JP7560104B2 - Apex beat detection device, computer program and recording medium - Google Patents
Apex beat detection device, computer program and recording medium Download PDFInfo
- Publication number
- JP7560104B2 JP7560104B2 JP2020180964A JP2020180964A JP7560104B2 JP 7560104 B2 JP7560104 B2 JP 7560104B2 JP 2020180964 A JP2020180964 A JP 2020180964A JP 2020180964 A JP2020180964 A JP 2020180964A JP 7560104 B2 JP7560104 B2 JP 7560104B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- waveform
- data
- frequency analysis
- boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 54
- 238000004590 computer program Methods 0.000 title claims description 15
- 238000004458 analytical method Methods 0.000 claims description 61
- 230000008859 change Effects 0.000 claims description 37
- 238000001228 spectrum Methods 0.000 claims description 34
- 230000010349 pulsation Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 230000001788 irregular Effects 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 11
- 238000012935 Averaging Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 239000004744 fabric Substances 0.000 description 32
- 239000010408 film Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 18
- 210000000038 chest Anatomy 0.000 description 15
- 238000013016 damping Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000029058 respiratory gaseous exchange Effects 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 8
- 239000000806 elastomer Substances 0.000 description 8
- -1 polypropylene Polymers 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 230000000747 cardiac effect Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002861 ventricular Effects 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 208000037656 Respiratory Sounds Diseases 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003601 intercostal effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 210000000467 autonomic pathway Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000035559 beat frequency Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940011939 fostex Drugs 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010361 irregular oscillation Effects 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本発明は、心尖拍動の波形検出を行うことができる心尖拍動検出装置、コンピュータプログラム及び記録媒体に関する。 The present invention relates to an apex beat detection device, computer program, and recording medium capable of detecting the waveform of the apex beat.
心尖拍動は、左室心尖部の運動を反映し、心臓、主として左室機能の評価に用いられる。心尖拍動は、心機図法により記録される心尖拍動図により客観化されるのが一般であるが、心尖拍動図は、心臓と胸壁の間の種々の組織を介して胸壁の動きを捉えているため、記録時の巧拙の影響を受けやすい。また、心機図記録装置は比較的大型のものが多く、測定にあたっても防音室で行わなければならないなどの制約がある。 The apical beat reflects the movement of the left ventricular apex and is used to evaluate cardiac, primarily left ventricular, function. The apical beat is generally objectively measured using an apical cardiogram recorded by mechanocardiography, but since the apical cardiogram captures the movement of the chest wall via various tissues between the heart and the chest wall, it is easily affected by the skill of the person recording it. In addition, most mechanocardiogram recording devices are relatively large, and there are restrictions such as the need to perform measurements in a soundproof room.
この点に鑑み特許文献1では、体表面から心尖部近傍に向けて超音波信号を入射させる超音波発信部と、反射超音波を受信する受信センサを備えた心尖拍動図用の生体情報測定装置を開示しており、防音室等の特殊な環境でなくても容易に心尖拍動図を作成できるとしている。
In consideration of this point,
一方、本発明者らは、特許文献2~5等において、人の背部の体表面に生じる振動を非拘束で捉え、その振動を解析して人の状態を推定する技術を提案している。人の背部の体表面に生じる振動は、心臓と大動脈等の生体内の振動が伝播したものであり、心房及び心室の収縮期及び拡張期の情報や、循環の補助ポンプとなる血管壁の弾力情報及び反射波の情報を含んでいる。
Meanwhile, in
特許文献2では、体表面を介して伝播する振動(生体信号)から抽出した1Hz近傍の背部体表脈波の時系列波形に所定の時間幅を適用してスライド計算を行って周波数傾きの時系列波形を求め、その変化の傾向から、例えば、振幅が増幅傾向にあるか、減衰傾向にあるかなどによって生体状態の推定を行っている。また、生体信号を周波数解析し、予め定めたULF帯域(極低周波帯域)からVLF帯域(超低周波帯域)に属する機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求め、各パワースペクトルの時系列変化から人の状態を判定することも開示している。
In
特許文献3~4では、恒常性維持機能レベルを判定する手段を開示している。また、特許文献5では、生体信号の音・振動情報に対応した固有振動数を含む固有振動子を備えた共鳴層を具備する音・振動情報収集機構を開示している。また、非特許文献1には、心音が不規則振動で構成されることが示されている。
特許文献1に開示のものは、192個の超音波振動子を用いた装置であり、12個を一組としてそれらを順次ずらしてスキャンして心尖拍動図を作成する。また、より高い精度の心尖拍動図を作成するために、192個の超音波振動子を一列とし、それを複数列用いた装置も開示している。特許文献1では、超音波振動子をこのように多数使用しなければ所望の心尖拍動図を得ることは難しい。よって、製品としては非常に高価なものにならざるを得ず、実用的ではない。また、鮮明な心尖拍動図を作成するためには、肋骨の位置の検出も考慮する必要があり、発信周波数も限定され、また、受信素子の位置も限られ、それらの条件を満たす装置としなければならず、その点も、構造の複雑化、製造コストの増加につながる。
The device disclosed in
また、特許文献1では、従来の心機図記録装置が複数人数で取り扱わなければならなかったのに対し、一人でも測定できるということを利点として述べている。しかし、超音波振動子をスキャンするために、医師や技師の操作が必要であり、測定に手間がかかると共に、スキャンしている間のデータしか得られない。すなわち、測定対象者の心尖拍動を長時間に亘って捉えることには適していない。
一方、特許文献2~5に開示した体表面に生じる振動を非拘束で捉えるセンサは、三次元立体編物、三次元立体編物を取り囲むフィルム、マイクロフォン等からなり、人の体に接触させておくだけで体表面を介した生体信号を取得できる。すなわち、人の体に取り付ければ、医師等が何らの操作をしなくても生体信号データが得られる。しかし、特許文献2~5は、主に自律神経機能や心拍変動の解析を行っており、左室心尖部の運動である心尖拍動に関する解析は行われていない。
Meanwhile, the sensors disclosed in
生体信号検出センサは、体表面から伝播される生体信号を受動的に捉えるだけであり、その点、特許文献1の装置よりも簡易な装置とすることができる。しかしながら、捕捉される生体信号データには、様々な生体音や体内振動が含まれている。中でも、心尖拍動に関するデータは、心音のデータに埋もれ、心尖拍動のデータのみを抽出することが困難である。
The biosignal detection sensor only passively captures biosignals propagating from the body surface, and in that respect, it can be a simpler device than the device in
本発明は上記に鑑みなされたものであり、簡易で安価に製造可能であると共に、心尖拍動を心音データから区分して抽出でき、しかも長時間に亘る測定も可能な心尖拍動検出装置、コンピュータプログラム及び記録媒体を提供することを課題とする。 The present invention has been made in consideration of the above, and aims to provide an apex beat detection device, computer program, and recording medium that can be manufactured easily and inexpensively, can classify and extract the apex beat from heart sound data, and can also perform measurements over a long period of time.
上記課題を解決するため、本発明の心尖拍動検出装置は、
体表面を介して生体信号検出センサにより得られる生体信号データを周波数解析する周波数解析手段と、
前記周波数解析手段から得られる前記生体信号データの周波数解析結果から、前記生体信号データ中、心尖拍動により生じる振動と心音により生じる振動との境界周波数を求める境界周波数特定手段と、
前記境界周波数により区分される前記心尖拍動の波形を抽出する心尖拍動波形抽出手段と
を有することを特徴とする。
In order to solve the above problems, the apex beat detection device of the present invention comprises:
a frequency analysis means for performing frequency analysis on biosignal data obtained by a biosignal detection sensor via a body surface;
a boundary frequency identifying means for determining a boundary frequency between a vibration caused by an apex beat and a vibration caused by a heart sound in the biosignal data from a frequency analysis result of the biosignal data obtained from the frequency analyzing means;
and an apex pulsation waveform extraction means for extracting the waveform of the apex pulsation divided by the boundary frequency.
前記境界周波数特定手段は、
前記周波数解析結果中、調和振動と不規則振動との境界となるパワースペクトルの急変部を求め、この急変部を基準に前記境界周波数を特定する手段を含むことが好ましい。
前記境界周波数特定手段は、
前記周波数解析結果に、同時に測定した心音データの周波数解析結果を加味して、前記パワースペクトルの急変部を求める手段を含むことが好ましい。
The boundary frequency identification means
It is preferable that the frequency analysis method further comprises means for determining a sudden change portion of a power spectrum that is a boundary between harmonic vibration and irregular vibration in the frequency analysis result, and for specifying the boundary frequency based on the sudden change portion.
The boundary frequency identification means
It is preferable to include a means for determining a sudden change part of the power spectrum by adding a result of frequency analysis of heart sound data measured at the same time to the result of the frequency analysis.
前記境界周波数特定手段は、
前記生体信号データ及び前記心音データの各周波数解析結果をそれぞれ加算平均処理した波形を対数差分法を用いて両対数軸表示する両対数軸表示手段と、両対数軸表示した波形からゆらぎの変化点を求め、このゆらぎの変化点を前記パワースペクトルの急変部として特定する急変部特定手段と
を有することが好ましい。
The boundary frequency identification means
It is preferable to have a double logarithmic axis display means for displaying on a double logarithmic axis, using a logarithmic difference method, waveforms obtained by averaging the results of frequency analysis of the biological signal data and the heart sound data, and abrupt change identifying means for determining a fluctuation change point from the waveform displayed on the double logarithmic axis and identifying this fluctuation change point as a sudden change point in the power spectrum.
