition, characterized in that a conductive composite resin composition having a diameter in the range of 21 to 25 angstroms is dispersed in a synthetic resin matrix.
JP62257438A 1987-10-14 1987-10-14 Electrically conductive composite resin composition Pending JPH01101372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257438A JPH01101372A (en) 1987-10-14 1987-10-14 Electrically conductive composite resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257438A JPH01101372A (en) 1987-10-14 1987-10-14 Electrically conductive composite resin composition

Publications (1)

Publication Number Publication Date
JPH01101372A true JPH01101372A (en) 1989-04-19

Family

ID=17306357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257438A Pending JPH01101372A (en) 1987-10-14 1987-10-14 Electrically conductive composite resin composition

Country Status (1)

Country Link
JP (1) JPH01101372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254409A (en) * 1989-10-26 1993-10-19 Yazaki Corporation Conductive resin composite
JP2002541291A (en) * 1999-04-01 2002-12-03 ビール エンジニアリング ビー.ブイ. Conductive glue
JP2012171999A (en) * 2011-02-18 2012-09-10 Shin-Etsu Chemical Co Ltd Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
JP2019501275A (en) * 2015-12-31 2019-01-17 エルケム・シリコーンズ・シャンハイ・カンパニー・リミテッドElkem Silicones Shanghai Co.,Ltd. Conductive curable organosilicon rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254409A (en) * 1989-10-26 1993-10-19 Yazaki Corporation Conductive resin composite
JP2002541291A (en) * 1999-04-01 2002-12-03 ビール エンジニアリング ビー.ブイ. Conductive glue
JP2012171999A (en) * 2011-02-18 2012-09-10 Shin-Etsu Chemical Co Ltd Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
JP2019501275A (en) * 2015-12-31 2019-01-17 エルケム・シリコーンズ・シャンハイ・カンパニー・リミテッドElkem Silicones Shanghai Co.,Ltd. Conductive curable organosilicon rubber

Similar Documents

Publication Publication Date Title
EP1588385B1 (en) Carbonaceous material for forming electrically conductive material and use thereof
JP4342929B2 (en) Carbonaceous material for conductive composition and use thereof
EP1425166B1 (en) Method of forming conductive polymeric nanocomposite materials and materials produced thereby
KR101329974B1 (en) A resin composition for EMI shielding, comprising carbon hydride composite
US20080099732A1 (en) Electroconductive Resin Composition, Production Method and Use Thereof
US4923637A (en) High conductivity carbon fiber
KR102166230B1 (en) Conductive filler, method for producing same, conductive paste and method for producing conductive paste
US20110091724A1 (en) Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
KR100795876B1 (en) Electrically conducting polymer and production method and use thereof
US5210116A (en) Resin composite material containing graphite fiber
JP3606782B2 (en) Conductive paint
JPH01101372A (en) Electrically conductive composite resin composition
JP2005264134A (en) Conductive polymer, its preparation process and its application
US5254409A (en) Conductive resin composite
DE68920159T2 (en) Resin-based composite material containing graphite fibers.
JPH0238614B2 (en)
JPH03250503A (en) Conductive resin composition
JPH0791417B2 (en) Conductive resin composition
JPH027979B2 (en)
JP2003020418A (en) Fine graphite powder, method for producing the same and use thereof