JP7563679B2 - Gene amplification method and gene amplification kit - Google Patents

Gene amplification method and gene amplification kit Download PDF

Info

Publication number
JP7563679B2
JP7563679B2 JP2021502223A JP2021502223A JP7563679B2 JP 7563679 B2 JP7563679 B2 JP 7563679B2 JP 2021502223 A JP2021502223 A JP 2021502223A JP 2021502223 A JP2021502223 A JP 2021502223A JP 7563679 B2 JP7563679 B2 JP 7563679B2
Authority
JP
Japan
Prior art keywords
reaction
gene
gene amplification
dna polymerase
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021502223A
Other languages
Japanese (ja)
Other versions
JPWO2020175406A1 (en
Inventor
秀之 青木
朋子 森
幹子 喜田
裕二 宮原
亮 松元
美幸 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Food Research Co Ltd
Tokyo Medical and Dental University NUC
Original Assignee
Ikeda Food Research Co Ltd
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Food Research Co Ltd, Tokyo Medical and Dental University NUC filed Critical Ikeda Food Research Co Ltd
Publication of JPWO2020175406A1 publication Critical patent/JPWO2020175406A1/ja
Application granted granted Critical
Publication of JP7563679B2 publication Critical patent/JP7563679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、遺伝子増幅法及び遺伝子増幅用キット等に関する。 The present invention relates to a gene amplification method and a gene amplification kit, etc.

遺伝子を増幅する技術は、医療分野において病原菌の検査、がん診断などに、ライフサイエンス分野においては、食中毒菌の検査、水質検査、遺伝子組換え作物検査などに広く産業利用されている。遺伝子増幅は、目的遺伝子をテンプレートとしDNAポリメラーゼと作用させ、生成された目的遺伝子を電気泳動と染色で検出する方法が知られている。また、簡便な遺伝子増幅を確認する方法として、反応副産物であるピロリン酸を測定することで目的遺伝子の増幅を判別する方法が使用されている。 Gene amplification technology is widely used industrially in the medical field for testing for pathogens and cancer diagnosis, and in the life science field for testing for food poisoning bacteria, water quality testing, and genetically modified crop testing. A known method of gene amplification is to use the target gene as a template and react it with DNA polymerase, and then detect the generated target gene by electrophoresis and staining. Another simple method of confirming gene amplification is to determine the amplification of the target gene by measuring the reaction by-product pyrophosphate.

反応副産物であるピロリン酸の測定法として蛍光試薬で検出する方法があり、リアルタイムPCRなどの検出系として実用化されている。しかし、該方法は、蛍光試薬を使用するため高価となること、蛍光物質の影響を受けやすいことが知られている。他のピロリン酸の測定方法として集積化トランジスタを用いた方法がある。該方法は、目的遺伝子増幅反応で副生したピロリン酸から生じるプロトンをpHセンサで捉え検出することで遺伝子増幅を評価する方法であり、DNAシーケンサの検出系としても実用化されている。しかしながら、該方法では、遺伝子増幅反応のプロトンを捉える必要があるため、反応液中の緩衝能を極力抑える必要があり、その為、酵素反応を繰り返すと遺伝子増幅反応で産生したプロトンが蓄積することで反応液が酸性に傾き酵素の至適pHから乖離し、酵素活性が低下、遺伝子増幅が低下することが知られている(非特許文献1)。 As a method for measuring pyrophosphate, which is a by-product of the reaction, there is a method for detecting it using a fluorescent reagent, which has been put to practical use as a detection system for real-time PCR and the like. However, this method is known to be expensive because it uses a fluorescent reagent, and to be easily affected by fluorescent substances. Another method for measuring pyrophosphate is a method using an integrated transistor. This method is a method for evaluating gene amplification by capturing and detecting protons generated from pyrophosphate by-products in the target gene amplification reaction with a pH sensor, and has also been put to practical use as a detection system for DNA sequencers. However, in this method, since it is necessary to capture protons from the gene amplification reaction, it is necessary to suppress the buffer capacity in the reaction solution as much as possible, and therefore, it is known that when the enzyme reaction is repeated, the protons produced in the gene amplification reaction accumulate, causing the reaction solution to become acidic and deviating from the optimal pH for the enzyme, resulting in a decrease in enzyme activity and a decrease in gene amplification (Non-Patent Document 1).

そこでこれら課題を解決する方法として、ピロリン酸を特異的に認識するピリジルボロン酸を用いた方法がある。該方法では、蛍光試薬を使用する必要がなく安価であり、また、酸性条件下でピロリン酸とピリジルボロン酸が作用するため、遺伝子増幅反応で産生したプロトンが蓄積しても問題なく検出できる。しかし、ピリジルボロン酸がピロリン酸と結合できるpHの範囲が5~7であり、一般的な遺伝子増幅反応が、アルカリ側で行われていること、また、酸性条件下では、遺伝子の脱プリン化が起こりやすいことが知られており(非特許文献2)、脱プリン化が起こった遺伝子では、DNAポリメラーゼが作用できず、その為、遺伝子増幅が起こらない。このことから、酸性条件下で遺伝子増幅を行える有効な方法が未だないため、本方法は活用されていない状況である。 To solve these problems, there is a method using pyridylboronic acid that specifically recognizes pyrophosphate. This method is inexpensive because it does not require the use of fluorescent reagents, and since pyrophosphate and pyridylboronic acid act under acidic conditions, the accumulation of protons produced in the gene amplification reaction can be detected without any problems. However, it is known that the pH range in which pyridylboronic acid can bind to pyrophosphate is 5 to 7, and general gene amplification reactions are carried out on the alkaline side, and that depurination of genes is likely to occur under acidic conditions (Non-Patent Document 2), and DNA polymerase cannot act on genes that have undergone depurination, and therefore gene amplification does not occur. For this reason, there is still no effective method for gene amplification under acidic conditions, and this method has not been utilized.

その他にも、遺伝子増幅については多く検討されており、これらの方法の多くは、アルカリ側での反応であるが、その中でpHが7以下における遺伝子増幅に関する記載のある公知文献がある(特許文献1、2、3)。しかし、該公知文献では、酸性条件下で遺伝子増幅を行うことが目的ではないため、酸性条件下でDNAポリメラーゼを反応させる具体的な組成や条件が示されてなく、実際に酸性条件下で遺伝子増幅を行った例については全く記載されていない。Many other methods for gene amplification have been studied, and while most of these methods involve reactions on the alkaline side, there are known documents that describe gene amplification at a pH of 7 or less (Patent Documents 1, 2, and 3). However, since the purpose of these known documents is not to perform gene amplification under acidic conditions, they do not disclose specific compositions or conditions for reacting DNA polymerase under acidic conditions, and there is no description of any examples of gene amplification actually being performed under acidic conditions.

また、酸性条件に至適pHが6であるDNAポリメラーゼを用いて遺伝子増幅の検討が行なわれている(非特許文献3)。しかしながら、該方法では、遺伝子増幅の最適pHは8.2であり、pH7.4では遺伝子増幅が認められなかった。酵素の至適pHと遺伝子増幅の至適pHは異なっており、酸性条件に至適pHを有するDNAポリメラーゼであれば、酸性条件で遺伝子増幅ができるわけではない。以上のように、酸性条件下でピロリン酸を検出するのに有用なピリジルボロン酸を用いた方法等を活用できるような、実際に酸性条件下でのDNAポリメラーゼを用いた遺伝子増幅法は未だない状況である。 In addition, gene amplification has been studied using a DNA polymerase with an optimal pH of 6 under acidic conditions (Non-Patent Document 3). However, in this method, the optimal pH for gene amplification is 8.2, and gene amplification was not observed at pH 7.4. The optimal pH of the enzyme and the optimal pH for gene amplification are different, and a DNA polymerase with an optimal pH under acidic conditions does not necessarily enable gene amplification under acidic conditions. As described above, there is still no gene amplification method using DNA polymerase under actual acidic conditions that can utilize methods using pyridylboronic acid, which are useful for detecting pyrophosphate under acidic conditions.

特許4699415号明細書Patent No. 4699415 specification 特許5007440号明細書Patent No. 5007440 specification 特開2016-521120号公報JP 2016-521120 A

日本学術振興会 科学研究費助成事業 研究成果報告書 課題番号26702013 2版 平成29年6月26日Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Research Results Report Issue No. 26702013 2nd Edition June 26, 2017 ベーシックマスター 分子生物学 P15-16 出版年2006年12月 オーム社Basic Master Molecular Biology P15-16 Published December 2006 by Ohmsha Enzyme and Microbial technology,51, 334-341,2012Enzyme and Microbial technology, 51, 334-341, 2012

本発明は、上記の遺伝子増幅に関する従来技術に於ける様々な問題点を解決し、酸性条件下でDNAポリメラーゼを用いて、測定対象の遺伝子を選択的且つ簡便に増幅する方法等を提供することを目的とする。The present invention aims to solve the various problems in the conventional techniques related to gene amplification described above, and to provide a method for selectively and easily amplifying the gene to be measured using DNA polymerase under acidic conditions.

発明者らは、DNAポリメラーゼを用いて、測定対象の遺伝子を増幅する方法を詳細に検討した結果、予想外にも、酸性条件下での遺伝子増幅反応を有意に行うことを可能とする、緩衝液の種類及び各種塩濃度等の遺伝子増幅反応条件が存在することを見出し、本発明を完成させた。The inventors conducted detailed studies on methods for amplifying the genes to be measured using DNA polymerase, and unexpectedly discovered that there exist gene amplification reaction conditions, such as types of buffers and various salt concentrations, that enable significant gene amplification reactions under acidic conditions, and thus completed the present invention.