また、本発明は、体表面を介して生体信号検出センサにより得られる生体信号データを処理し、コンピュータを、心尖拍動検出装置として機能させるコンピュータプログラムであって、
前記生体信号データを周波数解析する手順と、
その周波数解析結果から、前記生体信号データ中、心尖拍動により生じる振動と心音により生じる振動との境界周波数を特定する手順と、
前記境界周波数により区分される前記心尖拍動の波形を抽出する手順と
を前記コンピュータに実行させるコンピュータプログラムを提供する。
The present invention also provides a computer program for processing biosignal data obtained by a biosignal detection sensor via a body surface and causing a computer to function as an apex beat detection device, comprising:
A step of subjecting the biological signal data to frequency analysis;
A step of identifying a boundary frequency between vibrations caused by apex pulsation and vibrations caused by heart sounds in the biosignal data from the frequency analysis results;
and extracting the waveform of the apex beat divided by the boundary frequency.
前記境界周波数を特定する手順では、
前記周波数解析結果中、調和振動と不規則振動との境界となるパワースペクトルの急変部を求め、この急変部を基準に前記境界周波数を特定することが好ましい。
In the step of identifying the boundary frequency,
It is preferable to find a sudden change portion of the power spectrum that is a boundary between harmonic vibration and irregular vibration in the frequency analysis result, and to specify the boundary frequency based on this sudden change portion.
前記境界周波数を特定する手順では、
前記周波数解析結果に、同時に測定した心音データの周波数解析結果を加味して、前記パワースペクトルの急変部を求めることが好ましい。
In the step of identifying the boundary frequency,
It is preferable to determine the sudden change part of the power spectrum by adding the result of frequency analysis of the heart sound data measured at the same time to the result of the frequency analysis.
前記境界周波数を特定する手順では、
前記生体信号データ及び前記心音データの各周波数解析結果をそれぞれ加算平均処理した波形を対数差分法を用いて両対数軸表示する両対数軸表示し、
両対数軸表示した波形からゆらぎの変化点を求め、このゆらぎの変化点を前記パワースペクトルの急変部として特定することが好ましい。
In the step of identifying the boundary frequency,
A waveform obtained by averaging the frequency analysis results of the biosignal data and the heart sound data is displayed on a double logarithmic axis using a logarithmic difference method;
It is preferable to obtain a fluctuation change point from the waveform displayed on both logarithmic axes and to specify this fluctuation change point as a sudden change portion of the power spectrum.
また、本発明は、上記のコンピュータプログラムが記録された記録媒体を提供する。 The present invention also provides a recording medium on which the above computer program is recorded.
本発明によれば、心尖拍動と心音との境界周波数を求めることができる。このため、生体信号検出センサにより体表面の振動を介して収集される様々な生体音や体内振動を含んだ音や振動の集合体である生体信号から、心尖拍動の波形を容易に抽出することができる。しかも、超音波を利用した従来の装置のように、超音波振動子や受信素子の取り付け位置が限定されたり、測定時間が限定されたりすることもなく、人の体の様々な部位から心尖拍動の波形データを取得可能で、また、生体信号検出センサは生体信号を受動的に捉えるものであるため、体への取り付け時間も制限されず、人の心尖拍動の状態を長時間に亘り計測することができる。その結果、心尖拍動に影響する心臓の状態、健康状態をより高い精度で知ることができる。 According to the present invention, the boundary frequency between the apex beat and the heart sound can be obtained. Therefore, the waveform of the apex beat can be easily extracted from the biosignal, which is a collection of sounds and vibrations including various biosounds and internal vibrations collected by the biosignal detection sensor through vibrations on the body surface. Moreover, unlike conventional devices using ultrasound, the attachment position of the ultrasonic transducer and receiving element are not limited, and the measurement time is not limited, so that the waveform data of the apex beat can be obtained from various parts of the human body. Furthermore, since the biosignal detection sensor passively captures the biosignal, there is no limit to the time it is attached to the body, and the state of the apex beat of a person can be measured for a long period of time. As a result, the state of the heart and health that affect the apex beat can be known with higher accuracy.
以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。
・生体信号検出センサ
まず、図1(a)~(c)に基づき、本実施形態で用いた生体信号検出センサ1の構成を説明する。本実施形態の生体信号検出センサ1は、エアパック1Aとゲルパック1Bとの積層構造からなる。エアパック1Aは、三次元立体編物(3Dネット)10及び該三次元立体編物(3Dネット)10を密閉的に収容する収容フィルム20とを有して構成される。ゲルパック1Bは、ケース40内にマイクロフォン30が固定配置され、マイクロフォン30の周囲にゲル50が充填されている。
Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings.
1(a) to 1(c), the configuration of the
三次元立体編物10は、互いに離間して配置された一対のグランド編地同士を連結糸で結合することにより形成されている。各グランド編地は、例えば、繊維を撚った糸から、ウェール方向及びコース方向のいずれの方向にも連続したフラットな編地組織(細目)に形成したり、ハニカム状(六角形)のメッシュを有する編地組織に形成したりすることができる。連結糸は、一方のグランド編地と他方のグランド編地とが所定の間隔を保持するように、三次元立体編物に所定の剛性を付与している。従って、面方向に張力が付与されることにより、三次元立体編物を構成する対向するグランド編地の糸、あるいは、対向するグランド編地間を連結する連結糸を弦振動させることが可能となる。それにより、生体信号である心臓・血管系の音・振動によって弦振動が生じ、三次元立体編物の面方向に伝播される。
The three-dimensional
三次元立体編物のグランド編地を形成する糸又は連結糸の素材としては、種々のものを用いることができるが、例えば、ポリプロピレン、ポリエステル、ポリアミド、ポリアクリロニトリル、レーヨン等の合成繊維や再生繊維、ウール、絹、綿等の天然繊維が挙げられる。上記素材は単独で用いてもよいし、これらを任意に併用することもできる。好ましくは、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などに代表されるポリエステル系繊維、ナイロン6、ナイロン66などに代表されるポリアミド系繊維、ポリエチレン、ポリプロピレンなどに代表されるポリオレフィン系繊維、あるいはこれらの繊維を2種類以上組み合わせたものである。また、グランド糸又は連結糸の糸形状も限定されるものではなく、丸断面糸、異形断面糸、中空糸等のいずれでもよい。さらに、カーボン糸、金属糸等を使用することもできる。 Various materials can be used as the material for the yarn or connecting yarn forming the ground knit of the three-dimensional knitted fabric, including synthetic fibers such as polypropylene, polyester, polyamide, polyacrylonitrile, and rayon, regenerated fibers, and natural fibers such as wool, silk, and cotton. The above materials may be used alone or in combination. Preferably, polyester-based fibers such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polyamide-based fibers such as nylon 6 and nylon 66, polyolefin-based fibers such as polyethylene and polypropylene, or a combination of two or more of these fibers. The shape of the ground yarn or connecting yarn is not limited, and may be any of round cross-section yarn, irregular cross-section yarn, hollow yarn, etc. Furthermore, carbon yarn, metal yarn, etc. can also be used.
