JP7586993B1 - Method for manufacturing metal joint - Google Patents
Method for manufacturing metal joint Download PDFInfo
- Publication number
- JP7586993B1 JP7586993B1 JP2023180148A JP2023180148A JP7586993B1 JP 7586993 B1 JP7586993 B1 JP 7586993B1 JP 2023180148 A JP2023180148 A JP 2023180148A JP 2023180148 A JP2023180148 A JP 2023180148A JP 7586993 B1 JP7586993 B1 JP 7586993B1
- Authority
- JP
- Japan
- Prior art keywords
- current
- joined
- steel plate
- metal
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 38
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 86
- 239000010959 steel Substances 0.000 claims abstract description 86
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 41
- 239000010410 layer Substances 0.000 claims description 15
- 239000011247 coating layer Substances 0.000 claims description 13
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 6
- 239000008397 galvanized steel Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 description 17
- 229910000838 Al alloy Inorganic materials 0.000 description 15
- 238000005304 joining Methods 0.000 description 14
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 229910000712 Boron steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- QZLJNVMRJXHARQ-UHFFFAOYSA-N [Zr].[Cr].[Cu] Chemical compound [Zr].[Cr].[Cu] QZLJNVMRJXHARQ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Abstract
【課題】高張力鋼板やホットスタンプ鋼板等とアルミニウム基体とを強固に接合した金属接合体が得られる新たな製造方法を提供する。
【解決手段】本発明は、電極で挟持された鋼板とアルミニウム基体の被接合部へ通電する通電工程を備える金属接合体の製造方法である。鋼板は、被接合部の厚さが1~3.5mmである。通電工程は、3~9.5kAを300~1200ms通電してなされる。通電工程は、3~8kA内で200~400ms通電する第1通電過程と、5~9kA内で300~700ms通電する第2通電過程とにより構成されてもよい。本発明の製造方法により、鋼板とアルミニウム基体が金属間化合物層を介して接合された金属接合体が得られる。
【選択図】図3
The present invention provides a new manufacturing method for obtaining a metal joined body in which a high tensile steel plate, a hot stamped steel plate, or the like is firmly joined to an aluminum substrate.
[Solution] The present invention is a manufacturing method for a metal joined body, which includes a current passing step of passing a current between a steel sheet and an aluminum base that are sandwiched between electrodes. The steel sheet has a thickness of 1 to 3.5 mm at the joined portion. The current passing step is performed by passing a current of 3 to 9.5 kA for 300 to 1200 ms. The current passing step may be composed of a first current passing step of passing a current of 3 to 8 kA for 200 to 400 ms and a second current passing step of passing a current of 5 to 9 kA for 300 to 700 ms. By the manufacturing method of the present invention, a metal joined body in which a steel sheet and an aluminum base are joined via an intermetallic compound layer can be obtained.
[Selected figure] Figure 3
Description
本発明は、鋼板とアルミニウム基体からなる金属接合体の製造方法等に関する。 The present invention relates to a method for manufacturing a metal joint consisting of a steel plate and an aluminum substrate.
軽量化、高機能化、構造変化等へ対応するために、異種金属を接合した部材(「金属接合体」という。)が用いられる。例えば、骨格やフレームをなす鋼板に、外装面を構成する軽量なアルミニウム合金板を接合したルーフ、アウターパネル等が自動車に用いられる。 In order to respond to weight reduction, high functionality, structural changes, etc., components in which dissimilar metals are joined (called "metal joints") are used. For example, roofs and outer panels in automobiles are made by joining lightweight aluminum alloy plates that make up the exterior surface to steel plates that form the skeleton or frame.
異種金属は、これまで主に、リベット接合(Self-Pirecing Rivet接合等)やカシメ接合(クリンチング)等されてきた。このような機械的な接合法は、副資材(リベット等)や専用設備を必要とし、接合体の重量やコストを増大させる。また、機械的に接合された部位にできる突起は、周辺部材との干渉や作業性の低下等を招く。 To date, dissimilar metals have mainly been joined by riveting (self-piercing rivet joining, etc.) or crimping. Such mechanical joining methods require auxiliary materials (rivets, etc.) and specialized equipment, which increases the weight and cost of the joined body. In addition, protrusions that form at mechanically joined parts can cause interference with surrounding parts and reduce workability.
そこで最近では、異種金属(例えば鋼板とアルミニウム合金板)も抵抗溶接(例えばスポット溶接)する提案が多くなされており、例えば、下記の特許文献に関連する記載がある。 Recently, there have been many proposals to use resistance welding (e.g., spot welding) to weld dissimilar metals (e.g., steel plate and aluminum alloy plate). For example, there are related descriptions in the following patent documents.
両特許文献とも、13kA程度を通電して、鋼板とアルミニウム合金板を接合している(特許文献1の[0057]/特許文献2の[0076])。また、アルミニウム合金板に接合される鋼板はいずれも、薄い低炭素鋼板(270MPa級/板厚:0.8mm)である(特許文献1の[0051]/特許文献2の[0054])。 In both patent documents, a current of about 13 kA is passed to join the steel plate and the aluminum alloy plate ([0057] in Patent Document 1/[0076] in Patent Document 2). In addition, the steel plate joined to the aluminum alloy plate is a thin low-carbon steel plate (270 MPa class/plate thickness: 0.8 mm) ([0051] in Patent Document 1/[0054] in Patent Document 2).