本発明は、以下の[1]~[8]の態様に関する。
[1]pH4.2~6.9の酸性反応液中でのDNAポリメラーゼ反応で対象遺伝子を増幅させる工程(I)を含む、遺伝子増幅法。
[2]工程(I)で用いる酸性反応液をpH4.0~6.9の緩衝液を用いて調製することを特徴とする、態様[1]に記載の遺伝子増幅法。
[3]工程(I)で用いる酸性反応液が、5mM~125mMの塩化カリウムを含むことを特徴とする、態様[2]に記載の遺伝子増幅法。
[4]工程(I)で用いるDNAポリメラーゼが、Thermus属、Thermococcus属、又は、Bacillus属バクテリオファージ由来のDNAポリメラーゼであることを特徴とする、態様[1]に記載の遺伝子増幅法。
[5]工程(I)で用いる酸性反応液が糖類を含むことを特徴とする、態様[1]に記載の遺伝子増幅法。
[6]態様[1]~[5]のいずれか一項に記載の工程(I)、及び、該工程(I)で得られた増幅産物又は反応副産物に基づき前記対象遺伝子を検出する工程(II)を含む、遺伝子検出法。
[7]工程(II)に於いて、該工程(I)で生じた反応副産物の量を測定し、該反応副産物の測定量に基づき前記対象遺伝子の量を決定することを特徴とする、遺伝子検出法。
[8]反応副産物がピロリン酸である、態様[7]に記載の遺伝子検出法。
[9]工程(II)に於いて、ピリジルボロン酸との反応による電位変化を測定することによって工程(I)で生じた反応ピロリン酸の量を測定する、態様[8]に記載の遺伝子検出法。
[10]工程(II)に於いて、吸光度法により工程(I)で生じたピロリン酸の量を測定する、態様[8]に記載の遺伝子検出法。
[11]態様[1]~[5]のいずれか一項に記載の遺伝子増幅法を実施するための遺伝子増幅用キットであって、DNAポリメラーゼ、緩衝剤、及び反応試薬を含む、前記遺伝子増幅用キット。
[12]態様[6]~[10]のいずれか一項に記載の遺伝子検出法を実施するための遺伝子検出装置またはシステムであって、態様[11]に記載の遺伝子増幅用キットを含む、前記遺伝子検出装置またはシステム。
The present invention relates to the following aspects [1] to [8].
[1] A gene amplification method comprising the step (I) of amplifying a target gene by a DNA polymerase reaction in an acidic reaction solution having a pH of 4.2 to 6.9.
[2] The gene amplification method according to aspect [1], wherein the acidic reaction solution used in step (I) is prepared using a buffer solution having a pH of 4.0 to 6.9.
[3] The gene amplification method according to aspect [2], wherein the acidic reaction solution used in the step (I) contains 5 mM to 125 mM potassium chloride.
[4] The gene amplification method according to aspect [1], wherein the DNA polymerase used in step (I) is derived from a bacteriophage belonging to the genus Thermus, Thermococcus, or Bacillus.
[5] The gene amplification method according to aspect [1], wherein the acidic reaction solution used in step (I) contains a saccharide.
[6] A gene detection method comprising the step (I) according to any one of aspects [1] to [5], and a step (II) of detecting the target gene based on the amplification product or reaction by-product obtained in the step (I).
[7] A gene detection method, comprising: in step (II), measuring the amount of a reaction by-product produced in step (I); and determining the amount of the target gene based on the measured amount of the reaction by-product.
[8] The gene detection method according to embodiment [7], wherein the reaction by-product is pyrophosphate.
[9] The gene detection method according to embodiment [8], wherein in step (II), the amount of reacted pyrophosphate produced in step (I) is measured by measuring a change in potential due to the reaction with pyridylboronic acid.
[10] The gene detection method according to embodiment [8], wherein in step (II), the amount of pyrophosphate produced in step (I) is measured by absorbance spectrometry.
[11] A gene amplification kit for carrying out the gene amplification method according to any one of aspects [1] to [5], comprising a DNA polymerase, a buffer, and a reaction reagent.
[12] A gene detection device or system for carrying out the gene detection method according to any one of aspects [6] to [10], comprising the gene amplification kit according to aspect [11].

従来技術では、酸性条件下で測定対象の遺伝子を選択的に増幅させ、該遺伝子を検出することが不可能であったが、本発明に係る遺伝子増幅法に於いては、従来技術で見られたような遺伝子の脱プリン化も見られず、酸性条件下でもDNAポリメラーゼの作用により測定対象遺伝子を有意に増幅させることが出来る。更に、引き続き、増幅反応に使用した酸性反応液を用いて、該遺伝子を選択的且つ簡便に検出又は測定することが可能となる。 In conventional techniques, it was impossible to selectively amplify and detect the gene to be measured under acidic conditions, but in the gene amplification method of the present invention, depurination of the gene, as seen in conventional techniques, is not observed, and the gene to be measured can be significantly amplified by the action of DNA polymerase even under acidic conditions. Furthermore, it is possible to subsequently selectively and easily detect or measure the gene using the acidic reaction solution used in the amplification reaction.

Thermococcus属由来のDNAポリメラーゼにおける遺伝子増幅反応液中の緩衝液の影響を示す図である。FIG. 1 shows the influence of a buffer solution in a gene amplification reaction solution for a DNA polymerase derived from the genus Thermococcus. Thermus属由来DNAポリメラーゼにおける遺伝子増幅反応液中の緩衝液の影響を示す図である。FIG. 1 shows the influence of a buffer solution in a gene amplification reaction solution using a DNA polymerase derived from the genus Thermus. Thermococcus属由来DNAポリメラーゼにおける酸性条件下での遺伝子増幅反応における緩衝液及び塩化カリウム濃度の影響を示す図である。FIG. 1 shows the effects of buffer and potassium chloride concentrations in gene amplification reactions under acidic conditions using Thermococcus-derived DNA polymerase. 遺伝子増幅反応におけるマグネシウム濃度の影響を示す図である。FIG. 1 shows the effect of magnesium concentration on gene amplification reaction. 遺伝子増幅反応における塩化カリウム濃度の影響を示す図である。FIG. 1 shows the effect of potassium chloride concentration on gene amplification reaction. 遺伝子増幅反応におけるトレハロースの添加効果を示す図である。FIG. 1 shows the effect of adding trehalose in gene amplification reaction. 本発明と公知文献記載の遺伝子増幅反応組成における酸性条件下での遺伝子増幅反応の比較を示す図である。FIG. 1 is a diagram showing a comparison of gene amplification reactions under acidic conditions between the gene amplification reaction compositions of the present invention and those described in a known literature. Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼにおける遺伝子増幅反応液中の緩衝液の影響を示す図である。FIG. 1 shows the influence of a buffer solution in a gene amplification reaction solution using a DNA polymerase derived from a Bacillus subtilis bacteriophage. Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼにおける遺伝子増幅反応液中の塩化カリウム濃度の影響を示す図である。FIG. 1 shows the effect of potassium chloride concentration in a gene amplification reaction solution using a DNA polymerase derived from a Bacillus subtilis bacteriophage.

本発明は、第一に、遺伝子増幅法に係る。本発明の遺伝子増幅法の工程(I)では、pH4.2~6.9、例えば、Thermus属及びThermococcus属由来のDNAポリメラーゼの場合、好ましくは、pH5.7~6.9又は、Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼの場合、好ましくは、pH5.0~6.5の範囲にある(酸性)反応液中でのDNAポリメラーゼ反応において、測定の対象となる遺伝子(DNA)を増幅させる。尚、上記の酸性反応液のpHは遺伝子増幅反応が進むにつれて多少変動するので、遺伝子増幅反応開始時のpHで規定する。本発明方法に使用するDNAポリメラーゼは、原核生物、真核生物及びウィルス由来の何れのDNAポリメラーゼでも良く、例えば、Bacillus属、Thermus属、Pyrococcus属、Thermococcus属、Sulfolobus属などの微生物由来やBacillus subtilisバクテリオファージなどのウィルス由来のDNAポリメラーゼが好ましい。また、組換え型DNAポリメラーゼでも良く、合成したDNAポリメラーゼでも良い。可溶性酵素が好ましいが、不溶性酵素に界面活性剤を組み合わせても良く、可溶化タンパクとの融合又は膜結合部分の削除等により不溶性酵素を可溶化させた酵素でも良い。DNAポリメラーゼの公知のアミノ酸配列を利用でき、組換え型のDNAポリメラーゼとしては、公知のDNAポリメラーゼと60%、65%、70%、75%、80%、85%、90%又は95%以上の同一性を有するアミノ配列を有し、DNAポリメラーゼ活性を有する蛋白質を使用しても良い。尚、本発明の遺伝子増幅法に於いては、特定のpH範囲の酸性反応液中でのDNAポリメラーゼ反応において、測定対象の遺伝子の増幅を繰り返し行うことによって、ピロリン酸等の反応産生物(反応副産物)を増加させ、その後、該反応副産物を係る酸性pH条件下で測定することが可能となる。従って、このような反応液のpHの範囲に於いて有意な遺伝子増幅活性を有するDNAポリメラーゼを使用することが好ましい。尚、既に述べたように、DNAポリメラーゼ自体の至適pHと遺伝子増幅活性の至適pHとは必ずしも一致していない。First, the present invention relates to a gene amplification method. In step (I) of the gene amplification method of the present invention, the genera (DNA) to be measured are amplified in a DNA polymerase reaction in an (acidic) reaction solution having a pH of 4.2 to 6.9, for example, in the case of DNA polymerase derived from the genera Thermus and Thermococcus, preferably a pH of 5.7 to 6.9, or in the case of DNA polymerase derived from Bacillus subtilis bacteriophage, preferably a pH of 5.0 to 6.5. Note that the pH of the acidic reaction solution varies somewhat as the gene amplification reaction proceeds, and is therefore defined as the pH at the start of the gene amplification reaction. The DNA polymerase used in the method of the present invention may be any DNA polymerase derived from a prokaryote, eukaryote or virus, and is preferably a DNA polymerase derived from a microorganism such as the genera Bacillus, Thermus, Pyrococcus, Thermococcus, or Sulfolobus, or a virus such as the bacteriophage Bacillus subtilis. It may also be a recombinant DNA polymerase or a synthetic DNA polymerase. Soluble enzymes are preferred, but insoluble enzymes may be combined with a surfactant, or insoluble enzymes may be solubilized by fusion with a solubilizing protein or deletion of the membrane-binding portion. A known amino acid sequence of DNA polymerase can be used, and as a recombinant DNA polymerase, a protein having an amino acid sequence with 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% identity with a known DNA polymerase and having DNA polymerase activity may be used. In the gene amplification method of the present invention, the gene to be measured is amplified repeatedly in a DNA polymerase reaction in an acidic reaction solution of a specific pH range, thereby increasing reaction products (reaction by-products) such as pyrophosphate, and then the reaction by-products can be measured under the acidic pH conditions. Therefore, it is preferable to use a DNA polymerase that has significant gene amplification activity in the pH range of such a reaction solution. As already mentioned, the optimal pH of the DNA polymerase itself does not necessarily coincide with the optimal pH of the gene amplification activity.

本発明の遺伝子増幅法に使用するDNAポリメラーゼの調製方法としては、当業者に公知の任意の方法・手段、例えば、DNAポリメラーゼを含む対象物に加水し、粉砕機、超音波破砕機などで粉砕後、破砕した破砕物を遠心分離、濾過などで固形物を取り除いた抽出物、さらに当該抽出物をカラムクロマトグラフィーなどにより精製又は単離する方法があり、その精製又は単離したDNAポリメラーゼなどを用いることができる。The DNA polymerase used in the gene amplification method of the present invention can be prepared by any method or means known to those skilled in the art, such as adding water to a target material containing DNA polymerase, crushing it using a grinder, ultrasonic crusher, or the like, and then extracting the crushed material by centrifuging, filtration, or the like to remove solid matter, and further purifying or isolating the extract by column chromatography or the like, and the purified or isolated DNA polymerase can be used.

当該遺伝子増幅反応に使用される酸性反応液中のDNAポリメラーゼ濃度は、試料の種類、推定される試料中の遺伝子濃度及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められる。例えば、遺伝子増幅反応液中のBacillus属、Thermus属、Pyrococcus属、Thermococcus属、Sulfolobus属などの微生物由来やBacillus subtilisバクテリオファージなどのウィルス由来のDNAポリメラーゼの濃度は、0.5μg/mL以上、より好ましくは1μg/mL以上、さらに好ましくは3μg/mL以上とすることができる。いずれにしても、本発明方法では、DNAポリメラーゼを繰り返し使用できるので、予想される試料中の遺伝子に対して、過剰量のDNAポリメラーゼを添加する必要はない、という利点を有する。従って、DNAポリメラーゼ濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。The concentration of DNA polymerase in the acidic reaction solution used in the gene amplification reaction can be appropriately determined by a person skilled in the art depending on the type of sample, the estimated gene concentration in the sample, and various reaction conditions such as reaction time and temperature. For example, the concentration of DNA polymerase derived from microorganisms such as Bacillus, Thermus, Pyrococcus, Thermococcus, and Sulfolobus, or derived from viruses such as Bacillus subtilis bacteriophage, in the gene amplification reaction solution can be 0.5 μg/mL or more, more preferably 1 μg/mL or more, and even more preferably 3 μg/mL or more. In any case, the method of the present invention has the advantage that since DNA polymerase can be used repeatedly, it is not necessary to add an excessive amount of DNA polymerase to the expected genes in the sample. Therefore, the upper limit of the DNA polymerase concentration can be appropriately set by a person skilled in the art, taking into account economic efficiency, etc.