使用可能な三次元立体編物としては、例えば、以下のようなものを用いることができる。
(a) 製品番号:49013D(住江織物(株)製)、厚さ10mm
材質:
表側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
裏側のグランド編地・・・450デシテックス/108fのポリエチレンテレフタレート繊維仮撚加工糸の2本の撚り糸
連結糸・・・・・・・・・350デシテックス/1fのポリトリメチレンテレフタレートモノフィラメント
(b)製品番号:AKE70042(旭化成(株)製)、厚さ7mm
(c)製品番号:T28019C8G(旭化成(株)製)、厚さ7mm
Examples of the three-dimensional knitted fabric that can be used include the following:
(a) Product number: 49013D (manufactured by Suminoe Textile Co., Ltd.),
Material:
Front ground knit: 2 strands of 450 dtex/108f polyethylene terephthalate false twist yarn Back ground knit: 2 strands of 450 dtex/108f polyethylene terephthalate false twist yarn Connecting yarn: 350 dtex/1f polytrimethylene terephthalate monofilament (b) Product number: AKE70042 (manufactured by Asahi Kasei Corporation), thickness 7 mm
(c) Product number: T28019C8G (manufactured by Asahi Kasei Corporation), thickness 7 mm
三次元立体編物10は、収容フィルム20により被覆されている。収容フィルム20は、本実施形態では、合成樹脂製の2枚のフィルム21,22を用いてなり、これを三次元立体編物10の表面及び裏面を被覆するように配置し、両者の周縁部を溶着等により固着している。これにより、三次元立体編物10は、収容フィルム20内に密閉的に収容される。なお、フィルム21,22の周縁部を固着する際には、フィルム21,22によって三次元立体編物10を厚み方向に若干押圧されるように固着することが好ましい。三次元立体編物10の張力が高まり、該三次元立体編物10を構成する糸の弦振動がより生じやすくなる。
The three-dimensional
収容フィルム20の外側には、ケース40が取り付けられ、そのケース40内にマイクロフォン30が配設されている。ケース40内であって、マイクロフォン30の周囲は、外乱混入抑制部材としてのゲル50が充填されている。ケース40は、合成樹脂製で、マイクロフォン30に伝播される音響振動の外部への拡散を防ぐ機能を有し、ゲル50により、外部振動がマイクロフォン30によって捕捉されることを抑制する。なお、マイクロフォン30には検出した音響振動データを搬送するコード30aが接続されている。
A
生体信号検出センサ1は、人の各種部位、例えば、背部、胸部、腰部などに当接して使用される。体表面の振動が収容フィルム20及び三次元立体編物10に伝播されてマイクロフォン30によって捕捉されるものであるが、皮膚表面に直接貼着する場合に限らず、衣服の表面に取り付けて用いることができる。
The
ここで、本実施形態で採用した新規の生体信号検出センサ1の検出性能を、本発明者らが特許文献2等で開示している従来の生体信号検出センサと比較して説明する。なお、以下において、本実施形態の生体信号検出センサ1を4SR(Sound Sensing System using Stochastic Resonance)と称し、従来の生体信号検出センサ1000を3SR(Sound Sensing System using Resonance)と称する。
Here, the detection performance of the new
(心音の周波数帯域での4SRセンシング性能評価)
図2に4SR(生体信号検出センサ1)と3SR(従来の生体信号検出センサ1000)のセンシング性能を比較するための実験装置の概略と部品構成を示す。中央の実験装置の左右の各3枚の写真は、加速度センサ(a-1)とそれぞれ3SRと4SRの構成部品(a-2~a-6)を示し、実験装置下部には3SR(a-7)と4SR(a-8)の概観写真を示す。また、3SR、4SRに用いられている厚さ10mmの3次元立体編物 (以後場合により、3Dネットと呼ぶ)の断面を写真(a-4)に示す。写真(Section:a-a, Section:b-b)は、3SRと4SR用の3Dネットのカット断面である。
(Evaluation of 4SR sensing performance in the heart sound frequency band)
Figure 2 shows the outline and component configuration of the experimental equipment for comparing the sensing performance of 4SR (biological signal detection sensor 1) and 3SR (conventional biological signal detection sensor 1000). The three photographs on the left and right of the experimental equipment in the center show the acceleration sensor (a-1) and the components (a-2 to a-6) of 3SR and 4SR, respectively, and overview photographs of 3SR (a-7) and 4SR (a-8) are shown at the bottom of the experimental equipment. In addition, photograph (a-4) shows the cross section of the 10 mm thick three-dimensional knitted fabric (hereinafter sometimes called 3D net) used in 3SR and 4SR. Photographs (Section: aa, Section: bb) are cut cross sections of the 3D net for 3SR and 4SR.
まず、4SRの振幅増幅の基本原理を3Dネットの断面の写真(a-4)を用いて説明する。本実験で用いた3Dネットの上下面はマルチフィラメント糸で作られた基布層で、真ん中のモノフィラメント糸で作られたパイルは上下の基布層に編み込んであり、マルチフィラメント糸と摩擦結合している。被験者の体重が3Dネット上面に付加されると、エアパックに内蔵された3DネットのX型に編み込まれたパイル(以後、X型パイルと呼ぶ)がたわみ、体動によりパイル同士が擦れ、音と振動が生じる。この音と振動が確率共鳴現象を生じさせる。そして、X型パイルはたわむことで張力が発生し、固有振動子が構成される。張力作用下のX型パイルの固有振動数は20Hz近傍にある。そこで、密閉エアパックである4SRは確率共鳴と弦の振動という二つの共鳴機構により、0.5~80Hzの振動を増大させるものと考えられる。 First, the basic principle of the 4SR's amplitude amplification will be explained using a cross-sectional photograph (a-4) of the 3D net. The top and bottom surfaces of the 3D net used in this experiment are fabric layers made of multifilament yarn, and the pile in the middle made of monofilament yarn is woven into the top and bottom fabric layers and is frictionally bonded to the multifilament yarn. When the subject's weight is applied to the top surface of the 3D net, the pile woven into an X-shape of the 3D net built into the air pack (hereafter referred to as the X-shaped pile) bends, and the pile rubs against each other due to body movement, generating sound and vibration. This sound and vibration causes the stochastic resonance phenomenon. The X-shaped pile generates tension as it bends, forming a natural oscillator. The natural frequency of the X-shaped pile under tension is around 20 Hz. Therefore, it is thought that the 4SR, which is a sealed air pack, increases vibrations in the 0.5 to 80 Hz range through two resonance mechanisms: stochastic resonance and string vibration.
次に、心音に対する増幅能について検討する。図3(a)に示したように、検討に用いた心音は、PCG上I音の分裂間隔を0.03秒にしたI音を用いた。この心音は心拍数56/minの被験者から計測されたもので、フィルター処理を行った後、スピーカーによって機械的に複製した。スピーカーはFOSTEX社製P1000Kをエンクロージャー無しで用いた。P1000Kは径が10cmのコーン型フルレンジユニットである。P1000Kの振動板に600gのウェイトを載せ振動板の重さを1005gにし、最低共振周波数を82Hzから52Hzに低く設定した。これにより52Hz~16kHzが再生周波数帯域となった。最低共振周波数f0は、 Next, the amplification ability for heart sounds will be examined. As shown in Figure 3 (a), the heart sound used in the study was the first sound on the PCG with a split interval of 0.03 seconds. This heart sound was measured from a subject with a heart rate of 56 beats per minute, and after filtering, it was mechanically reproduced using a speaker. The speaker used was a FOSTEX P1000K without an enclosure. The P1000K is a cone-type full-range unit with a diameter of 10 cm. A 600g weight was placed on the diaphragm of the P1000K, making the weight of the diaphragm 1005g, and the lowest resonance frequency was set lower from 82Hz to 52Hz. This resulted in a playback frequency band of 52Hz to 16kHz. The lowest resonance frequency f0 was:
スピーカーから出力された機械的複製音(以後、Reproduction PCGと呼ぶ)は、加速度センサの上面に置かれた3Dネットを経由した後、3SRと4SRの各マイクロフォンで計測される。3SRのマイクロフォン1010は、3Dネット1020とともにエラストマフィルム1030とビーズ1040で包まれる。減衰は、スリット内を流れる空気の流動によって、内蔵された3Dネットがもつばね力によりマイクロフォン周りの空気が流動することによって発生する。その大きさは写真(a-7)に示すようにマイクロフォン付属のコード1010a周辺部のスリット幅で決められる。3SRは、エラストマフィルム1030内にマイクロフォン1010を配置しているため、コード1010aをエラストマフィルム1030外へ引き出さざるを得ず、その部位において必ず隙間が生じる。一方、4SRは、三次元立体編物(3Dネット)10が収容フィルム20内に収容されたエアパック1Aを、マイクロフォン30が配置されているゲルパック1Bとは分離した構成であるため、マイクロフォン30のコード30aはゲルパック1Bから外部に引き出されるため、エアパック1Aの密閉性がそれにより阻害されることがない。すなわち、4SRは、三次元立体編物(3Dネット)10の全周がエラストマフィルム(収容フィルム20)で密閉されており、4SRに負荷がかかると均一の空気圧がエラストマフィルムにかかることになるため、エラストマフィルムに張力が生じ、音響振動が伝播しやすい環境が作られる(図3(c)参照)。
The mechanically reproduced sound (hereafter referred to as Reproduction PCG) output from the speaker passes through a 3D net placed on the top surface of the acceleration sensor and is then measured by the microphones of the 3SR and 4SR. The microphone 1010 of the 3SR is wrapped in an elastomer film 1030 and beads 1040 along with the 3D net 1020. Attenuation occurs when the air around the microphone flows due to the spring force of the built-in 3D net caused by the air flowing through the slit. The magnitude of attenuation is determined by the width of the slit around the cord 1010a attached to the microphone, as shown in photo (a-7). Since the microphone 1010 of the 3SR is placed inside the elastomer film 1030, the cord 1010a must be pulled out of the elastomer film 1030, and a gap is inevitably created at that location. On the other hand, in the 4SR, the air pack 1A in which the three-dimensional knit (3D net) 10 is housed in the
なお、図3(a)は、上記のようにPCG複製入力と3Dネットが伝える音響振動データを示すが、3Dネットが伝える音響振動データは、3Dネットの固有振動子の共鳴効果による波形に続いて、変調されたPCG複製入力からなる。図3(c)のリサージュ図形の面積は、振動の1サイクル中に消費するエネルギーを示し、減衰容量から求めた3SRの減衰比は0.53で、4SRは0.20であった。 Figure 3(a) shows the PCG replica input and the acoustic vibration data transmitted by the 3D net as described above, but the acoustic vibration data transmitted by the 3D net consists of a modulated PCG replica input followed by a waveform due to the resonance effect of the 3D net's natural oscillator. The area of the Lissajous figure in Figure 3(c) indicates the energy consumed during one cycle of vibration, and the damping ratio of the 3SR calculated from the damping capacity was 0.53 and that of the 4SR was 0.20.