上記の電流値は、従来のように、アルミニウム合金板自体を抵抗加熱だけで直接溶融させる大電流値(15kA超)よりは十分に小さい。しかし、両特許文献に記載されている電流値で、例えば、厚いハイテン材やホットスタンプ材をAl合金板とスポット溶接すると、スパッタ(電極と被接合材との間から溶球が飛散する表チリ、被接合材同士の接合間から溶球が飛散する中チリ等)を生じ得ることが新たにわかった。 The above current value is sufficiently smaller than the large current value (over 15 kA) that would directly melt the aluminum alloy plate itself using resistance heating alone, as in the past. However, it has been newly discovered that when, for example, thick high-tensile steel or hot stamped steel is spot welded to an Al alloy plate using the current values described in both patent documents, spatter (surface spatter, in which molten beads fly out from between the electrode and the joined material, and internal spatter, in which molten beads fly out from between the joined materials) can occur.
本発明は、このような事情に鑑みて為されたものであり、鋼板とアルミニウム基体の金属接合体を得る新たな製造方法等を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a new manufacturing method for obtaining a metal joint between a steel plate and an aluminum substrate.
本発明者はこの課題を解決すべく鋭意研究した結果、抵抗加熱された鋼板からの伝熱によりアルミニウム基体の被接合面付近を溶融させて、両者を接合することを着想し、その具現化に成功した。この成果を発展させることにより、以降に述べる本発明を完成させるに至った。 As a result of intensive research into solving this problem, the inventor came up with the idea of melting the area near the joining surface of the aluminum base by heat transfer from a resistance-heated steel plate, thereby joining the two, and successfully realizing this idea. By expanding on this result, the inventor has completed the present invention, which is described below.
《金属接合体の製造方法》
本発明は、電極で挟持された鋼板とアルミニウム基体の被接合部へ通電する通電工程を備え、該鋼板の被接合部は、厚さが1~3.5mmであり、該通電工程は、3~9.5kAを300~1200ms通電してなされ、該鋼板と該アルミニウム基体が金属間化合物層を介して接合された金属接合体を得る製造方法である。
<<Method for manufacturing a metal bonded body>>
The present invention is a manufacturing method including a current passing step of passing a current to a joint portion of a steel plate and an aluminum base held between electrodes, the joint portion of the steel plate having a thickness of 1 to 3.5 mm, and the current passing step is performed by passing a current of 3 to 9.5 kA for 300 to 1200 ms, to obtain a metal joined body in which the steel plate and the aluminum base are joined via an intermetallic compound layer.
本発明の製造方法によれば、厚くて電気抵抗の大きい鋼板をアルミニウム基体に抵抗溶接する際に、スパッタの発生を抑制しつつ、強度や信頼性に優れる金属接合体が得られる。このような優れた効果が発現される理由または機序は、現状、次のように考えられる。 According to the manufacturing method of the present invention, when resistance welding a thick steel plate with high electrical resistance to an aluminum substrate, it is possible to obtain a metal joint that is excellent in strength and reliability while suppressing the generation of spatter. The reason or mechanism for the manifestation of such excellent effects is currently thought to be as follows.
被接合材への通電による発熱量(Q)は、その電気抵抗(R)、電流値(I)および通電時間(t)により略定まる(Q=I2×R×t)。電気抵抗(R)は、被接合材の材質(成分、組織等)と厚さにより定まる。特に鋼板は、略同厚のアルミニウム基体よりも電気抵抗が遙かに大きく、高強度になるほど電気抵抗も大きくなり得る。 The amount of heat (Q) generated by the passage of electricity through the materials to be joined is roughly determined by their electrical resistance (R), the current value (I), and the time (t) through which electricity is passed (Q = I2 x R x t). The electrical resistance (R) is determined by the material (components, structure, etc.) and thickness of the materials to be joined. In particular, steel plate has a much higher electrical resistance than an aluminum substrate of roughly the same thickness, and the higher the strength, the higher the electrical resistance can become.
電気抵抗が大きい厚い鋼板へ、従来レベルの高電流値で通電すると、鋼板は急速に過熱されて、スパッタが生じ易くなる。本発明では、そのような鋼板に対して、相対的に低い電流値で長い通電を行なうため、スパッタは生じ難い。 When a current is applied to a thick steel plate with high electrical resistance at the conventional high current level, the steel plate quickly overheats and spatters easily occur. In the present invention, a current is applied to such a steel plate for a long period of time at a relatively low current value, so spatters are less likely to occur.
そして、その通電により、被接合材は溶融しなくても、鋼板と接触するアルミニウム基体の被接合面付近は、抵抗加熱されて高温になった鋼板(特に中央付近)からの伝導熱により溶融し得る。この溶融開始により、その被接合面付近で溶融反応(例えば、固液相互拡散反応:SLID)が生じて、鋼板とアルミニウム基体の間に金属間化合物層が生成され、両者は強固に接合(溶接)され得る。 Even if the materials to be joined do not melt when electricity is applied, the area near the joining surface of the aluminum base that comes into contact with the steel plate can melt due to the heat conducted from the steel plate (especially near the center) which has been resistively heated and has become hot. This initiation of melting causes a melting reaction (for example, a solid-liquid interdiffusion reaction: SLID) near the joining surface, producing an intermetallic compound layer between the steel plate and the aluminum base, allowing the two to be firmly joined (welded).
《金属接合体》
本発明は、金属接合体としても把握される。例えば、本発明は、厚さが1~3.5mmある鋼板がアルミニウム基体に抵抗溶接された金属接合体でもよい。その製造方法の一例は、上述した通りである。
Metal Joint
The present invention can also be understood as a metal joined body. For example, the present invention may be a metal joined body in which a steel plate having a thickness of 1 to 3.5 mm is resistance-welded to an aluminum substrate. An example of the manufacturing method thereof is as described above.