本発明の遺伝子増幅法における対象遺伝子(DNA)は、当業者に公知の任意の方法で・手段で取得することが出来る。例えば、血液、生鮮食品、加工食品及び飲料など検査の目的に応じた試料から適宜調製することが出来る。各試料中からのDNA調製方法としては、当業者に公知の任意の方法・手段、例えば、試料をドデシル硫酸ナトリウム、酵素、ビーズ破壊などで溶解させ、得られた溶解液中のDNAをシリカ膜などに結合後、溶出液でDNAを溶出させるなどにより調製したDNAを遺伝子増幅用のDNA試料として使用することができる。更に、増幅反応の種類などに応じて、DNAはcDNAであっても良い。The target gene (DNA) in the gene amplification method of the present invention can be obtained by any method or means known to those skilled in the art. For example, it can be prepared appropriately from samples such as blood, fresh food, processed food, and beverages depending on the purpose of the test. The method for preparing DNA from each sample can be any method or means known to those skilled in the art, for example, dissolving the sample with sodium dodecyl sulfate, enzymes, bead destruction, etc., binding the DNA in the resulting lysate to a silica membrane, etc., and then eluting the DNA with an elution solution, etc., to prepare DNA that can be used as a DNA sample for gene amplification. Furthermore, depending on the type of amplification reaction, etc., the DNA may be cDNA.

本発明の遺伝子増幅法で使用する特定のpH範囲の酸性反応液は、DNAポリメラーゼの種類や反応条件等に応じて、例えば、pH4.0~6.9、好ましくはpH5.0~6.5、より好ましくはpH5.5~6.5等の適当なpH範囲の緩衝液を用いて当業者が適宜調製することが出来る。該緩衝液としては、当業者に公知の任意の緩衝剤、好ましくは、NaHPO-NaHPO、NaHPO-NaOH、NaHPO-KOHなどのリン酸塩緩衝剤を用いて調製するリン酸塩緩衝液やクエン酸-クエン酸ナトリウム、クエン酸-NaOHなどのクエン酸緩衝剤を用いて調製するクエン酸緩衝液などを使用することが出来る。酸性反応液中の緩衝剤の(終)濃度に関しては、例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液を用いて調製した反応液中で反応させる場合、該反応液中のリン酸塩の濃度は、0.1~200mMがよく、より好ましくは0.5~100mM、さらに好ましくは5~50mMがよい。このような緩衝剤の濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。尚、酸性反応液の最終容量に対して、通常、1~10倍濃度の緩衝剤を1~25容量%程度を使用することによって上記のpH範囲の酸性反応液を調製することが出来る。 The acidic reaction solution having a specific pH range used in the gene amplification method of the present invention can be prepared by a person skilled in the art using a buffer having an appropriate pH range, for example, pH 4.0 to 6.9, preferably pH 5.0 to 6.5, more preferably pH 5.5 to 6.5, depending on the type of DNA polymerase, reaction conditions, etc. As the buffer, any buffer known to a person skilled in the art can be used, preferably a phosphate buffer prepared using a phosphate buffer such as NaH 2 PO 4 -Na 2 HPO 4 , NaH 2 PO 4 -NaOH, or NaH 2 PO 4 -KOH, or a citrate buffer prepared using a citrate buffer such as citric acid-sodium citrate or citric acid-NaOH. Regarding the (final) concentration of the buffer in the acidic reaction solution, for example, when a DNA polymerase derived from the genus Thermococcus is reacted in a reaction solution prepared using a buffer solution of pH 5.5, the concentration of phosphate in the reaction solution is preferably 0.1 to 200 mM, more preferably 0.5 to 100 mM, and even more preferably 5 to 50 mM. The upper limit of the concentration of such a buffer can be appropriately set by a person skilled in the art, taking into consideration economic efficiency, etc. An acidic reaction solution in the above pH range can usually be prepared by using about 1 to 25 volume % of a buffer having a concentration of 1 to 10 times the final volume of the acidic reaction solution.

本発明の遺伝子増幅法で使用する酸性反応液には塩化カリウムが含まれていることが好ましい。該反応液中の塩化カリウムの濃度は、DNAポリメラーゼの種類や反応条件に応じて、当業者が適宜決められる。アルカリ側pHで反応させる従来の一般的な遺伝子増幅反応においては、塩化カリウム濃度が75mM以上になると遺伝子増幅反応が阻害されることが知られているが、本発明方法に於ける酸性条件下での遺伝子増幅反応においては、塩化カリウム濃度は、使用する反応液のpHが酸性になるほど、過剰となるように添加するのが好ましい。例えば、Thermus属由来のDNAポリメラーゼをpH6.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中の塩化カリウムの濃度は、5~115mMがよく、より好ましくは30~115mMがよい。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中の塩化カリウムの終濃度は、5~115mMがよく、より好ましくは30~115mMがよい。更に、例えば、Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼをpH4.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中の塩化カリウムの終濃度は、5~125mMがよく、より好ましくは30~125mMがよい。塩化カリウムの濃度は、緩衝剤の濃度を考慮し、緩衝剤が高濃度の場合、塩化カリウム濃度は低濃度とし、緩衝剤が低濃度の場合、塩化カリウム濃度は高濃度とするのがよい。また、塩化カリウム濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。The acidic reaction solution used in the gene amplification method of the present invention preferably contains potassium chloride. The concentration of potassium chloride in the reaction solution can be appropriately determined by those skilled in the art depending on the type of DNA polymerase and the reaction conditions. In conventional general gene amplification reactions that are carried out at alkaline pH, it is known that gene amplification reactions are inhibited when the potassium chloride concentration is 75 mM or more. However, in gene amplification reactions under acidic conditions in the method of the present invention, the more acidic the pH of the reaction solution used, the more potassium chloride is preferably added in excess. For example, when a DNA polymerase derived from the genus Thermus is reacted in an acidic reaction solution prepared using a buffer solution of pH 6.0, the concentration of potassium chloride in the reaction solution is preferably 5 to 115 mM, more preferably 30 to 115 mM. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in an acidic reaction solution prepared using a buffer solution of pH 5.5, the final concentration of potassium chloride in the reaction solution is preferably 5 to 115 mM, more preferably 30 to 115 mM. Furthermore, for example, when a DNA polymerase derived from a Bacillus subtilis bacteriophage is reacted in an acidic reaction solution prepared using a buffer solution of pH 4.0, the final concentration of potassium chloride in the reaction solution is preferably 5 to 125 mM, more preferably 30 to 125 mM. The concentration of potassium chloride should be determined taking into consideration the concentration of the buffering agent, and when the buffering agent is at a high concentration, the potassium chloride concentration should be low, and when the buffering agent is at a low concentration, the potassium chloride concentration should be high. The upper limit of the potassium chloride concentration can be appropriately set by those skilled in the art, taking into consideration economical efficiency and the like.

本発明の遺伝子増幅法で使用する酸性反応液には更に二価イオンが含まれる。該二価イオンとしては、マグネシウム、マンガン、コバルトなどが使用できるが、マグネシウムを使用するのが好ましい。当該反応に使用される反応液中のマグネシウムの濃度は、適宜決められる。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液で反応させる場合、該反応液中のマグネシウム濃度は、1.5~9mMがよく、より好ましくは2~6mMがよい。例えば、Thermus属由来のDNAポリメラーゼをpH6.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中のマグネシウム濃度は、2~6mMがよく、より好ましくは2~4mMがよい。例えば、Bacillus subtilisバクテリオファージなどのウィルス由来のDNAポリメラーゼをpH4.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中のマグネシウム濃度は、1~30mMがよく、より好ましくは10~14mMがよい。The acidic reaction solution used in the gene amplification method of the present invention further contains divalent ions. Magnesium, manganese, cobalt, etc. can be used as the divalent ion, but magnesium is preferably used. The concentration of magnesium in the reaction solution used in the reaction can be appropriately determined. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in a buffer solution of pH 5.5, the magnesium concentration in the reaction solution is preferably 1.5 to 9 mM, more preferably 2 to 6 mM. For example, when a DNA polymerase derived from the genus Thermus is reacted in an acidic reaction solution prepared using a buffer solution of pH 6.0, the magnesium concentration in the reaction solution is preferably 2 to 6 mM, more preferably 2 to 4 mM. For example, when a DNA polymerase derived from a virus such as Bacillus subtilis bacteriophage is reacted in an acidic reaction solution prepared using a buffer solution of pH 4.0, the magnesium concentration in the reaction solution is preferably 1 to 30 mM, more preferably 10 to 14 mM.

本発明の遺伝子増幅法では、遺伝子を増幅させるため、デオキシアデノシン三リン酸(dATP)、デオキシシチジン三リン酸(dCTP)、デオキシチミジン三リン酸(dTTP)、デオキシグアノシン三リン酸(dGTP)の4種が混合されたデオキシリボヌクレオチド三リン酸(dNTP)を用いる。当該反応に使用される反応液中のdNTPの濃度は、各種反応条件に応じて、当業者が適宜決められるが、例えば、dNTP濃度は、0.01mM以上がよく、より好ましくは0.1mM以上、さらに好ましくは0.2mM以上とすることができる。In the gene amplification method of the present invention, deoxyribonucleotide triphosphates (dNTPs) containing a mixture of four types of deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxythymidine triphosphate (dTTP), and deoxyguanosine triphosphate (dGTP) are used to amplify genes. The concentration of dNTPs in the reaction solution used in the reaction can be appropriately determined by those skilled in the art depending on various reaction conditions, but for example, the dNTP concentration is preferably 0.01 mM or more, more preferably 0.1 mM or more, and even more preferably 0.2 mM or more.

更に、本発明の遺伝子増幅法では、遺伝子を増幅させるために各種のプライマーを用いる。該プライマーは増幅の対象とする遺伝子の具体的なヌクレオチド配列に基づき、当業者が適宜、設計・調製することが出来る。当該反応に使用される反応液中のプライマーの濃度は、各種反応条件に応じて、当業者が適宜決められるが、例えば、プライマー濃度は、0.01mM以上、より好ましくは0.1mM以上、さらに好ましくは0.2mM以上とすることができる。Furthermore, in the gene amplification method of the present invention, various primers are used to amplify genes. The primers can be appropriately designed and prepared by those skilled in the art based on the specific nucleotide sequence of the gene to be amplified. The concentration of the primers in the reaction solution used in the reaction can be appropriately determined by those skilled in the art depending on various reaction conditions, but for example, the primer concentration can be 0.01 mM or more, more preferably 0.1 mM or more, and even more preferably 0.2 mM or more.

本発明の遺伝子増幅法の工程(I)における遺伝子増幅反応は、当業者に公知の任意の方法、例えば、各種のポリメラーゼ連鎖反応(PCR)等で行われ、該反応の各サイクルに於ける温度や時間は、遺伝子増幅反応が生じるような任意の温度で良い。例えば、Thermus属及びThermococcus属のDNAポリメラーゼを用いる場合では、98℃・10sec→55℃・30sec→72℃・1minを繰り返すことや、94℃・3min→94℃・30sec→62℃・30sec→72℃・30secを繰り返した後、72℃・10minとすることなどできる。Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼを用いる場合では、95℃・1min加熱、30℃まで冷却した後、30℃・16hr→65℃・10min処理することなどできる。酸性条件下では、高温ほど遺伝子の脱プリン化が起こりやすいことから低温で遺伝子増幅を行うことが好ましい。The gene amplification reaction in step (I) of the gene amplification method of the present invention can be carried out by any method known to those skilled in the art, such as various polymerase chain reactions (PCR), and the temperature and time in each cycle of the reaction can be any temperature at which the gene amplification reaction occurs. For example, when using DNA polymerases of the genus Thermus and Thermococcus, the reaction can be repeated from 98°C for 10 sec to 55°C for 30 sec to 72°C for 1 min, or from 94°C for 3 min to 94°C for 30 sec to 62°C for 30 sec to 72°C for 30 sec, followed by 72°C for 10 min. When using DNA polymerase derived from Bacillus subtilis bacteriophage, the reaction can be heated at 95°C for 1 min, cooled to 30°C, and then treated at 30°C for 16 hr to 65°C for 10 min. Under acidic conditions, gene amplification is preferably carried out at low temperatures because the higher the temperature, the more likely depurination of the gene occurs.