(心尖拍動の周波数帯域での4SRセンシング性能評価)
健常者のACGでは、収縮早期のみに認められる持続時間の短い拍動(収縮期波は持続の短い尖鋭な陽性波とそれに続く下行脚(dicrotic limb)からなり、左心房の収縮に由来するA波は痕跡のように認められる)でtappingと形容され、ACGで良好な記録をとることが難しい。そこで触診でtappingと形容される心尖拍動を触知できる座位姿勢の被験者(心拍数:62/min)を選定し、3SRと4SRを用いてF-APW(胸部前面から計測した生体情報:Front Acoustic Pulse Wave)を計測し、データロガーに記録し、フィルター処理を行って以下の解析を行った。
(Evaluation of 4SR sensing performance in the apex beat frequency band)
In healthy subjects, the ACG shows a short-duration pulsation observed only in the early systole (the systolic wave consists of a short-duration sharp positive wave followed by a dicrotic limb, and the A wave derived from the contraction of the left atrium is observed as a trace), which is described as tapping, and it is difficult to obtain a good record with the ACG. Therefore, we selected a subject in a seated position (heart rate: 62/min) who could palpate the apical pulsation described as tapping, and measured F-APW (biological information measured from the front of the chest: Front Acoustic Pulse Wave) using 3SR and 4SR, recorded it on a data logger, and performed the following analysis after filtering.
データロガーに記録した入力波形を周波数解析し、周波数に対する4SRと3SRのパワースペクトルの比(PSD4SR/PSD3SR)をゲインとし、センシング性能をゲインで評価する。4SRは左第5肋間、胸部正中線から左6cmの胸部前面に配置し、3SRは左10cmの胸部前面(心電図のV4誘導付近に相当)に配置する。PCGならびに4SRセンシングシステム用の各マイクロフォンの設置位置は、肺胞呼吸音が混入し易い部位であるため、呼吸を止めた状態で、F-APWを10秒間計測する。なお、計測実験の手順は安静時の呼吸を5分間継続して2秒間の吸気の後、呼吸を止めた。被験者には40歳代の心循環系に基礎疾患のない健康な男性を選定した。
The input waveform recorded in the data logger is frequency analyzed, and the ratio of the power spectrum of 4SR and 3SR to the frequency (PSD 4SR /PSD 3SR ) is taken as the gain, and the sensing performance is evaluated by the gain. The 4SR is placed on the front of the chest 6 cm to the left of the 5th intercostal space and the midline of the chest, and the 3SR is placed on the front of the
(APW計測)
次に、APWの計測を行う。計測は、全て座位姿勢で行う。心尖拍動を含むと考えられるF-APWを捉えるための4SRは、左第5肋間で胸部正中線から左10cmの胸部前面に配置し、R-APW(胸部後部から計測した生体情報:Rear Acoustic Pulse Wave)のための4SRは、胸部前面のF-APWのための4SRと同じ高さで背部正中線から左6cmの胸部後面に配置する。腰部のL-APW(腰部から計測した生体情報:Lumber Acoustic Pulse Wave)を捉える4SRは臍部の真後ろである第3~4腰椎部正中に配置し、PCG用マイクロフォンは心尖部に置く。また、ECG(Electrocardiogram:心電図)は、II誘導を取得する。
(APW measurement)
Next, the APW is measured. All measurements are performed in a seated position. The 4SR for capturing the F-APW, which is thought to include the apical pulsation, is placed on the front of the chest, 10 cm to the left of the chest midline in the left fifth intercostal space, and the 4SR for the R-APW (biological information measured from the posterior chest: rear acoustic pulse wave) is placed on the posterior chest, 6 cm to the left of the back midline, at the same height as the 4SR for the F-APW on the anterior chest. The 4SR for capturing the L-APW (biological information measured from the lumbar region: lumber acoustic pulse wave) is placed in the midline of the 3rd to 4th lumbar vertebrae, directly behind the navel, and the microphone for PCG is placed at the apex of the heart. In addition, the ECG (electrocardiogram) is obtained using lead II.
なお、胸部前部の心尖部マイクロフォンセンサ配置は、I音、III音、IV音の至適記録部位であるが、II音については良好な記録をとることが難しい。II音は、収縮終期に心室へ逆流しようとする動脈内血液が半月弁の過伸展、ついで動脈壁に反動を生じさせる(cardiohemic system)ことで発生すると言われており、心尖部では減弱する。 The placement of the microphone sensor at the apex of the heart on the anterior chest is the optimal location for recording the first, third, and fourth hearts, but it is difficult to obtain a good recording of the second heart sound. The second heart sound is said to be generated when blood in the arteries tries to flow back into the ventricle at the end of systole, causing excessive stretching of the semilunar valves and then recoil on the arterial wall (cardiohemic system), and is attenuated at the apex of the heart.
PCGならびに4SRセンシングシステム用の各マイクロフォンの設置位置は、肺胞呼吸音が混入し易い部位であるため、呼吸を止めた状態での10秒間の計測結果を用いて計算する。なお、安静時のAPW計測実験は自然呼吸を5分間継続して行い、2秒間の吸気の後30秒間呼吸を止め、再度30秒間の自然呼吸を行い、2秒間の吸気の後30秒間呼吸を止めた状態で行う。被験者には20~60歳代の心循環系に基礎疾患のない健康な男39名、女11名、計50名を選定した。解析対象データは、呼吸を止めた最初の30秒間のうちRR変動が15%以内の部分から10秒間のデータを用い、心拍数はその10秒間のデータでの平均値とする。 The microphones for the PCG and 4SR sensing systems are positioned in areas where alveolar breathing sounds are likely to be mixed in, so calculations are performed using the results of measurements taken over 10 seconds while breathing is stopped. The APW measurement experiment at rest involves natural breathing for 5 minutes, 2 seconds of inhalation followed by 30 seconds of breathing stopped, 30 seconds of natural breathing again, and 30 seconds of breathing stopped after 2 seconds of inhalation. A total of 50 subjects were selected, consisting of 39 men and 11 women in their 20s to 60s with no underlying cardiovascular diseases. The data to be analyzed was 10 seconds of data from the first 30 seconds after breathing was stopped where RR fluctuation was within 15%, and the heart rate was calculated as the average of the data for those 10 seconds.
(4SRセンシングシステムの性能の評価結果とAPW計測結果)
図3(a)中で黒の細線で示した波形がReproduction PCGで、グレーの太線で示した波形が加速度センサで計測したAcceleration PCGである。Reproduction PCGは、I音(A波とB波)と30Hz近傍の波形(C波)、およびII音(D波、E波、F波)で構成され、Acceleration PCGは、Reproduction PCGの共鳴波形(a波とb波、およびd波とe波) とそれに続く振幅と周波数が変化した波形(c波とf波)で構成される。図3(b)の周波数解析結果で示す様に60Hz以上の周波数帯域にあるA波とB波およびD波とE波は、振幅が大きくなって、a波とb波、およびd波とe波になっており、30Hz近傍のC波とF波は、ヘテロダインにより振幅と周波数が変調されたc波とf波になった。その結果、30Hz近傍ではAcceleration PCG のパワースペクトルは、Reproduction PCGのものよりも小さくなった。
(4SR sensing system performance evaluation results and APW measurement results)
In Fig. 3(a), the waveform shown by the thin black line is the Reproduction PCG, and the waveform shown by the thick gray line is the Acceleration PCG measured by the acceleration sensor. The Reproduction PCG is composed of the I sound (A and B waves), the waveform around 30 Hz (C wave), and the II sound (D, E, F waves), while the Acceleration PCG is composed of the Reproduction PCG resonance waveform (a and b waves, and d and e waves) and the subsequent waveforms with changed amplitude and frequency (c and f waves). As shown in the frequency analysis results in Fig. 3(b), the A and B waves and the D and E waves in the frequency band above 60 Hz have increased in amplitude and become a and b waves, and d and e waves, and the C and F waves in the vicinity of 30 Hz have become c and f waves whose amplitude and frequency are modulated by heterodyning. As a result, the power spectrum of the Acceleration PCG is smaller than that of the Reproduction PCG in the vicinity of 30 Hz.
次に、センシングシステムを構成する機械振動系に含まれる減衰性能について検討する。図3(c)は、3SRと4SRの各センサがもつ減衰特性を示すリサージュ図形である。リサージュ図形は加圧板を110×110mmにして振幅±1.0mm、加振周波数1.34Hzの入力で、サーボパルサーを用いて描いた。予備圧縮力は652Nである。リサージュ図形で囲まれる面積は、振動の1サイクル中に消費するエネルギーで、減衰容量である。これをWと表すと、Wは、 Next, we will consider the damping performance of the mechanical vibration system that constitutes the sensing system. Figure 3 (c) is a Lissajous figure showing the damping characteristics of the 3SR and 4SR sensors. The Lissajous figure was drawn using a servo pulsar with a pressure plate of 110 x 110 mm, an amplitude of ±1.0 mm, and an input of a vibration frequency of 1.34 Hz. The precompression force is 652 N. The area enclosed by the Lissajous figure is the energy consumed during one cycle of vibration, and is the damping capacity. If this is expressed as W, then W is:
また、振動変位を評価する場合に用いられる振幅倍率Z/Yは、相対変位をZとし、心尖拍動の変位をYとすれば、 The amplitude magnification Z/Y used to evaluate vibration displacement is, where Z is the relative displacement and Y is the apex pulsation displacement.