被接合材(鋼板とアルミニウム基体)の接合層は、必ずしも全体が金属間化合物(層)でなくてもよい。その一部に、被接合材の一部(例えば鉄基材やアルミニウム基材)が残存または混在していてもよい。さらに接合層は、被接合部にあった被覆層の成分(例えば、Zn、O等)を含んでもよい。 The bonding layer of the materials to be joined (steel plate and aluminum substrate) does not necessarily have to be an intermetallic compound (layer) in its entirety. A part of the materials to be joined (e.g., iron substrate or aluminum substrate) may remain or be mixed in with it. Furthermore, the bonding layer may contain components of the coating layer that was on the part to be joined (e.g., Zn, O, etc.).
《その他》
(1)本明細書でいう「被接合部」の厚さや電気抵抗は、特に断らない限り、接合前(通電工程前)の状態で特定される。被接合部の直接測定等ができないとき(例えば接合後)なら、接合前の状態が略維持されている領域(接合部や熱影響部(HAZ)の外周域)で測定して、被接合部の特徴を推定するとよい。
"others"
(1) Unless otherwise specified, the thickness and electrical resistance of the "joined portion" in this specification are specified in the state before joining (before the current application process). When it is not possible to directly measure the joined portion (for example, after joining), it is advisable to estimate the characteristics of the joined portion by measuring the area where the state before joining is almost maintained (the outer periphery of the joint or heat-affected zone (HAZ)).
(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x~ykA」はxkA~ykAを意味する。他の単位系(ms等)についても同様である。 (2) Unless otherwise specified, "x to y" in this specification includes a lower limit of x and an upper limit of y. Any numerical value included in the various numerical values or numerical ranges described in this specification may be used as a new lower limit or upper limit to create a new range such as "a to b." Additionally, unless otherwise specified, "x to ykA" in this specification means xkA to ykA. The same applies to other unit systems (ms, etc.).
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、製造方法の他、物(金属接合体等)にも適宜該当し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components selected from this specification may be added to the components of the present invention described above. The contents described in this specification may also be applied to the manufacturing method as well as to the product (metal bonded body, etc.) as appropriate. Which embodiment is best depends on the target, required performance, etc.
《鋼板》
本発明に係る鋼板は、次のような特徴を有するとよい。
Steel Plate
The steel plate according to the present invention may have the following characteristics.
(1)厚さ
鋼板の厚さ(板厚)は、例えば、1~3.5mm、1.4~3.2mm、1.6~3mmまたは1.8~2.6mmである。本明細書でいう板厚は、接合に供される前の被接合部の厚さである。
(1) Thickness The thickness of the steel plate (plate thickness) is, for example, 1 to 3.5 mm, 1.4 to 3.2 mm, 1.6 to 3 mm, or 1.8 to 2.6 mm. The plate thickness in this specification refers to the thickness of the parts to be joined before being used for joining.
板厚が過大になると、通電時の発熱量も過大となりスパッタが発生し易くなる。板厚が過小であると、発熱量の低下や放熱量の増加により、アルミニウム基体の被接合面付近を十分に加熱できない。 If the plate thickness is too thick, the amount of heat generated when electricity is passed through the plate will also be too large, making it easier for spatter to occur. If the plate thickness is too small, the amount of heat generated will decrease and the amount of heat dissipated will increase, making it impossible to sufficiently heat the area near the surface of the aluminum substrate to be joined.
(2)引張強度/成分組成
鋼板は、例えば、高張力鋼板(いわゆるハイテン/High Tensile Strength Steel Sheets)やホットスタンプ鋼板である。高張力鋼板の引張強度は、例えば、590MPa以上、780MPa、980MPa以上または1180MPa以上である。焼入れ成形後のホットスタンプ鋼板の引張強度は、例えば、780MPa、980MPa以上、1180MPa以上、1380MPa以上または1580MPa以上である。
(2) Tensile strength/composition The steel sheet is, for example, a high tensile steel sheet (so-called high tensile strength steel sheet) or a hot stamp steel sheet. The tensile strength of the high tensile steel sheet is, for example, 590 MPa or more, 780 MPa or more, 980 MPa or more, or 1180 MPa or more. The tensile strength of the hot stamp steel sheet after quench forming is, for example, 780 MPa or more, 980 MPa or more, 1180 MPa or more, 1380 MPa or more, or 1580 MPa or more.
このような鋼板は、Cの他、Ni、SiまたはMn等の合金元素を相応に多く含み、通常、強度の他に成形性等も考慮して成分調整される。また鋼板は、強化機構(固溶強化、析出強化、焼入れ等)に応じた金属組織を有する。 Such steel sheets contain a fair amount of alloy elements such as Ni, Si, or Mn in addition to C, and the composition is usually adjusted taking into consideration formability as well as strength. In addition, the steel sheets have a metal structure according to the strengthening mechanism (solid solution strengthening, precipitation strengthening, quenching, etc.).
(3)被覆層
鋼板は、少なくとも、被接合部のアルミニウム基体側に被覆層(または表面処理層)を有してもよい。勿論、被覆層が鋼板の片面または両面の全体に設けられていてもよい。本明細書でいう鋼板(接合前)の板厚や電気抵抗には、その被覆層分が含まれる。被覆層の厚さは、通常、1~30μmである。
(3) Coating layer The steel sheet may have a coating layer (or a surface treatment layer) at least on the aluminum substrate side of the joined portion. Of course, the coating layer may be provided on the entire surface of one or both sides of the steel sheet. The thickness and electrical resistance of the steel sheet (before joining) referred to in this specification include the coating layer. The thickness of the coating layer is usually 1 to 30 μm.