また、本発明の遺伝子増幅法で使用する酸性反応液に糖類を含有させる(共存させる)ことによって、更に、反応産生物の量を増加させることが出来る。糖類としては、ショ糖、トレハロースなど当業者に公知の糖類が使用できる。当該反応に使用される反応液中の糖類の濃度は、各種反応条件に応じて、当業者が適宜決められる。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液で反応させる場合、該反応液中の糖類濃度は、10%以下がよく、より好ましくは5%以下がよい。例えば 、Thermus属由来のDNAポリメラーゼをpH6.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中の糖類濃度は、1%以上がよく、より好ましくは5%以上がよい。例えば、Bacillus subtilisバクテリオファージなどのウィルス由来のDNAポリメラーゼをpH4.0の緩衝液を用いて調製した酸性反応液中で反応させる場合、該反応液中の糖類濃度は、0.1%以上がよく、より好ましくは1%以上がよい。 In addition, the amount of reaction product can be further increased by adding (coexisting) sugars to the acidic reaction solution used in the gene amplification method of the present invention. As the sugar, sugars known to those skilled in the art, such as sucrose and trehalose, can be used. The concentration of sugars in the reaction solution used in the reaction can be appropriately determined by those skilled in the art depending on various reaction conditions. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in a buffer solution of pH 5.5, the sugar concentration in the reaction solution is preferably 10% or less, more preferably 5% or less. For example, when a DNA polymerase derived from the genus Thermus is reacted in an acidic reaction solution prepared using a buffer solution of pH 6.0, the sugar concentration in the reaction solution is preferably 1% or more, more preferably 5% or more. For example, when a DNA polymerase derived from a virus such as Bacillus subtilis bacteriophage is reacted in an acidic reaction solution prepared using a buffer solution of pH 4.0, the sugar concentration in the reaction solution is preferably 0.1% or more, more preferably 1% or more.

さらに、本発明の遺伝子増幅法で使用する酸性反応液に牛血清アルブミン(BSA)、非イオン製剤、アンモニウムイオンを添加する(共存させる)ことによって、酵素やDNAの安定性を増し、反応産生物の量を増加させることが出来る。BSAの濃度は、各種反応条件に応じて、当業者が適宜決められる。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液で反応させる場合、該反応液中のBSA濃度は、0.001%以上がよく、より好ましくは0.005%以上、さらに好ましくは0.01%以上がよい。非イオン製剤としては、NP-40、TritonX-100など当業者に公知の非イオン製剤が使用できる。当該反応に使用される反応液中の非イオン製剤の濃度は、各種反応条件に応じて、当業者が適宜決められる。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液で反応させる場合、該反応液中の非イオン製剤濃度は、0.0005%以上がよく、より好ましくは0.001%以上、さらに好ましくは0.01%以上がよい。また、アンモニウムイオンとしては、硫酸アンモニウムなど当業者に公知のアンモニウムイオンが使用できる。当該反応に使用される反応液中のアンモニウムイオンの濃度は、各種反応条件に応じて、当業者が適宜決められる。例えば、Thermococcus属由来のDNAポリメラーゼをpH5.5の緩衝液で反応させる場合、反応液中のアンモニウムイオン濃度は、120mM以下がよく、より好ましくは100mM以下、さらに好ましくは80mM以下がよい。Furthermore, by adding (coexisting) bovine serum albumin (BSA), a non-ionic preparation, and ammonium ions to the acidic reaction solution used in the gene amplification method of the present invention, the stability of the enzyme and DNA can be increased and the amount of the reaction product can be increased. The concentration of BSA can be appropriately determined by those skilled in the art depending on various reaction conditions. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in a buffer solution of pH 5.5, the concentration of BSA in the reaction solution is preferably 0.001% or more, more preferably 0.005% or more, and even more preferably 0.01% or more. As the non-ionic preparation, non-ionic preparations known to those skilled in the art, such as NP-40 and TritonX-100, can be used. The concentration of the non-ionic preparation in the reaction solution used in the reaction can be appropriately determined by those skilled in the art depending on various reaction conditions. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in a buffer solution at pH 5.5, the concentration of the non-ionic preparation in the reaction solution is preferably 0.0005% or more, more preferably 0.001% or more, and even more preferably 0.01% or more. In addition, ammonium ions known to those skilled in the art, such as ammonium sulfate, can be used as the ammonium ion. The concentration of ammonium ions in the reaction solution used in the reaction can be appropriately determined by those skilled in the art according to various reaction conditions. For example, when a DNA polymerase derived from the genus Thermococcus is reacted in a buffer solution at pH 5.5, the concentration of ammonium ions in the reaction solution is preferably 120 mM or less, more preferably 100 mM or less, and even more preferably 80 mM or less.

本発明方法の工程(I)で使用する反応試薬・酵素等の各反応成分は、所定の酸性条件下で遺伝子増幅反応が生じる添加方法である限り、当業者に公知の任意の手段・手順等で反応系に添加することができる。例えば、各成分を反応開始前に一度に反応液に予め添加するか、又は、DNAポリメラーゼ又は遺伝子を含む試料を最後に添加し反応させても良い。従って、例えば、本願明細書の実施例にあるように、塩化カリウム、二価イオン、及び、糖類等を予めPCR用緩衝液に含有させておくことが出来る。 The reaction components such as reaction reagents and enzymes used in step (I) of the method of the present invention can be added to the reaction system by any means or procedure known to those skilled in the art, as long as the method of addition allows a gene amplification reaction to occur under predetermined acidic conditions. For example, each component can be added to the reaction solution all at once before the start of the reaction, or a sample containing DNA polymerase or a gene can be added last and reacted. Therefore, for example, potassium chloride, divalent ions, sugars, etc. can be added to the PCR buffer solution in advance, as in the examples of this specification.

本発明は、第二に、pH4.2~6.9の酸性反応液中でのDNAポリメラーゼ反応で対象遺伝子を増幅させる工程(I)の後に、該工程(I)で得られた増幅産物又は反応副産物に基づき前記対象遺伝子を検出する工程(II)を含む、遺伝子検出法に係る。
増幅産物又は反応副産物に基づく対象遺伝子の検出は、当業者に公知の任意の方法・手段を用いて、定性的、半定量的、又は、定量的に実施することが出来る。
例えば、増幅産物である増幅遺伝子を電気泳動した後、これを染色することによって、定性的又は半定量的に検出することが出来る。又は、反応副産物であるピロリン酸を蛍光試薬で検出する方法もある。
或いは、工程(I)で生じたピロリン酸及び水素イオン等の反応副産物の夫々の量を測定し、該反応副産物の測定量に基づき対象遺伝子の量を決定する(定量的に検出する)ことが出来る。この方法では、反応副産物の量と測定対象遺伝子の量との一定の相関関係に基づく検量線等を利用することができる。特に、本発明の工程(I)で生じたピロリン酸の量の測定には、当業者に公知の任意の方法・手段を使用することができる。特に、本発明の工程(I)では酸性条件下で測定対象遺伝子の増幅が可能であるので、酸性条件下で行われる、ピロリン酸を特異的に検出するピリジルボロン酸により電位変化を測定する方法を効果的に使用することが出来る。また、本発明の工程(I)で生じたピロリン酸をヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ、キサンチンオキシダーゼ又はキサンチンデヒドロゲナーゼを組み合わせた方法や、ピロリン酸を無機ピロホスファターゼなどで2分子のリン酸とし、そのリン酸を測定することで、より高感度の測定、例えば、ルミノールと無機ピロホスファターゼ、ピルビン酸オキシダーゼ及びペルオキシダーゼを組み合わせた方法などにより、ピロリン酸を吸光度法で測定できる。さらに遺伝子増幅反応に於いてピロリン酸から生じるプロトン(水素イオン)の測定には、水素イオンを検出するガラス電極やイオン感応性電界効果トランジスタにより電位変化を測定する測定方法などを使用することができる。本発明の工程(I)で生じたピロリン酸、水素イオンなどは、適宜、遺伝子増幅反応溶液から分離し、測定することができる。該反応溶液からのピロリン酸、水素イオンなどの分離方法としては、測定に影響の無い方法であれば特に限定されないが、例えば、ペーパークロマトグラフィー分離、マイクロ流体デバイスでの分離などが挙げられる。
Secondly, the present invention relates to a gene detection method comprising step (I) of amplifying a gene of interest by a DNA polymerase reaction in an acidic reaction solution having a pH of 4.2 to 6.9, and then step (II) of detecting the gene of interest based on the amplification product or reaction by-product obtained in step (I).
Detection of the target gene based on the amplification product or reaction by-product can be carried out qualitatively, semi-quantitatively, or quantitatively using any method or means known to those skilled in the art.
For example, the amplified gene, which is the amplification product, can be subjected to electrophoresis and then stained to allow qualitative or semi-quantitative detection. Alternatively, pyrophosphate, which is a reaction by-product, can be detected with a fluorescent reagent.
Alternatively, the amounts of the reaction by-products such as pyrophosphate and hydrogen ions generated in step (I) can be measured, and the amount of the target gene can be determined (quantitatively detected) based on the measured amount of the reaction by-product. In this method, a calibration curve based on a certain correlation between the amount of the reaction by-product and the amount of the gene to be measured can be used. In particular, any method or means known to those skilled in the art can be used to measure the amount of pyrophosphate generated in step (I) of the present invention. In particular, since the gene to be measured can be amplified under acidic conditions in step (I) of the present invention, a method of measuring a change in potential using pyridylboronic acid, which specifically detects pyrophosphate, performed under acidic conditions can be effectively used. In addition, pyrophosphate generated in step (I) of the present invention can be measured by absorptiometry using a method in which hypoxanthine-guanine phosphoribosyltransferase, xanthine oxidase, or xanthine dehydrogenase is combined with pyrophosphate to convert it into two molecules of phosphate and then the resulting phosphate is measured, for example, a method in which luminol is combined with inorganic pyrophosphatase, pyruvate oxidase, and peroxidase to obtain a more sensitive measurement. Furthermore, for measuring protons (hydrogen ions) generated from pyrophosphate in a gene amplification reaction, a measurement method in which a potential change is measured using a glass electrode that detects hydrogen ions or an ion-sensitive field effect transistor can be used. Pyrophosphate, hydrogen ions, and the like generated in step (I) of the present invention can be appropriately separated from the gene amplification reaction solution and measured. The method for separating pyrophosphate, hydrogen ions, and the like from the reaction solution is not particularly limited as long as it does not affect the measurement, and examples thereof include paper chromatography separation and separation using a microfluidic device.