であり、減衰比は、
である。
and the damping ratio is
It is.
図3(d)は、式(3)を用いて計算した4SRと3SRの振幅倍率曲線を示す。4SRの各センサのばね定数を比較したものである。 Figure 3 (d) shows the amplitude magnification curves of 4SR and 3SR calculated using equation (3). It compares the spring constants of each 4SR sensor.
の値を代入した。 The value of was substituted.
なお、図3(e)は、φ15mmの加圧板で図2(a-8)で示したセンサ(4SR)をデジタルフォースゲイジ(RZ-20)で計測して得た荷重-たわみ特性である。心尖拍動の計測を想定してばね定数を計算した。胸部前部から計測する場合は、センサの押し付け力を小さくしているために、たわみ量が1mmの場合のばね定数を用いた。胸部後部からの計測は体重がセンサにかかるため、たわみ量が3SRの設計値である4~5mmの場合のばね定数を用いた。 Figure 3 (e) shows the load-deflection characteristics obtained by measuring the sensor (4SR) shown in Figure 2 (a-8) with a digital force gauge (RZ-20) using a φ15 mm pressure plate. The spring constant was calculated assuming measurement of the apex pulsation. When measuring from the front of the chest, the pressing force of the sensor is small, so the spring constant when the deflection is 1 mm was used. When measuring from the back of the chest, the body weight is applied to the sensor, so the spring constant when the deflection is 4 to 5 mm, which is the design value of the 3SR, was used.
4SRはセンシングシステムの固有振動数を低く設定してあるため、Z/Y≒1の範囲で測定すると4SRは0.45Hz以上の周波数帯域が測定でき、3SRは2.10Hz以上が測定できることが分かる。なお、減衰比をζ=0.7とした場合、4SRは0.99Hz以上が測定でき、3SRは3.15Hz以上が測定できる。このように、減衰比を変化させるとメカニカルフィルターの特性を調整することが可能である。 Because the natural frequency of the sensing system of the 4SR is set low, when measurements are taken in the range of Z/Y ≒ 1, the 4SR can measure frequencies above 0.45 Hz, while the 3SR can measure frequencies above 2.10 Hz. If the damping ratio is set to ζ = 0.7, the 4SR can measure frequencies above 0.99 Hz, while the 3SR can measure frequencies above 3.15 Hz. In this way, by changing the damping ratio it is possible to adjust the characteristics of the mechanical filter.
心臓聴診は、50~100Hz近傍の高い周波数範囲にある心音の特徴をつかみ、解釈し、それを確認することにあり、高い周波数の音響振動を記録することが重要である。一方、心尖拍動は心音よりも低い周波数波範囲内にある収縮早期のみに認められる持続の短い拍動であり、高い周波数の計測に力点を置くと良好な心尖拍動図を記録するのが難しくなる。このように、心音と心尖拍動ではセンシングシステムの要求仕様が異なるため、センシングシステムの定量評価を個別に評価した。図4(a)は、Acceleration PCGを入力にして、3SRと4SRの各センシングシステムが捉えた音響振動情報(以後、3SR data、4SR dataと呼ぶ)を比較したものである。また、図4(b)は、周波数解析結果を示す。3SR data及び4SR dataは、確率共鳴と固有振動子による共鳴の影響を受けた音響振動情報で、両者を比較すると同じ周波数帯域でパワースペクトルに増減が見られる。図4(c)は、4SR/3SRのゲイン(PSD4SR/PSD3SR)を示す。10Hz近傍の確率共鳴の効果と20Hz近傍の固有振動子の共鳴効果及び20~80Hzのセンサのもつ機械的振動特性の差がゲインの変化(最大11.6dBと最小8.0dB)となって表れ、図4(a)で示す波形の最大振幅差は4.3倍になった。なお、80Hz以上のゲインの急低下は4SRセンシングシステムに取り付けられたゲルの減衰効果によるものと考えられる。 Cardiac auscultation is to grasp, interpret, and confirm the characteristics of heart sounds in the high frequency range of around 50 to 100 Hz, so it is important to record high frequency acoustic vibrations. On the other hand, the apical beat is a short-lasting beat that is only observed in the early systole and is in a lower frequency range than the heart sound, so if the emphasis is placed on measuring high frequencies, it becomes difficult to record a good apical cardiogram. As the required specifications for the sensing system for heart sounds and apical beats are different, the quantitative evaluation of the sensing systems was evaluated separately. Figure 4 (a) compares the acoustic vibration information captured by the 3SR and 4SR sensing systems (hereinafter referred to as 3SR data and 4SR data) using the Acceleration PCG as input. Figure 4 (b) shows the frequency analysis results. The 3SR data and 4SR data are acoustic vibration information affected by stochastic resonance and resonance due to the natural oscillator, and when comparing the two, increases and decreases can be seen in the power spectrum in the same frequency band. Figure 4(c) shows the 4SR/3SR gain (PSD 4SR /PSD 3SR ). The effect of stochastic resonance near 10 Hz, the effect of resonance of the natural oscillator near 20 Hz, and the difference in the mechanical vibration characteristics of the sensor from 20 to 80 Hz are manifested as changes in gain (maximum 11.6 dB and minimum 8.0 dB), and the maximum amplitude difference of the waveform shown in Figure 4(a) is 4.3 times. The sudden drop in gain above 80 Hz is thought to be due to the damping effect of the gel attached to the 4SR sensing system.
図5(a)に、スピーカに変えて人を音源としたときの3SR dataと4SR dataの時系列波形を示し、図5(b)に周波数解析結果を示す。図5(c)に、4SR/3SRのゲイン(PSD4SR/PSD3SR)を示す。3SRセンシングシステムに内在する減衰は1.34Hz以上で機能し、1Hz近傍のゲインが13.4dBであるのに、1.34~10Hz近傍のゲインは4.9dBまで低下している。波形で見ると減衰の影響は顕著で、図5(a)に示されるように収縮期波の最大振幅は6.8倍となって表れた。 Figure 5(a) shows the time series waveforms of 3SR data and 4SR data when a person was used as the sound source instead of a speaker, and Figure 5(b) shows the frequency analysis results. Figure 5(c) shows the gain of 4SR/3SR (PSD 4SR /PSD 3SR ). The attenuation inherent in the 3SR sensing system functions above 1.34Hz, and while the gain near 1Hz is 13.4dB, the gain near 1.34 to 10Hz drops to 4.9dB. The effect of attenuation is noticeable when viewed from the waveform, and as shown in Figure 5(a), the maximum amplitude of the systolic wave is 6.8 times larger.
なお、3SRのエアダンピングが、心音に関係する不規則振動に与える影響は小さいものの、図5(b)に示すように13Hz以下の心尖拍動波のパワースペクトルには影響を与え、その値は小さくなった。また、図3(c)に示すダンピング効果は、主に基本調波と2次高調波で顕著に認められた。これは、図3(d)のシミュレーション結果とも一致し、3SRでは心尖拍動波は描記できないことが分かった。 Although the air damping of the 3SR only had a small effect on the irregular vibrations related to heart sounds, it did affect the power spectrum of the apical pulsation wave below 13 Hz, reducing its value, as shown in Figure 5(b). The damping effect shown in Figure 3(c) was particularly noticeable in the fundamental and second harmonics. This is consistent with the simulation results in Figure 3(d), and it was found that the apical pulsation wave cannot be recorded with the 3SR.
振動伝達機構について考察すると、エラストマフィルム(4SRでは符号20の収容フィルム、3SRでは符号1030のエラストマフィルム)自体にも張力が生じるため、張力変動を介して、4SRでは1Hz近傍の低周波振動は内部の3Dネットに伝達される。その結果、13Hz以上の振動は、20Hz近傍で生じる固有振動子の効果で、図5(b)に示される13~30Hz間のほぼ同等のパワースペクトルとして3SRと4SRで計測された。その振動成分が3Dネットのパイルを伝わるものと考えられる。また、図5(b)で心音の最小周波数と心尖拍動波の高調波成分が心音に混じる周波数帯が10Hz近傍にあることが分かった。そこで、4SRの方が、考察対象周波数の全帯域にわたり、3SRよりも感度が高いことが分かった。
Considering the vibration transmission mechanism, tension is generated in the elastomer film itself (the housing film with the
従来、3SRの解析対象周波数は10~30Hzに設定していたが、以上の実験結果より4SRが計測対象とするF-APWの振動数は、マイクロフォンの性能保証範囲が0.1Hz以上であることを考慮し、0.5~80Hzまでとし、心音については、大部分の音が低い可聴域に集まっていることで、100Hz以上ではなく、25~45Hzないし40~80Hzを解析対象周波数とすることとした。また、サンプリング周波数は、3SRでは200Hzとしていたが、4SRでは1000Hzに設定した。 Previously, the analysis frequency for the 3SR was set to 10-30Hz, but based on the above experimental results, the frequency of the F-APW measured by the 4SR was set to 0.5-80Hz, taking into account that the microphone's guaranteed performance range is 0.1Hz or higher. As for heart sounds, since most sounds are concentrated in the low audible range, the analysis frequency was set to 25-45Hz or 40-80Hz, rather than 100Hz or higher. Additionally, the sampling frequency was set to 200Hz for the 3SR, but to 1000Hz for the 4SR.