被覆層は、例えば、亜鉛めっき層、酸化亜鉛層、Zn-Fe合金層等である。このような被覆層を有する鋼板として、例えば、Znを含む被覆層(Zn-Fe合金層等)を有するホットスタンプ鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等の亜鉛めっき鋼板がある。合金化溶融亜鉛めっき鋼板は、アルミニウム-亜鉛合金めっき鋼板(いわゆるガルバリウム鋼板(登録商標))でもよい。 The coating layer is, for example, a zinc plating layer, a zinc oxide layer, a Zn-Fe alloy layer, etc. Examples of steel sheets having such a coating layer include galvanized steel sheets such as hot stamp steel sheets having a coating layer containing Zn (such as a Zn-Fe alloy layer), hot-dip galvanized steel sheets, electrogalvanized steel sheets, and alloyed hot-dip galvanized steel sheets. The alloyed hot-dip galvanized steel sheets may be aluminum-zinc alloy-plated steel sheets (so-called Galvalume steel sheets (registered trademark)).
ちなみに、被覆層は、合金化や酸化等が進行しているものほど、電気抵抗が大きく、発熱し易い傾向にある。本発明のように相対的に低い電流値で長い通電を行なう場合、そのような被覆層があっても、スパッタの発生は抑制され得る。逆に、そのような被覆層は、被接合面付近における溶融反応や金属間化合物層の形成を助長し得る。 Incidentally, the more the coating layer is alloyed or oxidized, the greater the electrical resistance and the more likely it is to generate heat. When a relatively low current is applied for a long period of time, as in the present invention, spattering can be suppressed even with such a coating layer. Conversely, such a coating layer can promote a melting reaction or the formation of an intermetallic compound layer near the joined surfaces.
《アルミニウム基体》
アルミニウム基体は、展伸材でも鋳造材でもよい。展伸材は、例えば、圧延材、(熱間)押出材、鍛造材等である。鋳造材は、例えば、ダイキャスト材、金型鋳造材、砂型鋳造材等である。アルミニウム基体は、形態(形状、大きさ)、被接合部の厚さ、電気抵抗率、強度、組成、被覆処理等を問わない。
<Aluminum base>
The aluminum substrate may be a wrought material or a cast material. Wrought materials include, for example, rolled materials, (hot) extruded materials, forged materials, etc. Cast materials include, for example, die cast materials, metal mold cast materials, sand cast materials, etc. The aluminum substrate may be of any form (shape, size), thickness of the joined portion, electrical resistivity, strength, composition, coating treatment, etc.
アルミニウム基体は、MgやSiを含むアルミニウム合金からなるとよい。このようなアルミニウム合金は、鋼板との被接合界面で溶融し易い。展伸材なら、例えば、A4000系、A5000系、A6000系(JIS)等である。鋳造材なら、例えば、ADC10系、ADC12系、AC4系(JIS)等である。アルミニウム合金は、その他の合金元素(Cu、Mn、Zn、Fe、Ti等)を含んでもよい。 The aluminum substrate is preferably made of an aluminum alloy containing Mg and Si. Such an aluminum alloy is easily melted at the interface with the steel plate. Examples of wrought materials include the A4000 series, A5000 series, and A6000 series (JIS). Examples of cast materials include the ADC10 series, ADC12 series, and AC4 series (JIS). The aluminum alloy may contain other alloying elements (Cu, Mn, Zn, Fe, Ti, etc.).
アルミニウム基体は、板材には限らない。少なくともアルミニウム基体の被接合部が板状であると、抵抗溶接が容易になる。その被接合部の厚さは問わないが、例えば、1.4~4mm、1.8~3.6mmまたは2.2~3.2mmである。 The aluminum substrate is not limited to a plate material. Resistance welding is easier if at least the portion to be joined of the aluminum substrate is plate-shaped. The thickness of the portion to be joined is not important, but is, for example, 1.4 to 4 mm, 1.8 to 3.6 mm, or 2.2 to 3.2 mm.
《金属接合体》
金属接合体は、上述した特徴を有する一枚の鋼板とアルミニウム基体とが接合されたものには限らない。金属接合体は、上述した鋼板の裏側(アルミニウム基体の反対面側)に、別基体(例えば鋼板)を有してもよい。別基体は、形態、板厚、電気抵抗率、強度、組成、被覆処理等を問わない。別基体は、鋼板(熱間圧延鋼板、冷間圧延鋼板、高強度鋼板、ホットスタンプ鋼板等)でもよいし、鋼板と異なる金属体(板)でもよい。
Metal Joint
The metal joined body is not limited to one in which a single steel plate having the above-mentioned characteristics is joined to an aluminum substrate. The metal joined body may have another substrate (e.g., a steel plate) on the back side of the above-mentioned steel plate (the opposite side of the aluminum substrate). The other substrate may have any shape, thickness, electrical resistivity, strength, composition, coating treatment, etc. The other substrate may be a steel plate (hot-rolled steel plate, cold-rolled steel plate, high-strength steel plate, hot-stamped steel plate, etc.) or a metal body (plate) different from the steel plate.
金属接合体は、複数の鋼板とアルミニウム基体が、本発明の方法により接合されたものでもよい。複数の鋼板間の接合の有無は問わない。予め接合された鋼板同士の接合部に、アルミニウム基体を本発明の方法により接合する場合なら、その鋼板同士の接合部(厚さ)を本発明でいう「鋼板の被接合部(厚さ)」と考えればよい。 The metal joint may be a joint in which multiple steel plates and an aluminum base are joined by the method of the present invention. There is no requirement for the multiple steel plates to be joined together. If an aluminum base is joined by the method of the present invention to a joint between previously joined steel plates, the joint (thickness) between the steel plates can be considered as the "joined portion (thickness) of the steel plate" as used in the present invention.