更に、本発明は上記の本発明方法を実施するための、対象遺伝子を増幅するに必要な前述の各成分、例えば、DNAポリメラーゼ、緩衝剤、反応試薬(プライマー及びdNTP等)並びに、糖類等の各種添加剤等を含む、遺伝子増幅用キットを提供する。当該キットは、安定化剤又は緩衝剤等の当業者に公知の他の任意成分を適宜含有させ、前記酵素等試薬成分の安定性を高めても良い。測定に影響の無い成分であれば特に限定されないが、例えば、卵白アルブミン、糖アルコール類、カルボキシル基含有化合物、酸化防止剤、界面活性剤等を例示できる。Furthermore, the present invention provides a gene amplification kit for carrying out the above-mentioned method of the present invention, which includes the above-mentioned components necessary for amplifying a target gene, such as DNA polymerase, a buffer, reaction reagents (primers, dNTPs, etc.), and various additives such as sugars. The kit may contain other optional components known to those skilled in the art, such as stabilizers or buffers, as appropriate, to enhance the stability of the enzyme and other reagent components. There are no particular limitations on the components as long as they do not affect the measurement, and examples of such components include ovalbumin, sugar alcohols, carboxyl group-containing compounds, antioxidants, surfactants, etc.

又、本発明は、当該遺伝子増幅用キットを含み、上記遺伝子検出法(測定法)を実施するための遺伝子検出装置または遺伝子検出システムを提供する。係る遺伝子検出装置または遺伝子検出システムには、当該遺伝子増幅用キットに加えて、本発明方法に於ける対象遺伝子の増幅工程(I)で得られた増幅産物又は反応副産物に基づき該遺伝子を検出する工程(II)を実施する様々な手段・方法に応じて、それらの各手段・方法に必要とされる当該技術分野に於いて公知である任意の試薬、装置、器具及びキット等を適宜含むことができる。The present invention also provides a gene detection device or gene detection system that includes the gene amplification kit and is used to carry out the gene detection method (measurement method). In addition to the gene amplification kit, the gene detection device or gene detection system may appropriately include any reagents, devices, instruments, kits, etc. that are known in the technical field and are required for each of the various means and methods for carrying out step (II) of detecting a gene based on an amplification product or reaction by-product obtained in step (I) of amplifying a target gene in the method of the present invention.

以下、実施例によって本発明を具体的に説明するが、本発明の技術的範囲は以下の実施例によって限定されるものではない。The present invention will be described in detail below with reference to examples, but the technical scope of the present invention is not limited to the following examples.

(超好熱菌由来のポリメラーゼの調製)
Thermococcus waiotapuensis由来のDNAポリメラーゼ遺伝子(非特許文献3)を組み込んだプラスミドpET28b(+)で大腸菌Rosetta 2(DE3)pLysSを形質転換し、発現株として用いた。発現株について、カナマイシンを終濃度50μg/mL及びクロラムフェニコールを終濃度34μg/mL含むLB培地により37℃で4時間培養後、終濃度0.2mMとなるようにIPTGを添加した。さらに、培養液を25℃で終夜培養後、集菌を行い、得られた菌体を超音波破砕し、無細胞抽出液を調製した。調製した無細胞抽出液について遠心分離を行い、得られた上清の一部を用いて電気泳動法により目的酵素の発現を確認した。次いで残りの上清をアフィニティカラム(商品名:HiTrap Heparin HP、GEヘルスケア製)により夾雑タンパクを除去し、0.15mg/mLのThermococcus属由来のDNAポリメラーゼを得た。なお、Thermus属由来のDNAポリメラーゼはタカラバイオ製(商品名:Ex Taq HS)、Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼは関東化学製(商品名:phi29 DNAポリメラーゼ)を用いた。
(Preparation of polymerase derived from hyperthermophilic bacteria)
Escherichia coli Rosetta 2 (DE3) pLysS was transformed with plasmid pET28b (+) incorporating a DNA polymerase gene (Non-Patent Document 3) derived from Thermococcus waiotapuensis, and used as an expression strain. The expression strain was cultured at 37 ° C. for 4 hours in LB medium containing kanamycin at a final concentration of 50 μg / mL and chloramphenicol at a final concentration of 34 μg / mL, and then IPTG was added to a final concentration of 0.2 mM. Furthermore, after overnight culture at 25 ° C., the cells were collected, and the obtained cells were ultrasonically disrupted to prepare a cell-free extract. The prepared cell-free extract was centrifuged, and the expression of the target enzyme was confirmed by electrophoresis using a portion of the obtained supernatant. The remaining supernatant was then passed through an affinity column (product name: HiTrap Heparin HP, manufactured by GE Healthcare) to remove contaminating proteins, thereby obtaining 0.15 mg/mL of Thermococcus-derived DNA polymerase. Thermus-derived DNA polymerase was manufactured by Takara Bio (product name: Ex Taq HS), and Bacillus subtilis bacteriophage-derived DNA polymerase was manufactured by Kanto Chemical (product name: phi29 DNA polymerase).

尚、上記Thermococcus属由来のポリメラーゼDNAの塩基配列は以下のとおりである。
[Thermococcus属由来のDNAポリメラーゼ ]
ATGGGGATCCTGGACGCAGACTACATTACGGAAGATGGCAAGCCGGTCATTCGTGTGTTCAAGAAAGAAAAGGGCGAATTCAAAATCAATTATGATCGTGACTTTGAACCGTATATTTACGCTCTGCTGAAAGATGACAGCGCGATCGAAGATATTAAAAAGATCACCGCTGAACGTCACGGTACCACGGTCCGTGTGACGCGCGCCGAACGTGTTAAAAAGAAATTTCTGGGTCGCCCGGTTGAAGTCTGGAAACTGTATTTCACCCATCCGCAGGATGTGCCGGCTATTCGTGACAAAATCCGCGAACACCCGGCGGTGGTTGATATTTATGAATACGACATCCCGTTTGCAAAGCGTTATCTGATTGATAAAGGCCTGATCCCGATGGAGGGTAACGAAGAACTGCGCATGCTGGCGTTTGACATTGAAACCCTGTACCATGAAGGCGAAGAATTCGGCGAAGGTCCGATTCTGATGATCAGCTATGCGGATGAAGAAGGTGCCCGTGTGATTACCTGGAAAAATATCGACCTGCCGTATGTTGAAAGTGTCTCCACGGAAAAAGAAATGATTAAGCGCTTTCTGAAAGTGATCCAGGAAAAAGATCCGGACGTTCTGATTACCTATAACGGCGATAATTTTGACTTCGCGTACCTGAAGAAACGTTCAGAAACGCTGGGTGTTAAGTTCATTCTGGGCCGCGATGGTTCGGAACCGAAAATCCAACGTATGGGCGACCGCTTTGCCGTGGAAGTTAAAGGTCGCATCCACTTCGATCTGTACCCGGTGATTCGTCGCACCATCAACCTGCCGACCTATACGCTGGAAACGGTGTACGAAGCCATTTTTGGCCAGCCGAAAGAAAAGGTTTATGCAGAAGAAATCGCACAAGCTTGGGAAAGTGGCGAAGGTCTGGAACGCGTTGCCCGTTATTCCATGGAAGATGCGAAGGCCACCTACGAACTGGGTAAAGAATTTTTCCCGATGGAAGCACAGCTGAGCCGTCTGGTCGGCCAAAGCCTGTGGGATGTGTCTCGCAGCTCTACCGGTAACCTGGTGGAATGGTTCCTGCTGCGTAAAGCCTATGAACGCAACGAACTGGCACCGAATAAACCGGATGAACGTGAACTGGCACGTCGCGCAGAATCTTATGCGGGCGGTTACGTCAAGGAACCGGAAAAAGGCCTGTGGGAAAACATCGTGTACCTGGATTACAAGTCACTGTACCCGTCGATTATCATTACCCATAACGTTAGTCCGGATACGCTGAATCGTGAAGGCTGCCGCGAATATGACGTGGCACCGCAGGTTGGTCACCGCTTTTGTAAAGATTTTCCGGGCTTCATTCCGTCCCTGCTGGGTGACCTGCTGGAAGAACGTCAGAAGGTCAAGAAAAAGATGAAAGCGACCGTGGATCCGATCGAACGCAAGCTGCTGGACTATCGTCAACGCGCAATCAAAATTCTGGCTAACAGCTATTACGGCTATTACGGTTATGCAAATGCTCGTTGGTACTGCCGCGAATGTGCGGAATCTGTGACCGCCTGGGGCCGTCAGTACATTGAAACCACGATGCGCGAAATCGAAGAAAAGTTTGGTTTCAAAGTTCTGTATGCTGATACCGACGGCTTTTTCGCGACGATTCCGGGTGCGGATGCCGAAACCGTCAAAAAGAAAACGAAGGAATTCCTGAACTACATCAACCCGCGTCTGCCGGGCCTGCTGGAACTGGAATATGAAGGCTTCTACCGTCGCGGCTTTTTCGTTACCAAGAAAAAGTATGCCGTCATTGATGAAGAAGACAAAATCACCACGCGTGGCCTGGAAATTGTGCGTCGCGATTGGTCAGAAATCGCAAAAGAAACCCAGGCTCGCGTTCTGGAAGCGATTCTGAAACATGGTGATGTCGAAGAAGCCGTGCGTATCGTTAAGGAAGTCACGGAAAAACTGTCGCGCTATGAAGTGCCGCCGGAAAAACTGGTTATTTACGAACAAATCACCCGCAACCTGCGTGATTATCGTGCAACGGGTCCGCACGTCGCAGTGGCTAAGCGTCTGGCAGCGCGTGGCATCAAAATTCGTCCGGGTACCGTTATTAGTTACATCGTCCTGAAAGGCCCGGGTCGTGTGGGTGATCGCGCGATTCCGTTTGATGAATTCGACCCGGCCAAACATCGCTATGACGCAGAATATTACATTGAAAATCAGGTCCTGCCGGCAGTGGAACGTATCCTGCGTGCATTTGGTTATCGTAAAGAAGATCTGCGCTACCAGAAAACCAAGCAAGCAGGCCTGGGTGCTTGGCTGAAACCGAAGACGTAA
The base sequence of the polymerase DNA derived from the genus Thermococcus is as follows:
[Thermococcus-derived DNA polymerase]

(Thermococcus属由来のDNAポリメラーゼにおける酸性条件下での遺伝子増幅反応液中の緩衝液の影響)
ポリメラーゼ連鎖反応(PCR)時の終濃度として、表1に示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、0.1% BSAを2.5μL、0.01% Triton X-100を5μL、10μM フォワードプライマー(1):CAGTCGTCATGCATTGCCTGCTC、及びリバースプライマー(1):GTAGGCGCAATCACTTTCGTCTACTCCGを各2μL、6.4ng/μLのλ―DNAを4μL、実施例1で取得したThermococcus属由来のDNAポリメラーゼを1μL添加し、50μLのPCR増幅反応液を調製した。PCRの反応温度と時間は、表2に示す条件で実施した。
(Effect of buffer in gene amplification reaction solution under acidic conditions on Thermococcus-derived DNA polymerase)
The PCR buffer solution had the composition shown in Table 1 as the final concentration during polymerase chain reaction (PCR). 4 μL of 2.5 mM dNTP, 2.5 μL of 0.1% BSA, 5 μL of 0.01% Triton X-100, 2 μL each of 10 μM forward primer (1): CAGTCGTCATGCATTGCCTGCTC and reverse primer (1): GTAGGCGCAATCACTTTCGTCTACTCCG, 4 μL of 6.4 ng/μL λ-DNA, and 1 μL of DNA polymerase derived from the genus Thermococcus obtained in Example 1 were added to each PCR buffer solution to prepare 50 μL of PCR amplification reaction solution. The PCR reaction temperature and time were performed under the conditions shown in Table 2.



PCR増幅後、実施例2で調した実施品1~7について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図1のとおり、5mM NaHPO-NaOH pH5.5及び6.0、並びに、5mM NaHPO-NaHPO pH6.0を用いたサンプル(実施品5~7)で、目的遺伝子の増幅が確認された。 After PCR amplification, amplification of the target gene was confirmed by agarose electrophoresis for Samples 1 to 7 prepared in Example 2. As shown in Figure 1, amplification of the target gene was confirmed in the samples (samples 5 to 7) using 5 mM NaH2PO4- NaOH pH 5.5 and 6.0, and 5 mM NaH2PO4 - Na2HPO4 pH 6.0.

(Thermus属由来DNAポリメラーゼにおける酸性条件下での遺伝子増幅反応液中の緩衝液の影響)
PCR反応時の終濃度として、表3及び表4に示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、10μM フォワードプライマー(1)及びリバースプライマー(1)を各0.4μL、6.4ng/μLのλ―DNAを1μL、Ex Taq HSポリメラーゼを0.25μL、終濃度10%となるようにトレハロースを添加し(実施品8、9、10のみ添加)、50μLのPCR増幅反応液を調製した。PCRの反応温度と時間は、表5に示す条件で実施した。
(Effect of buffer in gene amplification reaction solution under acidic conditions using Thermus-derived DNA polymerase)
The PCR buffer solutions were prepared with the compositions shown in Tables 3 and 4 as the final concentrations during the PCR reaction. 4 μL of 2.5 mM dNTP, 0.4 μL each of 10 μM forward primer (1) and reverse primer (1), 1 μL of 6.4 ng/μL λ-DNA, 0.25 μL of Ex Taq HS polymerase, and trehalose to a final concentration of 10% (only samples 8, 9, and 10 were added) were added to each PCR buffer solution to prepare 50 μL of PCR amplification reaction solution. The PCR reaction temperature and time were as shown in Table 5.

PCR増幅後、実施例4で調製した実施品8~16について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図2のとおり、2mM NaHPO-NaHPO(pH6.0)を用いたサンプル(実施品8)では、目的遺伝子の増幅が確認されたが、クエン酸緩衝液を用いたサンプルは、いずれも増幅が見られなかった。また、2mM NaHPO-KOH(pH6.0)を用いたサンプル(実施品11)では、目的遺伝子の増幅が確認されたが、NaHPO-KOH(pH5.0、又は、5.5)を用いたサンプルは増幅が見られなかった。さらにマッキルベイン緩衝液(pH5.0、又は、5.5、又は、6.0)を用いたサンプルでは、増幅が見られなかった。 After PCR amplification, the amplification of the target gene was confirmed by agarose electrophoresis for the samples 8 to 16 prepared in Example 4. As shown in Figure 2, the amplification of the target gene was confirmed in the sample (sample 8 ) using 2 mM NaH2PO4 - Na2HPO4 (pH 6.0), but no amplification was observed in any of the samples using citrate buffer. Furthermore, the amplification of the target gene was confirmed in the sample (sample 11) using 2 mM NaH2PO4 - KOH (pH 6.0), but no amplification was observed in the samples using NaH2PO4- KOH (pH 5.0 or 5.5). Furthermore, no amplification was observed in the samples using McIlvaine buffer (pH 5.0, 5.5, or 6.0).

(Thermococcus属由来DNAポリメラーゼにおける酸性条件下での遺伝子増幅 反応液中の緩衝液及び塩化カリウムの濃度の影響)
PCR反応時の終濃度として、表6に示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、0.1% BSAを2.5μL、0.01% Triton X-100を5μL、10μM フォワードプライマー(1)及びリバースプライマー(2):GCATTGCCCGTCAGGCTAATTCTGAAを各2μL、6.4ng/μLのλ―DNAを2.5μL、実施例1で取得したThermococcus属由来のDNAポリメラーゼを1μL添加し、50μLのPCR増幅反応液を調製した。また、PCRの反応温度と時間は、表7に示す条件で実施した。
(Gene amplification under acidic conditions using Thermococcus DNA polymerase: Effects of buffer and potassium chloride concentrations in the reaction solution)
The PCR buffer solution had the composition shown in Table 6 as the final concentration during the PCR reaction. 4 μL of 2.5 mM dNTP, 2.5 μL of 0.1% BSA, 5 μL of 0.01% Triton X-100, 2 μL each of 10 μM forward primer (1) and reverse primer (2): GCATTGCCCGTCAGGCTAATTCTGAA, 2.5 μL of 6.4 ng/μL λ-DNA, and 1 μL of the Thermococcus DNA polymerase obtained in Example 1 were added to each PCR buffer solution to prepare 50 μL of PCR amplification reaction solution. The PCR reaction temperature and time were performed under the conditions shown in Table 7.

PCR増幅後、実施例6で調製した実施品17~22について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図3のとおり、50mM NaHPO-NaOH(pH5.5)を用いたサンプルでは、5mM KCl及び30mM KClを添加したサンプル(実施品17及び18)において目的遺伝子の増幅が確認されたが、50mM KClを添加したサンプルにおいては増幅が見られなかった。また、100mM NaHPO-NaOH(pH5.5)を用いたサンプルでは、5、30、50mM KClを添加したいずれのサンプルでも増幅が見られなかった。 After PCR amplification, amplification of the target gene was confirmed by agarose electrophoresis for Samples 17 to 22 prepared in Example 6. As shown in Figure 3, in the sample prepared using 50 mM NaH2PO4 - NaOH (pH 5.5), amplification of the target gene was confirmed in the samples (samples 17 and 18) to which 5 mM KCl and 30 mM KCl were added, but amplification was not observed in the sample to which 50 mM KCl was added. Furthermore, in the sample prepared using 100 mM NaH2PO4 - NaOH (pH 5.5), amplification was not observed in any of the samples to which 5, 30, or 50 mM KCl was added.

(遺伝子増幅反応におけるマグネシウム濃度の影響)
PCR反応時の終濃度として、表8に示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、0.1% BSAを2.5μL、0.01% Triton X-100を5μL、10μM フォワードプライマー(1)及びリバースプライマー(2)を各2μL、6.4ng/μLのλ―DNAを1μL、実施例1で取得したThermococcus属由来のDNAポリメラーゼを1μL添加し、50μLのPCR増幅反応液を調製した。PCRの反応温度と時間は、表7に示す条件で実施した。
(Effect of magnesium concentration on gene amplification reaction)
The PCR buffer solution had the composition shown in Table 8 as the final concentration during the PCR reaction. 4 μL of 2.5 mM dNTP, 2.5 μL of 0.1% BSA, 5 μL of 0.01% Triton X-100, 2 μL each of 10 μM forward primer (1) and reverse primer (2), 1 μL of 6.4 ng/μL λ-DNA, and 1 μL of the Thermococcus DNA polymerase obtained in Example 1 were added to each PCR buffer solution to prepare 50 μL of PCR amplification reaction solution. The PCR reaction temperature and time were performed under the conditions shown in Table 7.

PCR増幅後、実施例8で調製した実施品23~27について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図4のとおり、PCR反応時の終濃度で2、4、6mM MgClを含むPCR緩衝液を用いたサンプル(実施品24~26)において、目的遺伝子の増幅が確認された。また、PCR増幅反応後の溶液中のピロリン酸をピロリン酸測定キット(商品名:PPiLight Inorganic Pyrophosphate Assay、LONZA製)を用いて測定したところ、表9のとおりとなり、PCR反応時の終濃度で2mM MgClを含むPCR緩衝液を用いた時に、最もピロリン酸量が高かった。なお、ピロリン酸量は最も高い値を100%として相対値で示した。 After PCR amplification, the amplification of the target gene was confirmed by agarose electrophoresis for the working samples 23 to 27 prepared in Example 8. As shown in FIG. 4, the amplification of the target gene was confirmed in the samples (working samples 24 to 26) using a PCR buffer containing 2, 4, and 6 mM MgCl2 as the final concentration during the PCR reaction. In addition, the pyrophosphate in the solution after the PCR amplification reaction was measured using a pyrophosphate measurement kit (trade name: PPiLight Inorganic Pyrophosphate Assay, manufactured by LONZA), and the results were as shown in Table 9. The amount of pyrophosphate was the highest when a PCR buffer containing 2 mM MgCl2 as the final concentration during the PCR reaction was used. The amount of pyrophosphate was shown as a relative value with the highest value set to 100%.

(遺伝子増幅反応における塩化カリウム濃度の影響)
PCR反応時の終濃度として、表10示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、0.1% BSAを2.5μL、0.01% Triton X-100を5μL、10μM フォワードプライマー(1)及びリバースプライマー(2)を各2μL、6.4ng/μLのλ―DNAを1μL、実施例1で取得したThermococcus属由来のDNAポリメラーゼを1μL添加し、50μLのPCR増幅反応液を調製した。PCRの反応温度と時間は、表7に示す条件で実施した。
(Effect of potassium chloride concentration on gene amplification reaction)
The PCR buffer solution had the composition shown in Table 10 as the final concentration during the PCR reaction. 4 μL of 2.5 mM dNTP, 2.5 μL of 0.1% BSA, 5 μL of 0.01% Triton X-100, 2 μL each of 10 μM forward primer (1) and reverse primer (2), 1 μL of 6.4 ng/μL λ-DNA, and 1 μL of the Thermococcus-derived DNA polymerase obtained in Example 1 were added to each PCR buffer solution to prepare 50 μL of PCR amplification reaction solution. The PCR reaction temperature and time were performed under the conditions shown in Table 7.

PCR増幅後、実施例10で調製した実施品28~33について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図5のとおり、PCR反応時の終濃度で30、50、75、又は100mM KClを含むPCR緩衝液を用いたサンプル(実施品30~33)において、目的遺伝子の増幅が確認された。また、PCR増幅反応後の溶液中のピロリン酸をピロリン酸測定キット(商品名:PPiLight Inorganic Pyrophosphate Assay、LONZA製)を用いて測定したところ、表11のとおり、PCR反応時の終濃度で75、又は100mM KClを含むPCR緩衝液を用いた時に、最もピロリン酸量が高かった。なお、ピロリン酸量は、最も高かった値を100%として相対値で示した。
After PCR amplification, the amplification of the target gene was confirmed by agarose electrophoresis for the working samples 28 to 33 prepared in Example 10. As shown in Figure 5, the amplification of the target gene was confirmed in the samples (working samples 30 to 33) in which the PCR buffer solution contained 30, 50, 75, or 100 mM KCl as the final concentration during the PCR reaction. In addition, the pyrophosphate in the solution after the PCR amplification reaction was measured using a pyrophosphate measurement kit (trade name: PPiLight Inorganic Pyrophosphate Assay, manufactured by LONZA). As shown in Table 11, the amount of pyrophosphate was the highest when the PCR buffer solution contained 75 or 100 mM KCl as the final concentration during the PCR reaction. The amount of pyrophosphate was shown as a relative value with the highest value taken as 100%.

(酸性条件下での遺伝子増幅反応におけるトレハロース添加効果)
PCR反応時の終濃度として、表12に示す組成のものをPCR緩衝液とした。各PCR緩衝液に、2.5mM dNTPを4μL、10μM フォワードプライマー(1)及びリバースプライマー(1)を各0.4μL、6.4ng/μLのλ―DNAを1μL、Ex Taq HSポリメラーゼを0.25μL添加し、50μLの遺伝子増幅反応液を調製した。PCRの反応温度と時間は、表5に示す条件で実施した。
(Effect of adding trehalose on gene amplification reaction under acidic conditions)
The PCR buffer solution had the composition shown in Table 12 as the final concentration during the PCR reaction. 4 μL of 2.5 mM dNTP, 0.4 μL each of 10 μM forward primer (1) and reverse primer (1), 1 μL of 6.4 ng/μL λ-DNA, and 0.25 μL of Ex Taq HS polymerase were added to each PCR buffer solution to prepare 50 μL of gene amplification reaction solution. The PCR reaction temperature and time were as shown in Table 5.

PCR増幅後、実施例12で調製した実施品34~37について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図6のとおり、全てのサンプルについて、目的遺伝子の増幅が確認された。また、反応後の溶液中のピロリン酸をピロリン酸測定キット(商品名:PPiLight Inorganic Pyrophosphate Assay、LONZA製)を用いて測定したところ、表13のとおり、トレハロースを添加した方が遺伝子増幅反応で生じるピロリン酸量が多くなった。なお、ピロリン酸量は最も高かった値を100%として相対値で示した。After PCR amplification, amplification of the target gene was confirmed for Samples 34 to 37 prepared in Example 12 by agarose electrophoresis, and as shown in Figure 6, amplification of the target gene was confirmed for all samples. In addition, pyrophosphate in the solution after the reaction was measured using a pyrophosphate measurement kit (product name: PPiLight Inorganic Pyrophosphate Assay, manufactured by LONZA). As shown in Table 13, the amount of pyrophosphate generated in the gene amplification reaction was greater when trehalose was added. The amount of pyrophosphate is shown as a relative value, with the highest value being 100%.

[比較例1]
(本発明と公知文献記載の遺伝子増幅反応組成における酸性条件下での遺伝子増幅反応の比較)
市販のDNAポリメラーゼ(商品名:Ex Taq HS、タカラバイオ製)の添付資料に記載の組成をもとに緩衝液のみ2mM NaHPO-NaHPO(pH6.0)に変更し、PCR反応時の終濃度として、表14に示す比較品1の組成のものをPCR緩衝液とした。PCR緩衝液を5μL、2.5mM dNTPを4μL、10μM フォワードプライマー(1)及びリバースプライマー(1)を各0.4μL、6.4ng/μLのλ―DNAを1μL、Ex Taq HSポリメラーゼを0.25μL添加し、50μLの遺伝子増幅反応液を調製した。PCRの反応温度と時間は、表5に示す条件で実施した。
[Comparative Example 1]
(Comparison of gene amplification reactions under acidic conditions between the gene amplification reaction compositions of the present invention and those described in publicly known publications)
Based on the composition described in the attached document of a commercially available DNA polymerase (trade name: Ex Taq HS, manufactured by Takara Bio), only the buffer solution was changed to 2 mM NaH 2 PO 4 -Na 2 HPO 4 (pH 6.0), and the final concentration during PCR reaction was the composition of Comparative Product 1 shown in Table 14, which was used as the PCR buffer solution. 5 μL of PCR buffer solution, 4 μL of 2.5 mM dNTP, 0.4 μL each of 10 μM forward primer (1) and reverse primer (1), 1 μL of 6.4 ng/μL λ-DNA, and 0.25 μL of Ex Taq HS polymerase were added to prepare 50 μL of gene amplification reaction solution. The PCR reaction temperature and time were as shown in Table 5.

PCR反応時の終濃度として、表14の実施品38の組成のものをPCR緩衝液とした。PCR緩衝液に、2.5mM dNTPを4μL、10μM フォワードプライマー(1)及びリバースプライマー(1)を各0.4μL、6.4ng/μLのλ―DNAを1μL、Ex Taq HSポリメラーゼを0.25μL添加し、50μLの遺伝子増幅反応液を調製した。PCRの反応温度と時間は、表5に示す条件で実施した。また、表14の実施品39の組成のものをPCR緩衝液とし、PCR緩衝液に、2.5mM dNTPを4μL、0.1% BSAを2.5μL、0.01%、Triton X-100を5μL、10μM フォワードプライマー(1)及びリバースプライマー(2)を各2μL、6.4ng/μLのλ―DNAを1μL、Thermococcus属由来のDNAポリメラーゼを1μL添加し、50μLの遺伝子増幅反応液を調製した。また、PCRの反応温度と時間は、表7に示す条件で実施した。
The PCR buffer solution had the composition of Example 38 in Table 14 as the final concentration during the PCR reaction. 4 μL of 2.5 mM dNTP, 0.4 μL each of 10 μM forward primer (1) and reverse primer (1), 1 μL of 6.4 ng/μL λ-DNA, and 0.25 μL of Ex Taq HS polymerase were added to the PCR buffer solution to prepare 50 μL of gene amplification reaction solution. The PCR reaction temperature and time were as shown in Table 5. The composition of Example 39 in Table 14 was used as the PCR buffer solution, and 4 μL of 2.5 mM dNTP, 2.5 μL of 0.1% BSA, 5 μL of 0.01% Triton X-100, 2 μL each of 10 μM forward primer (1) and reverse primer (2), 1 μL of 6.4 ng/μL λ-DNA, and 1 μL of Thermococcus-derived DNA polymerase were added to the PCR buffer solution to prepare 50 μL of gene amplification reaction solution. The PCR reaction temperature and time were set under the conditions shown in Table 7.

PCR増幅後、比較例1及び実施例16で調製した比較品1及び実施品38、39について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図7のとおり、従来の遺伝子増幅組成では、遺伝子増幅が認められなかったが、緩衝液の種類や塩化カリウム濃度を変えることにより、酸性条件下で遺伝子増幅が認められた。After PCR amplification, amplification of the target gene was confirmed by agarose electrophoresis for Comparative Example 1 and Implementation Examples 38 and 39 prepared in Example 1 and Example 16. As shown in Figure 7, no gene amplification was observed with the conventional gene amplification composition, but by changing the type of buffer solution and potassium chloride concentration, gene amplification was observed under acidic conditions.

(Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼにおける酸性条件下での遺伝子増幅反応液中の緩衝液の影響)
PCR反応時の終濃度として、表15に示す組成のものをPCR緩衝液とした。PCR緩衝液2μLに、0.5μg/μL pUC19を1μL、100μM M -13Fプライマー:CAGTCGTCATGCATTGCCTGCTCを2μL、滅菌水を5μL添加した、10μLのテンプレート混合液を調製した。テンプレート混合液を95℃、1分加熱後、30℃まで0.1℃/秒で冷却した。冷却後、PCR緩衝液2μLに、25mM dNTPを0.8μL、100mM DTTを1μL、100U/mL ピロホスファターゼを0.2μL、50μg/mL Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼを2μL、滅菌水を4μL添加した、10μLの反応混合液をテンプレート混合液に添加し、30℃、16時間のPCR反応を行った。
(Effect of buffer in gene amplification reaction solution under acidic conditions using DNA polymerase derived from Bacillus subtilis bacteriophage)
The PCR buffer had the composition shown in Table 15 as the final concentration during the PCR reaction. 10 μL of template mixture was prepared by adding 1 μL of 0.5 μg/μL pUC19, 2 μL of 100 μM M-13F primer: CAGTCGTCATGCATTGCCTGCTC, and 5 μL of sterile water to 2 μL of PCR buffer. The template mixture was heated to 95°C for 1 minute and then cooled to 30°C at 0.1°C/sec. After cooling, 10 μL of a reaction mixture prepared by adding 0.8 μL of 25 mM dNTP, 1 μL of 100 mM DTT, 0.2 μL of 100 U/mL pyrophosphatase, 2 μL of 50 μg/mL DNA polymerase derived from Bacillus subtilis bacteriophage, and 4 μL of sterile water to 2 μL of PCR buffer was added to the template mixture, and a PCR reaction was carried out at 30° C. for 16 hours.

PCR増幅後、実施例16で調製した実施品40~44について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図8のとおり、35mM クエン酸-クエン酸ナトリウム pH4.0、35mM クエン酸-クエン酸ナトリウム pH4.5、35mM NaHPO-NaOH pH5.0及び、35mM NaHPO-NaHPO pH6.0を用いたサンプル(実施品41~44)で、目的遺伝子の増幅が確認され、酸性条件下において室温付近で遺伝子増幅を行うことで、pH4台において酸性条件下でも遺伝子増幅させることができることが認められた。 After PCR amplification, amplification of the target gene was confirmed by agarose electrophoresis for Products 40 to 44 prepared in Example 16. As shown in Figure 8, amplification of the target gene was confirmed in samples (Products 41 to 44) using 35 mM citric acid-sodium citrate pH 4.0, 35 mM citric acid-sodium citrate pH 4.5, 35 mM NaH2PO4 - NaOH pH 5.0, and 35 mM NaH2PO4- Na2HPO4 pH 6.0. This indicates that gene amplification can be achieved even under acidic conditions at a pH of around 4 by performing gene amplification under acidic conditions at around room temperature.

(Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼにおける酸性条件下での遺伝子増幅反応液中の塩化カリウム濃度の影響)
PCR反応時の終濃度として、表16に示す組成のものをPCR緩衝液とした。PCR緩衝液2μLに、0.5μg/μL pUC19を1μL、100μM M-13Fプライマー:CAGTCGTCATGCATTGCCTGCTCを2μL、滅菌水を5μL添加した、10μLのテンプレート混合液を調製した。テンプレート混合液を95℃、1分加熱後、30℃まで0.1℃/秒で冷却した。冷却後、PCR緩衝液2μLに、25mM dNTPを0.8μL、100mM DTTを1μL、100U/mL ピロホスファターゼを0.2μL、50μg/mL Bacillus subtilisバクテリオファージ由来のDNAポリメラーゼを2μL、滅菌水を4μL添加した、10μLの反応混合液をテンプレート混合液に添加し、30℃、16時間のPCR反応を行った。
(Effect of potassium chloride concentration in gene amplification reaction solution under acidic conditions using DNA polymerase derived from Bacillus subtilis bacteriophage)
The PCR buffer had the composition shown in Table 16 as the final concentration during the PCR reaction. 10 μL of template mixture was prepared by adding 1 μL of 0.5 μg/μL pUC19, 2 μL of 100 μM M-13F primer: CAGTCGTCATGCATTGCCTGCTC, and 5 μL of sterile water to 2 μL of PCR buffer. The template mixture was heated to 95°C for 1 minute and then cooled to 30°C at 0.1°C/sec. After cooling, 10 μL of a reaction mixture prepared by adding 0.8 μL of 25 mM dNTP, 1 μL of 100 mM DTT, 0.2 μL of 100 U/mL pyrophosphatase, 2 μL of 50 μg/mL DNA polymerase derived from Bacillus subtilis bacteriophage, and 4 μL of sterile water to 2 μL of PCR buffer was added to the template mixture, and a PCR reaction was carried out at 30° C. for 16 hours.

PCR増幅後、実施例18で調製した実施品45~47について、アガロース電気泳動にて目的遺伝子の増幅を確認したところ、図9のとおり、PCR反応時の終濃度で75、115、又は、125mM KClを含むPCR緩衝液を用いたサンプル(実施品45~47)において、目的遺伝子の増幅が確認された。After PCR amplification, amplification of the target gene was confirmed by agarose electrophoresis for Examples 45 to 47 prepared in Example 18. As shown in Figure 9, amplification of the target gene was confirmed in samples (Examples 45 to 47) using a PCR buffer containing 75, 115, or 125 mM KCl at a final concentration during the PCR reaction.

以上の結果から、本発明方法における遺伝子増幅反応では、DNAポリメラーゼを用いて、酸性条件下で測定対象の遺伝子を選択的且つ簡便に増幅させることができた。実施例2~7に示されるように、各種DNAポリメラーゼにおいて、緩衝液の種類や該緩衝液と塩化カリウムの濃度を適切な範囲に設定することよって酸性条件下での遺伝子増幅が変化することが分かった。また、実施例8~11及び、実施例18~19に示されるように、反応液中のマグネシウムや塩化カリウム濃度を適切な範囲に設定し、実施例12~13に示されるように、トレハロースを反応液に添加することによっても酸性条件下での遺伝子増幅が変化することが分かった。また、比較例1及び実施例14~15に示されるように、従来の遺伝子増幅条件では、酸性条件下で遺伝子増幅が起こらなかったが、本発明方法に於いて、緩衝液の種類や塩化カリウム濃度を適切な範囲に設定することで、酸性条件下でも遺伝子増幅させることができることが分かった。さらに実施例16~17に示されるように、室温付近で遺伝子増幅を行う場合には、pH4台の酸性条件下でも遺伝子増幅させることができることが分かった。 From the above results, in the gene amplification reaction in the method of the present invention, the gene to be measured could be selectively and easily amplified under acidic conditions using DNA polymerase. As shown in Examples 2 to 7, it was found that gene amplification under acidic conditions changes for various DNA polymerases by setting the type of buffer and the concentration of the buffer and potassium chloride to an appropriate range. In addition, as shown in Examples 8 to 11 and Examples 18 to 19, it was found that gene amplification under acidic conditions also changes by setting the magnesium and potassium chloride concentrations in the reaction solution to an appropriate range, and as shown in Examples 12 to 13, it was found that gene amplification under acidic conditions changes. In addition, as shown in Comparative Example 1 and Examples 14 to 15, gene amplification did not occur under acidic conditions under conventional gene amplification conditions, but it was found that gene amplification can be achieved even under acidic conditions by setting the type of buffer and the potassium chloride concentration to an appropriate range in the method of the present invention. Furthermore, as shown in Examples 16 to 17, it was found that gene amplification can be achieved even under acidic conditions at a pH of 4 when gene amplification is performed near room temperature.

従来の遺伝子増幅条件では、酸性条件下でDNAポリメラーゼを反応させる具体的な組成や条件が示されていなかった。これに対して、本発明に係る遺伝子増幅法に於いては、酸性条件下で測定対象の遺伝子を増幅させるための適切な緩衝液、各種塩類、添加物等の反応組成及び反応条件を見出し、酸性条件下で測定対象の遺伝子を増幅させることができた。その結果、本発明に係る遺伝子増幅法は、遺伝子増幅反応で産生したプロトンが蓄積しても問題なく反応が進む。その結果、優れた遺伝子検出技術として有用である、ピロリン酸を特異的に認識するピリジルボロン酸を用いた遺伝子検出法等に本発明の遺伝子増幅法で用いた酸性反応液を直ちに利用することが可能である。更に、本発明方法は、蛍光試薬を使用する必要がなくて安価である。In the conventional gene amplification conditions, specific compositions and conditions for reacting DNA polymerase under acidic conditions were not disclosed. In contrast, in the gene amplification method of the present invention, appropriate reaction compositions and reaction conditions, such as buffers, various salts, and additives, for amplifying the gene to be measured under acidic conditions were found, and the gene to be measured was amplified under acidic conditions. As a result, in the gene amplification method of the present invention, the reaction proceeds without any problems even if protons produced in the gene amplification reaction accumulate. As a result, it is possible to immediately use the acidic reaction solution used in the gene amplification method of the present invention in gene detection methods using pyridylboronic acid that specifically recognizes pyrophosphate, which are useful as excellent gene detection techniques. Furthermore, the method of the present invention is inexpensive because it does not require the use of fluorescent reagents.

Claims (11)

2~35mMのNaH 2 PO 4 -Na 2 HPO 4 緩衝液、NaH 2 PO 4 -NaOH緩衝液又はクエン酸緩衝液と、30mM~125mMの塩化カリウムを含むpH5.7~6.9の酸性反応液中のポリメラーゼ連鎖反応(PCR)で対象遺伝子を増幅させる工程(I)を含む、遺伝子増幅法。 A gene amplification method comprising the step (I) of amplifying a target gene by polymerase chain reaction (PCR) in an acidic reaction solution of pH 5.7 to 6.9 containing 2 to 35 mM NaH2PO4 - Na2HPO4 buffer , NaH2PO4 - NaOH buffer or citrate buffer, and 30 mM to 125 mM potassium chloride. 工程(I)で用いる酸性反応液が、30mM~115mMの塩化カリウムを含むことを特徴とする、請求項に記載の遺伝子増幅法。 2. The gene amplification method according to claim 1 , wherein the acidic reaction solution used in the step (I) contains 30 mM to 115 mM potassium chloride. 工程(I)で用いるDNAポリメラーゼが、Thermus属、又はThermococcus属、又はBacillus属バクテリオファージ由来のDNAポリメラーゼであることを特徴とする、請求項1に記載の遺伝子増幅法。 The gene amplification method according to claim 1, characterized in that the DNA polymerase used in step (I) is a DNA polymerase derived from a bacteriophage of the genus Thermus, Thermococcus, or Bacillus. 工程(I)で用いる酸性反応液がマグネシウム塩及び糖類から選ばれる1種以上を含むことを特徴とする、請求項1に記載の遺伝子増幅法。 2. The method for amplifying a gene according to claim 1, wherein the acidic reaction solution used in the step (I) contains one or more members selected from the group consisting of magnesium salts and saccharides. 請求項1~のいずれか一項に記載の工程(I)、及び、該工程(I)で得られた増幅産物又は反応副産物に基づき前記対象遺伝子を検出する工程(II)を含む、遺伝子検出法。 A gene detection method comprising the step (I) according to any one of claims 1 to 4 , and the step (II) of detecting the target gene based on the amplification product or reaction by-product obtained in the step (I). 工程(II)に於いて、該工程(I)で生じた反応副産物の量を測定し、該反応副産物の測定量に基づき前記対象遺伝子の量を決定することを特徴とする、請求項記載の遺伝子検出法。 6. The method for gene detection according to claim 5 , wherein in step (II), the amount of a reaction by-product produced in step (I) is measured, and the amount of the target gene is determined based on the measured amount of the reaction by-product. 反応副産物がピロリン酸である、請求項に記載の遺伝子検出法。 The gene detection method according to claim 6 , wherein the reaction by-product is pyrophosphate. 工程(II)に於いて、ピリジルボロン酸との反応による電位変化を測定することによって、工程(I)で生じたピロリン酸の量を測定する、請求項に記載の遺伝子検出法。 8. The gene detection method according to claim 7 , wherein in step (II), the amount of pyrophosphate produced in step (I) is measured by measuring a change in potential due to a reaction with pyridylboronic acid. 工程(II)に於いて、吸光度法により工程(I)で生じたピロリン酸の量を測定する、請求項に記載の遺伝子検出法。 8. The method for detecting genes according to claim 7 , wherein in step (II), the amount of pyrophosphate produced in step (I) is measured by absorbance spectrometry. 請求項1~のいずれか一項に記載の遺伝子増幅法を実施するための遺伝子増幅用キットであって、DNAポリメラーゼ、緩衝剤、及び反応試薬を含む、前記遺伝子増幅用キット。 A gene amplification kit for carrying out the gene amplification method according to any one of claims 1 to 4 , comprising a DNA polymerase, a buffer, and a reaction reagent. 請求項のいずれか一項に記載の遺伝子検出法を実施するための遺伝子検出装置またはシステムであって、請求項1に記載の遺伝子増幅用キットを含む、前記遺伝子検出装置またはシステム。 A gene detection device or system for carrying out the gene detection method according to any one of claims 5 to 9 , comprising the gene amplification kit according to claim 10 .
JP2021502223A 2019-02-28 2020-02-21 Gene amplification method and gene amplification kit Active JP7563679B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019036367 2019-02-28
JP2019036367 2019-02-28
PCT/JP2020/007232 WO2020175406A1 (en) 2019-02-28 2020-02-21 Gene amplification method and gene amplification kit

Publications (2)

Publication Number Publication Date
JPWO2020175406A1 JPWO2020175406A1 (en) 2020-09-03
JP7563679B2 true JP7563679B2 (en) 2024-10-08

Family

ID=72239940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502223A Active JP7563679B2 (en) 2019-02-28 2020-02-21 Gene amplification method and gene amplification kit

Country Status (2)

Country Link
JP (1) JP7563679B2 (en)
WO (1) WO2020175406A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118815A1 (en) 2004-06-04 2005-12-15 Takara Bio Inc. Polypeptides having dna polymerase activity
JP2007267738A (en) 2006-03-31 2007-10-18 Cem Corp Microwave-assisted pcr amplification of dna
WO2015145702A1 (en) 2014-03-27 2015-10-01 国立大学法人東京医科歯科大学 Diphosphate compound detector and diphosphate compound detection method
JP2015532593A (en) 2012-08-23 2015-11-12 ニユー・イングランド・バイオレイブス・インコーポレイテツド Detection of amplification reaction products using pH sensitive dyes
JP2018538007A (en) 2015-11-05 2018-12-27 ユニヴァーシティ・オヴ・ユタ・リサーチ・ファウンデイション Extreme reverse transcription PCR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118815A1 (en) 2004-06-04 2005-12-15 Takara Bio Inc. Polypeptides having dna polymerase activity
JP2007267738A (en) 2006-03-31 2007-10-18 Cem Corp Microwave-assisted pcr amplification of dna
JP2015532593A (en) 2012-08-23 2015-11-12 ニユー・イングランド・バイオレイブス・インコーポレイテツド Detection of amplification reaction products using pH sensitive dyes
WO2015145702A1 (en) 2014-03-27 2015-10-01 国立大学法人東京医科歯科大学 Diphosphate compound detector and diphosphate compound detection method
JP2018538007A (en) 2015-11-05 2018-12-27 ユニヴァーシティ・オヴ・ユタ・リサーチ・ファウンデイション Extreme reverse transcription PCR

Also Published As

Publication number Publication date
WO2020175406A1 (en) 2020-09-03
JPWO2020175406A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US11447821B2 (en) Nucleic acid amplification and testing
EP2373804B1 (en) Compositions for improving gene amplification
Hedman et al. Overcoming inhibition in real-time diagnostic PCR
US8895250B2 (en) Nucleic acid-free thermostable enzymes and methods of production thereof
WO2018096961A1 (en) Modified heat-resistant dna polymerase
JP6259775B2 (en) Endonuclease
EP1932913B1 (en) Nucleic acid isolation using polidocanol and derivatives
JP6478446B2 (en) Modified thermostable DNA polymerase
EP1069190A2 (en) Method for amplification of RNA
US8153401B2 (en) Method for direct amplification from crude nucleic acid samples
EP1111044A1 (en) Method for synthesizing dna
WO2009016652A1 (en) A buffer system and a method for direct pcr amplification
WO2017170469A1 (en) Method for quantifying amino acid and amino acid quantification kit
US20240093278A1 (en) Rapid molecular diagnostics with unified-one-pot sample processing, nucleic acid amplification, and result readout
JP7563679B2 (en) Gene amplification method and gene amplification kit
EP2347013B1 (en) Method for the specific detection of low abundance rna species in a biological sample
JP4186270B2 (en) Nucleic acid synthesis method
JP7216968B2 (en) Amino acid quantification method and amino acid quantification kit
JP7190685B2 (en) Amino acid quantification method and amino acid quantification kit
US20230340449A1 (en) Thermostable ligase with reduced sequence bias
US20210324352A1 (en) Enhanced speed polymerases for sanger sequencing
WO2019198623A1 (en) Amino acid quantification method and amino acid quantification kit
JP2001008685A (en) Method for synthesizing nucleic acid
JP4187057B2 (en) Nucleic acid synthesis method
JP2018164421A (en) Nucleic acid amplification method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240913

R150 Certificate of patent or registration of utility model

Ref document number: 7563679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150