図6~図9に、平均心拍数58、71、79、93/minの被験者4名についてのF-APW、R-APW、L-APWとPCGの3秒間の時系列波形計測結果を示す。これら3種類のAPWには心音と心尖拍動の情報が含まれる。F-APWは1~1.5Hzの帯域の波形、R-APWとL-APWでは5~7Hzの帯域の波形が観測された。 Figures 6 to 9 show the results of 3-second time-series waveform measurements of F-APW, R-APW, L-APW and PCG for four subjects with average heart rates of 58, 71, 79 and 93/min. These three types of APW contain information on heart sounds and apex beats. Waveforms in the 1-1.5 Hz band were observed for F-APW, while waveforms in the 5-7 Hz band were observed for R-APW and L-APW.
・心尖拍動検出装置
次に、本実施形態の生体信号検出センサ1から得られるデータを処理するコンピュータプログラムが設定されたコンピュータ機能を有する心尖拍動検出装置100について図10に基づき説明する。
Apex Pulse Detection Device Next, an apex pulse detection device 100 having a computer function in which a computer program for processing data obtained from the biological
心尖拍動検出装置100は、生体信号検出センサ1によって取得される生体信号の時系列データを処理して心尖拍動の波形を得る。心尖拍動検出装置100は、コンピュータ(パーソナルコンピュータ、機器に組み込まれるマイクロコンピュータ等も含む)からなり、生体信号検出センサ1のマイクロフォン30から送信される生体信号の時系列データを受信する。そして、受信した時系列データを用いて所定の処理を行う周波数解析手段110、境界周波数特定手段120、心尖拍動波形抽出手段130を有している。
The apex beat detection device 100 processes the time series data of the biosignal acquired by the
より詳細には、心尖拍動検出装置100は、周波数解析手段110、境界周波数特定手段120、心尖拍動波形抽出手段130として機能する手順を実行させるコンピュータプログラムが記憶部(当該コンピュータ(心尖拍動検出装置100)としての内蔵のハードディスク等の記録媒体のほか、リムーバブルの各種記録媒体、通信手段で接続された他のコンピュータの記録媒体等も含む)に記憶されている。なお、心尖拍動検出装置100は、周波数解析手段110、境界周波数特定手段120、心尖拍動波形抽出手段130を実現するコンピュータプログラムが組み込まれた1以上の記憶回路を有する電子回路を用いて実現することもできる。 More specifically, the apex beat detection device 100 has a computer program stored in a storage unit (including a storage medium such as a hard disk built into the computer (apex beat detection device 100), as well as various removable storage media and storage media of other computers connected via communication means) that executes procedures that function as the frequency analysis means 110, the boundary frequency identification means 120, and the apex beat waveform extraction means 130. The apex beat detection device 100 can also be realized using an electronic circuit having one or more storage circuits incorporating computer programs that realize the frequency analysis means 110, the boundary frequency identification means 120, and the apex beat waveform extraction means 130.
また、コンピュータプログラムは、記録媒体に記憶させて提供することができる。コンピュータプログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば フレキシブルディスク、ハードディスク、CD-ROM、MO(光磁気ディスク)、DVD-ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じてコンピュータプログラムをコンピュータに伝送してインストールすることも可能である。 The computer program can also be provided by storing it on a recording medium. The recording medium storing the computer program may be a non-transient recording medium. There is no particular limitation on non-transient recording media, but examples of such recording media include flexible disks, hard disks, CD-ROMs, MOs (magneto-optical disks), DVD-ROMs, and memory cards. It is also possible to transmit the computer program to a computer via a communication line and install it.
周波数解析手段110は、体表面を介して生体信号検出センサ1により得られる生体信号データを周波数解析する。
境界周波数特定手段120は、周波数解析手段110から得られる生体信号データの周波数解析結果から、生体信号データ中、心尖拍動に起因する振動と心音に起因する振動との境界周波数(Boundary Frequency:BF)を求める。境界周波数特定手段120は、周波数解析手段110により得られる周波数解析結果中、調和振動と不規則振動との境界となるパワースペクトルの急変部を求め、この急変部を基準に境界周波数を特定する手段を含む。
心尖拍動波形抽出手段130は、境界周波数特定手段120により求めた境界周波数により区分される心尖拍動の波形を抽出する。なお、抽出される心尖拍動の波形は、モニタ、プリンタなどに出力され、従来と同様に医学的解析に利用され、心臓の状態や健康状態の判断に用いられる。
The frequency analysis means 110 performs frequency analysis on the biosignal data obtained by the
The boundary
The apex beat waveform extraction means 130 extracts the waveform of the apex beat classified by the boundary frequency determined by the boundary frequency identification means 120. The extracted waveform of the apex beat is output to a monitor, a printer, or the like, and is used for medical analysis in the same manner as in the past to determine the state of the heart and the state of health.
上記のように、生体信号検出センサ1は、人の体の背部、胸部、腰部等に取り付けられ、体内の音、振動を捉えるものであり、得られる生体信号は、種々の生体音、体内振動の集合体である。一方、心尖拍動は、心音の波形に隠れた振動であり、それらを分離することは難しい。しかしながら、本実施形態では、心尖拍動と波形と心音の波形とを区別する境界周波数(Boundary Frequency:BF)を見出した。
As described above, the
本実施形態によれば、境界周波数が求められることで、生体信号から心尖拍動の波形を心音の波形とは区別して得ることが可能となる。 According to this embodiment, by determining the boundary frequency, it is possible to obtain the waveform of the apex beat from the biosignal separately from the waveform of the heart sounds.
ここで、急変部の求め方としては、まず、体表面を介して生体信号検出センサ1により得られる生体信号データを周波数解析し、その周波数解析結果に、同時に測定した心音データの周波数解析結果を加味し、生体信号データ中、心尖拍動に起因する振動と前記心音に起因する振動との境界周波数を抽出して求めることができる。
The method for determining the sudden change area is to first frequency-analyze the biosignal data obtained by the
具体的には、周波数解析手段110により求められる生体信号データの周波数解析結果を加算平均処理し、その波形を周波数とパワースペクトルを用いて両対数軸表示すると共に、心音データの周波数解析結果を加算平均処理してその波形を周波数とパワースペクトルを用いて両対数軸表示し、両対数軸表示した2つの波形の対数差分の波形からゆらぎの変化点を求め、このゆらぎの変化点を心尖拍動の高調波成分が極めて小さくなる実質的な消失点とし、消失点の周波数を上記の急変部に相当するものとして境界周波数を求めることができる。 Specifically, the frequency analysis results of the biosignal data obtained by the frequency analysis means 110 are averaged and the resulting waveform is displayed on a double logarithmic axis using frequency and power spectrum, while the frequency analysis results of the heart sound data are averaged and the resulting waveform is displayed on a double logarithmic axis using frequency and power spectrum. A fluctuation change point is obtained from the logarithmic difference between the two waveforms displayed on the double logarithmic axis, and this fluctuation change point is regarded as the effective vanishing point where the harmonic components of the apex beat become extremely small. The frequency of the vanishing point corresponds to the above-mentioned sudden change part, making it possible to obtain the boundary frequency.
以下、周波数解析手段110により周波数解析し、境界周波数特定手段120により境界周波数を特定する方法について詳述する。本実施形態においては、上記のように、両対数軸表示した波形を用い、その波形において高調波調和振動が実質的に消失する周波数に基づきゆらぎの変化点を求め、このゆらぎの変化点をパワースペクトルの急変部とする。 The method of performing frequency analysis using the frequency analysis means 110 and identifying the boundary frequency using the boundary frequency identification means 120 will be described in detail below. In this embodiment, as described above, a waveform displayed on both logarithmic axes is used, and a fluctuation change point is found based on the frequency at which the harmonic vibrations in the waveform essentially disappear, and this fluctuation change point is regarded as a sudden change part in the power spectrum.