《製造方法》
金属接合体は、圧接された鋼板とアルミニウム基体へ、次のような通電をしてなされる(通電工程)。具体的には次の通りである。
<Production Method>
The metal joint is formed by passing an electric current between the pressure-welded steel plate and aluminum substrate (electric current passing step).
(1)電流値
鋼板の被接合部へ流す電流値は、例えば、3~9.5kA、4~9kA、4.5~8kAまたは5~7.5kAである。ちなみに、鋼板側にある電極の先端面積で電流値を除して求まる電流密度を、例えば、26.5~84.0A/mm2または44.2~66.3A/mm2としてもよい。
(1) Current Value The current value applied to the steel sheet to be joined is, for example, 3 to 9.5 kA, 4 to 9 kA, 4.5 to 8 kA, or 5 to 7.5 kA. Incidentally, the current density calculated by dividing the current value by the tip area of the electrode on the steel sheet side may be, for example, 26.5 to 84.0 A/ mm2 or 44.2 to 66.3 A/ mm2 .
(2)通電時間
通電時間(接合部一箇所あたりの合計時間)は、例えば、300~1200ms、400~1000mmまたは500~900msである。通電時間が過少では、アルミニウム基体の被接合面において接合強度を担う金属間化合物が十分に生成されない。通電時間が過多では、電極とアルミニウム基体との間で溶着が発生して生産性が低下したり、接合品質が低下したりする。
(2) Current Flow Time The current flow time (total time per joint) is, for example, 300 to 1200 ms, 400 to 1000 mm, or 500 to 900 ms. If the current flow time is too short, intermetallic compounds that provide the joint strength are not sufficiently generated on the joint surface of the aluminum base. If the current flow time is too long, adhesion occurs between the electrode and the aluminum base, reducing productivity and reducing joint quality.
(3)通電パターン
通電工程は、複数過程で構成されてもよい。例えば、通電開始時の電流値が相対的に小さい第1通電過程後に、電流値が相対的に大きい第2通電過程を行なうと、スパッタを効果的に抑止しつつ、十分な接合部(ナゲット)の形成が可能となる。
(3) Current Flow Pattern The current flow process may be configured with a plurality of processes. For example, a first current flow process in which the current value at the start of current flow is relatively small is followed by a second current flow process in which the current value is relatively large, which makes it possible to form a sufficient joint (nugget) while effectively suppressing spattering.
第1通電過程の電流値は、例えば、3~8kA、3.5~7.5kAまたは4~7kAである。第1通電過程の通電時間は、例えば、200~400msまたは250~350msである。 The current value of the first current flow process is, for example, 3 to 8 kA, 3.5 to 7.5 kA, or 4 to 7 kA. The current flow time of the first current flow process is, for example, 200 to 400 ms or 250 to 350 ms.
第2通電過程の電流値は、例えば、5~9kAまたは6~8kAである。第2通電過程の通電時間は、例えば、300~700msまたは400~600msである。 The current value of the second current flow process is, for example, 5 to 9 kA or 6 to 8 kA. The current flow time of the second current flow process is, for example, 300 to 700 ms or 400 to 600 ms.
第1通電過程の電流値は、電流を漸増させるアップスロープ通電でもよい。アップスロープは、直線状でも曲線状でもよい。第1通電過程の開始時と終了時の電流値が上述した範囲内にあり、第1通電過程の終了時の電流値が第2通電過程の開始時の電流値に略一致するとよい。このようなアップスロープ通電により、第1通電過程の短縮化とスパッタの抑止が図られ、効率的な接合が可能となる。第1通電過程は、鋼板とアルミニウム基体の接触状態を馴染ませるプレ通電工程を兼ねてもよい。 The current value of the first current flow process may be an upslope current flow that gradually increases the current. The upslope may be linear or curved. It is preferable that the current values at the start and end of the first current flow process are within the above-mentioned range, and that the current value at the end of the first current flow process is approximately equal to the current value at the start of the second current flow process. Such upslope current flow shortens the first current flow process and suppresses spattering, enabling efficient joining. The first current flow process may also serve as a pre-current flow process that familiarizes the contact state between the steel sheet and the aluminum substrate.
(4)冷却工程
通電工程後の被接合部は、自然放冷される他、電極を通じて冷却されてもよい(冷却工程)。後者の冷却工程は、通電を遮断(非通電)してなされてもよいし、僅かな電流値を通電しつつなされてもよいし、電流値を単調減少(ダウンスロープ通電)させてなされてもよい。ホットスタンプ鋼板を接合する場合なら、通電工程後の被接合部を急冷してもよい。
(4) Cooling step The parts to be joined after the current passing step may be naturally cooled or may be cooled through the electrodes (cooling step). The latter cooling step may be performed by cutting off the current (non-current passing), by passing a small current value, or by monotonically decreasing the current value (downslope current passing). In the case of joining hot stamped steel sheets, the parts to be joined after the current passing step may be rapidly cooled.
《電極》
通電は、通常、鋼板とアルミニウム基体へ圧接された電極からなされる。電極は、鋼板やアルミニウム基体の被接合部の特性(材質や形態等)に応じて選択される。一例である抵抗スポット溶接用の電極について以下説明する。
"electrode"
Electric current is usually applied through electrodes pressed against the steel sheet and aluminum substrate. The electrodes are selected according to the characteristics (material, shape, etc.) of the steel sheet and aluminum substrate to be joined. An example of an electrode for resistance spot welding will be described below.
(1)形態
電極は、シャンクに着脱できるもの(キャップチップ型)でも、シャンクと一体化したもの(一体型)でもよい。通常、コストを低減するため、キャップチップ型の電極(「チップ」ともいう。)が用いられる。
(1) Form The electrode may be detachable from the shank (cap-tip type) or integral with the shank (integral type). Usually, a cap-tip type electrode (also called a "tip") is used to reduce costs.
電極(チップ)は、例えば、有底略円筒状の先端部と、その先端部から連なる略円筒状の胴部とを有する。先端部の外表面(圧接面)は、凸状の他、窪んだ凹状でもよい。電極の大きさは問わない。胴部の外径(呼び径/D2)は、例えば、φ10~20mmさらにはφ12~18mmである。先端径(D1)は、例えば、φ6~14mmさらにはφ8~12mmである。 The electrode (tip) has, for example, a bottomed, generally cylindrical tip portion and a generally cylindrical body portion continuing from the tip portion. The outer surface (pressure contact surface) of the tip portion may be convex or may be recessed. The size of the electrode does not matter. The outer diameter of the body portion (nominal diameter/D2) is, for example, φ10-20 mm or φ12-18 mm. The tip diameter (D1) is, for example, φ6-14 mm or φ8-12 mm.
電極は、その先端部内側にある内筒部に冷媒(冷却液/冷却水)が導入されるとよい。冷媒が強制的に循環されると、電極の昇温抑制や電極を通じた板材の冷却を安定して行える。 It is recommended that a coolant (cooling liquid/cooling water) be introduced into the inner tube at the inside of the tip of the electrode. When the coolant is forcibly circulated, the temperature rise of the electrode can be suppressed and the plate material can be cooled stably through the electrode.
電極(特に凸状電極)の先端部の基本形状は、JIS C9304(1999)に規定されている。例えば、平面形(F形)、ラジアス形(R形)、ドーム形(D形)、ドームラジアス形(DR形)、円錐台形(CF形)、円錐台ラジアス形(CR形)等がある。鋼板とアルミニウム基体のスポット溶接には、汎用性の観点から、例えばDR形、R形の電極を用いるとよい。 The basic shape of the tip of an electrode (especially a convex electrode) is specified in JIS C9304 (1999). Examples include flat (F-type), radius (R-type), dome (D-type), dome radius (DR-type), truncated cone (CF-type), truncated cone radius (CR-type), etc. For spot welding of steel plate and aluminum substrate, it is recommended to use electrodes of, for example, DR-type or R-type, from the viewpoint of versatility.
(2)材質
電極(少なくとも先端部)は、熱伝導性、導電性、強度等に優れる材質からなるとよい。例えば、導電率が75~95%IACSさらには80~90%IACSである銅合金からなる電極が用いられる。銅合金は、例えば、クロム銅、ジルコニウム銅、クロム・ジルコニウム銅、アルミナ分散銅、ベリリウム銅等である。
(2) Material The electrode (at least the tip) is preferably made of a material having excellent thermal conductivity, electrical conductivity, strength, etc. For example, an electrode made of a copper alloy having an electrical conductivity of 75 to 95% IACS, or even 80 to 90% IACS, is used. Examples of copper alloys include chromium copper, zirconium copper, chromium-zirconium copper, alumina-dispersed copper, and beryllium copper.
なお、鋼板に接する電極とアルミニウム基体に接する電極は、形態(形状、サイズ(径))や材質が同じでも異なってもよい。 The electrode in contact with the steel plate and the electrode in contact with the aluminum substrate may be the same or different in form (shape, size (diameter)) and material.
(3)加圧力
電極は、鋼板とアルミニウム基体を、例えば2~7kNさらには3~6kNで挟持する。この加圧力が過小であると、スパッタ(チリ)が発生し易くなる。加圧力が過大になると、電極による深い打痕(陥没)が生じたり、電極の変形や摩耗が生じ易くなる。加圧力は、通常、略一定に保持されるが、工程中に変化してもよい。
(3) Pressing force The electrodes clamp the steel sheet and the aluminum substrate with, for example, 2 to 7 kN, or even 3 to 6 kN. If the pressing force is too small, spatter (dust) is likely to occur. If the pressing force is too large, deep dents (depressions) are likely to occur due to the electrodes, and deformation and wear of the electrodes are likely to occur. The pressing force is usually kept approximately constant, but may be changed during the process.
《その他》
(1)金属接合体(特に接合部)は、溶接後に熱処理(焼鈍、焼戻し等)がなされてもよい。熱処理により、接合部(ナゲット)やその近傍(熱影響部)の組織調整、残留応力除去等がなされ得る。加熱温度や加熱時間は、鋼板の組成や厚さ等に応じて調整されるとよい。
"others"
(1) The metal joint (particularly the joint) may be heat-treated (annealed, tempered, etc.) after welding. The heat treatment can adjust the structure of the joint (nugget) and its vicinity (heat-affected zone), remove residual stress, etc. The heating temperature and heating time may be adjusted depending on the composition and thickness of the steel sheets.
(2)金属接合体は、種々の部材や構造物となる。例えば、車両用の骨格、パネル、筐体、収容室等の少なくとも一部(金属接合体)が、本発明の製造方法により得られる。 (2) Metal bonded bodies can be used to make various components and structures. For example, at least a portion (metal bonded body) of a vehicle frame, panel, housing, storage compartment, etc. can be obtained by the manufacturing method of the present invention.
鋼板とアルミニウム基体を抵抗スポット溶接した金属接合体を製作し、その接合強度や破断面等を評価した。このような具体例を例示しつつ、本発明をさらに詳しく説明する。 A metal joint was produced by resistance spot welding a steel plate and an aluminum substrate, and the joint strength, fracture surface, etc. were evaluated. The present invention will be explained in more detail using such a specific example.