[境界周波数(BF)の抽出法]
(APWの高調波調和振動消失周波数に基づくBF抽出法)
心音は、非特許文献1に示されているように不規則振動であるが、心尖拍動波は、後述の実験結果より、主に基本調波と高調波からなる調和振動で構成されることが明らかになった。そこで、胸部前部に取り付けた4SRセンシングシステムから得られるAPWの波形を周波数解析し、加算平均処理を行い、高調波調和振動と不規則振動のパワースペクトルの変化点、すなわちパワースペクトルの急変部を見つけることに着目した。心尖拍動波のCAB(Cardiac Apex Beat)の高調波成分は周波数が高くなるにつれて、そのパワースペクトルが小さくなる。一方、心音のCAS(Cardiac Acoustic Sound)の不規則振動系のパワースペクトルは、周波数に依存せず、パワースペクトルの大きさが変化する。ここでは、このCABの高調波成分のパワースペクトルが小さくなり、そしてCASの変動挙動が変化する周波数を境界周波数:Boundary Frequencyと呼び、以下では、これをBFと呼ぶ。なお、心拍変動や血圧変動が生じるとAPWの波形が瞬時に変動するが、APW波形の瞬時変動の要因の一つに、PCGの卓越周波数の変動があると考えられる。
[Boundary frequency (BF) extraction method]
(BF extraction method based on APW harmonic oscillation vanishing frequency)
As shown in
被験者の個人差により、体幹の音響振動の伝達特性に関してもインピーダンスが異なり、BFを見つけにくい場合もある。そこで、対数差分法を適用して心尖拍動波の高調波成分が消失する周波数(高調波成分のパワースペクトルが非常に小さくなり、実質的に無視できるレベルの周波数)を見つける。APWの加算平均処理は時間窓8.2秒で、90%オーバーラップでフーリエ変換を行う。加算平均処理された波形を両対数軸表示で表す。両対数軸表示のパワースペクトル波形は、加法定理が使えるためである。なお、心音にはPCGの波形を用いる。対数差分法を適用することで、PCGの0.5~20Hzの周波数帯域のパワースペクトルの絶対値が大きくなり、かつパワースペクトルの波形を逆位相にできる。これにより、心尖拍動の高調波成分と心音の不規則振動のパワースペクトルを小さくし、BFを見つけ易くする。 Depending on the individual differences of the subjects, impedance also differs with regard to the transmission characteristics of the acoustic vibration of the trunk, and it may be difficult to find the BF. Therefore, the logarithmic difference method is applied to find the frequency at which the harmonic components of the apical pulsation wave disappear (the frequency at which the power spectrum of the harmonic components becomes very small and can be practically ignored). The arithmetic average processing of the APW is performed with a time window of 8.2 seconds and a Fourier transform with 90% overlap. The arithmetic average processed waveform is displayed on a double logarithmic axis. This is because the power spectrum waveform displayed on a double logarithmic axis can be used for the addition theorem. Note that the PCG waveform is used for the heart sounds. By applying the logarithmic difference method, the absolute value of the power spectrum of the PCG in the 0.5 to 20 Hz frequency band is increased, and the power spectrum waveform can be made in opposite phase. This reduces the power spectrum of the apical pulsation harmonic components and the irregular vibration of the heart sounds, making it easier to find the BF.
(APWの高調波調和振動消失周波数からのBF抽出の結果)
図11は、APW×PCG-1を用いてのBFを抽出する手順を示したフローチャートであり、次の(1)から(10)は図11中の丸囲み数字に該当する。以下、計算の手順と着眼点を説明する。
(Results of BF extraction from APW harmonic loss frequencies)
Figure 11 is a flowchart showing the procedure for extracting BF using APW × PCG -1 , and the following (1) to (10) correspond to the circled numbers in Figure 11. The calculation procedure and points of view are explained below.
(1) 4SR dataからフィルタ処理を行わず、APWを求め、周波数解析する。以下ではこれをAPWと表す。
(2) APWに対して加算平均処理を行う(時間窓8.2秒で、90%オーバーラップ)。
(3) PCGから波形を抽出し、周波数解析する。以下ではこれをPCGと表す。
(4) (2)と同様の加算平均処理(時間窓8.2秒, 90%オーバーラップ)を行う。
(5) (2)と(4)で求められたAPW とPCGのパワースペクトルAPW、PCGを用いてAPW×PCG -1を生成し、Breakpointを見つける。
(6) APW×PCG-1 波形上にあるBreakpointから、ゆらぎをもつ心尖拍動波の高調波消失周波数とホワイトノイズとなる心音の不規則振動成分出現周波数を同定する。
(7) APW×PCG -1上の高調波消失点からBFラインを引き、BFラインとAPWとの交点をBFとする。
(8) 0.5Hz~BFがCAB帯域(以後、CAB (0.5-BF))となり、BF~50HzがCAS帯域(以後、CAS(BF-50))となる。
(9) APWに0.5Hz~BFのバンドパスフィルタを適用し、CABの高調波成分がBF近傍で減少していることを確認する。
(10) APWにBF~50Hzのバンドパスフィルタを適用し、BF近傍では周波数に依らずパワースペクトルが変化していることを確認する。
(1) Calculate the APW from the 4SR data without filtering and perform frequency analysis. Hereinafter, this will be referred to as APW.
(2) An averaging process is performed on the APW (time window of 8.2 seconds, 90% overlap).
(3) Extract the waveform from the PCG and perform frequency analysis. Hereinafter, this will be referred to as PCG.
(4) Perform the same averaging process as in (2) (time window 8.2 seconds, 90% overlap).
(5) Using the power spectra APW and PCG obtained in (2) and (4), APW × PCG -1 is generated and the breakpoint is found.
(6) From the breakpoints on the APW×PCG -1 waveform, the harmonic disappearance frequency of the fluctuating apical pulsation wave and the appearance frequency of the irregular vibration components of the heart sound that becomes white noise are identified.
(7) Draw a BF line from the harmonic vanishing point on APW×PCG -1 , and let the intersection of the BF line and APW be BF.
(8) 0.5 Hz to BF is the CAB band (hereinafter, CAB (0.5-BF)), and BF to 50 Hz is the CAS band (hereinafter, CAS (BF-50)).
(9) Apply a bandpass filter of 0.5 Hz to BF to the APW and verify that the harmonic components of the CAB are reduced near the BF.
(10) Apply a bandpass filter from BF to 50 Hz to the APW and confirm that the power spectrum changes regardless of frequency near the BF.
図12は、両軸線形表示で心拍数(HR)別(58~93/min)にまとめた CABとCASの周波数解析結果である。この図から、BFでのCABの高調波成分の消失、BF近傍からCASの不規則振動の出現、およびBFの HR依存性が理解でき、本発明の手法が、CABとCASを分離してその特徴を可視化できることがわかる。 Figure 12 shows the results of frequency analysis of CAB and CAS, organized by heart rate (HR) (58-93/min) in a biaxial linear display. From this figure, it is possible to understand the disappearance of the harmonic components of CAB in BF, the appearance of irregular oscillations of CAS near BF, and the HR dependency of BF, and it is clear that the method of the present invention can separate CAB and CAS and visualize their characteristics.
次に、図13~図16に、APWの高調波調和振動消失周波数に基づくBF抽出法によって描記されたCAB、CAS波形を示す。平均心拍数58、71、79、93/minの被験者から得られたF-APW、R-APW、L-APWから抽出されたFrontCAB(0.5-BF)、FrontCAS(5-BF)、RearCAB(0.5-BF)、LumbarCAB(0.5-BF)および PCGならびにFrontCAS(BF-50)、RearCAS(BF-50)、LumbarCAS(BF-50)の各処理波形を示す。描記時間は1.5秒間である。括弧内は適応したフィルターの周波数帯域を示す。各CAB、各CAS波形の縦軸、横軸のレンジは計測部位毎で統一されている。4人の被験者のFrontCAB(0.5-BF)は、基本調波が主となる心尖拍動波が描記されていることがわかる。 Next, Figures 13 to 16 show CAB and CAS waveforms traced using the BF extraction method based on the harmonic loss frequency of the APW. The processed waveforms shown are FrontCAB (0.5-BF), FrontCAS (5-BF), RearCAB (0.5-BF), LumbarCAB (0.5-BF), and PCG, as well as FrontCAS (BF-50), RearCAS (BF-50), and LumbarCAS (BF-50), extracted from the F-APW, R-APW, and L-APW obtained from subjects with average heart rates of 58, 71, 79, and 93/min. The tracing time is 1.5 seconds. The frequency band of the applied filter is shown in parentheses. The vertical and horizontal ranges of each CAB and CAS waveform are standardized for each measurement site. The FrontCAB (0.5-BF) of four subjects shows that the apical pulsation wave, dominated by the fundamental harmonic, is depicted.
得られた結果の考察から、FrontCAB(5-BF)は、複数の5~10Hzの波形の組み合わせで形成されていることが分かった。一方、RearCAB(0.5-BF) 、LumbarCAB(0.5-BF)については、FrontCAB(0.5-BF)に示す波形より周波数の高い波形が主体の調和振動波形となり、FrontCAB(0.5-BF)とは異なる波形になった。また、心音は、複数の振動成分と複数の振動波形が合成された高周波波形からなる不規則振動であった。 From the analysis of the results, it was found that the FrontCAB(5-BF) was formed by a combination of multiple 5-10 Hz waveforms. On the other hand, the RearCAB(0.5-BF) and LumbarCAB(0.5-BF) were harmonic vibration waveforms that were dominated by waveforms with higher frequencies than the waveform shown in the FrontCAB(0.5-BF), and were waveforms different from the FrontCAB(0.5-BF). In addition, the heart sounds were irregular vibrations consisting of high-frequency waveforms that were a combination of multiple vibration components and multiple vibration waveforms.
以上より、F-APWは、心尖拍動波と近似した波形となった。そして、F-APWから心尖拍動波と心音の各波形を生成できた。R-APWとL-APWは、圧力脈動による共振現象が起因して異なる波形になったと考えられる。但し、F-APWと異なる波形となったR-APWとL-APWも、振動解析を適用することで心尖拍動を含む心臓の運動に関する振動情報(CAB)と心音(CAS)を抽出でき、臨床的意義のあるものとなる可能性が示された。 From the above, the F-APW had a waveform similar to the apex beat wave. The waveforms of the apex beat wave and heart sounds could be generated from the F-APW. It is believed that the R-APW and L-APW had different waveforms due to a resonance phenomenon caused by pressure pulsation. However, even for R-APW and L-APW, which have waveforms different from F-APW, vibration information (CAB) related to cardiac movement, including the apex beat, and heart sounds (CAS) can be extracted by applying vibration analysis, demonstrating the possibility that this could be of clinical significance.