スポット溶接の概要を図1に示した。被溶接材として、鋼板と、Al合金板を積層した板組を用いた。スポット溶接は、板組の各表面(Al合金板の上面と鋼板の下面)に圧接された一対の同電極へ通電してなされる。本実施例では、説明の便宜上、特に断らない限り、図1に示した矢印の方向を、上下方向または左右方向とする。 An overview of spot welding is shown in Figure 1. A sheet assembly consisting of a steel sheet and an Al alloy sheet stacked together was used as the material to be welded. Spot welding is performed by passing electricity through a pair of identical electrodes that are pressed against each surface of the sheet assembly (the top surface of the Al alloy sheet and the bottom surface of the steel sheet). In this example, for ease of explanation, unless otherwise specified, the directions of the arrows shown in Figure 1 are taken to be the up-down direction or the left-right direction.
《試料の製作》
(1)被溶接材
鋼板には、亜鉛めっき層を有するボロン鋼を熱間成形したホットスタンプ材(板厚:2.2mm)を用いた。その両面は、Fe-Zn合金層(平均厚さ:15μm)でおおわれていた。
<Sample Preparation>
(1) Welding material The steel plate used was a hot stamped material (thickness: 2.2 mm) made of hot-formed boron steel with a zinc-plated layer. Both sides of the plate were covered with an Fe-Zn alloy layer (average thickness: 15 μm).
Al合金板には、ダイキャスト材(ADC10/JIS)と、熱間押出材(A6005C/JIS)を用いた。いずれも板厚:3.0mmとした。ダイキャスト材は、融点(固相線温度):565℃であった。熱間押出材は、融点(固相線温度):590℃であった。 The aluminum alloy plates used were die-cast material (ADC10/JIS) and hot-extruded material (A6005C/JIS). The plate thickness for both was 3.0 mm. The melting point (solidus temperature) of the die-cast material was 565°C. The melting point (solidus temperature) of the hot-extruded material was 590°C.
各板材を短冊状(30mm×100mm)に切断加工して、表面研磨等を行わず、そのままスポット溶接に供した。 Each plate was cut into strips (30 mm x 100 mm) and used for spot welding as is without surface polishing.
(2)電極
電極にはDR形(JIS C9304)の市販チップ(OBARA株式会社製)を用いた。チップの内側(内円筒部)には強制循環された冷却水(流量:2.7L/min)を供給して、チップを強制冷却した。電極はクロム銅(Cr:1質量%、Cu:残部)製であり、その電気伝導度は80%IACSであった。
(2) Electrode A commercially available tip (manufactured by OBARA Corporation) of DR type (JIS C9304) was used as the electrode. Forced circulating cooling water (flow rate: 2.7 L/min) was supplied to the inside (inner cylindrical part) of the tip to forcibly cool the tip. The electrode was made of chromium copper (Cr: 1 mass%, Cu: balance), and its electrical conductivity was 80% IACS.
電極のサイズは、図1の拡大図に示すように、チップ径(呼び径D2):φ16mm、先端底部の厚さは12mm、先端肩部の曲率半径(R):8mm、先端面の曲率半径(R1):40mmとし、先端径(D1)は12mmとした。 As shown in the enlarged view of Figure 1, the electrode size is as follows: tip diameter (nominal diameter D2): φ16 mm, thickness of the tip base: 12 mm, radius of curvature (R) of tip shoulder: 8 mm, radius of curvature (R1) of tip surface: 40 mm, and tip diameter (D1) is 12 mm.
(3)溶接
スポット溶接はサーボ加圧式スポット溶接機(ARO社製PA235KVAMF)を用いて行った。通電パターン例を図2に示した。電極による板組の加圧力(F)は4kNで一定とした。通電は、直流電流を制御して次のように行った。
(3) Welding Spot welding was performed using a servo pressure spot welding machine (PA235KVAMF manufactured by ARO). An example of the current pattern is shown in Figure 2. The pressure (F) applied to the plate assembly by the electrodes was constant at 4 kN. Current was applied by controlling the DC current as follows.
第1電流値:4~7kA、第1通電時間:300msとする第1通電過程を行った。第1電流値は、通電開始時の4kAから、その通電終了時の7kAまで、時間変化率を一定にして単調増加させた(直線状のアップスロープ通電)。 The first current flow process was performed with a first current value of 4 to 7 kA and a first current flow time of 300 ms. The first current value was monotonically increased at a constant rate of change over time from 4 kA at the start of current flow to 7 kA at the end of current flow (linear upslope current flow).
第1通電過程に続けて、第2電流値:7kA(一定)、第2通電時間:500msとする第2通電過程を行なった。 Following the first current flow process, a second current flow process was carried out with a second current value of 7 kA (constant) and a second current flow time of 500 ms.
第2通電過程後、通電を遮断して、200ms経過後に被溶接材から電極を離した。こうして、ホットスタンプ材とダイキャスト材の接合体(試料1)と、ホットスタンプ材と熱間押出されたAl合金材(A6005C)との接合体(試料2)とを得た。 After the second current flow process, the current was cut off, and after 200 ms had elapsed, the electrodes were removed from the workpieces. In this way, a joint of hot stamped material and die cast material (sample 1) and a joint of hot stamped material and hot extruded Al alloy material (A6005C) (sample 2) were obtained.
《測定》
各試料を引張せん断試験(JIS Z 3136)に供して、破断時の荷重を測定した。この測定を3回繰り返して、引張せん断強度(平均値)を求めた。例えば、試料1:3894N(-3σ:277N)であった。引張せん断強さを破断部面積で除すと、いずれの試料でも、80~100MPaを超える十分な接合強度が確保されていた。
"measurement"
Each sample was subjected to a tensile shear test (JIS Z 3136) to measure the load at break. This measurement was repeated three times to determine the tensile shear strength (average value). For example, sample 1 was 3894 N (-3σ: 277 N). When the tensile shear strength was divided by the area of the broken portion, a sufficient bonding strength of over 80 to 100 MPa was ensured for all samples.
《観察》
引張試験後の試料1の接合面(鋼板側の破断面)を、倒立金属顕微鏡(オリンパス株式会社製GX53)で観察した写真を図3に示した。接合面には、金属間化合物層があった(外円域)。その接合面の中央付近には、破断したダイキャスト材の残部も観察された(内円域)。図3からわかるように、鋼板とAl合金板は、十分に大きな金属間化合物層(ナゲット)で接合されており、その接合強度は被接合材(Al合金板)の強度以上であることも確認された。
"observation"
Fig. 3 shows a photograph of the bonding surface (fracture surface on the steel plate side) of sample 1 after the tensile test, observed with an inverted metallurgical microscope (GX53 manufactured by Olympus Corporation). An intermetallic compound layer was present on the bonding surface (outer circular area). Remnants of the broken die-cast material were also observed near the center of the bonding surface (inner circular area). As can be seen from Fig. 3, the steel plate and the Al alloy plate were bonded with a sufficiently large intermetallic compound layer (nugget), and it was also confirmed that the bonding strength was equal to or greater than the strength of the bonded material (Al alloy plate).
以上から、本発明の製造方法によれば、電気抵抗率が大きく厚い鋼板でも、アルミニウム基体と強固に接合された異種金属接合体が得られることが確認された。 From the above, it was confirmed that the manufacturing method of the present invention can produce a dissimilar metal joint that is firmly bonded to an aluminum substrate, even when the steel plate has a high electrical resistivity and is thick.
Claims (13)
該鋼板の被接合部は、厚さが1.4~3.5mmであり、
該通電工程は、3~9.5kAを300~1200ms通電してなされ、
該鋼板と該アルミニウム基体が金属間化合物層を介して接合された金属接合体を得る製造方法。 The method includes a current application step of applying current to a joint portion of a steel plate and an aluminum substrate sandwiched between electrodes,
The steel plate to be joined has a thickness of 1.4 to 3.5 mm,
The current application step is carried out by applying a current of 3 to 9.5 kA for 300 to 1200 ms,
The method for producing a metal joined body is provided in which the steel plate and the aluminum substrate are joined via an intermetallic compound layer.
5~9kA内で300~700ms通電する第2通電過程と、
を備える請求項1に記載の金属接合体の製造方法。 The current application step includes a first current application step of applying current at 3 to 8 kA for 200 to 400 ms;
A second current application process of applying current at 5 to 9 kA for 300 to 700 ms;
The method for producing a metal joined body according to claim 1 , comprising:
前記通電工程は、3~8kAを400~1200ms通電してなされるThe current application step is performed by applying a current of 3 to 8 kA for 400 to 1200 ms.
請求項1に記載の金属接合体の製造方法。The method for producing the metal joined body according to claim 1 .
Publications (1)
Publication Number | Publication Date |
---|---|
JP7586993B1 true JP7586993B1 (en) | 2024-11-19 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020006416A (en) | 2018-07-10 | 2020-01-16 | Jfeスチール株式会社 | Weld bond joint and method for manufacture thereof |
JP2023149228A (en) | 2022-03-30 | 2023-10-13 | 株式会社豊田中央研究所 | Spot welding method |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020006416A (en) | 2018-07-10 | 2020-01-16 | Jfeスチール株式会社 | Weld bond joint and method for manufacture thereof |
JP2023149228A (en) | 2022-03-30 | 2023-10-13 | 株式会社豊田中央研究所 | Spot welding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10682723B2 (en) | Resistance spot welding steel and aluminum workpieces with electrode having insert | |
KR101419191B1 (en) | Method for joining differing materials | |
CN107160022A (en) | For aluminium workpiece and steel workpiece resistance spot welding match somebody with somebody composite electrode | |
KR102058305B1 (en) | Resistance spot welding method and manufacturing method of welding member | |
CN110202245B (en) | Mechanical property improvement of aluminum-steel welding seam by limiting deformation of steel plate | |
EP3342524B1 (en) | Resistance spot welding method and method for manufacturing welded member | |
JP5392142B2 (en) | Spot welding method for alloyed aluminized steel sheet or press part having aluminum alloy layer | |
US20230007988A1 (en) | Method for Joining Metal Materials and Controlling Bonding Quality Thereof | |
US11772184B2 (en) | Welding method for the manufacture of an assembly of at least 2 metallic substrates | |
JP7230183B2 (en) | Assembly of at least two metal substrates | |
CN110475642B (en) | Method for manufacturing resistance spot-welded joint | |
JP7586993B1 (en) | Method for manufacturing metal joint | |
JP7003806B2 (en) | Joined structure and its manufacturing method | |
JP4690087B2 (en) | Dissimilar joints of steel and aluminum and their joining methods | |
JP7269191B2 (en) | spot welding method | |
JP5637655B2 (en) | Dissimilar metal joining method and joining structure of magnesium alloy and steel | |
JP7570998B2 (en) | Method for manufacturing metal joint | |
JP7194269B2 (en) | Assembly of at least two metal substrates | |
CN110280880B (en) | Resistance spot welding method for 6061-T6 aluminum alloy and TRIP980 high-strength steel dissimilar alloy | |
JP7047543B2 (en) | Joined structure and its manufacturing method | |
US11772186B2 (en) | Spot welding method | |
Auwal et al. | Challenges and Advances in Welding and Joining Magnesium Alloy to Steel | |
US20230311233A1 (en) | Spot welding method | |
JP2024541826A (en) | Dissimilar metal joint and resistance welding method thereof |