1 生体信号検出センサ(4SR)
10 三次元立体編物
20 収容フィルム
30 マイクロフォン
40 カバーフィルム
50 ゲル
100 心尖拍動検出装置
110 周波数解析手段
120 境界周波数特定手段
130 心尖拍動波形抽出手段
1000 生体信号検出センサ(3SR)
1. Biosignal detection sensor (4SR)
REFERENCE SIGNS
Claims (5)
前記周波数解析手段から得られる前記生体信号データの周波数解析結果に、同時に測定した心音図から得られる心音データの周波数解析結果を加味し、前記生体信号データ中、心尖拍動により生じる振動と心音により生じる振動との境界周波数を求める境界周波数特定手段と、
前記境界周波数の低周波側を前記心尖拍動の波形として抽出する心尖拍動波形抽出手段と
を有し、
前記境界周波数特定手段は、
前記生体信号データの周波数解析結果に前記心音データの周波数解析結果を加味した波形において、調和振動と不規則振動との境界となるパワースペクトルの急変部を求め、この急変部を基準に前記境界周波数を特定する手段を含む
心尖拍動検出装置。 a frequency analysis means for performing frequency analysis on biosignal data, which is acoustic vibration data of the body surface detected by a microphone of the biosignal detection sensor ;
a boundary frequency identifying means for determining a boundary frequency between a vibration caused by the apex beat and a vibration caused by the heart sound in the biosignal data by adding a frequency analysis result of the biosignal data obtained from the frequency analysis means and a frequency analysis result of the heart sound data obtained from a phonocardiogram measured at the same time;
an apex pulsation waveform extraction means for extracting a waveform on the low frequency side of the boundary frequency as the waveform of the apex pulsation ;
The boundary frequency identification means
A means for determining a sudden change portion of a power spectrum that is a boundary between a harmonic vibration and an irregular vibration in a waveform obtained by adding a result of frequency analysis of the biosignal data to a result of frequency analysis of the heart sound data, and for specifying the boundary frequency based on the sudden change portion.
Apex beat detector.
前記生体信号データ及び前記心音データの各周波数解析結果をそれぞれ加算平均処理した波形を対数差分法を用いて両対数軸表示する両対数軸表示手段と、両対数軸表示した波形からゆらぎの変化点を求め、このゆらぎの変化点を前記パワースペクトルの急変部として特定する急変部特定手段と
を有する請求項1記載の心尖拍動検出装置。 The boundary frequency identification means
2. The apex beat detection device of claim 1, further comprising: a double logarithmic axis display means for displaying on a double logarithmic axis a waveform obtained by averaging the results of frequency analysis of the biological signal data and the heart sound data, respectively, using a logarithmic difference method; and a sudden change part identification means for determining a fluctuation change point from the waveform displayed on the double logarithmic axis and identifying this fluctuation change point as a sudden change part of the power spectrum.
前記生体信号データを周波数解析する手順と、
その周波数解析結果に、同時に測定した心音図から得られる心音データの周波数解析結果を加味し、前記生体信号データ中、心尖拍動により生じる振動と心音により生じる振動との境界周波数を特定する手順と、
前記境界周波数の低周波側を前記心尖拍動の波形として抽出する手順と
を前記コンピュータに実行させ、
前記記境界周波数を特定する手順では、
前記生体信号データの周波数解析結果に前記心音データの周波数解析結果を加味した波形において、調和振動と不規則振動との境界となるパワースペクトルの急変部を求め、この急変部を基準に前記境界周波数を特定する手順を
前記コンピュータに実行させるコンピュータプログラム。 A computer program for processing biosignal data , which is acoustic vibration data of a body surface detected by a microphone of a biosignal detection sensor , and causing a computer to function as an apex beat detection device, comprising:
A step of subjecting the biological signal data to frequency analysis;
a step of adding a result of frequency analysis of heart sound data obtained from a phonocardiogram measured at the same time to the result of the frequency analysis, and identifying a boundary frequency between vibrations caused by apex pulsation and vibrations caused by heart sounds in the biosignal data;
and extracting a waveform on the low frequency side of the boundary frequency as the waveform of the apex beat.
In the step of identifying the boundary frequency,
a step of determining a sudden change portion of a power spectrum that is a boundary between a harmonic vibration and an irregular vibration in a waveform obtained by adding a frequency analysis result of the heart sound data to a frequency analysis result of the biosignal data, and specifying the boundary frequency based on the sudden change portion;
A computer program to be executed by the computer.
前記生体信号データ及び前記心音データの各周波数解析結果をそれぞれ加算平均処理した波形を対数差分法を用いて両対数軸表示する両対数軸表示し、
両対数軸表示した波形からゆらぎの変化点を求め、このゆらぎの変化点を前記パワースペクトルの急変部として特定する
請求項3記載のコンピュータプログラム。 In the step of identifying the boundary frequency,
A waveform obtained by averaging the frequency analysis results of the biosignal data and the heart sound data is displayed on a double logarithmic axis using a logarithmic difference method;
4. The computer program according to claim 3 , further comprising: determining a fluctuation change point from the waveform displayed on both logarithmic axes; and identifying the fluctuation change point as a sudden change portion of the power spectrum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020180964A JP7560104B2 (en) | 2020-10-28 | 2020-10-28 | Apex beat detection device, computer program and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020180964A JP7560104B2 (en) | 2020-10-28 | 2020-10-28 | Apex beat detection device, computer program and recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022071786A JP2022071786A (en) | 2022-05-16 |
JP7560104B2 true JP7560104B2 (en) | 2024-10-02 |
Family
ID=81594090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020180964A Active JP7560104B2 (en) | 2020-10-28 | 2020-10-28 | Apex beat detection device, computer program and recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7560104B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014000178A (en) | 2012-06-16 | 2014-01-09 | Delta Tooling Co Ltd | Biological state analyzer and computer program |
WO2017099257A1 (en) | 2015-12-12 | 2017-06-15 | デルタ工業株式会社 | Biological state estimation device, biological state estimation method, computer program, and recording medium |
JP2019122502A (en) | 2018-01-13 | 2019-07-25 | 株式会社デルタツーリング | Blood pressure estimation device, blood pressure estimation method, computer program and recording medium |
JP2020065818A (en) | 2018-10-25 | 2020-04-30 | 株式会社デルタツーリング | Biological signal measuring device, biological state estimation device, and biological state estimation system |
-
2020
- 2020-10-28 JP JP2020180964A patent/JP7560104B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014000178A (en) | 2012-06-16 | 2014-01-09 | Delta Tooling Co Ltd | Biological state analyzer and computer program |
WO2017099257A1 (en) | 2015-12-12 | 2017-06-15 | デルタ工業株式会社 | Biological state estimation device, biological state estimation method, computer program, and recording medium |
JP2019122502A (en) | 2018-01-13 | 2019-07-25 | 株式会社デルタツーリング | Blood pressure estimation device, blood pressure estimation method, computer program and recording medium |
JP2020065818A (en) | 2018-10-25 | 2020-04-30 | 株式会社デルタツーリング | Biological signal measuring device, biological state estimation device, and biological state estimation system |
Also Published As
Publication number | Publication date |
---|---|
JP2022071786A (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3078948B1 (en) | Acoustic and vibration information accumulation mechanism, acoustic and vibration sensing system, and computer program | |
JP6073799B2 (en) | System for detecting frequency power for diagnosing coronary artery disease | |
WO2020262563A1 (en) | Health monitoring device, computer program, recording medium, and biosignal measuring device | |
US20190175072A1 (en) | Cardiovascular and cardiorespiratory fitness determination | |
JP6097495B2 (en) | Biological condition analyzer and computer program | |
CN104254283B (en) | When lung is vibrated with through chest lung ultrasonic doppler diagnostic lung disease | |
WO2019139155A1 (en) | Blood pressure estimation device, blood pressure estimation method, computer program, and storage medium | |
US20170325778A1 (en) | Non-resistive contact electrosonic sensor systems | |
US11937931B2 (en) | Physical condition determination device, computer program, and recording medium | |
JP7560104B2 (en) | Apex beat detection device, computer program and recording medium | |
EP3871593B1 (en) | Biological signal measurement device, biological state inference device, and biological state inference system | |
CN108158563A (en) | A kind of traditional Chinese pulse-diagnosis instrument based on low frequency audible sound wave | |
CN209074585U (en) | A kind of traditional Chinese pulse-diagnosis instrument based on low frequency audible sound wave | |
WO2022092243A1 (en) | Biological signal analysis device, computer program, and recording medium | |
JP2022071812A (en) | Biological signal analysis device, computer program, and recording medium | |
Park et al. | Ballistocardiography | |
WO2023080098A1 (en) | Head biological signal detection device and biological state estimation device | |
JP2024004423A (en) | Blood pressure estimation device, computer program, and recording medium | |
Furihata et al. | Transfer function for vital infrasound pressures between the carotid artery and the tympanic membrane | |
Mito et al. | Unconstrained Monitoring of Pulse Pressure Waves from the Surface of the Subject's Back |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7560104 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |