JP7488910B2 - Water-absorbent resin composition - Google Patents

Water-absorbent resin composition Download PDF

Info

Publication number
JP7488910B2
JP7488910B2 JP2022557600A JP2022557600A JP7488910B2 JP 7488910 B2 JP7488910 B2 JP 7488910B2 JP 2022557600 A JP2022557600 A JP 2022557600A JP 2022557600 A JP2022557600 A JP 2022557600A JP 7488910 B2 JP7488910 B2 JP 7488910B2
Authority
JP
Japan
Prior art keywords
water
mass
absorbent resin
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022557600A
Other languages
Japanese (ja)
Other versions
JPWO2022085755A1 (en
Inventor
修輔 鎌田
晋広 笠野
健太朗 松井
真結 伊藤
信弘 小林
知哉 新居
大祐 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPWO2022085755A1 publication Critical patent/JPWO2022085755A1/ja
Application granted granted Critical
Publication of JP7488910B2 publication Critical patent/JP7488910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

本発明は、吸水性樹脂組成物に関する。 The present invention relates to a water-absorbent resin composition.

吸水性樹脂は、尿や血液などの体液等を吸収させることを目的として、紙おむつ、生理用ナプキン、失禁パッド等の衛生材料に広く用いられており、これらの衛生材料の主要な構成材料になっている。近年、社会の高齢化に伴う大人用紙おむつの需要増大に伴い、吸水性樹脂に対して消臭性能の付与、特に尿に起因する悪臭に対する優れた消臭性能の付与に関する要求が高まっている。 Water-absorbent resins are widely used in sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads to absorb body fluids such as urine and blood, and are the main constituent material of these sanitary materials. In recent years, with the increasing demand for disposable diapers for adults due to the aging of society, there has been an increasing demand for water-absorbent resins to be endowed with deodorizing properties, in particular excellent deodorizing properties against the bad odors caused by urine.

吸水性樹脂に消臭機能を付与する試みとしては、様々な方法が提案されている。例えば、ペルオキソ化合物や、重金属(ゼオライト粉末)、多孔性ポリマーを吸収体に混合する方法が知られている(それぞれ、特許文献1、2、3)。また、尿または血液などの体液から発生する可能性のある悪臭を制御するために、吸水性樹脂と、疎水性多孔質ポリマーを含む組成物が提案されている(特許文献4)。Various methods have been proposed to impart deodorizing properties to absorbent resins. For example, methods of mixing peroxo compounds, heavy metals (zeolite powder), and porous polymers into absorbents are known (Patent Documents 1, 2, and 3, respectively). In addition, a composition containing an absorbent resin and a hydrophobic porous polymer has been proposed to control odors that may arise from body fluids such as urine or blood (Patent Document 4).

特開2015-168824号公報JP 2015-168824 A 特表2001-505237号公報JP 2001-505237 A 特開2017-140332号公報JP 2017-140332 A 国際公開第2005/120594号International Publication No. 2005/120594

吸水性樹脂に対する優れた消臭性能の付与に関する要求は、近年、より一層求められており特に尿に起因する悪臭に対し、より優れた消臭化技術が必要になっている。 In recent years, there has been an increasing demand for water-absorbent resins with excellent deodorizing performance, and there is a need for better deodorizing technology, especially for the bad odor caused by urine.

そこで、本発明は従来よりも優れた消臭能を有する、新規な吸水性樹脂組成物を目的とする。Therefore, the present invention aims to provide a novel water-absorbing resin composition that has better deodorizing ability than conventional compositions.

上記目的を達成するための一形態は、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含み、下記式1で表されるスパン値が、1.10以下である、吸水性樹脂組成物である。One embodiment for achieving the above object is a water-absorbent resin composition comprising a water-absorbent resin and at least one of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and having a span value represented by the following formula 1 of 1.10 or less.

上記式(1)において、
D(90%)は、粒子径の累積粒径分布において、最小径からの累積が90%となる粒子径(単位:μm)、
D(10%)は、粒子径の累積粒径分布において、最小径からの累積が10%となる粒子径(単位:μm)、
D(50%)は、粒子径の累積粒径分布において、最小径からの累積が50%となる粒子径(単位:μm)であり、ここで、D(90%)、D(10%)、D(50%)は、質量基準で累積した値である。
In the above formula (1),
D(90%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 90%.
D(10%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 10%.
D(50%) is the particle size (unit: μm) at which the cumulative amount from the minimum size is 50% in the cumulative particle size distribution of particle sizes, where D(90%), D(10%), and D(50%) are cumulative values on a mass basis.

本願によれば、従来の消臭剤を使った吸水性樹脂組成物に対し、より優れた消臭能を有する、新規な吸水性樹脂組成物を提供することができる。According to the present application, it is possible to provide a novel water-absorbent resin composition that has superior deodorizing ability compared to water-absorbent resin compositions that use conventional deodorizers.

以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」等)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本発明は、下記の実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。また、本明細書に開示されている全ての下限値上限値の値は、全ての組合せが開示されていると理解されなければならない。つまり、補正の根拠となりうると理解されなければならない。また、全ての実施形態の組み合わせが本願では開示されていると理解されなければならない。つまり、補正の根拠となりうると理解されなければならない。The present invention will be described below while showing the best mode. Throughout this specification, singular expressions should be understood to include the concept of the plural form, unless otherwise specified. Therefore, singular articles (for example, in the case of English, "a", "an", "the", etc.) should be understood to include the concept of the plural form, unless otherwise specified. In addition, it should be understood that the terms used in this specification are used in the sense commonly used in the field, unless otherwise specified. Therefore, unless otherwise defined, all technical terms and scientific and technical terms used in this specification have the same meaning as commonly understood by those skilled in the art to which this invention belongs. In the event of a conflict, this specification (including definitions) shall prevail. The present invention is not limited to the following embodiments, and can be modified in various ways within the scope of the claims. In addition, it should be understood that all combinations of the lower limit and upper limit values disclosed in this specification are disclosed. In other words, it should be understood that they can be the basis for amendment. In addition, it should be understood that all combinations of the embodiments are disclosed in this application. In other words, it should be understood that they can be the basis for amendment.

上記目的を達成するための一態様は、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを含み、下記式1で表されるスパン値が、1.10以下である、吸水性樹脂組成物である。One aspect for achieving the above object is a water-absorbent resin composition comprising a water-absorbent resin and at least one component selected from the group consisting of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and having a span value represented by the following formula 1 of 1.10 or less.

上記式(1)において、
D(90%)は、粒子径の累積粒径分布において、最小径からの累積が90%となる粒子径(単位:μm)、
D(10%)は、粒子径の累積粒径分布において、最小径からの累積が10%となる粒子径(単位:μm)、
D(50%)は、粒子径の累積粒径分布において、最小径からの累積が50%となる粒子径(単位:μm)であり、ここで、D(90%)、D(10%)、D(50%)は、質量基準で累積した値である。
In the above formula (1),
D(90%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 90%.
D(10%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 10%.
D(50%) is the particle size (unit: μm) at which the cumulative amount from the minimum size is 50% in the cumulative particle size distribution of particle sizes, where D(90%), D(10%), and D(50%) are cumulative values on a mass basis.

かかる構成によって、従来の消臭剤を使った吸水性樹脂組成物に対し、より優れた消臭能を有する、新規な吸水性樹脂組成物を提供することができる。This configuration makes it possible to provide a new water-absorbent resin composition that has superior deodorizing capabilities compared to water-absorbent resin compositions that use conventional deodorizers.

[1]用語の定義
[1-1] 吸水性樹脂、ベースポリマー、吸水性樹脂組成物
本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、一般的に粉末状である。また、「水膨潤性」とは、後述するEDANA WSP241.3(10)で規定される無加圧下吸収倍率(CRC)が5g/g以上であることを、「水不溶性」とは、WSP270.3(10)で規定される可溶分(Ext)が50質量%以下であることを、それぞれ意味する。
[1] Definition of Terms [1-1] Water-absorbent resin, base polymer, water-absorbent resin composition In the present invention, the term "water-absorbent resin" refers to a water-swellable, water-insoluble polymer gelling agent, which is generally in a powder form. In addition, "water-swellable" refers to a water-absorbency capacity without load (CRC) of 5 g/g or more as specified in EDANA WSP241.3(10) described later, and "water-insoluble" refers to a soluble content (Ext) of 50 mass% or less as specified in WSP270.3(10).

前記「吸水性樹脂」は、好ましくはカルボキシル基を有する不飽和単量体を架橋重合させてなる親水性の架橋重合体(いわゆる内部架橋重合体)であるが、その全量(100質量%)が架橋重合体である必要はない。The "water-absorbent resin" is preferably a hydrophilic cross-linked polymer (so-called internally cross-linked polymer) obtained by cross-linking polymerization of unsaturated monomers having carboxyl groups, but the entire amount (100% by mass) does not have to be a cross-linked polymer.

また、一般的には「吸水性樹脂」は、「内部のみが架橋された重合体(つまり、内部と表面の架橋密度が実質的に同じである重合体)」または「内部と表面とが架橋された重合体(つまり、表面の架橋密度が内部の架橋密度に対して相対的に高い重合体)」を指す場合があるが、本明細書では、用語を使い分けることとし、内部のみが架橋された重合体を「ベースポリマー」と表記し、内部と表面とが架橋された重合体を「吸水性樹脂」と表記する。In addition, the term "water-absorbent resin" generally refers to either a "polymer that is cross-linked only internally (i.e., a polymer in which the cross-linking density inside and on the surface is substantially the same)" or a "polymer that is cross-linked both internally and on the surface (i.e., a polymer in which the cross-linking density on the surface is relatively high compared to the cross-linking density inside)." In this specification, however, we will use different terms, and a polymer that is cross-linked only internally will be referred to as a "base polymer," and a polymer that is cross-linked both internally and on the surface will be referred to as a "water-absorbent resin."

本発明における「吸水性樹脂組成物」とは、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを含み、必要に応じてその他の成分を含む組成物を意味するが、平たく言えば、最終製品として出荷可能な状態にある吸水性樹脂のことを意味する。従って、前記「吸水性樹脂」に疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分や、必要に応じその他添加剤を含有させると「吸水性樹脂組成物」となる。なお、本明細書中、吸水性樹脂組成物を単に吸水剤と称する場合がある。In the present invention, the term "water-absorbent resin composition" refers to a composition that contains a water-absorbent resin and at least one of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and optionally contains other components, but in simple terms, it refers to a water-absorbent resin that is ready for shipment as a final product. Therefore, when the "water-absorbent resin" contains at least one of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and optionally contains other additives, it becomes a "water-absorbent resin composition." In this specification, the water-absorbent resin composition may be simply referred to as a water-absorbing agent.

[1-2] 「EDANA」及び「WSP」
「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称である。また「WSP」は、Worldwide Strategic Partnersの略称であり、EDANAが提供する、吸水性樹脂の世界標準の測定法を示すものである。本発明では、特に断りのない限り、WSP原本(2010年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
[1-2] "EDANA" and "WSP"
"EDANA" is an abbreviation for European Disposables and Nonwovens Associations. "WSP" is an abbreviation for Worldwide Strategic Partners, and indicates a global standard measurement method for water-absorbent resins provided by EDANA. In the present invention, unless otherwise specified, the physical properties of the water-absorbent resin are measured in accordance with the original WSP (revised in 2010/publicly known document).

[1-2-1] 「CRC」(WSP241.3(10))
無加圧下吸収倍率を意味する「CRC」は、Centrifuge Retention Capacityの略称であり、吸水剤又は吸水性樹脂の無加圧下での吸収倍率を意味する。具体的には、吸水剤又は吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して吸水性樹脂を自由膨潤させ、その後、遠心分離機(250G)を用いて3分間脱水した後の吸収倍率(単位;g/g)のことである。
[1-2-1] "CRC" (WSP241.3(10))
"CRC" meaning the absorbency without pressure is an abbreviation of Centrifuge Retention Capacity, and means the absorbency of the water absorbent or water absorbent resin without pressure. Specifically, it is the absorbency (unit: g/g) after 0.2 g of the water absorbent or water absorbent resin is placed in a nonwoven bag, immersed in a large excess of 0.9 mass% sodium chloride aqueous solution for 30 minutes to allow the water absorbent resin to freely swell, and then dehydrated for 3 minutes using a centrifuge (250G).

[1-2-2] 「AAP」(WSP242.3(10))
「AAP」は、Absorption Against Pressureの略称であり、吸水剤又は吸水性樹脂の加圧下吸収倍率を意味する。具体的には、吸水剤又は吸水性樹脂0.9gを大過剰の0.9質量%塩化ナトリウム水溶液に対して、1時間、4.83kPa(0.7psi)荷重下で膨潤させた後の吸収倍率(単位;g/g)のことをいう。
[1-2-2] "AAP" (WSP242.3(10))
"AAP" is an abbreviation for Absorption Against Pressure, and means the absorbency under pressure of a water-absorbing agent or water-absorbing resin. Specifically, it means the absorbency (unit: g/g) after 0.9 g of the water-absorbing agent or water-absorbing resin is swollen under a load of 4.83 kPa (0.7 psi) for 1 hour in a large excess of a 0.9% by mass aqueous sodium chloride solution.

[2]吸水性樹脂組成物およびその製造方法
本発明の実施形態における吸水性樹脂組成物は、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを含み、式1で表されるスパン値が、1.10以下である。
[2] Water-absorbent resin composition and manufacturing method thereof The water-absorbent resin composition in an embodiment of the present invention contains a water-absorbent resin and at least one component selected from the group consisting of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and has a span value represented by formula 1 of 1.10 or less.

吸水性樹脂の例としては、ポリアクリル酸(塩)系吸水性樹脂、ポリスルホン酸(塩)系吸水性樹脂、無水マレイン酸(塩)系吸水性樹脂、ポリアクリルアミド系吸水性樹脂、ポリビニルアルコール系吸水性樹脂、ポリエチレンオキシド系吸水性樹脂、ポリアスパラギン酸(塩)系吸水性樹脂、ポリグルタミン酸(塩)系吸水性樹脂、ポリアルギン酸(塩)系吸水性樹脂、デンプン系吸水性樹脂、セルロース系吸水性樹脂が挙げられる。このうち、好ましくは、ポリアクリル酸(塩)系吸水性樹脂として使用される。Examples of absorbent resins include polyacrylic acid (salt)-based absorbent resins, polysulfonic acid (salt)-based absorbent resins, maleic anhydride (salt)-based absorbent resins, polyacrylamide-based absorbent resins, polyvinyl alcohol-based absorbent resins, polyethylene oxide-based absorbent resins, polyaspartic acid (salt)-based absorbent resins, polyglutamic acid (salt)-based absorbent resins, polyalginic acid (salt)-based absorbent resins, starch-based absorbent resins, and cellulose-based absorbent resins. Of these, polyacrylic acid (salt)-based absorbent resins are preferably used.

本発明の実施形態における「ポリアクリル酸(塩)系吸水性樹脂」とは、アクリル酸および/またはその塩(以下、「アクリル酸(塩)」と表記する)を原料とする吸水性樹脂を意味する。つまり、ポリアクリル酸(塩)系吸水性樹脂は、重合体中にアクリル酸(塩)由来の構造単位を有し、任意成分としてグラフト成分を有する、吸水性樹脂である。In the embodiment of the present invention, the term "polyacrylic acid (salt)-based water-absorbent resin" refers to a water-absorbent resin made from acrylic acid and/or its salt (hereinafter referred to as "acrylic acid (salt)"). In other words, the polyacrylic acid (salt)-based water-absorbent resin is a water-absorbent resin that has structural units derived from acrylic acid (salt) in the polymer and has a graft component as an optional component.

具体的には、ポリアクリル酸(塩)系吸水性樹脂は、重合反応に関与する単量体全体(但し、内部架橋剤は除く)に対して、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、さらに好ましくは90モル%~100モル%、特に好ましくは実質100モル%のアクリル酸(塩)を含む、吸水性樹脂である。Specifically, polyacrylic acid (salt)-based water-absorbing resins are water-absorbing resins that contain preferably 50 mol% to 100 mol%, more preferably 70 mol% to 100 mol%, even more preferably 90 mol% to 100 mol%, and particularly preferably essentially 100 mol% acrylic acid (salt) relative to the total monomers involved in the polymerization reaction (excluding the internal crosslinking agent).

続いて、吸水性樹脂組成物の好ましい製造方法に関して詳細に説明する。無論、下記の製造方法に限定されない。Next, a preferred method for producing the water-absorbent resin composition will be described in detail. Of course, the method is not limited to the following method.

[2-1] 単量体水溶液の調製工程
本工程は、アクリル酸(塩)を主成分として含む単量体および少なくとも1種類の内部架橋剤を含む単量体水溶液を調製する工程である。前記「主成分」とは、重合反応に供される単量体全体(但し、内部架橋剤は除く)に対して、アクリル酸(塩)の使用量(含有量)が、通常、50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上であること(上限は100モル%)を指す。なお、最終製品として得られる吸水剤の吸水性能に影響しない範囲内で、単量体のスラリー液を使用することもできるが、本明細書では便宜上、単量体水溶液について説明する。
[2-1] Preparation of Monomer Aqueous Solution This step is a step of preparing a monomer aqueous solution containing a monomer containing acrylic acid (salt) as a main component and at least one type of internal crosslinking agent. The "main component" refers to the amount (content) of acrylic acid (salt) used with respect to the entire monomers (excluding the internal crosslinking agent) to be subjected to the polymerization reaction, which is usually 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more (upper limit is 100 mol%). Note that a monomer slurry liquid can also be used within a range that does not affect the water absorption performance of the water absorbing agent obtained as a final product, but for convenience, the present specification will explain the monomer aqueous solution.

(アクリル酸(塩))
本発明の実施形態では、吸水剤の物性および生産性の観点から、公知のアクリル酸(塩)を単量体(重合性単量体とも称される)として用いることが好ましい。公知のアクリル酸には、重合禁止剤や不純物等の成分が微量含まれている。当該重合禁止剤として、好ましくはメトキシフェノール類、より好ましくはp-メトキシフェノール類が使用される。重合禁止剤のアクリル酸中での含有量(濃度)は、アクリル酸の重合性や吸水剤の色調等の観点から、好ましくは200ppm(質量基準)以下、より好ましくは10ppm(質量基準)~160ppm(質量基準)、さらに好ましくは20ppm(質量基準)~100ppm(質量基準)である。当該不純物として、酢酸やプロピオン酸、フルフラール等の有機化合物に加えて、米国特許出願公開第2008/0161512号に記載された各化合物が本発明の実施形態で用いるアクリル酸にも含まれている。
(Acrylic acid (salt))
In the embodiment of the present invention, from the viewpoint of the physical properties and productivity of the water absorbing agent, it is preferable to use a known acrylic acid (salt) as a monomer (also referred to as a polymerizable monomer). Known acrylic acid contains a small amount of components such as a polymerization inhibitor and impurities. As the polymerization inhibitor, preferably, methoxyphenols, more preferably p-methoxyphenols, are used. The content (concentration) of the polymerization inhibitor in the acrylic acid is preferably 200 ppm (mass basis) or less, more preferably 10 ppm (mass basis) to 160 ppm (mass basis), and even more preferably 20 ppm (mass basis) to 100 ppm (mass basis) from the viewpoint of the polymerizability of the acrylic acid and the color tone of the water absorbing agent. As the impurities, in addition to organic compounds such as acetic acid, propionic acid, and furfural, each compound described in U.S. Patent Application Publication No. 2008/0161512 is also contained in the acrylic acid used in the embodiment of the present invention.

また、アクリル酸塩として、上述したアクリル酸を下記塩基性化合物で中和した塩が挙げられる。当該アクリル酸塩は、市販のアクリル酸塩(例えば、アクリル酸ナトリウム)でもよく、アクリル酸を中和して得られる塩でもよい。Further, examples of the acrylic acid salt include salts obtained by neutralizing the above-mentioned acrylic acid with the following basic compounds. The acrylic acid salt may be a commercially available acrylic acid salt (e.g., sodium acrylate) or a salt obtained by neutralizing acrylic acid.

(塩基性化合物)
本発明の実施形態における塩基性化合物は、塩基性を示す化合物を指し、具体的には水酸化ナトリウム等が該当する。なお、市販の水酸化ナトリウムには、亜鉛、鉛、鉄等の重金属がppm(質量基準)オーダーで含まれており、厳密には組成物と表現することもできるが、本発明では、このような組成物に関しても塩基性化合物の範疇に含めることとして扱う。
(Basic Compound)
The basic compound in the embodiment of the present invention refers to a compound exhibiting basicity, specifically, sodium hydroxide, etc. Note that commercially available sodium hydroxide contains heavy metals such as zinc, lead, and iron on the order of ppm (by mass), and strictly speaking, can be expressed as a composition, but in the present invention, such a composition is also treated as being included in the category of a basic compound.

前記塩基性化合物の具体例として、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。中でも、吸水剤の吸水性能の観点から、強塩基性の化合物が選択される。従って、ナトリウム、カリウム、リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムがより好ましい。なお、当該塩基性化合物は、取り扱い性の観点から、水溶液とされることが好ましい。 Specific examples of the basic compound include carbonates and hydrogen carbonates of alkali metals, hydroxides of alkali metals, ammonia, organic amines, etc. Among them, from the viewpoint of the water absorption performance of the water absorbent, a strongly basic compound is selected. Therefore, hydroxides of alkali metals such as sodium, potassium, and lithium are preferred, and sodium hydroxide is more preferred. From the viewpoint of handling, the basic compound is preferably made into an aqueous solution.

(中和)
前記アクリル酸塩として、アクリル酸を中和して得られる塩を使用する場合には、その中和を行う時期は、特に限定されず、重合前、重合中、重合後の何れでもよく、複数の時期または箇所で中和を行うこともできる。また、吸水剤の生産効率の観点から、連続式で中和することが好ましい。
(Neutralization)
When a salt obtained by neutralizing acrylic acid is used as the acrylic acid salt, the timing of neutralization is not particularly limited, and the neutralization may be performed before, during, or after polymerization, and may be performed at multiple times or locations. In addition, from the viewpoint of production efficiency of the water absorbing agent, it is preferable to neutralize in a continuous manner.

本発明においてアクリル酸(塩)を用いる場合、その中和率は、単量体の酸基に対して、好ましくは10モル%~90モル%、より好ましくは40モル%~85モル%、さらに好ましくは50モル%~80モル%、特に好ましくは60モル%~78モル%である。当該中和率の範囲とすることで、吸水剤の吸水性能の低下を抑制することができる。When acrylic acid (salt) is used in the present invention, the neutralization rate is preferably 10 mol% to 90 mol%, more preferably 40 mol% to 85 mol%, even more preferably 50 mol% to 80 mol%, and particularly preferably 60 mol% to 78 mol%, based on the acid groups of the monomer. By setting the neutralization rate within this range, it is possible to suppress a decrease in the water absorption performance of the water absorbent.

なお、前記中和率の範囲は、上述した重合前、重合中、重合後の何れの中和においても適用される。また、最終製品としての吸水剤に関しても同様に適用される。The above-mentioned range of neutralization rate applies to the neutralization before, during, and after the polymerization. It also applies to the water-absorbing agent as a final product.

(他の単量体)
本発明において、上述したアクリル酸(塩)以外の単量体(以下、「他の単量体」と表記する)を、必要に応じてアクリル酸(塩)と併用することができる。
(Other monomers)
In the present invention, monomers other than the above-mentioned acrylic acid (salt) (hereinafter referred to as "other monomers") can be used in combination with the acrylic acid (salt) as necessary.

前記他の単量体としては、具体的には、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等のアニオン性不飽和単量体およびその塩;メルカプタン基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体が挙げられる。また、当該他の単量体には、水溶性または疎水性の不飽和単量体が含まれる。当該他の単量体を用いる場合には、その使用量は単量体全体(但し、内部架橋剤は除く)に対して、好ましくは30モル%以下、より好ましくは10モル%以下、さらに好ましくは5モル%以下である。 Specific examples of the other monomers include anionic unsaturated monomers and salts thereof, such as (anhydrous) maleic acid, itaconic acid, cinnamic acid, vinyl sulfonic acid, allyl toluene sulfonic acid, vinyl toluene sulfonic acid, styrene sulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, 2-(meth)acryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid, and 2-hydroxyethyl (meth)acryloyl phosphate; mercaptan group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; amide group-containing unsaturated monomers, such as (meth)acrylamide, N-ethyl (meth)acrylamide, and N,N-dimethyl (meth)acrylamide; and amino group-containing unsaturated monomers, such as N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, and N,N-dimethylaminopropyl (meth)acrylamide. The other monomers include water-soluble or hydrophobic unsaturated monomers. When the other monomers are used, the amount of the other monomers is preferably 30 mol % or less, more preferably 10 mol % or less, and even more preferably 5 mol % or less, based on the total amount of the monomers (excluding the internal crosslinking agent).

(内部架橋剤)
好ましい製造方法においては、内部架橋剤が使用される。当該内部架橋剤としては、具体的には、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これら内部架橋剤の中から、反応性等を考慮して少なくとも1種類の内部架橋剤が選択される。また、吸水剤の吸水性能等の観点から、好ましくは重合性不飽和基を二つ以上有する内部架橋剤、より好ましくは乾燥温度で熱分解性を有する内部架橋剤、さらに好ましくは(ポリ)アルキレングリコール構造を有する重合性不飽和基を二つ以上有する内部架橋剤が選択される。
(Internal Crosslinking Agent)
In a preferred method of preparation, an internal crosslinking agent is used. Specific examples of the internal crosslinking agent include N,N'-methylenebis(meth)acrylamide, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, glycerin tri(meth)acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly(meth)allyloxyalkane, (poly)ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, propylene glycol, glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth)acrylate. Among these internal crosslinking agents, at least one type of internal crosslinking agent is selected in consideration of reactivity, etc. Also, from the viewpoint of the water absorbing performance of the water absorbing agent, preferably an internal crosslinking agent having two or more polymerizable unsaturated groups, more preferably an internal crosslinking agent having thermal decomposition at a drying temperature, and further preferably an internal crosslinking agent having two or more polymerizable unsaturated groups having a (poly)alkylene glycol structure is selected.

前記重合性不飽和基としては、具体的には、アリル基、(メタ)アクリレート基が挙げられ、より好ましくは(メタ)アクリレート基である。また、前記(ポリ)アルキレングリコール構造としては、具体的には、ポリエチレングリコールが挙げられる。なお、アルキレングリコール単位の数(以下、nと表記する場合がある)としては、好ましくは1~100、より好ましくは6~50であり、さらにより好ましくは6~20であり、最も好ましくは6~10である。 Specific examples of the polymerizable unsaturated group include allyl groups and (meth)acrylate groups, and more preferably (meth)acrylate groups. Specific examples of the (poly)alkylene glycol structure include polyethylene glycol. The number of alkylene glycol units (hereinafter sometimes referred to as n) is preferably 1 to 100, more preferably 6 to 50, even more preferably 6 to 20, and most preferably 6 to 10.

前記内部架橋剤の使用量は、単量体全体(但し、内部架橋剤は除く)に対して、好ましくは0.0001モル%~10モル%、より好ましくは0.001モル%~5モル%、さらに好ましくは0.01モル%~1モル%である。当該範囲内の使用量とすることで、所望する吸水性能を有する吸水剤が得られる。また吸水性樹脂や吸水剤のゲル嵩密度を所定の範囲にし、ゲル強度の低下に伴う水可溶分の増加や吸収倍率の低下を抑制するためにも、内部架橋剤量の調整を考慮することも好ましい。The amount of the internal crosslinking agent used is preferably 0.0001 mol% to 10 mol%, more preferably 0.001 mol% to 5 mol%, and even more preferably 0.01 mol% to 1 mol%, based on the total monomer (excluding the internal crosslinking agent). By using an amount within this range, a water absorbent with the desired water absorption performance can be obtained. It is also preferable to consider adjusting the amount of internal crosslinking agent in order to set the gel bulk density of the water absorbent resin or water absorbent within a specified range and suppress an increase in water-soluble content and a decrease in absorption capacity due to a decrease in gel strength.

前記内部架橋剤は、単量体水溶液の作製時に予め添加しておくことが好ましく、この場合、重合反応と同時に架橋反応が行われる。一方、内部架橋剤を添加せずに重合反応を開始し、当該重合反応中または当該重合反応後に内部架橋剤を添加して架橋反応することもできる。また、これら手法を併用することもできる。It is preferable to add the internal crosslinking agent in advance when preparing the aqueous monomer solution. In this case, the crosslinking reaction is carried out simultaneously with the polymerization reaction. On the other hand, the polymerization reaction can be started without adding an internal crosslinking agent, and the internal crosslinking agent can be added during or after the polymerization reaction to carry out the crosslinking reaction. These methods can also be used in combination.

(単量体水溶液に添加される物質)
本発明の実施形態では、前記単量体水溶液の作製時、前記重合反応および架橋反応の期間中、または前記重合反応および架橋反応の後の何れか1箇所以上で、吸水剤の物性向上の観点から、下記物質を単量体水溶液に添加することができる。
(Substances added to the aqueous monomer solution)
In an embodiment of the present invention, from the viewpoint of improving the physical properties of the water-absorbing agent, the following substances can be added to the aqueous monomer solution at one or more points during the preparation of the aqueous monomer solution, during the polymerization reaction and the crosslinking reaction, or after the polymerization reaction and the crosslinking reaction.

当該物質としては、具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール(PVA)、ポリアクリル酸(塩)、ポリアクリル酸(塩)の架橋体等の親水性高分子;炭酸塩、アゾ化合物、各種気泡を生じる発泡剤、界面活性剤、キレート剤、連鎖移動剤等の化合物;が挙げられる。前記親水性高分子の添加量は、前記単量体水溶液に対して、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である(下限は0質量%)。また、前記化合物の添加量は、前記単量体水溶液に対して、好ましくは5質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である(下限は0質量%)。 Specific examples of the substance include hydrophilic polymers such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol (PVA), polyacrylic acid (salt), and crosslinked polyacrylic acid (salt); carbonates, azo compounds, foaming agents that generate various bubbles, surfactants, chelating agents, and chain transfer agents. The amount of the hydrophilic polymer added is preferably 50% by mass or less, more preferably 20% by mass or less, even more preferably 10% by mass or less, and particularly preferably 5% by mass or less (the lower limit is 0% by mass) relative to the aqueous monomer solution. The amount of the compound added is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.5% by mass or less (the lower limit is 0% by mass) relative to the aqueous monomer solution.

前記親水性高分子として水溶性樹脂または吸水性樹脂を用いると、グラフト重合体または吸水性樹脂組成物(例えば、澱粉-アクリル酸(塩)共重合体、PVA-アクリル酸(塩)共重合体等)が得られる。これらグラフト重合体または吸水性樹脂組成物も、本発明に係るポリアクリル酸(塩)系吸水性樹脂の範疇に含まれる。When a water-soluble resin or a water-absorbent resin is used as the hydrophilic polymer, a graft polymer or a water-absorbent resin composition (e.g., starch-acrylic acid (salt) copolymer, PVA-acrylic acid (salt) copolymer, etc.) is obtained. These graft polymers or water-absorbent resin compositions are also included in the category of the polyacrylic acid (salt)-based water-absorbent resin according to the present invention.

(単量体成分の濃度)
上述した各物質(成分)を目的に応じて種々選択し、必要に応じて、前記範囲を満たすようにそれぞれの量を規定して互いに混合することによって、単量体水溶液が作製される。なお、本発明では、単量体を水溶液とすること以外に、水と親水性溶媒との混合溶液とすることもできる。
(Monomer component concentration)
The above-mentioned substances (components) are selected according to the purpose, and if necessary, the amounts of each are specified so as to satisfy the above-mentioned ranges, and then mixed together to prepare an aqueous monomer solution. In the present invention, the monomer can be prepared not only as an aqueous solution, but also as a mixed solution of water and a hydrophilic solvent.

また、各物質(成分)の合計(以下、「単量体成分」とも表記する)の濃度は、吸水剤の物性の観点から、好ましくは10質量%~80質量%、より好ましくは20質量%~75質量%、さらに好ましくは30質量%~70質量%である。当該単量体成分の濃度は、下記式(2)から算出される。From the viewpoint of the physical properties of the water-absorbing agent, the concentration of the total of the substances (components) (hereinafter also referred to as "monomer component") is preferably 10% by mass to 80% by mass, more preferably 20% by mass to 75% by mass, and even more preferably 30% by mass to 70% by mass. The concentration of the monomer component is calculated from the following formula (2).

なお、前記式(2)中、(単量体水溶液の質量)には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性有機溶媒の質量は含まれない。In addition, in the above formula (2), (the mass of the monomer aqueous solution) does not include the mass of the graft component, the water-absorbent resin, or the hydrophobic organic solvent in the reverse phase suspension polymerization.

[2-2] 重合工程
本工程は、前記単量体水溶液の調製工程で得られた、アクリル酸(塩)を主成分として含む単量体および少なくとも1種類の内部架橋剤を含む単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と表記する)を得る工程である。
[2-2] Polymerization step This step is a step of polymerizing the aqueous monomer solution containing acrylic acid (salt) as a main component and at least one type of internal crosslinking agent obtained in the aqueous monomer solution preparation step to obtain a hydrous gel-like crosslinked polymer (hereinafter referred to as "hydrous gel").

(重合開始剤)
本発明の一実施形態においては、重合時に重合開始剤が使用される。当該重合開始剤としては、熱分解型重合開始剤、光分解型重合開始剤、または、これら重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤が挙げられる。当該重合開始剤として、具体的には、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、t-ブチルハイドロパーオキサイド、過酸化水素、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等のラジカル重合開始剤が挙げられる。これら重合開始剤の中から、重合形態等を考慮して少なくとも1種類の重合開始剤が選択される。また、重合開始剤の取り扱い性や吸水剤の物性の観点から、当該重合開始剤として、好ましくは過酸化物またはアゾ化合物、より好ましくは過酸化物、さらに好ましくは過硫酸塩が選択される。また、酸化性ラジカル重合開始剤を用いる場合には、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤を併用してレドックス重合を行ってもよい。
(Polymerization initiator)
In one embodiment of the present invention, a polymerization initiator is used during polymerization. Examples of the polymerization initiator include a thermally decomposable polymerization initiator, a photodecomposable polymerization initiator, or a redox-based polymerization initiator that is used in combination with a reducing agent that promotes the decomposition of the polymerization initiator. Specific examples of the polymerization initiator include radical polymerization initiators such as sodium persulfate, potassium persulfate, ammonium persulfate, t-butyl hydroperoxide, hydrogen peroxide, and 2,2'-azobis(2-amidinopropane) dihydrochloride. At least one type of polymerization initiator is selected from these polymerization initiators, taking into consideration the polymerization form and the like. In addition, from the viewpoint of the handling of the polymerization initiator and the physical properties of the water absorbing agent, the polymerization initiator is preferably a peroxide or an azo compound, more preferably a peroxide, and even more preferably a persulfate. In addition, when an oxidizing radical polymerization initiator is used, redox polymerization may be performed in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid.

前記重合開始剤の使用量は、単量体全体(但し、内部架橋剤は除く)に対して、好ましくは0.001モル%~1モル%、より好ましくは0.001モル%~0.5モル%、さらに好ましくは0.01モル%~0.1モル%である。また、前記還元剤の使用量は、単量体全体(但し、内部架橋剤は除く)に対して、好ましくは0.0001モル%~0.02モル%、より好ましくは0.0005モル%~0.015モル%である。当該範囲内の使用量とすることで、所望する吸水性能を有する吸水剤が得られる。The amount of the polymerization initiator used is preferably 0.001 mol% to 1 mol%, more preferably 0.001 mol% to 0.5 mol%, and even more preferably 0.01 mol% to 0.1 mol%, based on the total monomer (excluding the internal crosslinking agent). The amount of the reducing agent used is preferably 0.0001 mol% to 0.02 mol%, more preferably 0.0005 mol% to 0.015 mol%, based on the total monomer (excluding the internal crosslinking agent). By using an amount within this range, a water absorbent having the desired water absorption performance can be obtained.

また、本発明の一実施形態においては、前記重合反応を、熱エネルギー、あるいは、放射線、電子線、紫外線等の活性エネルギー線の照射によって開始させてもよい。また、活性エネルギー線の照射と前記重合開始剤とを併用してもよい。In one embodiment of the present invention, the polymerization reaction may be initiated by irradiation with thermal energy or active energy rays such as radiation, electron beams, or ultraviolet rays. Irradiation with active energy rays may also be used in combination with the polymerization initiator.

(重合形態)
本発明に適用される重合形態としては、水溶液重合、逆相懸濁重合、噴霧重合、液滴重合、バルク重合、沈澱重合等が挙げられる。中でも、重合の制御の容易性や吸水剤の吸水性能の観点から、好ましくは水溶液重合または逆相懸濁重合、より好ましくは水溶液重合、さらに好ましくは連続水溶液重合が選択される。逆相懸濁重合は国際公開第2007/004529号、国際公開第2012/023433号などに記載されている。また当該連続水溶液重合は、吸水剤を高い生産性で製造することができ、その具体例としては、米国特許第4893999号、米国特許第6906159号、米国特許第7091253号、米国特許第7741400号、米国特許第8519212号、特開2005-36100号公報等に記載された連続ベルト重合や、米国特許第6987151号等に記載された連続ニーダー重合が挙げられる。
(Polymerization form)
Examples of polymerization forms applicable to the present invention include aqueous solution polymerization, reversed-phase suspension polymerization, spray polymerization, droplet polymerization, bulk polymerization, and precipitation polymerization. Among them, from the viewpoint of ease of polymerization control and water absorption performance of the water absorbing agent, preferably aqueous solution polymerization or reversed-phase suspension polymerization, more preferably aqueous solution polymerization, and even more preferably continuous aqueous solution polymerization is selected. Reverse-phase suspension polymerization is described in International Publication No. 2007/004529, International Publication No. 2012/023433, and the like. In addition, the continuous aqueous solution polymerization can produce the water absorbing agent with high productivity, and specific examples thereof include continuous belt polymerization described in U.S. Pat. No. 4,893,999, U.S. Pat. No. 6,906,159, U.S. Pat. No. 7,091,253, U.S. Pat. No. 7,741,400, U.S. Pat. No. 8,519,212, JP-A-2005-36100, and continuous kneader polymerization described in U.S. Pat. No. 6,987,151, and the like.

前記連続水溶液重合の好ましい形態としては、高温開始重合、高濃度重合、発泡重合等がある。高温開始重合は、重合開始時の単量体水溶液の温度を、好ましくは30℃以上、より好ましくは35℃以上、さらに好ましくは40℃以上、特に好ましくは50℃以上とする(上限は単量体水溶液の沸点)重合形態である。高濃度重合は、重合開始時の単量体濃度を、好ましくは30質量%以上、より好ましくは35質量%以上、さらに好ましくは40質量%以上、特に好ましくは45質量%以上とする(上限は単量体水溶液の飽和濃度)重合形態である。Preferred forms of the continuous aqueous solution polymerization include high-temperature initiation polymerization, high-concentration polymerization, and foaming polymerization. High-temperature initiation polymerization is a polymerization form in which the temperature of the aqueous monomer solution at the start of polymerization is preferably 30°C or higher, more preferably 35°C or higher, even more preferably 40°C or higher, and particularly preferably 50°C or higher (the upper limit is the boiling point of the aqueous monomer solution). High-concentration polymerization is a polymerization form in which the monomer concentration at the start of polymerization is preferably 30% by mass or higher, more preferably 35% by mass or higher, even more preferably 40% by mass or higher, and particularly preferably 45% by mass or higher (the upper limit is the saturated concentration of the aqueous monomer solution).

また、上述した各重合形態は、空気雰囲気下で実施可能であるが、吸水剤の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下(酸素濃度が1容積%以下)で実施することが好ましい。なお、単量体水溶液中の溶存酸素に関しても、不活性ガスを用いて十分に置換(溶存酸素量が1mg/L未満)しておくことが好ましい。 Although each of the above-mentioned polymerization forms can be carried out in an air atmosphere, from the viewpoint of the color tone of the water absorbent, it is preferable to carry out the polymerization in an inert gas atmosphere such as nitrogen or argon (oxygen concentration is 1% by volume or less). It is also preferable to sufficiently replace the dissolved oxygen in the aqueous monomer solution with an inert gas (dissolved oxygen amount is less than 1 mg/L).

発泡重合で発泡形状(別称;多孔質)の含水ゲルや吸水性樹脂や吸水剤とすることで、吸水剤の吸水速度が向上でき、また吸水剤の吸収物品での固定化も容易になる。発泡形状であることは電子顕微鏡での粒子表面の孔(例えば直径1~100μmの孔)などで確認できる。孔は吸水剤ひとつあたり好ましくは1個以上、さらには1~10000個、10~1000個程度であり、前記発泡重合で制御できる。By forming a foamed (also called porous) hydrogel, water-absorbent resin, or water-absorbing agent through foaming polymerization, the water absorption rate of the water-absorbing agent can be improved, and the water-absorbing agent can be easily fixed in absorbent articles. The foamed shape can be confirmed by looking at holes (e.g. holes with a diameter of 1 to 100 μm) on the particle surface using an electron microscope. The number of holes is preferably one or more per water-absorbing agent, or even 1 to 10,000 or 10 to 1,000, and can be controlled by the foaming polymerization.

前記発泡重合は、後述する吸水性樹脂や吸水剤のBET比表面積を高める上で、好ましい技術である。The foaming polymerization is a preferred technique for increasing the BET specific surface area of the water-absorbing resins and water-absorbing agents described below.

[2-3] ゲル粉砕工程
本工程は、前記重合工程で得られた含水ゲルをゲル粉砕して、粒子状の含水ゲル(以下、「粒子状含水ゲル」とも表記する)を得る工程である。なお、後述する粉砕工程での「粉砕」と区別するために、本工程は「ゲル粉砕」と表記する。
[2-3] Gel Crushing Step This step is a step of pulverizing the hydrogel obtained in the polymerization step to obtain a particulate hydrogel (hereinafter also referred to as "particulate hydrogel"). Note that this step is referred to as "gel crushing" to distinguish it from the "crushing" in the crushing step described later.

前記ゲル粉砕とは、ニーダー、ミートチョッパー、カッターミル等のゲル粉砕機を用いて、含水ゲルを所定の大きさに調整することを指す。The gel crushing refers to adjusting the hydrogel to a specified size using a gel crusher such as a kneader, meat chopper, or cutter mill.

ゲル粉砕の実施形態や稼働条件等に関しては、国際公開第2011/126079号パンフレットに記載された内容が本発明に好ましく適用される。なお、重合形態がニーダー重合である場合には、重合工程とゲル粉砕工程とが同時に実施されていることになる。また、逆相懸濁重合、噴霧重合または液滴重合等、粒子状含水ゲルが重合工程で得られる場合には、ゲル粉砕工程が当該重合工程と同時に実施されているとみなす。また、本発明でゲル粉砕工程を経ることで、不定形破砕状の吸水性樹脂や吸水剤を得ることができる。Regarding the embodiment and operating conditions of gel crushing, the contents described in the pamphlet of International Publication No. 2011/126079 are preferably applied to the present invention. When the polymerization form is kneader polymerization, the polymerization process and the gel crushing process are carried out simultaneously. When a particulate hydrogel is obtained in the polymerization process, such as in reversed-phase suspension polymerization, spray polymerization, or droplet polymerization, the gel crushing process is considered to be carried out simultaneously with the polymerization process. In addition, by passing through the gel crushing process in the present invention, an amorphous crushed water-absorbing resin or water-absorbing agent can be obtained.

ゲル粉砕工程によって細粒化されたゲルは、一般に0.1~10mmの範囲が好ましい。0.1mmよりもゲルが細かいと得られる吸水性樹脂の物性の低いものとなる恐れがある。10mmよりも大きいと乾燥されにくくなる恐れがある。また前記粒子状含水ゲルの質量平均粒子径(D50)は好ましくは500μm~2000μm、より好ましくは550μm~1500μm、さらに好ましくは600μm~1000μmである。The gel pulverized by the gel crushing process is generally preferably in the range of 0.1 to 10 mm. If the gel is finer than 0.1 mm, the resulting water-absorbent resin may have poor physical properties. If it is larger than 10 mm, it may be difficult to dry. The mass average particle diameter (D50) of the particulate hydrous gel is preferably 500 μm to 2000 μm, more preferably 550 μm to 1500 μm, and even more preferably 600 μm to 1000 μm.

なお、後述する吸水性樹脂や吸水剤の比表面積を高めるためには、国際公開第2011/126079号パンフレットに記載されたゲル粉砕方法を用いることが好ましい。また、該ゲル粉砕技術を前述の発泡重合と組み合わせてもよい。In order to increase the specific surface area of the water-absorbing resin or water-absorbing agent described later, it is preferable to use the gel crushing method described in International Publication No. 2011/126079. The gel crushing technique may also be combined with the foaming polymerization described above.

前記粒子状含水ゲルの質量平均粒子径(D50)の測定法は、国際公開第2011/126079号パンフレットに記載された方法で行われる。The mass average particle diameter (D50) of the particulate hydrogel is measured by the method described in International Publication No. WO 2011/126079.

[2-4] 乾燥工程
本工程は、前記重合工程及び/又はゲル粉砕工程で得られた含水ゲル及び/又は粒子状含水ゲルを所望する樹脂固形分まで乾燥させて乾燥重合体を得る工程である。該樹脂固形分は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱した際の質量変化)から求められ、好ましくは80質量%以上、より好ましくは85質量%~99質量%、さらに好ましくは90質量%~98質量%、特に好ましくは92質量%~97質量%である。
[2-4] Drying step This step is a step of drying the hydrogel and/or particulate hydrogel obtained in the polymerization step and/or gel crushing step to a desired resin solid content to obtain a dried polymer. The resin solid content is determined from the loss on drying (the change in mass when 1 g of the water-absorbent resin is heated at 180°C for 3 hours), and is preferably 80% by mass or more, more preferably 85% to 99% by mass, even more preferably 90% to 98% by mass, and particularly preferably 92% to 97% by mass.

前記含水ゲル及び/又は粒子状含水ゲルの乾燥方法は、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を利用した高湿乾燥等が挙げられる。中でも乾燥効率の観点から、熱風乾燥が好ましく、通気ベルト上で熱風乾燥を行うバンド乾燥がより好ましい。 Methods for drying the hydrous gel and/or particulate hydrous gel include, for example, heat drying, hot air drying, reduced pressure drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, drying by azeotropic dehydration with a hydrophobic organic solvent, high humidity drying using high-temperature water vapor, etc. Among these, from the viewpoint of drying efficiency, hot air drying is preferred, and band drying in which hot air drying is performed on a ventilated belt is more preferred.

前記熱風乾燥における乾燥温度(熱風の温度)としては、吸水性樹脂の色調や乾燥効率の観点から、好ましくは120℃~250℃、より好ましくは140℃~200℃である。なお、熱風の風速や乾燥時間等、前記乾燥温度以外の乾燥条件については、乾燥に供する粒子状含水ゲルの含水率や総質量及び目的とする樹脂固形分に応じて、適宜設定すればよく、バンド乾燥を行う際には、国際公開第2006/100300号パンフレット、同第2011/025012号パンフレット、同第2011/025013号パンフレット、同第2011/111657号パンフレット等に記載される諸条件が適宜適用される。The drying temperature (hot air temperature) in the hot air drying is preferably 120°C to 250°C, more preferably 140°C to 200°C, from the viewpoint of the color tone and drying efficiency of the water-absorbent resin. The drying conditions other than the drying temperature, such as the hot air speed and drying time, may be appropriately set according to the water content and total mass of the particulate hydrogel to be dried and the target resin solid content. When band drying is performed, the conditions described in International Publication Nos. 2006/100300, 2011/025012, 2011/025013, 2011/111657, etc. are appropriately applied.

また、乾燥時間は、好ましくは10分間~2時間、より好ましくは20分間~150分、さらに好ましくは30分間~100分である。当該範囲内の乾燥温度および乾燥時間とすることで、得られる吸水剤の物性を所望する範囲とすることができる。また、中間生成物としての吸水性樹脂の物性に関しても、所望する範囲とすることができる。 The drying time is preferably 10 minutes to 2 hours, more preferably 20 minutes to 150 minutes, and even more preferably 30 minutes to 100 minutes. By setting the drying temperature and drying time within the ranges, the physical properties of the obtained water absorbent can be set within the desired range. Furthermore, the physical properties of the water absorbent resin as an intermediate product can also be set within the desired range.

[2-5] 粉砕工程、分級工程
本工程は、前記乾燥工程を経て得られる乾燥重合体を、粉砕(粉砕工程)し、所望する範囲の粒度に調整(分級工程)して、ベースポリマー(表面架橋を施す前の吸水性樹脂)を得る工程である。乾燥後の粉砕工程を経ることで、不定形破砕状の吸水性樹脂や吸水剤を得ることができる。粉砕は必要に応じて2回以上行ってもよい。粉砕工程、分級工程における条件を適宜調整することによって、所望するスパン値を満たすベースポリマー(表面架橋を施す前の吸水性樹脂)を得ることができ、ひいては所望するスパン値を満たす吸水性樹脂組成物を得ることができる。
[2-5] Crushing step, classification step This step is a step of pulverizing (crushing step) the dried polymer obtained through the drying step, and adjusting the particle size to a desired range (classification step) to obtain a base polymer (water-absorbent resin before surface crosslinking). By passing through the pulverizing step after drying, an amorphous pulverized water-absorbent resin or water-absorbing agent can be obtained. Crushing may be performed two or more times as necessary. By appropriately adjusting the conditions in the pulverizing step and classification step, a base polymer (water-absorbent resin before surface crosslinking) satisfying a desired span value can be obtained, and thus a water-absorbent resin composition satisfying a desired span value can be obtained.

前記粉砕工程で使用される粉砕機としては、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機や、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられる。中でも、粉砕効率の観点から、好ましくはロールミルが選択される。また、これら粉砕機を複数併用することもできる。 Examples of the crushing machine used in the crushing step include high-speed rotary crushers such as roll mills, hammer mills, screw mills, and pin mills, as well as vibration mills, knuckle-type crushers, and cylindrical mixers. Among these, a roll mill is preferably selected from the viewpoint of crushing efficiency. In addition, a plurality of these crushers can be used in combination.

前記分級工程での粒度の調整方法としては、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や気流分級等が挙げられる。中でも、分級効率の観点から、好ましくは篩分級が選択される。なお、吸水剤の粒度の調整は、粉砕工程や分級工程での実施に限定されず、重合工程(特に逆相懸濁重合や液滴重合等)や、その他の工程(例えば、造粒工程や微粉回収工程)で実施することもできる。Methods for adjusting the particle size in the classification process include sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)) and air flow classification. Among these, sieve classification is preferably selected from the viewpoint of classification efficiency. Note that the adjustment of the particle size of the water absorbent is not limited to being performed in the grinding process or classification process, but can also be performed in the polymerization process (especially reverse phase suspension polymerization or droplet polymerization, etc.) or other processes (for example, the granulation process or fine powder recovery process).

本発明の一実施形態においては、ベースポリマーの質量平均粒子径(D50)が300~600μmである。また、本発明の一実施形態においては、ベースポリマーの150μm未満の粒子の割合が5質量%以下である。なお、150μm未満の粒子の割合の下限は、0質量%である。ベースポリマーの質量平均粒子径(D50)は300~500μmであることが好ましく、300~450μmであることがより好ましい。ベースポリマーの150μm未満の粒子の割合は、4質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、2質量%以下であることが特に好ましい。In one embodiment of the present invention, the mass average particle diameter (D50) of the base polymer is 300 to 600 μm. In another embodiment of the present invention, the proportion of particles of the base polymer less than 150 μm is 5% by mass or less. The lower limit of the proportion of particles less than 150 μm is 0% by mass. The mass average particle diameter (D50) of the base polymer is preferably 300 to 500 μm, and more preferably 300 to 450 μm. The proportion of particles of the base polymer less than 150 μm is more preferably 4% by mass or less, even more preferably 3% by mass or less, and particularly preferably 2% by mass or less.

本発明の一実施形態においては、上記スパン値は、1.10以下である。1.10を超えると本発明の所期の効果を達成することができない。本発明の実施形態によれば、好ましくは0.40以上となるように調整され、より好ましくは0.40~1.10となるように調整され、よりさらに好ましくは0.45~1.05となるように調整され、よりさらに好ましくは0.50~1.00となるように調整される。In one embodiment of the present invention, the span value is 1.10 or less. If it exceeds 1.10, the intended effect of the present invention cannot be achieved. According to an embodiment of the present invention, it is preferably adjusted to be 0.40 or more, more preferably adjusted to be 0.40 to 1.10, even more preferably adjusted to be 0.45 to 1.05, and even more preferably adjusted to be 0.50 to 1.00.

本発明の一実施形態において上述したスパン値は、表面架橋後の吸水性樹脂のみならず、最終製品としての吸水剤(粒子状吸水剤)についても適用されうる。そのため、ベースポリマーで調整された前記スパン値を維持するように、表面架橋処理(表面架橋工程)されることが好ましく、表面架橋工程以降に適宜整粒工程を設けて特定のスパン値に調整されることがより好ましい。The above-mentioned span value in one embodiment of the present invention can be applied not only to the water absorbent resin after surface cross-linking, but also to the water absorbent (particulate water absorbent) as a final product. Therefore, it is preferable to perform a surface cross-linking treatment (surface cross-linking step) so as to maintain the span value adjusted by the base polymer, and it is more preferable to adjust the span value to a specific value by providing an appropriate sizing step after the surface cross-linking step.

本発明の一実施形態において前記ベースポリマーの質量平均粒子径(D50)も、表面架橋後の吸水性樹脂のみならず、最終製品としての吸水剤(粒子状吸水剤)についても適用されうる。そのため、ベースポリマーで調整された前記質量平均粒子径(D50)を維持することが好ましい。よって、前記吸水性樹脂組成物の質量平均粒子径(D50)も、300~600μmであることが好ましく、300~500μmであることがより好ましく、300~450μmであることがさらに好ましい。In one embodiment of the present invention, the mass average particle diameter (D50) of the base polymer can be applied not only to the water absorbent resin after surface crosslinking, but also to the water absorbent (particulate water absorbent) as a final product. Therefore, it is preferable to maintain the mass average particle diameter (D50) adjusted by the base polymer. Therefore, the mass average particle diameter (D50) of the water absorbent resin composition is preferably 300 to 600 μm, more preferably 300 to 500 μm, and even more preferably 300 to 450 μm.

[2-6] 表面架橋工程
本工程は、上述した各工程を経て得られるベースポリマーの表面層に、さらに架橋密度の高い部分を設ける工程であり、混合工程、熱処理工程、必要に応じて冷却工程等を含む構成となっている。当該表面架橋工程において、ベースポリマーの表面でラジカル架橋や表面重合、表面架橋剤との架橋反応等が起こり、表面架橋された吸水性樹脂が得られる。
[2-6] Surface cross-linking step This step is a step for providing a portion with a higher cross-linking density on the surface layer of the base polymer obtained through each step described above, and is configured to include a mixing step, a heat treatment step, and a cooling step as necessary. In the surface cross-linking step, radical cross-linking, surface polymerization, a cross-linking reaction with a surface cross-linking agent, and the like occur on the surface of the base polymer, and a surface-cross-linked water absorbent resin is obtained.

[2-6-1] 混合工程
本工程は、表面架橋剤を含む溶液(以下、「表面架橋剤溶液」と表記する)を混合装置内でベースポリマーと混合することで、加湿混合物を得る工程である。
[2-6-1] Mixing Step This step is a step of mixing a solution containing a surface crosslinking agent (hereinafter, referred to as a "surface crosslinking agent solution") with a base polymer in a mixer to obtain a humidified mixture.

(表面架橋剤)
本発明の一実施形態においては、表面架橋時に表面架橋剤が使用される。当該表面架橋剤としては、具体的には米国特許第7183456号に記載された表面架橋剤が挙げられる。これら表面架橋剤の中から、反応性等を考慮して少なくとも1種類の表面架橋剤が選択される。また、表面架橋剤の取り扱い性や吸水剤の吸水性能等の観点から、好ましくはカルボキシル基と反応する官能基を二つ以上有する表面架橋剤であって、共有結合が形成される有機化合物が選択される。
(Surface Cross-Linking Agent)
In one embodiment of the present invention, a surface cross-linking agent is used during surface cross-linking. Specific examples of the surface cross-linking agent include those described in U.S. Pat. No. 7,183,456. At least one type of surface cross-linking agent is selected from these surface cross-linking agents, taking into consideration reactivity and the like. In addition, from the viewpoints of the handling of the surface cross-linking agent and the water absorption performance of the water absorbing agent, it is preferable to select an organic compound that is a surface cross-linking agent having two or more functional groups that react with a carboxyl group and that forms a covalent bond.

前記表面架橋剤として、より具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、1,3-ペンタンジオール、1,2-ペンタンジオール、2,3-ペンタンジオール、2,4-ペンタンジオール、ジプロピレングリコール、ポリプロピレングリコール、グリセリン、ポリグリセリン、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、1,3-ヘキサンジオール、1,2-ヘキサンジオール、2,3-ヘキサンジオール、2,4-ヘキサンジオール、ジエタノールアミン、トリエタノールアミンなどの多価アルコール化合物、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリアリルアミン、ポリエチレンイミン等の多価アミン化合物、ハロエポキシ化合物、多価アミン化合物とハロエポキシ化合物との縮合物、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物、オキサゾリジノン化合物、1,3-ジオキソラン-2-オン(エチレンカーボネート)、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オンなどのアルキレンカーボネート化合物、エチレングリコールジグリシジルエーテル、ポリエチレンジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシド-ルなどの多価グリシジル化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。好ましい表面架橋剤は、プロピレングリコール、1,3-プロパンジオールなどの多価アルコール化合物、エチレンカーボネートなどのアルキレンカーボネート化合物、エチレングリコールジグリシジルエーテルなどの多価グリシジル化合物、ジエチレントリアミンなどの多価アミンなどである。More specifically, the surface cross-linking agent may be ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,4-pentanediol, 1,3-pentanediol, 1,2-pentanediol, 2,3-pentanediol, 2,4-pentanediol, dipropylene glycol, polypropylene polyhydric alcohol compounds such as ethylene glycol, glycerin, polyglycerin, 1,6-hexanediol, 1,5-hexanediol, 1,4-hexanediol, 1,3-hexanediol, 1,2-hexanediol, 2,3-hexanediol, 2,4-hexanediol, diethanolamine, and triethanolamine; polyhydric amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyallylamine, and polyethyleneimine; haloepoxy compounds; Condensates of divalent amine compounds and haloepoxy compounds, oxazoline compounds such as 1,2-ethylenebisoxazoline, oxazolidinone compounds, 1,3-dioxolan-2-one (ethylene carbonate), 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, Examples of the surface crosslinking agent include alkylene carbonate compounds such as 4,6-dimethyl-1,3-dioxan-2-one, 1,3-dioxopan-2-one, polyhydric glycidyl compounds such as ethylene glycol diglycidyl ether, polyethylene diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and glycidol, oxetane compounds, and vinyl ether compounds. Examples of the surface crosslinking agent include polyhydric alcohol compounds such as propylene glycol and 1,3-propanediol, alkylene carbonate compounds such as ethylene carbonate, polyhydric glycidyl compounds such as ethylene glycol diglycidyl ether, and polyhydric amines such as diethylenetriamine.

前記表面架橋剤の使用量(複数種類を使用する場合はその合計量)は、ベースポリマー100質量部に対して、好ましくは0.01質量部~10質量部、より好ましくは0.01質量部~5質量部、さらに好ましくは0.01質量部~2質量部であり、よりさらに好ましくは0.1質量部~1.8質量部であり、よりさらに好ましくは0.5質量部~1.5質量部である。表面架橋剤の使用量を当該範囲内とすることで、ベースポリマーの表面層に最適な架橋構造を形成することができ、高物性の吸水性樹脂や吸水剤が得られる。また種類に合わせて表面架橋剤の量を調整することは、吸水性樹脂や吸水剤のゲル嵩密度を適正化するのにも有効である。The amount of the surface cross-linking agent used (the total amount when multiple types are used) is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, even more preferably 0.01 to 2 parts by mass, even more preferably 0.1 to 1.8 parts by mass, and even more preferably 0.5 to 1.5 parts by mass, relative to 100 parts by mass of the base polymer. By setting the amount of the surface cross-linking agent used within this range, an optimal cross-linked structure can be formed in the surface layer of the base polymer, and a water-absorbing resin or water-absorbing agent with high physical properties can be obtained. In addition, adjusting the amount of the surface cross-linking agent according to the type is also effective in optimizing the gel bulk density of the water-absorbing resin or water-absorbing agent.

前記表面架橋剤は、水溶液の形態でベースポリマーに添加することが好ましい。この場合、水の使用量は、ベースポリマー100質量部に対して、好ましくは0.1質量部~20質量部、より好ましくは0.3質量部~15質量部、さらに好ましくは0.5質量部~10質量部である。水の使用量を当該範囲内とすることで、表面架橋剤溶液の取り扱い性が向上し、ベースポリマーに対して表面架橋剤を均等に混合することができる。The surface cross-linking agent is preferably added to the base polymer in the form of an aqueous solution. In this case, the amount of water used is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 15 parts by mass, and even more preferably 0.5 to 10 parts by mass, relative to 100 parts by mass of the base polymer. By setting the amount of water used within this range, the handleability of the surface cross-linking agent solution is improved, and the surface cross-linking agent can be evenly mixed with the base polymer.

また、親水性有機溶媒を必要に応じて前記水と併用して、前記表面架橋剤溶液とすることもできる。この場合、親水性有機溶媒の使用量は、不快臭の原因とならないように少ない方が好ましく、ベースポリマー100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下、さらに好ましくは2質量部以下、よりさらに好ましくは1質量部以下である。ただし、適度な表面架橋を行う観点では親水性有機溶媒を添加する方が好ましく、添加量としては、ベースポリマー100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。 In addition, a hydrophilic organic solvent can be used in combination with the water as necessary to prepare the surface crosslinking agent solution. In this case, the amount of the hydrophilic organic solvent used is preferably small so as not to cause an unpleasant odor, and is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, even more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less, relative to 100 parts by mass of the base polymer. However, from the viewpoint of performing moderate surface crosslinking, it is preferable to add a hydrophilic organic solvent, and the amount added is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the base polymer.

当該親水性有機溶媒としては、具体的には、メチルアルコール、イソプロピルアルコール等の低級(例えば、炭素数1~3)アルコール類;アセトン等のケトン類;ジオキサン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。 Specific examples of the hydrophilic organic solvent include lower alcohols (e.g., having 1 to 3 carbon atoms) such as methyl alcohol and isopropyl alcohol; ketones such as acetone; ethers such as dioxane; amides such as N,N-dimethylformamide; sulfoxides such as dimethyl sulfoxide, etc.

(混合方法、混合条件)
前記ベースポリマーと前記表面架橋剤溶液との混合は、表面架橋剤溶液を予め作製しておき、当該溶液をベースポリマーに対して、好ましくは噴霧または滴下して、より好ましくは噴霧して混合する方法が選択される。
(Mixing method, mixing conditions)
The base polymer and the surface crosslinking agent solution are mixed by a method in which a surface crosslinking agent solution is prepared in advance and then mixed with the base polymer by preferably spraying or dropping the solution onto the base polymer, more preferably by spraying.

[2-6-2] 熱処理工程
本工程は、前記混合工程で得られた加湿混合物に熱を加えて、ベースポリマーの表面上で架橋反応させる工程である。
[2-6-2] Heat Treatment Step This step is a step in which heat is applied to the humidified mixture obtained in the mixing step to cause a crosslinking reaction on the surface of the base polymer.

前記加湿混合物の熱処理は、当該加湿混合物を静置状態で加熱してもよく、攪拌等の動力を用いて流動状態で加熱してもよいが、加湿混合物全体を均等に加熱できる点において、攪拌下で加熱することが好ましい。前記熱処理を行う熱処理装置は、前記観点から、パドルドライヤー、マルチフィンプロセッサー、タワードドライヤー等が挙げられる。The heat treatment of the humidified mixture may be performed by heating the humidified mixture in a stationary state or in a fluidized state using a power such as stirring, but heating under stirring is preferable in that the entire humidified mixture can be heated evenly. From this viewpoint, examples of heat treatment equipment that performs the heat treatment include a paddle dryer, a multi-fin processor, and a tower dryer.

本工程における加熱温度は、表面架橋剤の種類および量、並びに吸水剤の吸水性能等の観点から、好ましくは150℃~250℃、より好ましくは170℃~250℃、さらに好ましくは180℃~230℃である。また、加熱時間は少なくとも5分間、好ましくは少なくとも7分間である。上限としては、150分以下が好ましく、120分以下がより好ましく、100分以下がさらに好ましい。加熱温度と加熱時間とを前記範囲内に制御することにより、得られる吸水剤の吸水性能が向上するため好ましい。The heating temperature in this step is preferably 150°C to 250°C, more preferably 170°C to 250°C, and even more preferably 180°C to 230°C, from the viewpoints of the type and amount of the surface cross-linking agent and the water absorption performance of the water absorbent. The heating time is at least 5 minutes, and preferably at least 7 minutes. The upper limit is preferably 150 minutes or less, more preferably 120 minutes or less, and even more preferably 100 minutes or less. Controlling the heating temperature and heating time within the above ranges is preferable because it improves the water absorption performance of the obtained water absorbent.

[2-6-3] 冷却工程
本工程は、前記熱処理工程の後に必要に応じて設けられる任意の工程である。本工程は、前記熱処理工程を終えた高温の吸水性樹脂を所定の温度まで強制冷却し、表面架橋反応を速やかに終了させる工程である。
[2-6-3] Cooling step This step is an optional step that is provided as necessary after the heat treatment step. This step is a step of forcibly cooling the high-temperature water absorbent resin that has been subjected to the heat treatment step to a predetermined temperature, and quickly completing the surface cross-linking reaction.

[2-7] 疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分の添加
本工程は、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分の添加を行う工程である。換言すれば、本発明の一実施形態において、吸水性樹脂組成物が疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含む。かような構成を有することによって、従来の消臭剤を使った吸水性樹脂組成物に対してより優れた消臭能を有する。以下に、より優れた消臭能を有するメカニズムを説明する。ただし、かかるメカニズムは推測であり、かかるメカニズムによって本発明の技術的範囲は制限されない。
[2-7] Addition of at least one component of hydrophobic porous polymer adsorbent and resin having nitrogen-containing heterocycle This step is a step of adding at least one component of hydrophobic porous polymer adsorbent and resin having nitrogen-containing heterocycle. In other words, in one embodiment of the present invention, the water-absorbent resin composition contains at least one component of hydrophobic porous polymer adsorbent and resin having nitrogen-containing heterocycle. By having such a configuration, it has a better deodorizing ability than a water-absorbent resin composition using a conventional deodorant. The mechanism of having a better deodorizing ability will be explained below. However, such a mechanism is speculation, and the technical scope of the present invention is not limited by such a mechanism.

尿臭の原因物質としては、まず、尿素やアミノ酸の分解によって発生する「アンモニアやアミン類」などの塩基性化合物や「フェノール類」など中程度分子サイズの疎水性化合物が考えられる。The substances that are thought to cause urine odor are primarily basic compounds such as ammonia and amines, which are produced by the decomposition of urea and amino acids, and hydrophobic compounds of medium molecular size, such as phenols.

従来の吸水性樹脂、中でも衛生材料用途として好適なポリアクリル酸(塩)系吸水性樹脂は、酸基を有するため上記塩基性化合物に対する吸着性能を有しているが、実際に尿を吸収させた膨潤ゲルの消臭効果は不十分であった(比較例1)。また、中程度分子サイズの疎水性化合物に対しては、親水性の樹脂であるため、上記塩基性化合物への消臭効果と比較して消臭効果は弱いものと考えられる。 Conventional water-absorbent resins, particularly polyacrylic acid (salt)-based water-absorbent resins suitable for use in sanitary materials, have the ability to adsorb the above-mentioned basic compounds because they have acid groups, but the deodorizing effect of the swollen gel that actually absorbed urine was insufficient (Comparative Example 1). In addition, because the resin is hydrophilic, its deodorizing effect on hydrophobic compounds of medium molecular size is thought to be weaker than that on the above-mentioned basic compounds.

一方、上述のとおり、本発明においては、吸水性樹脂組成物が、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含む。On the other hand, as described above, in the present invention, the water-absorbent resin composition contains at least one component of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle.

この(非水溶性の)疎水性多孔質ポリマー吸着剤が、中程度の分子サイズの疎水性化合物の吸着し、消臭効果を発現することに有効と考えられる。より具体的には、疎水性多孔質ポリマー吸着剤が、中程度の分子サイズの疎水性化合物(例えば、フェノール、クレゾール、フェニル酢酸)等を効率的に吸着し、尿臭の低減の効果を奏すると考えられる。ただし、後述するように、疎水性多孔質ポリマー吸着剤を使用し、かつ、スパン値を特定値以下に調整しなければ、より優れた消臭能を有さないメカニズムは不明である。 This (water-insoluble) hydrophobic porous polymer adsorbent is believed to be effective in adsorbing hydrophobic compounds of medium molecular size and exerting a deodorizing effect. More specifically, it is believed that the hydrophobic porous polymer adsorbent efficiently adsorbs hydrophobic compounds of medium molecular size (e.g., phenol, cresol, phenylacetic acid), etc., and has the effect of reducing urine odor. However, as described below, the mechanism by which a hydrophobic porous polymer adsorbent does not have better deodorizing ability unless the span value is adjusted to a specific value or less is unknown.

また、上述のとおり、本発明の一実施形態においては、吸水性樹脂組成物が、含窒素複素環を有する樹脂を含む。ここで、含窒素複素環は、典型的には、アンモニア等と同様に塩基性であるため、尿に由来する塩基性物質に対する高い吸着性能を有していないと考えられる。しかしながら、このような塩基性の含窒素複素環を有する樹脂を添加することによって、より優れた消臭能を有したのは驚くべき結果であった。このような結果をもたらすメカニズムは不明であり、言い換えれば、当業者にも予期できない進歩性のある発明であると言える。さらに、本発明の一実施形態においては、吸水性樹脂組成物が、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の両方を含む。上記両方の化合物を含むことで、さらなる消臭効果の相乗効果が期待できる。 As described above, in one embodiment of the present invention, the water-absorbent resin composition contains a resin having a nitrogen-containing heterocycle. Here, the nitrogen-containing heterocycle is typically basic like ammonia, and therefore is not considered to have high adsorption performance for basic substances derived from urine. However, it was a surprising result that the addition of such a basic resin having a nitrogen-containing heterocycle gave a better deodorizing ability. The mechanism that brings about such a result is unknown, and in other words, it can be said that this is an invention with an inventive step that cannot be predicted even by those skilled in the art. Furthermore, in one embodiment of the present invention, the water-absorbent resin composition contains both a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle. By including both of the above compounds, a synergistic effect of further deodorizing effect can be expected.

また、本発明の一実施形態において、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分の添加量(併用される場合は、その合計の添加量;水分散の形態・水溶液の形態では固形分換算の添加量)としては、尿臭抑制効果の観点から、吸水性樹脂100質量部に対し、0.05~10質量部が好ましく、より好ましくは0.1~8質量部であり、さらに好ましくは0.15~5質量部であり、特に好ましくは0.2~3質量部である。かような好ましい添加量は、吸水性樹脂組成物中における好ましい含有量と、含窒素複素環が開環するような処理(例えば、高温での加熱)が施されない限り一致する。すなわち、本発明の一実施形態によれば、吸水性樹脂組成物中において、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分の含有量(併用される場合は、その合計の含有量;水分散の形態・水溶液の形態では固形分換算の添加量)は、吸水性樹脂100質量部に対し、0.05~10質量部が好ましく、より好ましくは0.1~8質量部であり、さらに好ましくは0.15~5質量部であり、特に好ましくは0.2~3質量部である。In one embodiment of the present invention, the amount of at least one of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle (the total amount when used in combination; the amount added in terms of solid content in the case of a water dispersion or an aqueous solution) is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, even more preferably 0.15 to 5 parts by mass, and particularly preferably 0.2 to 3 parts by mass, relative to 100 parts by mass of the water absorbent resin, from the viewpoint of the urine odor suppression effect. Such a preferred amount is consistent with the preferred content in the water absorbent resin composition, unless a treatment (e.g., heating at a high temperature) that opens the nitrogen-containing heterocycle is performed. That is, according to one embodiment of the present invention, in the water absorbent resin composition, the content of at least one of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle (when used in combination, the total content thereof; in the form of a water dispersion or an aqueous solution, the amount added in terms of solid content) is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, further preferably 0.15 to 5 parts by mass, and particularly preferably 0.2 to 3 parts by mass, relative to 100 parts by mass of the water absorbent resin.

(疎水性多孔質ポリマー吸着剤)
本発明の一実施形態において、疎水性多孔質ポリマー吸着剤が、天然由来ではない疎水性多孔質ポリマー吸着剤である(つまり、合成吸着剤である)。
(Hydrophobic Porous Polymer Adsorbent)
In one embodiment of the invention, the hydrophobic porous polymeric adsorbent is a hydrophobic porous polymeric adsorbent that is not naturally occurring (i.e., a synthetic adsorbent).

本発明の一実施形態において、表面架橋された吸水性樹脂と、疎水性多孔質ポリマー吸着剤とを混合する方法にも特に制限はない。例えば、表面架橋される前のベースポリマーに疎水性多孔質ポリマー吸着剤を添加してからベースポリマーを表面架橋してもよいが、疎水性多孔質ポリマー吸着剤の消臭効果を高めるためには、表面架橋された吸水性樹脂に疎水性多孔質ポリマー吸着剤を添加するのが好ましい。その意味で、疎水性多孔質ポリマー吸着剤は、表面架橋工程において添加されない方がよい。In one embodiment of the present invention, there is no particular limitation on the method of mixing the surface-crosslinked water-absorbent resin with the hydrophobic porous polymer adsorbent. For example, the hydrophobic porous polymer adsorbent may be added to the base polymer before surface-crosslinking, and then the base polymer may be surface-crosslinked. However, in order to enhance the deodorizing effect of the hydrophobic porous polymer adsorbent, it is preferable to add the hydrophobic porous polymer adsorbent to the surface-crosslinked water-absorbent resin. In that sense, it is better not to add the hydrophobic porous polymer adsorbent in the surface-crosslinking step.

本発明の一実施形態において、疎水性多孔質ポリマー吸着剤は、疎水性で、かつ、20~1200Åの平均細孔直径を有するポリマーである。かかる実施形態であることによって、フェノール、クレゾール、フェニル酢酸等の尿臭原因物質を効率的に吸着することができると考えられる。In one embodiment of the present invention, the hydrophobic porous polymer adsorbent is a polymer that is hydrophobic and has an average pore diameter of 20 to 1200 Å. It is believed that this embodiment can efficiently adsorb substances that cause urine odor, such as phenol, cresol, and phenylacetic acid.

なお、本明細書中、疎水性多孔質ポリマー吸着剤における「疎水性のポリマー」とは、水に対する親和性の低いポリマーであり、例えば水に対する静的接触角を測定した場合に、接触角が90°以上となるポリマーを意味する。In this specification, the term "hydrophobic polymer" in the context of a hydrophobic porous polymer adsorbent refers to a polymer that has low affinity for water, and for example, when the static contact angle with water is measured, the contact angle is 90° or more.

本発明の一実施形態において、疎水性多孔質ポリマー吸着剤は、疎水性の組成を有するという観点から、疎水性の非架橋性モノマー、架橋性モノマー等を共重合して得られる多孔質ポリマーがよい。疎水性の非架橋性モノマーとしては、例えば、スチレン、メチルスチレン、ビニルナフタレン、ビニルピリジン、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートのようなモノビニル芳香族系モノマー;酢酸ビニル、プロピオン酸ビニルのような、カルボン酸ビニル系モノマー;エチル(メタ)アクリレート、プロピル(メタ)アクリレートのような(メタ)アクリル酸脂肪族エステルなどが挙げられる。In one embodiment of the present invention, the hydrophobic porous polymer adsorbent is preferably a porous polymer obtained by copolymerizing hydrophobic non-crosslinkable monomers, crosslinkable monomers, etc., from the viewpoint of having a hydrophobic composition. Examples of hydrophobic non-crosslinkable monomers include monovinyl aromatic monomers such as styrene, methylstyrene, vinylnaphthalene, vinylpyridine, phenyl(meth)acrylate, and benzyl(meth)acrylate; vinyl carboxylate monomers such as vinyl acetate and vinyl propionate; and (meth)acrylic acid aliphatic esters such as ethyl(meth)acrylate and propyl(meth)acrylate.

これに対し、一般的に吸着剤として知られているゼオライト等の無機系吸着剤(例えば、ゼオライト等)は極性が高く、平均細孔直径も20Å未満と小さいために、臭気原因物質の吸着能が不十分であり、その結果として消臭性も不十分である。In contrast, inorganic adsorbents such as zeolite, which are commonly known as adsorbents, are highly polar and have small average pore diameters of less than 20 Å, so they have insufficient adsorption capacity for odor-causing substances and, as a result, insufficient deodorizing properties.

疎水性の架橋性モノマーとしては、ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレンなどの2個以上のビニル基を有する芳香族系モノマー;エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートのようなジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、ペンタエリスリトールテトラキス(メタ)アクリレートのような(メタ)アクリル酸の多価アルコールエステルなどが挙げられる。Examples of hydrophobic crosslinkable monomers include aromatic monomers having two or more vinyl groups, such as divinylbenzene, divinyltoluene, and divinylnaphthalene; di(meth)acrylates such as ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate; and polyhydric alcohol esters of (meth)acrylic acid, such as trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, and pentaerythritol tetrakis(meth)acrylate.

本発明の一実施形態において、吸水性樹脂組成物における、疎水性多孔質ポリマー吸着剤の平均細孔直径としては、尿臭低減の観点から、20~1200Åであることが好ましく、50~1000Åであることがより好ましく、60~950Åであることがさらに好ましく、70~800Åであることがよりさらに好ましく、80~750Åであることがよりさらに好ましく、90~730Åであることがよりさらに好ましい。かような平均細孔直径の範囲とすることによってフェノール、クレゾール、フェニル酢酸等の尿臭原因物質などを効率的に吸着することができると考えられる。また、本発明の実施形態によると、吸水性樹脂組成物における、疎水性多孔質ポリマー吸着剤の平均細孔直径は、100Åを超えてもよく、例えば、150Å以上、200Å以上、250Å以上であってもよい。本発明の実施形態によると、吸水性樹脂組成物において、疎水性多孔質ポリマー吸着剤の平均細孔直径が、100Åを超えて900Å以下であってもよい。このように本発明の実施形態の疎水性多孔質ポリマー吸着剤は、比較的疎水性で、その細孔サイズも数十~数百Åに及ぶ大きさであってもよい。In one embodiment of the present invention, the average pore diameter of the hydrophobic porous polymer adsorbent in the water absorbent resin composition is preferably 20 to 1200 Å, more preferably 50 to 1000 Å, even more preferably 60 to 950 Å, even more preferably 70 to 800 Å, even more preferably 80 to 750 Å, and even more preferably 90 to 730 Å, from the viewpoint of reducing urine odor. It is believed that by setting the average pore diameter in such a range, it is possible to efficiently adsorb substances causing urine odor such as phenol, cresol, and phenylacetic acid. In addition, according to an embodiment of the present invention, the average pore diameter of the hydrophobic porous polymer adsorbent in the water absorbent resin composition may be more than 100 Å, for example, 150 Å or more, 200 Å or more, or 250 Å or more. According to an embodiment of the present invention, the average pore diameter of the hydrophobic porous polymer adsorbent in the water absorbent resin composition may be more than 100 Å and 900 Å or less. In this way, the hydrophobic porous polymer adsorbent of the embodiment of the present invention is relatively hydrophobic, and the pore size may be a size ranging from tens to hundreds of Å.

なお、疎水性多孔質ポリマー吸着剤の平均細孔直径は、以下のようにして求めることができる。The average pore diameter of the hydrophobic porous polymer adsorbent can be determined as follows:

[BET比表面積]
試料を、180℃で2時間真空乾燥の後、高精度ガス/蒸気吸着量測定装置(BELSORP-max/日本ベル株式会社)を用い、液体窒素の沸点(-195.8℃)における窒素ガスの吸着量を相対圧0.02~1.00の範囲で徐々に高めながら複数点測定し、上記試料の窒素吸着等温線を作成する。次に、相対圧0.02~1.00での結果をBETプロットし、重量当たりのBET比表面積(m/g)(S)を求める。
[BET specific surface area]
The sample is vacuum-dried at 180°C for 2 hours, and then the amount of nitrogen gas adsorption at the boiling point of liquid nitrogen (-195.8°C) is measured at multiple points using a high-precision gas/vapor adsorption measuring device (BELSORP-max/BEL Japan Co., Ltd.) while gradually increasing the relative pressure in the range of 0.02 to 1.00, to create a nitrogen adsorption isotherm for the sample. Next, the results at relative pressures of 0.02 to 1.00 are BET plotted to determine the BET specific surface area per weight ( m2 /g) (S).

[平均細孔直径]
試料を、180℃で2時間真空乾燥の後、高精度ガス/蒸気吸着量測定装置(BELSORP-max/日本ベル株式会社)を用い、液体窒素の沸点(-195.8℃)における窒素ガスの吸着量を相対圧0.02~1.00の範囲で徐々に高めながら複数点測定し、上記試料の窒素吸着等温線を作成する。この窒素吸着等温線から、試料の細孔容積(mL/g)(V)を求め、下記式より多項質体の平均細孔直径(D)を算出する。
[Average pore diameter]
The sample is vacuum-dried at 180°C for 2 hours, and then the amount of nitrogen gas adsorption at the boiling point of liquid nitrogen (-195.8°C) is measured at multiple points using a high-precision gas/vapor adsorption measuring device (BELSORP-max/BEL Japan Co., Ltd.) while gradually increasing the relative pressure in the range of 0.02 to 1.00, to prepare a nitrogen adsorption isotherm for the sample. From this nitrogen adsorption isotherm, the pore volume (mL/g) (V) of the sample is determined, and the average pore diameter (D) of the polymolecular mass is calculated from the following formula:

D=4×V/S×10
(V:細孔容積(mL/g)、S:BET比表面積(m/g))
また、本発明の一実施形態において、吸水性樹脂組成物における、疎水性多孔質ポリマー吸着剤のBET比表面積としては、尿臭低減の観点から、20~2000m/gであることが好ましく、さらに好ましい順に、50~2000m/g、70~1200m/g、80~1000m/g、90~900m/g、100~850m/gである。
D = 4 x V/S x 104
(V: pore volume (mL/g), S: BET specific surface area (m 2 /g))
In one embodiment of the present invention, the BET specific surface area of the hydrophobic porous polymer adsorbent in the water absorbent resin composition is preferably 20 to 2000 m 2 /g from the viewpoint of reducing urine odor, and more preferably 50 to 2000 m 2 /g, 70 to 1200 m 2 /g, 80 to 1000 m 2 /g, 90 to 900 m 2 /g, and 100 to 850 m 2 /g.

また、本発明の一実施形態において、吸水性樹脂組成物における、疎水性多孔質ポリマー吸着剤の平均粒子径としては、吸水性樹脂との混合性の観点から、1~2000μmであることが好ましく、10~1500μmであることがより好ましく、50~1000μmであることがさらに好ましく、60~800μmであることがよりさらに好ましい。なお、疎水性多孔質ポリマー吸着剤の平均粒子径は、走査型電子顕微鏡(株式会社キーエンス製;VF-9800)を用いて拡大倍率50~500倍で撮影し、画像解析ソフトを使用し、撮影された画像の中から20点をサンプルとしてランダム選択してその粒子径を測定することにより求める。In one embodiment of the present invention, the average particle diameter of the hydrophobic porous polymer adsorbent in the water-absorbent resin composition is preferably 1 to 2000 μm, more preferably 10 to 1500 μm, even more preferably 50 to 1000 μm, and even more preferably 60 to 800 μm, from the viewpoint of mixability with the water-absorbent resin. The average particle diameter of the hydrophobic porous polymer adsorbent is determined by taking an image at a magnification of 50 to 500 times using a scanning electron microscope (Keyence Corporation; VF-9800), randomly selecting 20 points from the captured image as samples using image analysis software, and measuring the particle diameter.

また、本発明の一実施形態において、疎水性多孔質ポリマー吸着剤の添加量としては、尿臭抑制効果の観点から、吸水性樹脂100質量部に対し、0.05~10質量部が好ましく、より好ましくは0.1~8質量部であり、さらに好ましくは0.15~5質量部であり、特に好ましくは0.2~3質量部であり、0.3質量部以上、0.4質量部以上、0.5質量部以上、0.5質量部超、あるいは、0.7質量部以上も好ましい。かような好ましい添加量は、吸水性樹脂組成物中における好ましい含有量と一致する。In addition, in one embodiment of the present invention, the amount of hydrophobic porous polymer adsorbent added is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, even more preferably 0.15 to 5 parts by mass, and particularly preferably 0.2 to 3 parts by mass, relative to 100 parts by mass of the water-absorbent resin, from the viewpoint of the urine odor suppression effect. 0.3 parts by mass or more, 0.4 parts by mass or more, 0.5 parts by mass or more, more than 0.5 parts by mass, or 0.7 parts by mass or more are also preferred. Such a preferred amount to be added corresponds to the preferred content in the water-absorbent resin composition.

すなわち、本発明の一実施形態によれば、吸水性樹脂組成物中において、疎水性多孔質ポリマー吸着剤の含有量は、吸水性樹脂100質量部に対し、0.05~10質量部が好ましく、より好ましくは0.1~8質量部であり、さらに好ましくは0.15~5質量部であり、特に好ましくは0.2~3質量部であり、0.3質量部以上、0.4質量部以上、0.5質量部以上、0.5質量部超、あるいは、0.7質量部以上も好ましい。含有量が好ましい添加量より少ない場合には、尿臭抑制効果が十分に得られないおそれがある。また、含有量が好ましい添加量より多い場合には、吸水性樹脂の吸水倍率が低下するおそれがある。That is, according to one embodiment of the present invention, the content of the hydrophobic porous polymer adsorbent in the water absorbent resin composition is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, even more preferably 0.15 to 5 parts by mass, and particularly preferably 0.2 to 3 parts by mass, and is preferably 0.3 parts by mass or more, 0.4 parts by mass or more, 0.5 parts by mass or more, more than 0.5 parts by mass, or 0.7 parts by mass or more. If the content is less than the preferred amount, the urine odor suppression effect may not be sufficiently obtained. Also, if the content is more than the preferred amount, the water absorption capacity of the water absorbent resin may decrease.

本発明の一実施形態において、疎水性多孔質ポリマー吸着剤の具体的としては、ピュロライト株式会社製:Chromalite ADシリーズ、Chromalite PCGシリーズ、Purosorb PADシリーズ等のスチレン系、メタクリル酸エステル系合成吸着剤;三菱ケミカル社製:ダイヤイオンHPシリーズ、ダイヤイオンHP2MGL等のスチレン系または(メタ)アクリル系合成吸着剤;オルガノ株式会社製:アンバーライトXADシリーズ、アンバーライトFPXシリーズ等のスチレン系、または(メタ)アクリル系合成吸着剤;特開2017-140332号公報等に記載のフェニル基を有する多孔ポリマーなどが挙げられる。In one embodiment of the present invention, specific examples of hydrophobic porous polymer adsorbents include styrene-based and methacrylic acid ester-based synthetic adsorbents such as the Chromalite AD series, Chromalite PCG series, and Purosorb PAD series manufactured by Purolite Co., Ltd.; styrene-based or (meth)acrylic synthetic adsorbents such as the Diaion HP series and Diaion HP2MGL manufactured by Mitsubishi Chemical Corporation; styrene-based or (meth)acrylic synthetic adsorbents such as the Amberlite XAD series and Amberlite FPX series manufactured by Organo Corporation; and porous polymers having phenyl groups as described in JP 2017-140332 A, etc.

本発明の一実施形態において、疎水性多孔質ポリマー吸着剤は1種でも2種以上組み合わせて使用されてもよい。In one embodiment of the present invention, the hydrophobic porous polymer adsorbents may be used alone or in combination of two or more.

<吸水性樹脂1gあたりの総比表面積>
吸水性樹脂1gあたりの疎水性多孔質ポリマー吸着剤の総比表面積とは、吸水性樹脂単位量あたりに添加される、疎水性多孔質ポリマー吸着剤の比表面積総量のことであり、下記式により求めることができる。
<Total specific surface area per gram of water-absorbent resin>
The total specific surface area of the hydrophobic porous polymer adsorbent per 1 g of water absorbent resin means the total specific surface area of the hydrophobic porous polymer adsorbent added per unit amount of water absorbent resin, and can be calculated by the following formula.

吸水性樹脂1gあたりの総比表面積としては、尿臭抑制の観点から、0.2m以上が好ましく、より好ましくは0.3m以上、さらに好ましくは0.4m以上である。上限としても特に制限はないが、経済性の観点から、例えば、100m以下が好ましい。無論、かような吸水性樹脂1gあたりの好ましい総比表面積は、吸水性樹脂組成物中における好ましい総比表面積と一致する。すなわち、本発明の一実施形態によれば、吸水性樹脂組成物において、吸水性樹脂1gあたりの総比表面積としては、尿臭抑制の観点から、0.2m以上が好ましく、より好ましくは0.3m以上、さらに好ましくは0.4m以上、また、1.0m以上、1.5m以上、2.0m以上、2.5m超、3.0m超、3.5m超、4.0m以上、4.2m以上、4.5m以上、5.0m以上、5.5m以上、あるいは、6.0m以上である。上限としても特に制限はないが、経済性の観点から、例えば、100m以下が好ましく、50m以下、40m以下、30m以下、20m以下、あるいは、10m以下であってもよい。 The total specific surface area per 1 g of the water-absorbent resin is preferably 0.2 m2 or more, more preferably 0.3 m2 or more, and even more preferably 0.4 m2 or more, from the viewpoint of suppressing urine odor. There is no particular upper limit, but from the viewpoint of economic efficiency, for example, 100 m2 or less is preferable. Of course, such a preferable total specific surface area per 1 g of the water-absorbent resin coincides with the preferable total specific surface area in the water-absorbent resin composition. That is, according to one embodiment of the present invention, in the water absorbent resin composition, the total specific surface area per 1 g of the water absorbent resin is preferably 0.2 m 2 or more, more preferably 0.3 m 2 or more, and even more preferably 0.4 m 2 or more, from the viewpoint of suppressing urine odor, and is 1.0 m 2 or more, 1.5 m 2 or more, 2.0 m 2 or more, more than 2.5 m 2, more than 3.0 m 2 , more than 3.5 m 2 , 4.0 m 2 or more, 4.2 m 2 or more, 4.5 m 2 or more, 5.0 m 2 or more, 5.5 m 2 or more, or 6.0 m 2 or more. There is no particular limit as to the upper limit, but from the viewpoint of economic efficiency, for example, 100 m 2 or less is preferable, and it may be 50 m 2 or less, 40 m 2 or less, 30 m 2 or less, 20 m 2 or less, or 10 m 2 or less.

なお、疎水性多孔質ポリマー吸着剤は、市販品を購入することによって準備してもよい。 The hydrophobic porous polymer adsorbent may be prepared by purchasing a commercially available product.

(含窒素複素環を有する樹脂)
本発明の一実施形態において、吸水性樹脂組成物は、含窒素複素環を有する樹脂を含む。尿臭の原因物質としては、尿素やアミノ酸の分解によって発生するアンモニアやアミン類などの塩基性化合物が考えられる。従来の吸水性樹脂、中でも衛生材料用途として好適なポリアクリル酸(塩)系吸水性樹脂は、酸基を有するため上記塩基性化合物に対する吸着性能を有しているが、実際に尿を吸収させた膨潤ゲルの消臭効果は不十分であった。ここで、含窒素複素環は、典型的には、アンモニア等と同様に塩基性であるため、尿に由来する塩基性物質に対する高い吸着性能を有していないと考えられる。しかしながら、このような塩基性の含窒素複素環を有する樹脂を添加することによって、より優れた消臭能を有したのは驚くべき結果であった。
(Resin having nitrogen-containing heterocycle)
In one embodiment of the present invention, the water-absorbent resin composition contains a resin having a nitrogen-containing heterocycle. The substances causing urine odor are considered to be basic compounds such as ammonia and amines generated by decomposition of urea and amino acids. Conventional water-absorbent resins, particularly polyacrylic acid (salt)-based water-absorbent resins suitable for use in sanitary materials, have an adsorption performance for the above-mentioned basic compounds because they have acid groups, but the deodorizing effect of the swollen gel that has actually absorbed urine is insufficient. Here, the nitrogen-containing heterocycle is typically basic like ammonia, and therefore is considered not to have a high adsorption performance for basic substances derived from urine. However, it was a surprising result that the addition of such a resin having a basic nitrogen-containing heterocycle provided a better deodorizing ability.

本発明の一実施形態において、含窒素複素環を有する樹脂による消臭効果を高めるためには、吸水性樹脂と、含窒素複素環を有する樹脂とを混合する方法として、表面架橋された吸水性樹脂に含窒素複素環を有する樹脂を添加するのが好ましい。表面架橋される前のベースポリマーに含窒素複素環を有する樹脂を混合すると、その後の表面架橋時の加熱処理によってベースポリマーと含窒素複素環を有する樹脂とが架橋反応を起こしてしまい消臭効果が消失する可能性がある。より具体的に、例えば含窒素複素環を有する樹脂としてオキサゾリン基含有重合体を使用すると、架橋時の熱によってオキサゾリン環が開環する。そうすると、その残基が吸水性樹脂を構成する構成単位の官能基と相互作用し架橋反応を起こしてしまう。ゆえに、消臭作用を発現するために必要と考えられる特定の官能基(含窒素複素環)がなくなり、消臭効果が消失する可能性がある。換言すれば、オキサゾリン基等を有する化合物を架橋剤として吸水性樹脂に使用する例は従来知られているが、かような例であると架橋反応し含窒素複素環が存在しなくなるため、本願の様な消臭効果は得られない。その意味で、含窒素複素環を有する樹脂は、表面架橋工程において添加されない方がよい。よって、本発明の一実施形態によれば、吸水性樹脂組成物の製造方法において、架橋剤としての機能を有する含窒素複素環を有する樹脂の添加がなされた後は、高い温度での加熱工程を施さないことが好ましい。よって加熱工程を施すとしても、その温度は、100℃未満、90℃以下、80℃以下、70℃以下、あるいは、65℃以下である。In one embodiment of the present invention, in order to enhance the deodorizing effect of the resin having a nitrogen-containing heterocycle, it is preferable to add the resin having a nitrogen-containing heterocycle to the surface-crosslinked water-absorbent resin as a method of mixing the water-absorbent resin with the resin having a nitrogen-containing heterocycle. If the resin having a nitrogen-containing heterocycle is mixed with the base polymer before surface crosslinking, the base polymer and the resin having a nitrogen-containing heterocycle may undergo a crosslinking reaction due to the subsequent heat treatment during surface crosslinking, and the deodorizing effect may be lost. More specifically, for example, if an oxazoline group-containing polymer is used as the resin having a nitrogen-containing heterocycle, the oxazoline ring is opened by the heat during crosslinking. Then, the residue interacts with the functional group of the structural unit constituting the water-absorbent resin and a crosslinking reaction occurs. Therefore, the specific functional group (nitrogen-containing heterocycle) that is thought to be necessary for expressing the deodorizing effect disappears, and the deodorizing effect may be lost. In other words, examples in which a compound having an oxazoline group or the like is used as a crosslinking agent for the water-absorbent resin are conventionally known, but in such an example, a crosslinking reaction occurs and the nitrogen-containing heterocycle disappears, so that the deodorizing effect of the present application cannot be obtained. In this sense, it is better not to add the resin having a nitrogen-containing heterocycle in the surface cross-linking step. Therefore, according to one embodiment of the present invention, in the manufacturing method of the water absorbent resin composition, after the resin having a nitrogen-containing heterocycle functioning as a cross-linking agent is added, it is preferable not to carry out a heating step at a high temperature. Therefore, even if a heating step is carried out, the temperature is less than 100°C, 90°C or less, 80°C or less, 70°C or less, or 65°C or less.

本発明の一実施形態によれば、前記含窒素複素環を有する樹脂が水不溶性またはLogPが1.5以上の水に分散可能なポリマーである。つまり、含窒素複素環を有する樹脂を水分散の形態で、吸水性樹脂に添加する。本発明の一実施形態によれば、含窒素複素環を有する樹脂を何らかの分散媒に分散させない形態で、つまりドライの形態で、吸水性樹脂に添加する。According to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a water-insoluble or water-dispersible polymer having a LogP of 1.5 or more. In other words, the resin having a nitrogen-containing heterocycle is added to the water-absorbent resin in the form of a water dispersion. According to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is added to the water-absorbent resin in a form that is not dispersed in any dispersing medium, that is, in a dry form.

本願におけるLogPとは、n-オクタノール/水分配係数(Log10Pow)を指し、OECD Test Guideline(OECD理事会決定「C(81)30最終別添1」)107又は日本工業規格Z7260-107(2000)「分配係数(1-オクタノール/水)の測定-フラスコ振とう法」によって求めてもよいが、本発明では原則下記の計算法で求める値を用いる。In this application, LogP refers to the n-octanol/water partition coefficient (Log10Pow), which may be determined in accordance with OECD Test Guideline (OECD Council Decision "C(81)30 Final Annex 1") 107 or Japanese Industrial Standard Z7260-107 (2000) "Measurement of partition coefficient (1-octanol/water) - Shake flask method", but in principle, the value determined by the following calculation method is used in the present invention.

尚、下記VMLogP(i)及びMSLogP(i)の値は、Advanced Chemistry Development製のACD/LogP DB Releace 100 Product Version 10.01により温度25℃条件下で算出される値を用いる。また、特に断りがない限り、LogPは10を底とする、いわゆる常用対数値である。The values of VMLogP(i) and MSLogP(i) below are calculated at 25°C using ACD/LogP DB Release 100 Product Version 10.01 manufactured by Advanced Chemistry Development. Unless otherwise specified, LogP is a so-called common logarithm value with base 10.

まず、各モノマー(i)(iは各モノマーを識別するための1から始まる連番)の重合反応部位に、メチル基を付与した仮想モノマー単位(Virtual Monomer)のLogP(VMLogP(i):iは前記と同じ)を算出する。First, the LogP (VMLogP(i): i is the same as above) of the virtual monomer unit (Virtual Monomer) in which a methyl group is added to the polymerization reaction site of each monomer (i) (i is a sequential number starting from 1 to identify each monomer) is calculated.

仮想モノマー単位はポリマー中の繰返し構造を基準とするものであり、ポリマーの製造で実際に用いられたモノマーとは一致しない場合がある。具体的には以下の様にして定める。 Virtual monomer units are based on the repeating structure in the polymer and may not match the monomers actually used in the production of the polymer. Specifically, they are defined as follows:

モノマーが重合性不飽和単量体の場合、重合反応部位はC=Cであり、不飽和結合に2つのメチル基を導入する。 When the monomer is a polymerizable unsaturated monomer, the polymerization reaction site is C=C, and two methyl groups are introduced into the unsaturated bond.

モノマーが開環重合性単量体の場合、環状構造の開環単位(例えばエチレンオキサイドであれば、エポキシ基)に、2つのメチル基を導入する。When the monomer is a ring-opening polymerizable monomer, two methyl groups are introduced into a ring-opening unit of a ring structure (for example, an epoxy group in the case of ethylene oxide).

モノマーが縮重合性単量体の場合、縮重合単位(例えばエステル、エーテル、アミド)にメチル基を導入する。 When the monomer is a condensation polymerizable monomer, a methyl group is introduced into the condensation polymerizable unit (e.g., ester, ether, amide).

なお、モノマーがセルロース骨格の繰り返し単位を有する場合、個々のポリエーテル単位を縮重合単位としてメチル基を導入すればよい。また、高分子不飽和単量体、例えば不飽和基を有するポリアルキレンオキサイド(例えば、メトキシポリエチレングリコールのモノアクリレート)の場合、不飽和結合(例えばアクリル酸のC=C)に2つのメチル基を導入すると同時に、単量体中の高分子単位(例えばポリエチレンオキサイド)も分解してメチル基を導入し、さらに縮重合単位(例えばアクリル酸のCOOH)もメチル化すればよい。In addition, when the monomer has a repeating unit of a cellulose skeleton, methyl groups can be introduced into each polyether unit as a condensation polymerization unit. In addition, in the case of a polymeric unsaturated monomer, such as a polyalkylene oxide having an unsaturated group (e.g., monoacrylate of methoxypolyethylene glycol), two methyl groups can be introduced into an unsaturated bond (e.g., C=C of acrylic acid), and at the same time, the polymer unit in the monomer (e.g., polyethylene oxide) can be decomposed to introduce methyl groups, and the condensation polymerization unit (e.g., COOH of acrylic acid) can also be methylated.

例えば、不飽和単量体の重合によるポリマーとして、ポリエチレンの場合には、モノマー(1)はエチレンとなり、VMLogP(1)はn-ブタンのLogPとなる。また、スチレン-ブタジエン共重合体の場合には、モノマー(1)をスチレン、モノマー(2)をブタジエンとし、VMLogP(1)は2-フェニルブタンのLogPとなり、VMLogP(2)は3-ヘキセンのLogPとなる。また、100%鹸化ポリビニルアルコールの場合は、VMLogP(1)は3-ブタノールのLogPとなる。For example, in the case of polyethylene, a polymer formed by polymerization of unsaturated monomers, monomer (1) is ethylene, and VMLogP(1) is the LogP of n-butane. In the case of a styrene-butadiene copolymer, monomer (1) is styrene and monomer (2) is butadiene, VMLogP(1) is the LogP of 2-phenylbutane, and VMLogP(2) is the LogP of 3-hexene. In the case of 100% saponified polyvinyl alcohol, VMLogP(1) is the LogP of 3-butanol.

また、開環重合性単量体の重合によるポリマーとして、ポリエチレングリコールの場合には、モノマー(1)をエチレンオキサイドとし、VMLogP(1)はメチル-n-プロピルエーテルのLogPとなる。 In addition, in the case of polyethylene glycol, a polymer obtained by polymerization of ring-opening polymerizable monomers, monomer (1) is ethylene oxide, and VMLogP(1) is the LogP of methyl-n-propyl ether.

また、縮重合性単量体の重合によるポリマーとして、ポリアスパラギン酸の場合、モノマー(2)をアスパラギン酸として、VMLogP(1)はN-メチル-メチルアスパラギン酸エステルのLogPとなる。 In addition, in the case of polyaspartic acid, a polymer formed by polymerization of condensation polymerizable monomers, monomer (2) is aspartic acid, and VMLogP (1) is the LogP of N-methyl-methylaspartic acid ester.

次に、LogPを求めるポリマーを構成する各モノマーのモル比率(Mol Ratio)(MR(i):iは前記と同じ)で前記VMLogP(i)を補正する(VMLogP(i)×MR(i))。尚、該ポリマーを構成していないモノマー(j)のMR(j)は0であり、ホモポリマーであればMR(i)は1である。Next, VMLogP(i) is corrected by the molar ratio (Mol Ratio) (MR(i): i is the same as above) of each monomer constituting the polymer for which LogP is to be calculated (VMLogP(i) x MR(i)). Note that MR(j) of monomer (j) that does not constitute the polymer is 0, and MR(i) is 1 if it is a homopolymer.

最後に、全モノマーの前記補正値を合計することで、LogPが求まる(下記式1)。 Finally, LogP is calculated by adding up the above correction values for all monomers (Equation 1 below).

(式1中、VMLogP(i)は、ポリマー繰り返し単位(i)の両端をメチル化した仮想モノマー単位(Virtual Monomer(VM))の25℃での“n-オクタノール-水分配係数”の計算値であり、MR(i)は、繰り返し単位(i)の“モル比率(Mol Ratio(MR)”)である。)
前記LogPの例としては、アクリル酸ホモポリマーは1.12、スチレンホモポリマーは4.09となる。
(In formula 1, VMLogP(i) is a calculated value of the "n-octanol-water partition coefficient" at 25°C of a virtual monomer unit (VM) in which both ends of a polymer repeating unit (i) are methylated, and MR(i) is the "molar ratio (MR)" of the repeating unit (i).)
Examples of the Log P include acrylic acid homopolymer having a value of 1.12 and styrene homopolymer having a value of 4.09.

このような水不溶性またはLogPが1.5以上の水に分散可能なポリマーである含窒素複素環を有する樹脂は、その使用時、吸水性樹脂の内部に浸透しにくい。そのため、吸水性樹脂内部においての、吸水性樹脂を構成する構成単位の官能基(特にはカルボキシル基)と、消臭に有効な官能基(含窒素複素環)との相互作用を極力抑えることができる。よって、吸水性樹脂表面近傍に消臭に有効な官能基(つまり、含窒素複素環)を残存でき、尿臭原因物質に対し高い吸着効果の発揮が可能となる。ここで、本願明細書において、「水不溶性」とは、25℃のイオン交換水に溶解する質量(溶解度)が1g以下(1質量%以下)を意味する。また、「溶解」とは、光を照射した時に浮遊物または沈殿物が目視で確認できない状態を意味する。含窒素複素環を有する樹脂のLogPは消臭効果の観点から、1.5以上が好ましく、より好ましくは2.0以上であり、さらに好ましくは3.0以上である。LogPの上限は例えば4.09未満である。水不溶性またはLogPが1.5以上の水に分散可能なポリマーであることは、すなわち、含窒素複素環を有する樹脂が粒子状であるということである。よって、本発明の一実施形態によれば、吸水性樹脂組成物において、前記含窒素複素環を有する樹脂の平均粒径が、10~250,000nmであることが好ましく、30~600nmであることがより好ましく、50~300nmであることがさらに好ましい。ここで含窒素複素環を有する樹脂の平均粒径の測定方法は、樹脂の特性に合わせ、適切な方法で測定できる。水性分散体に含まれる粒子であれば、動的光散乱法による粒度分布測定器(Particle Sizing Systems社製「NICOMP Model 380」)を用い、平均粒子径(体積平均粒子径)を測定できる。粉体状の粒子であれば、卓上走査電子顕微鏡(JEOL社製「JCM-6000」)を用い、50個計測することで、平均粒子径(体積平均粒子径)を算出できる。Such a resin having a nitrogen-containing heterocycle, which is a water-insoluble or water-dispersible polymer with a LogP of 1.5 or more, does not easily penetrate into the water-absorbent resin when used. Therefore, the interaction between the functional group (particularly the carboxyl group) of the constituent unit of the water-absorbent resin and the functional group (nitrogen-containing heterocycle) effective for deodorization inside the water-absorbent resin can be suppressed as much as possible. Therefore, the functional group (i.e., the nitrogen-containing heterocycle) effective for deodorization can remain near the surface of the water-absorbent resin, and a high adsorption effect can be exhibited against the substance causing the urine odor. Here, in this specification, "water-insoluble" means that the mass (solubility) dissolved in ion-exchanged water at 25°C is 1 g or less (1 mass% or less). In addition, "dissolved" means a state in which floating matter or precipitate cannot be visually confirmed when light is irradiated. From the viewpoint of deodorizing effect, the LogP of the resin having a nitrogen-containing heterocycle is preferably 1.5 or more, more preferably 2.0 or more, and even more preferably 3.0 or more. The upper limit of LogP is, for example, less than 4.09. A water-insoluble or water-dispersible polymer with LogP of 1.5 or more means that the resin having a nitrogen-containing heterocycle is particulate. Thus, according to one embodiment of the present invention, in the water-absorbent resin composition, the average particle size of the resin having a nitrogen-containing heterocycle is preferably 10 to 250,000 nm, more preferably 30 to 600 nm, and even more preferably 50 to 300 nm. Here, the average particle size of the resin having a nitrogen-containing heterocycle can be measured by an appropriate method according to the characteristics of the resin. If the particles are contained in an aqueous dispersion, the average particle size (volume average particle size) can be measured using a particle size distribution measuring instrument ("NICOMP Model 380" manufactured by Particle Sizing Systems) using a dynamic light scattering method. In the case of powder particles, the average particle size (volume average particle size) can be calculated by measuring 50 particles using a tabletop scanning electron microscope (JEOL's "JCM-6000").

本発明の一実施形態において、含窒素複素環を有する樹脂の添加量としては、尿臭抑制効果の観点から、前記吸水性樹脂100質量部に対し、0.01~30質量部が好ましく、より好ましくは0.05~10質量部であり、さらに好ましくは0.1~5質量部であり、よりさらに好ましくは0.2~3質量部であり、特に、0.3質量部以上、0.3質量部超、0.5質量部超、1.0質量部以上、1.0質量部超、1.5質量部以上、あるいは、2.0質量部以上がよい。かような好ましい添加量は、含窒素複素環が開環するような処理(例えば、高温での加熱)が施されない限り、吸水性樹脂組成物中における好ましい含有量と一致する。すなわち、本発明の一実施形態によれば、吸水性樹脂組成物中において、含窒素複素環を有する樹脂の含有量は、0.01~30質量部が好ましく、より好ましくは0.05~10質量部であり、さらに好ましくは0.1~5質量部であり、特に好ましくは0.2~3質量部であり、特に、0.3質量部以上、0.3質量部超、0.5質量部超、1.0質量部以上、1.0質量部超、1.5質量部以上、あるいは、2.0質量部以上がよい。In one embodiment of the present invention, the amount of the resin having a nitrogen-containing heterocycle is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, even more preferably 0.1 to 5 parts by mass, and even more preferably 0.2 to 3 parts by mass, relative to 100 parts by mass of the water-absorbent resin, from the viewpoint of the urine odor suppression effect, and is particularly preferably 0.3 parts by mass or more, more than 0.3 parts by mass, more than 0.5 parts by mass, more than 1.0 parts by mass, more than 1.5 parts by mass, or 2.0 parts by mass or more. Such a preferred amount is consistent with the preferred content in the water-absorbent resin composition, unless a treatment (e.g., heating at a high temperature) that opens the nitrogen-containing heterocycle is performed. That is, according to one embodiment of the present invention, in the water absorbent resin composition, the content of the resin having a nitrogen-containing heterocycle is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 10 parts by mass, further preferably 0.1 to 5 parts by mass, particularly preferably 0.2 to 3 parts by mass, and particularly preferably 0.3 parts by mass or more, more than 0.3 parts by mass, more than 0.5 parts by mass, 1.0 parts by mass or more, more than 1.0 parts by mass, 1.5 parts by mass or more, or 2.0 parts by mass or more.

本発明において、含窒素複素環という特定の構造が尿臭低減効果に寄与する。In the present invention, a specific structure, a nitrogen-containing heterocycle, contributes to the urine odor reducing effect.

したがって、単に含窒素複素環を有する樹脂を前記好ましい添加量にするだけでなく、上述したような加熱による含窒素複素環の開環や架橋反応を回避し、効果を発揮するのに必要な量の含窒素複素環を残存させることが必要である。ここで、本発明の吸水性樹脂組成物中に存在する含窒素複素環の含有量を「含窒素複素環の存在度」という指標で規定する。含窒素複素環の存在度とは、吸水性樹脂組成物のFT-IR測定で検出される、吸水性樹脂由来のピーク高さに対する、含窒素複素環に由来するピーク高さの比を意味する。含窒素複素環の存在度は、目開き150μmのJIS標準篩を通過させた吸水性樹脂組成物に対して、FT-IR(Thermo Fisher Scientific社製 Nicolet iS50)を用いて、25℃の環境下、ダイヤモンドATR法、波数範囲4000~650cm-1、スキャン回数64回、分解能4cm-1の条件で、1600~1700cm-1に検出される含窒素複素環由来のピーク高さと、1500~1600cm-1に検出される吸水性樹脂組成物のカルボン酸塩のC=O結合由来のピーク高さを測定し、ベースライン補正後に得られた測定値から以下の式により、含窒素複素環の存在度を算出する。 Therefore, it is necessary not only to add the resin having a nitrogen-containing heterocycle in the above-mentioned preferred amount, but also to avoid the above-mentioned ring-opening and crosslinking reaction of the nitrogen-containing heterocycle caused by heating and to leave a necessary amount of the nitrogen-containing heterocycle to exert the effect. Here, the content of the nitrogen-containing heterocycle present in the water-absorbent resin composition of the present invention is defined by an index called "abundance of nitrogen-containing heterocycle". The abundance of nitrogen-containing heterocycle means the ratio of the peak height derived from the nitrogen-containing heterocycle to the peak height derived from the water-absorbent resin detected by FT-IR measurement of the water-absorbent resin composition. The abundance of the nitrogen-containing heterocycle is measured by measuring the height of a peak derived from the nitrogen-containing heterocycle detected at 1600 to 1700 cm −1 and the height of a peak derived from a C═O bond of a carboxylate of the water absorbent resin composition detected at 1500 to 1600 cm −1 using FT-IR (Nicolet iS50 manufactured by Thermo Fisher Scientific) under conditions of a diamond ATR method, a wave number range of 4000 to 650 cm −1 , a scan count of 64, and a resolution of 4 cm −1 in an environment of 25° C., and calculating the abundance of the nitrogen-containing heterocycle from the measured value obtained after baseline correction according to the following formula.

含窒素複素環の存在度(%)=h1/h2×100
h1:吸水性樹脂組成物の含窒素複素環由来のピーク高さ
h2:吸水性樹脂組成物のカルボン酸塩のC=O結合由来のピーク高さ。
Abundance of nitrogen-containing heterocycles (%) = h1/h2 x 100
h1: peak height derived from a nitrogen-containing heterocycle of the water-absorbent resin composition. h2: peak height derived from a C═O bond of a carboxylate of the water-absorbent resin composition.

なお、存在度は同じサンプルについて5回の測定を行い、最大値と最小値を除いた3つの値の相加平均値を採用する。 The abundance level is calculated by measuring five times for the same sample and taking the arithmetic mean of the three values excluding the maximum and minimum values.

本発明の一実施形態において、含窒素複素環の存在度が、3.0%以上、4.0%以上、5.0%以上、6.0%以上、7.0%以上、8.0%以上、10.0%以上、12.0%以上、13.0%以上、14.0%以上、15.0%以上、20.0%以上、30.0%以上、40.0%以上、あるいは、42.0%以上がよい。含窒素複素環の存在度が3.0%未満であると、尿に起因する悪臭を十分に低減できない場合がある。本発明の一実施形態において、含窒素複素環の存在度が、200%以下、あるいは、150%以下である。含窒素複素環の存在度が200%を超えると、吸水性樹脂組成物の吸収倍率が低下したり、疎水性が高すぎて吸水速度が低下したりするなどの悪影響が出る可能性がある。よって、本発明の一実施形態において、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含み、前記スパン値が、1.10以下である、吸水性樹脂組成物であって、前記含窒素複素環を有する樹脂を含む場合は、前記含窒素複素環の存在度が3.0%以上である、吸水性樹脂組成物が提供される。In one embodiment of the present invention, the abundance of the nitrogen-containing heterocycle is preferably 3.0% or more, 4.0% or more, 5.0% or more, 6.0% or more, 7.0% or more, 8.0% or more, 10.0% or more, 12.0% or more, 13.0% or more, 14.0% or more, 15.0% or more, 20.0% or more, 30.0% or more, 40.0% or more, or 42.0% or more. If the abundance of the nitrogen-containing heterocycle is less than 3.0%, the odor caused by urine may not be sufficiently reduced. In one embodiment of the present invention, the abundance of the nitrogen-containing heterocycle is 200% or less, or 150% or less. If the abundance of the nitrogen-containing heterocycle exceeds 200%, adverse effects such as a decrease in the absorption capacity of the water-absorbent resin composition or a decrease in the water absorption rate due to excessive hydrophobicity may occur. Therefore, in one embodiment of the present invention, there is provided a water-absorbent resin composition comprising a water-absorbent resin and at least one component selected from the group consisting of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and having the span value of 1.10 or less, and in the case where the water-absorbent resin composition comprises a resin having a nitrogen-containing heterocycle, the abundance of the nitrogen-containing heterocycle is 3.0% or more.

本発明の一実施形態において、含窒素複素環の存在度が算出される、吸水性樹脂組成物における吸水性樹脂は、ポリアクリル酸(塩)系吸水性樹脂である。In one embodiment of the present invention, the water-absorbent resin in the water-absorbent resin composition for which the abundance of nitrogen-containing heterocycles is calculated is a polyacrylic acid (salt)-based water-absorbent resin.

本発明の一実施形態によれば、前記含窒素複素環が、ヘテロ原子を少なくとも1個以上有することが好ましく、2個以上有することがより好ましい。かかる実施形態であることによって、本発明の所期の効果をより効率的に奏することができる。本発明の一実施形態によれば、前記含窒素複素環が、ヘテロ原子を3個以下有することが好ましい。かかる実施形態であることによって、本発明の所期の効果をより効率的に奏することができる。なお、含窒素複素環は、窒素原子のみを含むことに制限されず、酸素原子や、硫黄原子を含むことを制限しない。According to one embodiment of the present invention, it is preferable that the nitrogen-containing heterocycle has at least one heteroatom, and more preferably two or more. This embodiment allows the intended effect of the present invention to be more efficiently achieved. According to one embodiment of the present invention, it is preferable that the nitrogen-containing heterocycle has three or less heteroatoms. This embodiment allows the intended effect of the present invention to be more efficiently achieved. The nitrogen-containing heterocycle is not limited to containing only nitrogen atoms, and is not limited to containing oxygen atoms or sulfur atoms.

本発明の一実施形態によれば、含窒素複素環としては、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、ピリダジン環等の6員環の含窒素複素環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、オキサゾリン環等の5員環の含窒素複素環、キノリン環、キノキサリン環、ナフチリジン環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環等の縮合含窒素複素環等が挙げられる。かかる実施形態であることによって、本発明の所期の効果をより効率的に奏することができる。According to one embodiment of the present invention, examples of the nitrogen-containing heterocycle include 6-membered nitrogen-containing heterocycles such as pyridine ring, pyrazine ring, triazine ring, pyrimidine ring, and pyridazine ring, 5-membered nitrogen-containing heterocycles such as imidazole ring, oxazole ring, thiazole ring, oxadiazole ring, thiadiazole ring, triazole ring, pyrazole ring, and oxazoline ring, and condensed nitrogen-containing heterocycles such as quinoline ring, quinoxaline ring, naphthyridine ring, benzimidazole ring, benzothiazole ring, and benzoxazole ring. By adopting such an embodiment, the intended effect of the present invention can be more efficiently achieved.

中でも、本発明の所期の効果をより効率的に奏するためには、オキサゾリン環、トリアジン環、ピリジン環が好ましく、オキサゾリン環、トリアジン環がより好ましい。Among these, in order to more efficiently achieve the intended effects of the present invention, an oxazoline ring, a triazine ring, and a pyridine ring are preferred, with an oxazoline ring and a triazine ring being more preferred.

よって、本発明の一実施形態によれば、含窒素複素環を有する樹脂がオキサゾリン基を有する重合体(オキサゾリン基含有重合体)である。このような、オキサゾリン基含有重合体において、オキサゾリン基量(オキサゾリン基含有重合体1g当たりのオキサゾリン基の数)が、好ましくは0.1mmol/g~10mmol/gであり、より好ましくは0.5mmol/g~8mmol/gである。Therefore, according to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a polymer having an oxazoline group (oxazoline group-containing polymer). In such an oxazoline group-containing polymer, the amount of oxazoline groups (the number of oxazoline groups per 1 g of the oxazoline group-containing polymer) is preferably 0.1 mmol/g to 10 mmol/g, and more preferably 0.5 mmol/g to 8 mmol/g.

本発明の一実施形態によれば、オキサゾリン基含有重合体は、オキサゾリン基含有単量体由来の構造単位を有する。According to one embodiment of the present invention, the oxazoline group-containing polymer has structural units derived from an oxazoline group-containing monomer.

本発明の一実施形態によれば、オキサゾリン基含有重合体は、オキサゾリン基含有単量体由来の構造単位とオキサゾリン基含有単量体以外のその他の単量体由来の構造単位とを有する。According to one embodiment of the present invention, the oxazoline group-containing polymer has structural units derived from an oxazoline group-containing monomer and structural units derived from a monomer other than the oxazoline group-containing monomer.

オキサゾリン基含有単量体としては、エチレン性不飽和炭化水素基とオキサゾリン基とを有するものであれば任意の適切な単量体を採用し得る。このようなオキサゾリン基含有単量体としては、例えば、2-ビニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-5,5-ジヒドロ-4H-1,3-オキサゾリン、2-イソプロペニル-2-オキサゾリン、4,4-ジメチル-2-イソプロペニル-2-オキサゾリンなどが挙げられ、好ましくは、2-イソプロペニル-2-オキサゾリン、4,4-ジメチル-2-イソプロペニル-2-オキサゾリンである。As the oxazoline group-containing monomer, any suitable monomer may be used as long as it has an ethylenically unsaturated hydrocarbon group and an oxazoline group. Examples of such oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-5,5-dihydro-4H-1,3-oxazoline, 2-isopropenyl-2-oxazoline, and 4,4-dimethyl-2-isopropenyl-2-oxazoline, and preferably 2-isopropenyl-2-oxazoline and 4,4-dimethyl-2-isopropenyl-2-oxazoline.

その他の単量体は、オキサゾリン基を有しない単量体であれば任意の適切な単量体を採用し得る。このようなその他の単量体としては、例えば、N-ビニルピロリドン等のN-ビニルラクタム系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸iso-ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-モノメチル(メタ)アクリルアミド、N-モノエチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のN置換または無置換の(メタ)アクリルアミド;スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエン、インデン、ビニルナフタレン、フェニルマレイミド、ビニルアニリン等のビニルアリール単量体;エチレン、プロピレン、ブタジエン、イソブチレン、オクテン等のアルケン;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニル;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル;ビニルエチレンカーボネートおよびその誘導体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリルアミド、ビニルピリジン、ビニルイミダゾールおよびこれらの塩またはこれらの4級化物等の不飽和アミン;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;などが挙げられる。これらの中でも、好ましくは、(メタ)アクリル酸エステル、ビニルアリール単量体、シアン化ビニル系単量体であり、より好ましくは、(メタ)アクリル酸エステルである。Any suitable monomer may be used as the other monomer, so long as it does not have an oxazoline group. Examples of such other monomers include N-vinyl lactam monomers such as N-vinylpyrrolidone; (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, iso-nonyl (meth)acrylate, dodecyl (meth)acrylate, and stearyl (meth)acrylate; N-substituted or unsubstituted (meth)acrylamides such as (meth)acrylamide, N-monomethyl (meth)acrylamide, N-monoethyl (meth)acrylamide, and N,N-dimethyl (meth)acrylamide; styrene, α-methylstyrene, diphenyl ether, and the like. Examples of the monomer include vinyl aryl monomers such as vinyl benzene, vinyl toluene, indene, vinyl naphthalene, phenylmaleimide, and vinyl aniline; alkenes such as ethylene, propylene, butadiene, isobutylene, and octene; vinyl carboxylates such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; vinyl ethylene carbonate and derivatives thereof; unsaturated amines such as N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylamide, vinyl pyridine, vinyl imidazole, and salts or quaternized products thereof; and vinyl cyanide monomers such as acrylonitrile and methacrylonitrile. Among these, preferred are (meth)acrylic acid esters, vinyl aryl monomers, and vinyl cyanide monomers, and more preferred are (meth)acrylic acid esters.

オキサゾリン基含有重合体においては、オキサゾリン基含有単量体由来の構造単位の割合が、全構造単位100モル%に対して、好ましくは15モル%~95モル%であり、より好ましくは20モル%~95モル%であり、より好ましくは30モル%~90モル%であり、さらに好ましくは40モル%~85モル%である。In the oxazoline group-containing polymer, the proportion of structural units derived from oxazoline group-containing monomers relative to 100 mol% of all structural units is preferably 15 mol% to 95 mol%, more preferably 20 mol% to 95 mol%, more preferably 30 mol% to 90 mol%, and even more preferably 40 mol% to 85 mol%.

本発明の一実施形態によれば、含窒素複素環を有する樹脂がアミノ系樹脂である。上記アミノ系樹脂としては、例えば、アミノ化合物とホルムアルデヒドとの縮合物が挙げられる。アミノ化合物としては、例えば、尿素、チオ尿素、多官能アミノ化合物等が挙げられる。なかでも、多官能アミノ化合物が好ましく用いられ、上述のとおり、トリアジン還構造を有する多官能アミノ化合物がより好ましく用いられる。トリアジン環構造を有する多官能アミノ化合物としては、例えば、メラミン;一般式(1)で表されるアミノ化合物;ベンゾグアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミン等のグアナミン化合物;等が挙げられる。これらの中でも、メラミン、ベンゾグアナミンが好ましい。アミノ化合物は、1種のみを用いてもよいし、2種以上を用いてもよい。According to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is an amino resin. Examples of the amino resin include a condensate of an amino compound and formaldehyde. Examples of the amino compound include urea, thiourea, and polyfunctional amino compounds. Among them, polyfunctional amino compounds are preferably used, and as described above, polyfunctional amino compounds having a triazine ring structure are more preferably used. Examples of polyfunctional amino compounds having a triazine ring structure include melamine; amino compounds represented by general formula (1); guanamine compounds such as benzoguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, and spiroguanamine; and the like. Among these, melamine and benzoguanamine are preferred. Only one type of amino compound may be used, or two or more types may be used.

一般式(1)中、Rは、同一または異なり、水素原子または置換基があってもよいアルキル基を表し、Rの少なくとも1つは置換基があってもよいアルキル基である。一般式(1)中、Rは、好ましくは、水素原子、ヒドロキシアルキル基である。 In the general formula (1), R 1 may be the same or different and represents a hydrogen atom or an alkyl group which may have a substituent, and at least one of R 1 is an alkyl group which may have a substituent. In the general formula (1), R 1 is preferably a hydrogen atom or a hydroxyalkyl group.

上記アミノ系樹脂粒子がアミノ系樹脂のみから形成される場合、該樹脂は、上記のアミノ化合物とホルムアルデヒドとを任意の適切な方法により反応(付加縮合反応)させて、得ることができる。アミノ系樹脂から形成される樹脂の製造方法としては、例えば、特開2000-256432号公報、特開2002-293854号公報、特開2002-293855号公報、特開2002-293856号公報、特開2002-293857号公報、特開2003-55422号公報、特開2003-82049号公報、特開2003-138023号公報、特開2003-147039号公報、特開2003-171432号公報、特開2003-176330号公報、特開2005-97575号公報、特開2007-186716号公報、特開2008-101040号公報等に記載の製造方法が挙げられる。具体的には、例えば、上記アミノ化合物(好ましくは、多官能アミノ化合物)とホルムアルデヒドを、好ましくは塩基性の水性媒体中で付加縮合反応させて縮合物オリゴマーを生成させ、該縮合物オリゴマーが溶解または分散する水性媒体にドデシルベンゼンスルホン酸や硫酸等の酸触媒を混合して硬化させることによって、架橋構造のアミノ系樹脂から形成される樹脂粒子を製造することができる。縮合物オリゴマーを生成させる段階、架橋構造のアミノ系樹脂粒子とする段階は、いずれも、50℃~100℃の温度で加熱された状態で行うことが好ましい。When the amino resin particles are formed only from an amino resin, the resin can be obtained by reacting the amino compound with formaldehyde by any suitable method (addition condensation reaction). Examples of methods for producing resins formed from amino resins include those described in JP-A-2000-256432, JP-A-2002-293854, JP-A-2002-293855, JP-A-2002-293856, JP-A-2002-293857, JP-A-2003-55422, JP-A-2003-82049, JP-A-2003-138023, JP-A-2003-147039, JP-A-2003-171432, JP-A-2003-176330, JP-A-2005-97575, JP-A-2007-186716, and JP-A-2008-101040. Specifically, for example, the above-mentioned amino compound (preferably a polyfunctional amino compound) and formaldehyde are subjected to an addition condensation reaction in a preferably basic aqueous medium to generate a condensate oligomer, and then an acid catalyst such as dodecylbenzenesulfonic acid or sulfuric acid is mixed into the aqueous medium in which the condensate oligomer is dissolved or dispersed, and cured to produce resin particles formed from an amino resin having a crosslinked structure. Both the step of generating the condensate oligomer and the step of forming the amino resin particles having a crosslinked structure are preferably carried out under a heated state at a temperature of 50°C to 100°C.

本発明の一実施形態によれば、含窒素複素環を有する樹脂が、メラミン、ホルムアルデヒド縮合物であり、以下の構成単位を含む。According to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a melamine-formaldehyde condensate and contains the following structural units:

本発明の一実施形態によれば、含窒素複素環を有する樹脂はピリジン環を繰り返し構成単位とするポリマーである。具体的には2-ビニルピリジンや4-ビニルピリジンを原料とするポリマー、あるいはこれらのメチル化4級塩のポリマーや4-アミノピリジン分岐ポリスチレン等がある。According to one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a polymer having a pyridine ring as a repeating structural unit. Specific examples include polymers made from 2-vinylpyridine or 4-vinylpyridine, polymers of methylated quaternary salts of these, and 4-aminopyridine-branched polystyrene.

本発明の一実施形態によれば、含窒素複素環を有する樹脂の重量平均分子量は5,000以上であることが好ましく、10,000以上であることがより好ましい。上限は適宜決定されるが、通常、1,000万以下であり、100万以下であることが好ましい。含窒素複素環を有する樹脂の重量平均分子量は、GPCにより測定される。According to one embodiment of the present invention, the weight average molecular weight of the resin having a nitrogen-containing heterocycle is preferably 5,000 or more, more preferably 10,000 or more. The upper limit is determined appropriately, but is usually 10 million or less, and preferably 1 million or less. The weight average molecular weight of the resin having a nitrogen-containing heterocycle is measured by GPC.

本発明の一実施形態によれば、含窒素複素環を有する樹脂は1種でも2種以上組み合わせて使用されてもよい。According to one embodiment of the present invention, one or more types of resins having nitrogen-containing heterocycles may be used in combination.

なお、含窒素複素環を有する樹脂は、市販品を購入することによって準備してもよい。 In addition, resins having nitrogen-containing heterocycles may be prepared by purchasing commercially available products.

本発明の一実施形態によれば、吸水性樹脂組成物が、前記吸水性樹脂と、前記成分とを結着する、バインダを含む。この技術的意義は以下のとおりであり、すなわち、吸水性樹脂組成物には、吸水性樹脂と;疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分と;の異なった材料が存在することになる。異なった材料が存在する場合、互いが、偏析する傾向にある。偏析が発生すると、安定した消臭効果が得られない場合がある。本発明の一実施形態において、前記バインダを含むことによって、吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とが結着されるため、これらが、吸水性樹脂組成物内で均等に分布し、安定した消臭効果が得られる。According to one embodiment of the present invention, the water-absorbent resin composition contains a binder that binds the water-absorbent resin and the components. The technical significance of this is as follows: in the water-absorbent resin composition, different materials are present: the water-absorbent resin; and at least one of the components of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle. When different materials are present, they tend to segregate from each other. If segregation occurs, a stable deodorizing effect may not be obtained. In one embodiment of the present invention, the inclusion of the binder binds the water-absorbent resin and at least one of the components of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle, so that they are evenly distributed in the water-absorbent resin composition, and a stable deodorizing effect is obtained.

本発明の一実施形態によれば、前記バインダが、ポリオールである。ポリオールとは、水酸基を2個以上有する化合物を意味し、例えば、プロピレングリコール、エチレングリコール、テトラメチレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。According to one embodiment of the present invention, the binder is a polyol. Polyol refers to a compound having two or more hydroxyl groups, such as propylene glycol, ethylene glycol, tetramethylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, and glycerin.

本発明の一実施形態によれば、バインダは、吸水性樹脂(ベースポリマー)の表面架橋に用いられる表面架橋剤に含まれてもよい。According to one embodiment of the present invention, the binder may be included in a surface cross-linking agent used for surface cross-linking of the water-absorbent resin (base polymer).

本発明の一実施形態によれば、前記表面架橋剤の少なくとも1種が、バインダとしての機能を兼ね備えてもよい。また、本発明の一実施形態によれば、前記バインダが、表面架橋された吸水性樹脂表面に残存している、表面架橋剤である。つまり、前記バインダは、表面架橋処理後に吸水性樹脂表面に残存している表面架橋剤でありうる。According to one embodiment of the present invention, at least one of the surface cross-linking agents may also function as a binder. Also, according to one embodiment of the present invention, the binder is a surface cross-linking agent remaining on the surface of the surface-cross-linked water-absorbent resin. In other words, the binder may be a surface cross-linking agent remaining on the surface of the water-absorbent resin after the surface cross-linking treatment.

本発明の一実施形態によれば、前記吸水性樹脂組成物中に含まれるバインダの量が、好ましくは0.1~10質量%であり、より好ましくは0.2~7質量%であり、さらに好ましくは0.3~5質量%である。バインダの量が好ましい添加量より少ない場合には、消臭効果の安定化が十分にできないおそれがある。また、バインダの量が好ましい添加量より多い場合には、吸水性樹脂の吸水倍率が低下するおそれがある。なお、前記吸水性樹脂組成物中に含まれるバインダの量は、例えば、生理食塩水等で抽出し、HPLC等の測定機器によって測定することができる。According to one embodiment of the present invention, the amount of binder contained in the water absorbent resin composition is preferably 0.1 to 10% by mass, more preferably 0.2 to 7% by mass, and even more preferably 0.3 to 5% by mass. If the amount of binder is less than the preferred amount, the deodorizing effect may not be sufficiently stabilized. If the amount of binder is more than the preferred amount, the water absorption capacity of the water absorbent resin may decrease. The amount of binder contained in the water absorbent resin composition may be measured, for example, by extracting with saline solution or the like and measuring with a measuring device such as HPLC.

本発明の一実施形態において吸水性樹脂組成物に含ませるバインダの添加方法としては特に制限はなく、上述のとおり、表面処理時に添加してもよいし、表面処理後の吸水性樹脂と、バインダとを混合してもよい。In one embodiment of the present invention, there is no particular limitation on the method of adding the binder to the water-absorbent resin composition. As described above, the binder may be added during the surface treatment, or the binder may be mixed with the water-absorbent resin after the surface treatment.

本発明の一実施形態において、バインダの分子量としては、好ましくは40~800であり、より好ましくは50~300であり、さらに好ましくは60~200である。なお、バインダの分子量は、ガスクロマトグラフ質量分析計(GC-MS)、液クロマトグラフ質量分析計(LC-MS)や、ゲル濾過クロマトグラフィー(GPC)等により適宜測定することができる。In one embodiment of the present invention, the molecular weight of the binder is preferably 40 to 800, more preferably 50 to 300, and even more preferably 60 to 200. The molecular weight of the binder can be appropriately measured using a gas chromatograph mass spectrometer (GC-MS), a liquid chromatograph mass spectrometer (LC-MS), gel permeation chromatography (GPC), or the like.

本発明の一実施形態において、(例えば、表面架橋されている)吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを混合する場合、十分なトルクをかけて吸水性樹脂と疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を均一かつ確実に混合することが好ましい。 In one embodiment of the present invention, when mixing a water-absorbent resin (e.g., surface-crosslinked) with at least one of the components of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, it is preferable to apply sufficient torque to uniformly and reliably mix the water-absorbent resin with at least one of the components of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle.

前記混合に使用する装置としては、例えば、攪拌型混合機、円筒型混合機、二重壁円錐型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型ロータリーデスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機等が好適である。攪拌型混合機を用いる場合には、その回転数は、5rpm~10000rpmが好ましく、10rpm~2000rpmがより好ましい。Suitable devices for use in the mixing include, for example, an agitator mixer, a cylindrical mixer, a double-walled conical mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a flow type rotary disk mixer, an airflow type mixer, a double-arm kneader, an internal mixer, a grinding kneader, a rotary mixer, and a screw extruder. When using an agitator mixer, the rotation speed is preferably 5 rpm to 10,000 rpm, and more preferably 10 rpm to 2,000 rpm.

[2-8]キレート剤の添加工程
本発明者らは、キレート剤を加えることで、相乗効果により、消臭効果が顕著に高まることも確認した。よって、本発明の一実施形態において、吸水性樹脂組成物は、キレート剤を含む。キレート剤の使用量は、吸水性樹脂100質量部に対して0~3質量部が好ましく、0.001~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。かような好ましい使用量は、吸水性樹脂組成物中における好ましい含有量と一致する。すなわち、本発明の一実施形態によれば、吸水性樹脂組成物中において、キレート剤の含有量は、吸水性樹脂100質量部に対して0~3質量部が好ましく、0.001~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。なお、これらは単量体や含水ゲル、乾燥重合体や粉末等に添加され、添加工程は重合工程以降に適宜決定されるが、重合後、さらには乾燥後、特に表面架橋後に添加することが好ましい。
[2-8] Addition step of chelating agent The present inventors also confirmed that the deodorizing effect is remarkably enhanced by the synergistic effect of adding a chelating agent. Therefore, in one embodiment of the present invention, the water-absorbent resin composition contains a chelating agent. The amount of the chelating agent used is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 part by mass, and particularly preferably 0.05 to 0.5 parts by mass, relative to 100 parts by mass of the water-absorbent resin. Such a preferred amount is consistent with the preferred content in the water-absorbent resin composition. That is, according to one embodiment of the present invention, the content of the chelating agent in the water-absorbent resin composition is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 part by mass, and particularly preferably 0.05 to 0.5 parts by mass, relative to 100 parts by mass of the water-absorbent resin. These are added to a monomer, a hydrous gel, a dried polymer, a powder, or the like, and the addition step is appropriately determined after the polymerization step, but it is preferable to add after polymerization, further after drying, and particularly after surface crosslinking.

使用できるキレート剤は、米国特許第6599989号、同第6469080号、欧州特許第2163302号等に例示のキレート剤、特に非高分子キレート剤、さらには有機リン系キレート剤、ジエチレントリアミン5酢酸またはその塩、エチレンジアミン4酢酸またはその塩等のアミノカルボン酸系キレート剤が使用できる。Chelating agents that can be used include those exemplified in U.S. Pat. Nos. 6,599,989 and 6,469,080, and European Patent No. 2,163,302, in particular non-polymeric chelating agents, as well as organophosphorus chelating agents, and aminocarboxylic acid chelating agents such as diethylenetriaminepentaacetic acid or a salt thereof, and ethylenediaminetetraacetic acid or a salt thereof.

[2-9]着色防止剤又は耐尿性向上剤の添加工程
一般的には、吸水性樹脂は着色や劣化しやすい傾向もあるため、本発明では着色防止や劣化防止のために、α-ヒドロキシカルボン酸(特に乳酸又はその塩)、無機又は有機還元剤(特に硫黄系無機還元剤)から選ばれる着色防止剤又は耐尿性(耐候性)向上剤をさらに含むことが好ましい。これらの使用量は吸水性樹脂100質量部に対して、固形分で0~3質量部が好ましく、0.001~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。かような好ましい使用量は、吸水性樹脂組成物中における好ましい含有量と一致する。すなわち、本発明の一実施形態によれば、吸水性樹脂組成物中において、着色防止剤又は耐尿性向上剤の含有量は、それぞれ独立して、吸水性樹脂100質量部に対して0~3質量部が好ましく、0.001~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。これらは単量体や含水ゲル、乾燥重合体や粉末等に添加され、添加工程は重合工程以降に適宜決定されるが、これらの中で還元剤は重合で消費されるため、重合後、さらには乾燥後に特に表面架橋後に添加することが好ましい。
[2-9] Step of adding coloring inhibitor or urine resistance improver Generally, since water absorbent resins tend to be easily colored or deteriorated, in the present invention, in order to prevent coloring or deterioration, it is preferable to further include a coloring inhibitor or a urine resistance (weather resistance) improver selected from α-hydroxycarboxylic acids (particularly lactic acid or a salt thereof), inorganic or organic reducing agents (particularly sulfur-based inorganic reducing agents). The amount of these used is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 parts by mass, and particularly preferably 0.05 to 0.5 parts by mass, based on 100 parts by mass of the water absorbent resin. Such a preferred amount of use corresponds to the preferred content in the water absorbent resin composition. That is, according to one embodiment of the present invention, in the water absorbent resin composition, the content of the coloring inhibitor or the urine resistance improver is preferably 0 to 3 parts by mass, more preferably 0.001 to 1 parts by mass, and particularly preferably 0.05 to 0.5 parts by mass, based on 100 parts by mass of the water absorbent resin, independently of each other. These are added to a monomer, a hydrogel, a dried polymer, a powder, or the like, and the addition step is appropriately determined after the polymerization step. Among these, since the reducing agent is consumed in the polymerization, it is preferable to add it after polymerization, further after drying, and particularly after surface crosslinking.

α-ヒドロキシカルボン酸は米国特許出願公開第2009/0312183号等に例示の林檎酸、琥珀酸、乳酸やその塩(特に一価塩)が例示できる。使用できる無機又は有機還元剤(特に硫黄系無機還元剤)は米国特許出願公開第2010/0062252号等に例示の硫黄系還元剤、特に亜硫酸塩又は亜硫酸水素塩等が例示される。Examples of α-hydroxycarboxylic acids include malic acid, succinic acid, lactic acid, and salts thereof (particularly monovalent salts) as exemplified in U.S. Patent Application Publication No. 2009/0312183. Examples of inorganic or organic reducing agents (particularly sulfur-based inorganic reducing agents) that can be used include sulfur-based reducing agents, particularly sulfites and hydrogen sulfites, as exemplified in U.S. Patent Application Publication No. 2010/0062252.

[2-10]抗菌剤の添加工程
本発明では、吸水性樹脂組成物が抗菌剤をさらに含んでいてもよい。尿に起因する悪臭は、微生物等が経時で増殖し、尿中の有機物を分解することで発生する腐敗臭・刺激臭が経時で増加する。抗菌剤をさらに含有することによって初期尿臭の抑制のみならず、微生物等の経時での増殖抑制による中~長期経過後の尿臭の抑制も達成することができる。
[2-10] Antibacterial Agent Addition Step In the present invention, the water absorbent resin composition may further contain an antibacterial agent. The bad odor caused by urine is generated by the proliferation of microorganisms and the like over time, and the putrid odor and irritating odor generated by the decomposition of organic matter in urine increases over time. By further containing an antibacterial agent, not only the initial urine odor can be suppressed, but also the urine odor after a medium to long period of time can be suppressed by suppressing the proliferation of microorganisms and the like over time.

吸水性樹脂と抗菌剤とを混合する手順は特に限定されず、例えば、表面架橋される前のベースポリマーに抗菌剤を添加してからベースポリマーを表面架橋してもよいが、抗菌剤の消臭効果を高めるためには、表面架橋された吸水性樹脂に抗菌剤を添加するのが好ましい。The procedure for mixing the water-absorbent resin and the antibacterial agent is not particularly limited. For example, the antibacterial agent may be added to the base polymer before it is surface-crosslinked, and then the base polymer may be surface-crosslinked. However, in order to enhance the deodorizing effect of the antibacterial agent, it is preferable to add the antibacterial agent to the surface-crosslinked water-absorbent resin.

抗菌剤とは、黄色ブドウ球菌、大腸菌、アンモニア産生菌などのような菌の増殖を抑制する効果を有するものである。抗菌剤は、Ag、Cu、Zn等の抗菌性金属を有効成分として無機担体に担持したり、有機化合物の塩または錯体として含有する無機系抗菌剤と、抗菌性金属を含有しない有機系抗菌剤に大別できる。本発明の実施形態において、微生物等の経時での増殖抑制の効果を有する任意の無機系抗菌剤または有機系抗菌剤を好ましく用いることができる。中でも、抗菌性金属による人体への悪影響懸念を払拭することができる点で、有機系抗菌剤がより好ましい。 An antibacterial agent is an agent that has the effect of suppressing the growth of bacteria such as Staphylococcus aureus, Escherichia coli, and ammonia-producing bacteria. Antibacterial agents can be broadly divided into inorganic antibacterial agents that contain antibacterial metals such as Ag, Cu, and Zn as active ingredients supported on an inorganic carrier or as salts or complexes of organic compounds, and organic antibacterial agents that do not contain antibacterial metals. In the embodiment of the present invention, any inorganic or organic antibacterial agent that has the effect of suppressing the growth of microorganisms over time can be preferably used. Among them, organic antibacterial agents are more preferable in that they can eliminate concerns about the adverse effects of antibacterial metals on the human body.

無機系抗菌剤としては、具体的には、ゼオライト、シリカゲル、ケイ酸カルシウム、粘土鉱物等のケイ酸塩類に抗菌性金属を担持したケイ酸塩系;リン酸ジルコニウム、リン酸カルシウム、リン酸アルミニウム、ヒドロキシアパタイト等のリン酸塩類に抗菌性金属を担持したリン酸塩系;抗菌性金属ナノ粒子等の単体金属;抗菌性金属のハロゲン化物、酸化物等の抗菌性金属化合物;有機化合物、ポリマー等の抗菌性金属塩または錯体等を例示することができる。 Specific examples of inorganic antibacterial agents include silicate-based agents in which antibacterial metals are supported on silicates such as zeolite, silica gel, calcium silicate, and clay minerals; phosphate-based agents in which antibacterial metals are supported on phosphates such as zirconium phosphate, calcium phosphate, aluminum phosphate, and hydroxyapatite; simple metals such as antibacterial metal nanoparticles; antibacterial metal compounds such as antibacterial metal halides and oxides; and antibacterial metal salts or complexes of organic compounds, polymers, etc.

よって、本発明の一実施形態において、無機系抗菌剤(ケイ酸塩類(例えばゼオライト等)に抗菌性金属(例えばAg))が担持されたもの)が吸水性樹脂組成物中に含まれない、あるいは、仮に含まれる場合、その含有割合は、10質量ppm未満、9質量ppm以下、7質量ppm以下、あるいは、5質量ppm以下がよい。Therefore, in one embodiment of the present invention, an inorganic antibacterial agent (an antibacterial metal (e.g., Ag) supported on a silicate (e.g., zeolite)) is not included in the water absorbent resin composition, or if it is included, the content is preferably less than 10 ppm by mass, 9 ppm by mass or less, 7 ppm by mass or less, or 5 ppm by mass or less.

有機系抗菌剤としては、具体的には、2-ブロモ-2-ニトロ-1,3-プロパンジオール、N-(2-ヒドロキシプロピル)-アミノメタノール等のアルコール系化合物;3-メチル-4-イソプロピルフェノール(イソプロピルメチルフェノール)、2-イソプロピル-5-メチルフェノール、o-フェニルフェノール、o-フェニルフェノールナトリウム、クロロキシレノール(4-クロロ-3、5-ジメチルフェノール)、p-クロロm-クレゾール、トリブロモフェノール、4-クロロ-2-フェニルフェノール等のフェノール系化合物;脂肪酸モノグリセライド、p-ヒドロキシ安息香酸エステル、ショ糖脂肪酸エステル等のエステル系化合物;2,4,4’-トリクロロ-2’-ヒドロキシジフェニールエーテル等のエーテル系化合物;2,4,5,6-テトラクロロイソフタロニトリル、1,2-ジブロモ-2,4-ジシアノブタン等のニトリル系化合物;塩素化イソシアヌール酸、αークロロナフタレン、ポリビニルピロリドンヨード等のハロゲン系抗菌剤;(2-ピリジルチオ-1-オキシド)、2.3.5.6-テトラクロロ-4(メチルスルフォニル)ピリジン等のピリジン・キノリン系抗菌剤;ヘキサヒドロ-1,3,5-トリス(2-ヒドロキシエチル)-S-トリアジン等のトリアジン系化合物;5-クロロ-2-メチル-4-イソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン、1、2-ベンゾチアゾロン等のイソチアゾロン系化合物;2-(4-チオシアノメチルチオ)ベンズイミダゾール、2-(4’-チアゾリル)ベンズイミダゾール、2-メトキシカルボニルアミノベンズイミダゾール等のイミダゾール・チアゾール系化合物;3,4,4-トリクロロカルバニリド、3-トリフルオロメチル-4,4’-ジクロルカルバニリド等のアニリド系化合物;ポリヘキサメチレンビグアニジン塩酸塩、ポリヘキサメチレンビグアニジングルコン酸塩、クロルヘキシジン塩酸塩、クロルヘキシジングルコン酸塩等のビグアナイド系化合物;ビス(ジメチルチオカーバモイル)ジスルフィド等のジスルフィド系化合物;ポリグルコサミン、キトサン、アミノグリコシドST-7等の糖質系化合物;ヒノキチオール等のトロポロン系抗菌剤;アルキルベンジルジメチルアンモニウム塩(塩化ベンザルコニウム等)、アルキルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムグルコン酸塩、セチルジメチルベンジルアンモニウムクロライド、オクタデシルアミン酢酸塩、3ー(トリメトキシシリル)プロピルジメチルオクタデシルアンモニウムクロライド、ポリ[ポリメチレン(ジメチルイミニオ)クロライド]、ポリ[オキシエチレン(ジメチルイミニオ)エチレン(ジメチルイミニオ)エチレンジクロライド]、等の第4級アンモニウム塩系化合物、アルキルジ(アミノエチル)グリシン、アルキルベタイン、脂肪族モノグリセライド等に代表される両性、アニオン性界面活性剤系化合物等を例示することができる。これらの中でも吸水性樹脂組成物への安定した抗菌性の付与という観点から、抗菌剤が水溶性、水分散性のものが特に好ましく用いられ、なかでもフェノール系化合物、第4級アンモニウム塩系化合物、ビグアナイド系化合物、両性、アニオン性界面活性剤系化合物が好ましく用いられる。 Specific examples of organic antibacterial agents include alcohol compounds such as 2-bromo-2-nitro-1,3-propanediol and N-(2-hydroxypropyl)-aminomethanol; phenol compounds such as 3-methyl-4-isopropylphenol (isopropylmethylphenol), 2-isopropyl-5-methylphenol, o-phenylphenol, sodium o-phenylphenol, chloroxylenol (4-chloro-3,5-dimethylphenol), p-chloro-m-cresol, tribromophenol, and 4-chloro-2-phenylphenol; ester compounds such as fatty acid monoglycerides, p-hydroxybenzoic acid esters, and sucrose fatty acid esters; and 2,4,4'-trichloro-2'-hydroxydiphenyl ether. ether-based compounds; nitrile-based compounds such as 2,4,5,6-tetrachloroisophthalonitrile and 1,2-dibromo-2,4-dicyanobutane; halogen-based antibacterial agents such as chlorinated isocyanuric acid, α-chloronaphthalene, and polyvinylpyrrolidone iodine; pyridine-quinoline-based antibacterial agents such as (2-pyridylthio-1-oxide) and 2.3.5.6-tetrachloro-4(methylsulfonyl)pyridine; triazine-based compounds such as hexahydro-1,3,5-tris(2-hydroxyethyl)-S-triazine; isothiazolone-based compounds such as 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, and 1,2-benzothiazolone. imidazole-thiazole compounds such as 2-(4-thiocyanomethylthio)benzimidazole, 2-(4'-thiazolyl)benzimidazole, and 2-methoxycarbonylaminobenzimidazole; anilide compounds such as 3,4,4-trichlorocarbanilide and 3-trifluoromethyl-4,4'-dichlorocarbanilide; biguanide compounds such as polyhexamethylene biguanidine hydrochloride, polyhexamethylene biguanidine gluconate, chlorhexidine hydrochloride, and chlorhexidine gluconate; disulfide compounds such as bis(dimethylthiocarbamoyl)disulfide; carbohydrate compounds such as polyglucosamine, chitosan, and aminoglycoside ST-7; tropolone antibacterial agents such as hinokitiol; alkylbenzyl Examples of the antibacterial agent include quaternary ammonium salt compounds such as dimethylammonium salts (benzalkonium chloride, etc.), alkyldimethylammonium chloride, didecyldimethylammonium chloride, didecyldimethylammonium gluconate, cetyldimethylbenzylammonium chloride, octadecylamine acetate, 3-(trimethoxysilyl)propyldimethyloctadecylammonium chloride, poly[polymethylene(dimethyliminio)chloride], poly[oxyethylene(dimethyliminio)ethylene(dimethyliminio)ethylenedichloride], and amphoteric and anionic surfactant compounds such as alkyldi(aminoethyl)glycine, alkylbetaine, and aliphatic monoglyceride. Among these, from the viewpoint of providing a stable antibacterial property to the water absorbent resin composition, antibacterial agents that are water-soluble or water-dispersible are particularly preferably used, and among these, phenolic compounds, quaternary ammonium salt compounds, biguanide compounds, and amphoteric and anionic surfactant compounds are preferably used.

本発明の実施形態において、前記吸水性樹脂に対する前記抗菌剤の添加量が、腐敗臭、刺激臭発生の抑制効果の観点から、0.001~5質量%であることが好ましく、より好ましくは0.01~4質量%、さらに好ましくは0.03~3質量%、特に好ましくは0.05~2質量%である。In an embodiment of the present invention, the amount of the antibacterial agent added to the water absorbent resin is preferably 0.001 to 5 mass%, more preferably 0.01 to 4 mass%, even more preferably 0.03 to 3 mass%, and particularly preferably 0.05 to 2 mass%, from the viewpoint of the effect of suppressing the generation of putrid odors and irritating odors.

[2-11] その他の工程
本発明においては、上述した工程以外に、造粒工程、整粒工程、微粉除去工程、微粉回収工程、微粉の再利用工程、その他の添加剤の添加工程、除鉄工程等を、必要に応じて実施することができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等から選択される少なくとも1種類の工程をさらに含んでいてもよい。
[2-11] Other Steps In the present invention, in addition to the above-mentioned steps, a granulation step, a sizing step, a fine powder removal step, a fine powder recovery step, a fine powder reuse step, a step of adding other additives, an iron removal step, etc. may be carried out as necessary. In addition, at least one step selected from a transportation step, a storage step, a packaging step, a keeping step, etc. may be further included.

なお、前記整粒工程には、表面架橋工程以降で微粉を分級して除去する工程や、吸水性樹脂が凝集して所望の大きさを超えた場合に分級、粉砕を行う工程を含む。また、前記微粉の再利用工程は微粉をそのまま、または造粒工程で大きな含水ゲルにして、吸水性樹脂の製造工程の何れかの工程で原料である含水ゲル等に添加する工程を含む。The granulation process includes a process of classifying and removing fine powder after the surface cross-linking process, and a process of classifying and pulverizing the water-absorbent resin when the resin aggregates and exceeds a desired size. The fine powder recycling process includes a process of adding the fine powder as it is or to the water-containing gel, which is a raw material, in any step of the water-absorbent resin manufacturing process, after making the fine powder into a large hydrous gel in a granulation process.

また、前記着色防止剤又は耐尿性向上剤の添加工程では、吸水剤に様々な機能を付与させるために、酸化剤、金属石鹸等の有機粉末、パルプや熱可塑性繊維等から選ばれるその他の添加剤の1つ以上を、前記着色防止剤又は耐尿性向上剤と共に、或いは着色防止剤又は耐尿性向上剤と変えて添加することもできる。またこれらその他の添加剤は、前記表面架橋剤と同時にまたは別途、混合することができる。すなわち本発明の吸水性樹脂組成物は、こうしたその他の添加剤も含有し得る。In addition, in the step of adding the coloring inhibitor or urine resistance improver, in order to impart various functions to the water absorbent, one or more other additives selected from an oxidizing agent, an organic powder such as a metal soap, pulp, a thermoplastic fiber, etc. can be added together with the coloring inhibitor or urine resistance improver, or instead of the coloring inhibitor or urine resistance improver. These other additives can be mixed simultaneously with or separately from the surface crosslinking agent. That is, the water absorbent resin composition of the present invention can also contain such other additives.

本発明の一実施形態においては、吸水性樹脂組成物は、フェノール性化合物を重合する機能を有する材料を含まなくてもよい。In one embodiment of the present invention, the water-absorbent resin composition may not contain a material having the function of polymerizing a phenolic compound.

本発明の一実施形態において、吸水性樹脂組成物が、天然消臭剤成分(特に、植物成分)を含まなくてもよい。In one embodiment of the present invention, the water-absorbent resin composition may not contain natural deodorant components (particularly, plant components).

[3] 吸水性樹脂組成物の特性
[3-1] スパン値
本発明の一実施形態において、吸水性樹脂組成物は、そのスパン値が、1.10以下である。スパン値が1.10を超えると本発明の所期の効果を達成することができない。本発明の実施形態によれば、スパン値が0.40以上である。かかる実施形態によれば、本発明の所期の効果を効率的に奏することができる。本発明の実施形態によれば、0.40~1.10であることが好ましく、0.45~1.05であることがより好ましく、0.50~1.00であることがさらに好ましい。スパン値を特定値以下に調整して、特に、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分と組み合わせることによって、所期の消臭効果が得られるメカニズムは定かではなく、消臭性とは一見すると全く関係ない構成が、課題解決に寄与する驚くべき結果であった。
[3] Characteristics of the water-absorbent resin composition [3-1] Span value In one embodiment of the present invention, the water-absorbent resin composition has a span value of 1.10 or less. If the span value exceeds 1.10, the desired effect of the present invention cannot be achieved. According to an embodiment of the present invention, the span value is 0.40 or more. According to such an embodiment, the desired effect of the present invention can be efficiently achieved. According to an embodiment of the present invention, the span value is preferably 0.40 to 1.10, more preferably 0.45 to 1.05, and even more preferably 0.50 to 1.00. The mechanism by which the desired deodorizing effect is obtained by adjusting the span value to a specific value or less and combining it with at least one of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle is not clear, and the configuration, which at first glance seems completely unrelated to deodorizing properties, was a surprising result that contributed to solving the problem.

[3-2] 吸水性樹脂組成物のその他の特性
本発明の一実施形態において、吸水性樹脂は、さらに以下に示す特性を備えているのが好ましい。
[3-2] Other Properties of the Water-Absorbent Resin Composition In one embodiment of the present invention, the water-absorbent resin preferably further has the following properties.

(3-2-1)質量平均粒子径D(50%)
本発明の一実施形態において、吸水性樹脂組成物の質量平均粒子径D(50%)は、300μm以上が好ましく、305μm以上がより好ましく、310μm以上がさらに好ましく、315μm以上が特に好ましい。また、600μm以下が好ましく、550μm以下がより好ましく、500μm以下がさらに好ましく、450μm以下が特に好ましい。当該質量平均粒子径D(50%)の範囲としては、上記上下限値から任意に組み合わせた範囲が適用される。
(3-2-1) Mass average particle diameter D (50%)
In one embodiment of the present invention, the mass average particle diameter D(50%) of the water absorbent resin composition is preferably 300 μm or more, more preferably 305 μm or more, even more preferably 310 μm or more, and particularly preferably 315 μm or more. Also, it is preferably 600 μm or less, more preferably 550 μm or less, even more preferably 500 μm or less, and particularly preferably 450 μm or less. The range of the mass average particle diameter D(50%) is any combination of the above upper and lower limits.

吸水性樹脂の質量平均粒子径D(50%)を前記範囲内とすることで、後述する本発明の一実施形態において、吸水性組成物の、無加圧下吸収倍率(CRC)や加圧下吸収倍率(AAP)をバランスよく制御することができる。つまり、前記範囲内とすることで、無加圧下吸収倍率(CRC)や加圧下吸収倍率(AAP)を高めることができ、吸水性樹脂の粒子の粗さを抑制し使い捨てオムツや生理用ナプキン等の吸収性物品に用いたときに、肌触りや装着感を向上することができる。By setting the mass average particle diameter D (50%) of the water-absorbent resin within the above range, the absorbency without load (CRC) and absorbency under load (AAP) of the water-absorbent composition can be controlled in a well-balanced manner in one embodiment of the present invention described later. In other words, by setting the mass average particle diameter D (50%) within the above range, the absorbency without load (CRC) and absorbency under load (AAP) can be increased, and the coarseness of the particles of the water-absorbent resin can be suppressed, thereby improving the feel on the skin and the fit when used in absorbent articles such as disposable diapers and sanitary napkins.

(3-2-2)CRC(無加圧下吸収倍率)
本発明の一実施形態において、吸水性樹脂組成物のCRC(遠心分離機保持容量)は、通常5g/g以上であり、好ましくは20g/g以上、より好ましくは24g/g以上、さらに好ましくは30g/g以上である。上限値については特に限定されず高値ほど好ましいが、他の物性とのバランスの観点から、好ましくは70g/g以下、より好ましくは50g/g以下、さらに好ましくは45g/g以下である。したがって、上記CRC(遠心分離機保持容量)の代表的な範囲としては、上述した上限値及び下限値の範囲内で適宜選択することができる。例えば、5~70g/g、20~50g/g、24~45g/g等、任意の範囲を選択することができる。
(3-2-2) CRC (absorbency without load)
In one embodiment of the present invention, the CRC (centrifuge retention capacity) of the water absorbent resin composition is usually 5 g/g or more, preferably 20 g/g or more, more preferably 24 g/g or more, and even more preferably 30 g/g or more. The upper limit is not particularly limited and the higher the value, the more preferable it is. However, from the viewpoint of the balance with other physical properties, it is preferably 70 g/g or less, more preferably 50 g/g or less, and even more preferably 45 g/g or less. Therefore, the representative range of the CRC (centrifuge retention capacity) can be appropriately selected within the range of the above-mentioned upper and lower limits. For example, any range such as 5 to 70 g/g, 20 to 50 g/g, or 24 to 45 g/g can be selected.

上記CRCが5g/g未満の場合、吸水性樹脂組成物の吸水量が小さく、紙オムツ等の吸収性物品の吸収体として適さない。また、上記CRCが70g/gを超える場合、尿や血液等の体液等を吸収する速度が低下するため、高吸水速度タイプの紙オムツ等への使用に適さない。なお、CRCは、内部架橋剤や表面架橋剤等で制御することができる。If the CRC is less than 5 g/g, the absorbency of the water-absorbing resin composition is low and the composition is not suitable for use as an absorbent for absorbent articles such as paper diapers. If the CRC is more than 70 g/g, the rate at which the composition absorbs body fluids such as urine and blood decreases, making the composition unsuitable for use in paper diapers with high water absorption rates. The CRC can be controlled by an internal crosslinking agent, a surface crosslinking agent, or the like.

(3-2-3)AAP(加圧下吸水倍率)
本発明の一実施形態において、吸水性樹脂組成物のAAP(加圧下吸水倍率)は、好ましくは5g/g以上、より好ましくは8g/g以上、さらに好ましくは10g/g以上、よりさらに好ましくは12g/g以上であり、好ましくは14g/g以上であり、よりさらに好ましくは18g/g以上であり、よりさらに好ましくは22g/g以上である。上限値については特に限定されないが、好ましくは30g/g以下である。
(3-2-3) AAP (water absorption capacity under pressure)
In one embodiment of the present invention, the AAP (absorption capacity under pressure) of the water absorbent resin composition is preferably 5 g/g or more, more preferably 8 g/g or more, even more preferably 10 g/g or more, still more preferably 12 g/g or more, preferably 14 g/g or more, still more preferably 18 g/g or more, and still more preferably 22 g/g or more. The upper limit is not particularly limited, but is preferably 30 g/g or less.

上記AAPが5g/g未満の場合、紙オムツ等で実際に使用される際、吸収体に圧力が加わった状態での吸収量が低下するため、紙オムツ等の吸収性物品の吸収体として適さない。なお、AAPは、粒度や表面架橋剤等で制御することができる。If the AAP is less than 5 g/g, the absorbency decreases when pressure is applied to the absorbent when it is actually used in disposable diapers, etc., and the absorbent is not suitable for use as an absorbent in absorbent articles such as disposable diapers. The AAP can be controlled by particle size, surface cross-linking agents, etc.

(3-2-4)接触角
本発明の一実施形態において、吸水性樹脂組成物の接触角が35°以上であることが好ましく、40°以上であることがより好ましく、45°以上であることがさらに好ましいく、50°以上、54°以上、55°以上、56°以上あるいは、100°超もまたよりさらに好ましい。
(3-2-4) Contact angle In one embodiment of the present invention, the contact angle of the water absorbent resin composition is preferably 35° or more, more preferably 40° or more, further preferably 45° or more, and even more preferably 50° or more, 54° or more, 55° or more, 56° or more, or even more preferably more than 100°.

接触角が、かような下限を有することによって、吸水性樹脂による尿等の吸収が遅くなる。そうすると吸収体や吸収性物品に適用した時に尿等の拡散性が向上する。そのため尿等の吸水性樹脂に触れる面積が多くなり消臭剤の有効面積の活用が図れる。さらに尿戻りも少なくなる効果が期待できる。 When the contact angle has such a lower limit, the absorption of urine, etc. by the absorbent resin slows down. This improves the diffusibility of urine, etc. when applied to an absorbent body or absorbent article. This increases the area that comes into contact with the absorbent resin, etc., and allows for the effective use of the deodorant area. Furthermore, it is expected that urine backflow will be reduced.

本発明の一実施形態において、吸水性樹脂組成物の接触角が、120°以下であることが好ましく、接触角が、110°以下であることがより好ましい。かような上限を有することによって、吸水性樹脂による尿等の吸収が過度に遅くならないため、吸収体や吸収性物品に適用した時に尿等が漏れることを防止できる。In one embodiment of the present invention, the contact angle of the water-absorbent resin composition is preferably 120° or less, and more preferably 110° or less. By having such an upper limit, the absorption of urine, etc. by the water-absorbent resin is not excessively slowed down, so that leakage of urine, etc. can be prevented when applied to an absorbent body or absorbent article.

(特に好ましい実施形態の組み合わせ)
本発明において説明された実施形態(形態)はいずれの組み合わせも開示されているものとみなされるが(つまり適法な補正の根拠となるが)、特に好ましい実施形態あるいはその組み合わせを説明する。
(Combination of Particularly Preferred Embodiments)
Although any combination of the embodiments (configurations) described in the present invention is considered to be disclosed (i.e., subject to legal amendment), specifically preferred embodiments or combinations thereof are described.

本発明の一実施形態において、疎水性多孔質ポリマー吸着剤が、スチレン系吸着剤である。In one embodiment of the present invention, the hydrophobic porous polymer adsorbent is a styrene-based adsorbent.

本発明の一実施形態において、前記含窒素複素環を有する樹脂が、水不溶性またはLogPが1.5以上の水に分散可能なポリマーである。In one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a water-insoluble or water-dispersible polymer having a LogP of 1.5 or more.

本発明の一実施形態において、前記含窒素複素環を有する樹脂の添加量が、前記吸水性樹100質量部に対し、0.3質量部超、0.5質量部超、1.0質量部超、1.5質量部以上、あるいは、2.0質量部以上である。In one embodiment of the present invention, the amount of the resin having a nitrogen-containing heterocycle added is more than 0.3 parts by mass, more than 0.5 parts by mass, more than 1.0 parts by mass, 1.5 parts by mass or more, or 2.0 parts by mass or more per 100 parts by mass of the absorbent resin.

本発明の一実施形態によれば、前記含窒素複素環に、ヘテロ原子が2個含まれる。According to one embodiment of the present invention, the nitrogen-containing heterocycle contains two heteroatoms.

本発明の一実施形態において、前記含窒素複素環を有する樹脂が水不溶性またはLogPが1.5以上の水に分散可能なポリマーであり、かつ、含窒素複素環を有する樹脂の添加量が、前記吸水性樹脂100質量部に対し、0.3質量部超、0.5質量部超、1.0質量部超、1.5質量部以上、あるいは、2.0質量部以上である。さらに前記含窒素複素環に、ヘテロ原子が2個含まれる。In one embodiment of the present invention, the resin having a nitrogen-containing heterocycle is a water-insoluble or water-dispersible polymer having a LogP of 1.5 or more, and the amount of the resin having a nitrogen-containing heterocycle added is more than 0.3 parts by mass, more than 0.5 parts by mass, more than 1.0 parts by mass, 1.5 parts by mass or more, or 2.0 parts by mass or more, relative to 100 parts by mass of the water absorbent resin. Furthermore, the nitrogen-containing heterocycle contains two heteroatoms.

本発明の一実施形態において、吸水性樹脂組成物が、前記吸水性樹脂と、前記疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを結着する、バインダを含む。In one embodiment of the present invention, the water-absorbent resin composition includes a binder that binds the water-absorbent resin with at least one of the components of the hydrophobic porous polymer adsorbent and the resin having a nitrogen-containing heterocycle.

本発明の一実施形態において、吸水性樹脂組成物が、キレート剤を含む。In one embodiment of the present invention, the water-absorbent resin composition contains a chelating agent.

本発明の一実施形態において、吸水性樹脂組成物の接触角が、50°以上、55°以上、あるいは、100°超である。In one embodiment of the present invention, the contact angle of the water-absorbent resin composition is 50° or more, 55° or more, or greater than 100°.

本発明の一実施形態によれば、吸水性樹脂1gあたりの疎水性多孔質ポリマー吸着剤の総比表面積としては、2.5m超、3.0m超、あるいは、3.5m超である。 According to one embodiment of the present invention, the total specific surface area of the hydrophobic porous polymer adsorbent per gram of water absorbent resin is greater than 2.5 m2 , greater than 3.0 m2 , or greater than 3.5 m2 .

本発明の一実施形態において、含窒素複素環の存在度が、7.0%以上、14.0%以上、あるいは、42.0%以上である。In one embodiment of the present invention, the abundance of nitrogen-containing heterocycles is 7.0% or more, 14.0% or more, or 42.0% or more.

[4] 吸水性樹脂組成物の用途(吸収体、吸収層)
本発明に係る吸水性樹脂組成物は、主に使い捨てオムツや生理用ナプキン等の吸収性物品の吸収体(吸収層)として使用されることが好ましく、吸収性物品1枚当たりの使用量が多い、吸収性物品の吸収体(吸収層)として使用されることがより好ましい。よって、本発明の一実施形態において、吸水性樹脂組成物と、親水性繊維とを含む、吸収体が提供される。
[4] Uses of the water-absorbing resin composition (absorbent material, absorbent layer)
The water-absorbent resin composition according to the present invention is preferably used as an absorbent body (absorbent layer) of absorbent articles such as disposable diapers and sanitary napkins, and more preferably used as an absorbent body (absorbent layer) of absorbent articles in which a large amount is used per absorbent article. Thus, in one embodiment of the present invention, an absorbent body is provided that includes the water-absorbent resin composition and hydrophilic fibers.

前記吸収体は、粒子状吸水剤をシート状や繊維状、筒状などに成形したものを意味し、好ましくはシート状に成形されて吸収層となる。本発明に係る吸水性樹脂組成物の他に、パルプ繊維等の吸収性材料や接着剤や不織布などを成形に併用することもできる。この場合、吸収体(吸収層)中の吸水剤の量(以下、「コア濃度」と表記する)は、20~100質量%の範囲であることが好ましく、さらに好ましくは30~90質量%の範囲、より好ましくは40~80質量%の範囲である。コア濃度が20質量%未満の場合は、吸水性樹脂組成物の使用量が少なく、例えば、オムツ全体への消臭性能の付与が十分に行われない場合があり、好ましくない。The absorbent refers to a particulate water-absorbing agent formed into a sheet, fiber, or cylinder, and is preferably formed into a sheet to form an absorbent layer. In addition to the water-absorbing resin composition of the present invention, absorbent materials such as pulp fibers, adhesives, nonwoven fabrics, etc. can also be used in combination for molding. In this case, the amount of water-absorbing agent in the absorbent (absorbent layer) (hereinafter referred to as "core concentration") is preferably in the range of 20 to 100% by mass, more preferably in the range of 30 to 90% by mass, and more preferably in the range of 40 to 80% by mass. If the core concentration is less than 20% by mass, the amount of the water-absorbing resin composition used is small, and for example, the deodorizing performance may not be sufficiently imparted to the entire diaper, which is not preferable.

本発明にかかる吸収体を吸水性樹脂組成物と親水性繊維とから製造する場合、その製造方法は特に限定されないが、例えば、吸水性樹脂組成物と親水性繊維とを、上述のコア濃度となる割合でミキサー等の混合機を用いて乾式混合し、得られた混合物を例えば空気抄造などによってウェブ状に成形した後、必要により圧縮成形して製造する方法が挙げられる。かかる吸収体は、密度0.001~0.50g/cc、坪量0.01~0.20g/cmの範囲に圧縮成形されることが好ましい。 When the absorbent according to the present invention is produced from the water-absorbent resin composition and the hydrophilic fibers, the production method is not particularly limited, but for example, the water-absorbent resin composition and the hydrophilic fibers are dry-mixed using a mixer or other mixer at a ratio that results in the above-mentioned core concentration, and the resulting mixture is formed into a web shape by, for example, air papermaking, and then compression molded as necessary. Such an absorbent is preferably compression molded to have a density in the range of 0.001 to 0.50 g/cc and a basis weight in the range of 0.01 to 0.20 g/ cm2 .

[5] 吸収性物品
本発明に係る吸収性物品は、前記吸収体(吸収層)を含み、通常、液透過性を有する表面シートおよび液不透過性を有する背面シートを備える。吸収性物品として、使い捨てオムツや生理用ナプキン等が挙げられる。よって、本発明の一実施形態において、吸収体と、液透過性を有する表面シート、液不透過性を有する背面シートとを備える、吸収性物品が提供される。
[5] Absorbent article The absorbent article according to the present invention includes the absorbent body (absorbent layer) and usually includes a liquid-permeable top sheet and a liquid-impermeable back sheet. Examples of absorbent articles include disposable diapers and sanitary napkins. Thus, in one embodiment of the present invention, an absorbent article is provided that includes an absorbent body, a liquid-permeable top sheet, and a liquid-impermeable back sheet.

吸収性物品が例えば使い捨てオムツである場合には、装着したときに人の肌に触れる側に位置する液透過性のトップシートと、装着したときに外側に位置する液不透過性のバックシートとの間に、本発明の一実施形態において、吸水剤を含む吸収体を挟持することにより、当該使い捨てオムツが作製される。なお、使い捨てオムツには、装着後の使い捨てオムツを固定するための粘着テープ等の、当業者にとって公知の部材がさらに設けられている。When the absorbent article is, for example, a disposable diaper, in one embodiment of the present invention, the disposable diaper is produced by sandwiching an absorbent body containing a water-absorbing agent between a liquid-permeable top sheet that is located on the side that comes into contact with the skin when worn, and a liquid-impermeable back sheet that is located on the outside when worn. The disposable diaper is further provided with members known to those skilled in the art, such as an adhesive tape for fixing the disposable diaper after wearing.

本発明に係る吸収性物品は、特定の吸水性樹脂組成物を含むため、従来よりも優れた消臭能を有する、新規な吸水性樹脂組成物を目的とする。The absorbent article of the present invention contains a specific water-absorbent resin composition, and therefore aims to be a novel water-absorbent resin composition that has better deodorizing capabilities than conventional compositions.

なお、本発明に係る吸水性樹脂組成物は、前記使い捨てオムツや生理用ナプキン以外に、ペット尿吸収剤、携帯トイレの尿ゲル化剤等の用途にも、好適に利用することができる。さらに詳しくは、本発明は、紙おむつ、失禁パッド等の衛生材料を用いた場合に、優れた消臭性能、特に尿に起因する悪臭に対する優れた消臭性能を示す、吸水性樹脂組成物、吸収体、および吸収性物品に関する。The water-absorbent resin composition according to the present invention can be suitably used not only for the disposable diapers and sanitary napkins, but also for applications such as pet urine absorbents and urine gelling agents for portable toilets. More specifically, the present invention relates to a water-absorbent resin composition, absorbent body, and absorbent article that exhibit excellent deodorizing performance, particularly excellent deodorizing performance against malodors caused by urine, when used in sanitary materials such as paper diapers and incontinence pads.

以下、実施例および比較例によって本発明をより具体的に説明するが、本発明はこれら実施例および比較例に限定して解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も本発明の範囲に含まれる。なお、実施例および比較例、並びに吸水剤の諸物性の測定で使用される電気機器は、特に注釈の無い限り、200Vまたは100V/60Hzの電源を使用している。吸水剤の諸物性は、特に注釈の無い限り、室温(20℃~25℃)、相対湿度50±5%RHの条件下で測定した。また、便宜上、「リットル」を「l」または「L」、「質量%」を「wt%」と表記することがある。The present invention will be described in more detail below with reference to examples and comparative examples. However, the present invention is not limited to these examples and comparative examples, and examples obtained by appropriately combining the technical means disclosed in each example are also included in the scope of the present invention. Unless otherwise noted, the electrical equipment used in the examples and comparative examples, as well as for measuring the various physical properties of the water absorbent, uses a power source of 200V or 100V/60Hz. Unless otherwise noted, the various physical properties of the water absorbent were measured under conditions of room temperature (20°C to 25°C) and a relative humidity of 50±5% RH. For convenience, "liter" may be expressed as "l" or "L," and "mass %" as "wt%."

[吸水性樹脂組成物の物性]
以下、本発明に係る吸水性樹脂組成物の諸物性の測定方法に関して説明する。
[Physical Properties of Water-Absorbent Resin Composition]
Hereinafter, methods for measuring various physical properties of the water-absorbing resin composition according to the present invention will be described.

(a)スパン値
吸水性樹脂組成物のスパン値は、EDANA法WSP220.2の粒度分析法に準拠し、使用する篩を上から、目開き850μm、710μm、600μm、500μm、300μm、150μm、45μmの順に組み合わせて使用し、以下の式によりスパン値を求めた。
(a) Span Value The span value of the water absorbent resin composition was determined in accordance with the particle size analysis method of EDANA method WSP220.2 by using sieves with openings of 850 μm, 710 μm, 600 μm, 500 μm, 300 μm, 150 μm, and 45 μm in order from the top, and by the following formula.

D(90%)は、粒子径の累積粒径分布において、最小径からの累積が90%となる粒子径(単位:μm)
D(10%)は、粒子径の累積粒径分布において、最小径からの累積が10%となる粒子径(単位:μm)
D(50%)は、粒子径の累積粒径分布において、最小径からの累積が50%となる粒子径(単位:μm)
ここで、D(90%)、D(10%)、D(50%)は、質量基準で累積した値である。
D(90%) is the particle size at which the cumulative particle size distribution from the minimum diameter is 90% (unit: μm)
D(10%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 10%.
D(50%) is the particle size at which the cumulative particle size distribution from the minimum diameter is 50% (unit: μm)
Here, D(90%), D(10%), and D(50%) are cumulative values based on mass.

スパン値は上述のとおり、粉砕、分級、造粒等を適宜組み合わせることによって所望のスパン値となるように設定することができる。As mentioned above, the span value can be set to the desired span value by appropriately combining grinding, classification, granulation, etc.

(b)質量平均粒子径D(50%)
吸水性樹脂組成物の質量平均粒子径D(50%)は、EDANA法WSP220.2の粒度分析法に準拠し、使用する篩を上から、目開き850μm、710μm、600μm、500μm、300μm、150μm、45μmの順に組み合わせて使用して測定した。
(b) Mass average particle diameter D (50%)
The mass average particle diameter D (50%) of the water absorbent resin composition was measured in accordance with the particle size analysis method of EDANA method WSP220.2 by using a combination of sieves with openings of 850 μm, 710 μm, 600 μm, 500 μm, 300 μm, 150 μm, and 45 μm in order from the top.

(c)無加圧下吸収倍率(CRC)
吸水性樹脂および吸水性樹脂組成物のCRCは、EDANA法WSP241.3(10)に準拠して測定した。
(c) Absorption capacity without load (CRC)
The CRC of the water-absorbent resin and the water-absorbent resin composition was measured in accordance with EDANA method WSP241.3(10).

(d)加圧下吸収倍率(AAP)
吸水性樹脂および吸水性樹脂組成物のAAPは、EDANA法WSP242.3(10)に準拠して測定した。なお、荷重条件のみ4.83kPaに変更して測定した。
(d) Absorption Capacity Under Pressure (AAP)
The AAP of the water-absorbent resin and the water-absorbent resin composition was measured in accordance with EDANA method WSP242.3(10), except that the load condition was changed to 4.83 kPa.

(e)消臭性能(消臭試験)
複数の成人より集めた人尿50mlを蓋付きの250mlのポリプロピレンカップに加え、そこに後述する実施例または比較例で得られた吸水性樹脂(または吸水性樹脂組成物)2.0gを添加することにより膨潤ゲルを形成させた。人尿は排泄後2時間以内のものを用いた。この容器に蓋をし、膨潤ゲルを37℃に保った。液吸収から所定時間後に蓋を開け、カップの上部から約3cmの位置で成人4名以上のパネラーが臭いをかぐことにより、消臭効果を判定した。判定は、下記の判定基準を用いて各人6段階で得点を記載し平均値を求めた。
(e) Deodorizing performance (deodorizing test)
50 ml of human urine collected from multiple adults was added to a 250 ml polypropylene cup with a lid, and 2.0 g of the water-absorbing resin (or water-absorbing resin composition) obtained in the Examples or Comparative Examples described below was added thereto to form a swollen gel. Human urine was used within 2 hours after excretion. The container was covered with a lid, and the swollen gel was kept at 37°C. The lid was opened after a predetermined time from liquid absorption, and a panel of four or more adults smelled the odor at a position about 3 cm from the top of the cup to judge the deodorizing effect. The judgment was made by each person scoring on a 6-point scale using the following judgment criteria, and the average was calculated.

(f)接触角
SUS板上に両面粘着テープを貼り、その上に吸水性樹脂組成物を撒き、両面テープに付着しなかった吸水性樹脂組成物を掻き落として表面が吸水性樹脂組成物で覆われた試料板を作成した。0.90質量%生理食塩水を該試料板に接触させた時の接触角を、20℃、60%RHの条件下、接触角計(協和界面科学(株)製,FACE CA-X型)を用いて液滴法にて測定した。0.90質量%生理食塩水の液滴を試料板に滴下してから1秒後の接触角を1試料について5回測定し、その平均値を求めて吸水性樹脂組成物の接触角とした。
(f) Contact angle A double-sided adhesive tape was applied onto a SUS plate, a water-absorbent resin composition was spread thereon, and the water-absorbent resin composition that did not adhere to the double-sided tape was scraped off to prepare a sample plate whose surface was covered with the water-absorbent resin composition. The contact angle when 0.90% by mass physiological saline was brought into contact with the sample plate was measured by a drop method using a contact angle meter (FACE CA-X type, manufactured by Kyowa Interface Science Co., Ltd.) under conditions of 20°C and 60% RH. The contact angle 1 second after a drop of 0.90% by mass physiological saline was dropped onto the sample plate was measured five times for one sample, and the average value was calculated to be the contact angle of the water-absorbent resin composition.

[製造例1]
単量体成分としてのアクリル酸ナトリウム(中和率75モル%)の33質量%水溶液5500質量部に、内部架橋剤としてのポリエチレングリコールジアクリレート(n=8)8.7質量部を溶解させて反応液とした。
[Production Example 1]
A reaction liquid was prepared by dissolving 8.7 parts by mass of polyethylene glycol diacrylate (n=8) as an internal crosslinking agent in 5,500 parts by mass of a 33% by mass aqueous solution of sodium acrylate (neutralization rate: 75 mol%) as a monomer component.

次に、この反応液を窒素ガス雰囲気下で、30分間脱気した。次いで、シグマ型羽根を2本有する内容積10Lのジャケット付きステンレス製双碗型ニーダーに蓋を付けた反応器に前記反応液を供給し、反応液を30℃に保ちながら前記反応器内を窒素ガス置換した。続いて、反応液を攪拌しながら過硫酸ナトリウム2.4質量部、及びL-アスコルビン酸0.12質量部をそれぞれ水溶液にして添加したところ、凡そ1分後に重合が開始した。重合開始後、約20分でピーク温度約80℃となり、その後も攪拌を続けながら、重合を開始して60分後に粒子状の含水ゲル状重合体を取り出した。Next, the reaction liquid was degassed for 30 minutes under a nitrogen gas atmosphere. The reaction liquid was then fed into a reactor equipped with a jacketed stainless steel twin bowl kneader with a capacity of 10 L and two sigma-type blades and a lid, and the atmosphere in the reactor was replaced with nitrogen gas while the reaction liquid was kept at 30°C. Next, 2.4 parts by mass of sodium persulfate and 0.12 parts by mass of L-ascorbic acid were each added as aqueous solutions while stirring the reaction liquid, and polymerization began approximately 1 minute later. The peak temperature reached approximately 80°C in approximately 20 minutes after the start of polymerization, and stirring was continued thereafter, and a particulate hydrogel polymer was taken out 60 minutes after the start of polymerization.

当該粒子状含水ゲル状重合体の質量平均粒子径(D50)を、国際公開公報「国際公開第2011/126079号パンフレット」記載の方法で測定したところ、約1800μmであった。The mass average particle diameter (D50) of the particulate hydrogel polymer was measured by the method described in International Publication WO 2011/126079 and was found to be approximately 1,800 μm.

得られた含水ゲル状重合体を目開き300μmの金網上に広げ、150℃で90分間熱風乾燥した。The obtained hydrous gel polymer was spread on a wire mesh with 300 μm openings and dried with hot air at 150°C for 90 minutes.

次いで、乾燥物をロールミルを用いて粉砕し、さらに目開き600μmのJIS標準篩で分級、調合することにより、不定型破砕状の樹脂(ベースポリマー)(1)を得た。得られたベースポリマー(1)は、質量平均粒子径D(50%)が328μm、850μmを超える粒子割合が0.0質量%、710μm以上850μm未満の粒子割合が0.0質量%、600μm以上710μm未満の粒子割合が1.4質量%、500μm以上600μm未満の粒子割合が6.1質量%、300μm以上500μm未満の粒子割合が54.9質量%、150μm以上300μm未満の粒子割合が35.4質量%、45μm以上150μm未満の粒子割合が2.1質量%、45μm未満の粒子割合が0.1質量%であった。The dried material was then pulverized using a roll mill, and further classified and mixed using a JIS standard sieve with an opening of 600 μm to obtain an irregularly crushed resin (base polymer) (1). The obtained base polymer (1) had a mass average particle diameter D (50%) of 328 μm, a particle ratio of more than 850 μm of 0.0 mass%, a particle ratio of 710 μm or more and less than 850 μm of 0.0 mass%, a particle ratio of 600 μm or more and less than 710 μm of 1.4 mass%, a particle ratio of 500 μm or more and less than 600 μm of 6.1 mass%, a particle ratio of 300 μm or more and less than 500 μm of 54.9 mass%, a particle ratio of 150 μm or more and less than 300 μm of 35.4 mass%, a particle ratio of 45 μm or more and less than 150 μm of 2.1 mass%, and a particle ratio of less than 45 μm of 0.1 mass%.

次いで、前記のベースポリマー(1)100質量部に対し、エチレングリコールジグリシジルエーテル0.05質量部、プロピレングリコール1質量部、水3質量部と、イソプロピルアルコール1質量部からなる表面架橋剤を攪拌混合機で混合した。その後、前記の混合物を210℃で50分間加熱処理することにより、表面架橋を行った。Next, 100 parts by mass of the base polymer (1) was mixed with a surface crosslinking agent consisting of 0.05 parts by mass of ethylene glycol diglycidyl ether, 1 part by mass of propylene glycol, 3 parts by mass of water, and 1 part by mass of isopropyl alcohol in a stirring mixer. The mixture was then heat-treated at 210°C for 50 minutes to perform surface crosslinking.

次いで1.0質量%ジエチレントリアミン5酢酸・3ナトリウム水溶液3.0質量部を添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(1)を得た。Next, 3.0 parts by mass of a 1.0% by mass aqueous solution of diethylenetriaminepentaacetic acid trisodium was added and mixed, and the mixture was further heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain water-absorbent resin (1).

[製造例2]
製造例1で得られたベースポリマー(1)をさらにロールミルを用いて粉砕し、目開き150μmの篩で分級、調合することにより、ベースポリマー(2)を得た。得られたベースポリマー(2)は、質量平均粒子径D(50%)が330μm、850μmを超える粒子割合が0.0質量%、710μm以上850μm未満の粒子割合が0.0質量%、600μm以上710μm未満の粒子割合が0.7質量%、500μm以上600μm未満の粒子割合が4.7質量%、300μm以上500μm未満の粒子割合が59.2質量%、150μm以上300μm未満の粒子割合が33.1質量%、45μm以上150μm未満の粒子割合が2.2質量%、45μm未満の粒子割合が0.1質量%であった。
[Production Example 2]
The base polymer (1) obtained in Production Example 1 was further pulverized using a roll mill, classified using a sieve with an opening of 150 μm, and mixed to obtain a base polymer (2). The obtained base polymer (2) had a mass average particle diameter D (50%) of 330 μm, a particle ratio of more than 850 μm of 0.0 mass%, a particle ratio of 710 μm or more and less than 850 μm of 0.0 mass%, a particle ratio of 600 μm or more and less than 710 μm of 0.7 mass%, a particle ratio of 500 μm or more and less than 600 μm of 4.7 mass%, a particle ratio of 300 μm or more and less than 500 μm of 59.2 mass%, a particle ratio of 150 μm or more and less than 300 μm of 33.1 mass%, a particle ratio of 45 μm or more and less than 150 μm of 2.2 mass%, and a particle ratio of less than 45 μm of 0.1 mass%.

次いで、前記のベースポリマー(2)100質量部に対し、エチレングリコールジグリシジルエーテル0.05質量部、プロピレングリコール1質量部、水3質量部と、イソプロピルアルコール1質量部からなる表面架橋剤を攪拌混合機で混合した。その後、前記の混合物を210℃で50分間加熱処理することにより、表面架橋を行った。Next, 100 parts by mass of the base polymer (2) was mixed with a surface crosslinking agent consisting of 0.05 parts by mass of ethylene glycol diglycidyl ether, 1 part by mass of propylene glycol, 3 parts by mass of water, and 1 part by mass of isopropyl alcohol in a stirring mixer. The mixture was then heat-treated at 210°C for 50 minutes to perform surface crosslinking.

次いで1.0質量%ジエチレントリアミン5酢酸・3ナトリウム水溶液3.0質量部を添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(2)を得た。Next, 3.0 parts by mass of a 1.0% by mass aqueous solution of diethylenetriamine pentaacetate trisodium was added and mixed, and the mixture was further heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin (2).

[製造例3]
製造例2で得られた吸水性樹脂(2)を、さらに目開き500μm、150μmの篩で分級し、調合することにより、吸水性樹脂(3)を得た。
[Production Example 3]
The water-absorbent resin (2) obtained in Production Example 2 was further classified using sieves with openings of 500 μm and 150 μm, and the resulting mixture was mixed to obtain a water-absorbent resin (3).

得られた吸水性樹脂(3)は、質量平均粒子径D(50%)が324μm、850μmを超える粒子割合が0.0質量%、710μm以上850μm未満の粒子割合が0.0質量%、600μm以上710μm未満の粒子割合が0.0質量%、500μm以上600μm未満の粒子割合が0.1質量%、300μm以上500μm未満の粒子割合が70.5質量%、150μm以上300μm未満の粒子割合が29.4質量%、45μm以上150μm未満の粒子割合が0.0質量%、45μm未満の粒子割合が0.0質量%であった。The obtained water absorbent resin (3) had a mass average particle diameter D (50%) of 324 μm, a particle ratio exceeding 850 μm of 0.0 mass%, a particle ratio of 710 μm or more and less than 850 μm of 0.0 mass%, a particle ratio of 600 μm or more and less than 710 μm of 0.0 mass%, a particle ratio of 500 μm or more and less than 600 μm of 0.1 mass%, a particle ratio of 300 μm or more and less than 500 μm of 70.5 mass%, a particle ratio of 150 μm or more and less than 300 μm of 29.4 mass%, a particle ratio of 45 μm or more and less than 150 μm of 0.0 mass%, and a particle ratio of less than 45 μm of 0.0 mass%.

[製造例4]
製造例1において、乾燥物をロールミルを用いて粉砕し、さらに目開き850μmの篩で分級、調合することにより、ベースポリマー(4)を得た。
[Production Example 4]
In Production Example 1, the dried product was pulverized using a roll mill, and then classified using a sieve with an opening of 850 μm, followed by compounding to obtain a base polymer (4).

得られたベースポリマー(4)は、質量平均粒子径D(50%)が361μm、850μmを超える粒子割合が0.0質量%、710μm以上850μm未満の粒子割合が0.8質量%、600μm以上710μm未満の粒子割合が12.4質量%、500μm以上600μm未満の粒子割合が14.8質量%、300μm以上500μm未満の粒子割合が34.9質量%、150μm以上300μm未満の粒子割合が29.3質量%、45μm以上150μm未満の粒子割合が7.5質量%、45μm未満の粒子割合が0.3質量%であった。次いで、前記のベースポリマー(4)100質量部に対し、エチレングリコールジグリシジルエーテル0.05質量部、プロピレングリコール1質量部、水3質量部と、イソプロピルアルコール1質量部からなる表面架橋剤を攪拌混合機で混合した。その後、前記の混合物を210℃で50分間加熱処理することにより、表面架橋を行った。
次いで1.0質量%ジエチレントリアミン5酢酸・3ナトリウム水溶液3.0質量部を添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(4)を得た。
The obtained base polymer (4) had a mass average particle diameter D (50%) of 361 μm, a particle ratio of more than 850 μm of 0.0 mass%, a particle ratio of 710 μm or more and less than 850 μm of 0.8 mass%, a particle ratio of 600 μm or more and less than 710 μm of 12.4 mass%, a particle ratio of 500 μm or more and less than 600 μm of 14.8 mass%, a particle ratio of 300 μm or more and less than 500 μm of 34.9 mass%, a particle ratio of 150 μm or more and less than 300 μm of 29.3 mass%, a particle ratio of 45 μm or more and less than 150 μm of 7.5 mass%, and a particle ratio of less than 45 μm of 0.3 mass%. Next, 100 parts by mass of the base polymer (4) was mixed with a surface crosslinking agent consisting of 0.05 parts by mass of ethylene glycol diglycidyl ether, 1 part by mass of propylene glycol, 3 parts by mass of water, and 1 part by mass of isopropyl alcohol in a stirring mixer. Thereafter, the mixture was heat-treated at 210° C. for 50 minutes to carry out surface cross-linking.
Next, 3.0 parts by mass of a 1.0% by mass aqueous solution of trisodium diethylenetriaminepentaacetate was added and mixed, and the mixture was further heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water absorbent resin (4).

[製造例5]
製造例1で得られたベースポリマー(1)100質量部に対し、エチレングリコールジグリシジルエーテル0.05質量部、水3質量部と、イソプロピルアルコール2質量部からなる表面架橋剤を攪拌混合機で混合した。その後、前記の混合物を210℃で50分間加熱処理することにより、表面架橋を行った。次いで1.0質量%ジエチレントリアミン5酢酸・3ナトリウム水溶液3.0質量部を添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(5)を得た。
[Production Example 5]
100 parts by mass of the base polymer (1) obtained in Production Example 1 was mixed with 0.05 parts by mass of ethylene glycol diglycidyl ether, 3 parts by mass of water, and a surface crosslinking agent consisting of 2 parts by mass of isopropyl alcohol in a stirring mixer. The mixture was then heat-treated at 210°C for 50 minutes to perform surface crosslinking. Next, 3.0 parts by mass of a 1.0% by mass diethylenetriamine pentaacetic acid trisodium aqueous solution was added and mixed, and the mixture was further heated at 60°C for 30 minutes. The mixture was then crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin (5).

[製造例6]
製造例1で得られたベースポリマー(1)100質量部に対し、エチレングリコールジグリシジルエーテル0.05質量部、プロピレングリコール1質量部、水3質量部と、イソプロピルアルコール1質量部からなる表面架橋剤を攪拌混合機で混合した。その後、前記の混合物を210℃で50分間加熱処理することにより、表面架橋を行った。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(6)を得た。
[Production Example 6]
100 parts by mass of the base polymer (1) obtained in Production Example 1 was mixed with a surface crosslinking agent consisting of 0.05 parts by mass of ethylene glycol diglycidyl ether, 1 part by mass of propylene glycol, 3 parts by mass of water, and 1 part by mass of isopropyl alcohol in a stirring mixer. The mixture was then heat-treated at 210°C for 50 minutes to perform surface crosslinking. The mixture was then crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin (6).

[実施例1]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Chromalite PCG600M(ピュロライト株式会社製、スチレン系合成吸着剤、平均粒子径70μm、比表面積700m/g、平均細孔直径100Å)を0.1質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(1)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.92質量%であった。
[Example 1]
0.1 parts by mass (solid content equivalent) of Chromalite PCG600M (Purolite Co., Ltd., styrene-based synthetic adsorbent, average particle size 70 μm, specific surface area 700 m 2 /g, average pore diameter 100 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (1). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.92% by mass.

[実施例2]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Chromalite PCG600Mを0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(2)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.93質量%であった。
[Example 2]
0.5 parts by mass (solid content equivalent) of Chromalite PCG600M was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (2). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.93% by mass.

[実施例3]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Chromalite PCG600Mを1.0質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(3)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 3]
1.0 part by mass (solid content equivalent) of Chromalite PCG600M was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (3). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.96% by mass.

[実施例4](バインダなし)
製造例5で得られた、吸水性樹脂(5)を使用した以外、実施例3と同様にして吸水性樹脂組成物(4)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。
[Example 4] (without binder)
A water absorbent resin composition (4) was obtained in the same manner as in Example 3, except that the water absorbent resin (5) obtained in Production Example 5 was used. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1.

[実施例5](キレート剤なし)
製造例6で得られた、吸水性樹脂(6)を使用した以外、実施例3と同様にして吸水性樹脂組成物(5)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.95質量%であった。
[Example 5] (No chelating agent)
A water absorbent resin composition (5) was obtained in the same manner as in Example 3, except that the water absorbent resin (6) obtained in Production Example 6 was used. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of the binder contained in the water absorbent resin composition was 0.95% by mass.

[実施例6]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Purosorb PAD600FM(ピュロライト株式会社製、スチレン系合成吸着剤、平均粒子径210μm、比表面積830m/g、平均細孔直径630Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(6)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 6]
0.5 parts by mass (solid content equivalent) of Purosorb PAD600FM (Purolite Co., Ltd., styrene-based synthetic adsorbent, average particle size 210 μm, specific surface area 830 m 2 /g, average pore diameter 630 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (6). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.94% by mass.

[実施例7]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Purosorb PAD600(ピュロライト株式会社製、スチレン系合成吸着剤、平均粒子径460μm、比表面積830m/g、平均細孔直径630Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(7)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.93質量%であった。
[Example 7]
0.5 parts by mass (solid content equivalent) of Purosorb PAD600 (Purolite Co., Ltd., styrene-based synthetic adsorbent, average particle size 460 μm, specific surface area 830 m 2 /g, average pore diameter 630 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (7). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.93% by mass.

[実施例8]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Purosorb PAD610(ピュロライト株式会社製、アクリル系合成吸着剤、平均粒子径460μm、比表面積490m/g、平均細孔直径700Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(8)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 8]
0.5 parts by mass (solid content equivalent) of Purosorb PAD610 (Purolite Co., Ltd., acrylic synthetic adsorbent, average particle size 460 μm, specific surface area 490 m 2 /g, average pore diameter 700 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (8). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.96% by mass.

[実施例9]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Diaion 20HP(三菱ケミカル株式会社製、スチレン系合成吸着剤、平均粒子径390μm、比表面積590m/g、平均細孔直径290Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(9)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 9]
0.5 parts by mass (solid content equivalent) of Diaion 20HP (manufactured by Mitsubishi Chemical Corporation, styrene-based synthetic adsorbent, average particle size 390 μm, specific surface area 590 m 2 /g, average pore diameter 290 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (9). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.94% by mass.

[実施例10]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Diaion HP2MG(三菱ケミカル株式会社製、アクリル系合成吸着剤、平均粒子径600μm、比表面積570m/g、平均細孔直径240Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(10)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.95質量%であった。
[Example 10]
0.5 parts by mass (solid content equivalent) of Diaion HP2MG (manufactured by Mitsubishi Chemical Corporation, acrylic synthetic adsorbent, average particle size 600 μm, specific surface area 570 m 2 /g, average pore diameter 240 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (10). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.95% by mass.

[実施例11]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、Purosorb PAD300(ピュロライト株式会社製、アクリル系合成吸着剤、平均粒子径450μm、比表面積90m/g、平均細孔直径280Å)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(11)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.93質量%であった。
[Example 11]
0.5 parts by mass (solid content equivalent) of Purosorb PAD300 (Purolite Co., Ltd., acrylic synthetic adsorbent, average particle size 450 μm, specific surface area 90 m 2 /g, average pore diameter 280 Å) was added and mixed with 100 parts by mass of the water-absorbing resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (11). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.93% by mass.

[実施例12]
製造例2で得られた、吸水性樹脂(2)100質量部に対して、Chromalite PCG600Mを0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(12)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 12]
0.5 parts by mass (solid content equivalent) of Chromalite PCG600M was added and mixed with 100 parts by mass of the water-absorbing resin (2) obtained in Production Example 2, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (12). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.96% by mass.

[実施例13]
製造例3で得られた、吸水性樹脂(3)100質量部に対して、Chromalite PCG600Mを0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(13)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 13]
0.5 parts by mass (solid content equivalent) of Chromalite PCG600M was added and mixed with 100 parts by mass of the water-absorbing resin (3) obtained in Production Example 3, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (13). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1. The amount of binder contained in the water-absorbing resin composition was 0.94% by mass.

[実施例14]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、40質量%の水分散性エマルジョンA(スチレン/アクリル酸ブチル/2-イソプロペニル-2-オキサゾリン/ジビニルベンゼン=58.1/21.8/20.0/0.1質量%、LogP=3.29、平均粒径:80nm)を0.75質量部(固形分換算で0.3質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(14)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 14]
0.75 parts by mass (0.3 parts by mass in terms of solid content) of 40% by mass of water-dispersible emulsion A (styrene/butyl acrylate/2-isopropenyl-2-oxazoline/divinylbenzene=58.1/21.8/20.0/0.1% by mass, LogP=3.29, average particle size: 80 nm) was added and mixed with 100 parts by mass of the water-absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60 ° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (14). The cumulative particle size and span value, the deodorization test results, the CRC and AAP measurement results are shown in Table 2. The amount of binder contained in the water-absorbent resin composition was 0.96% by mass.

[実施例15]
水分散性エマルジョンAを2.5質量部(固形分換算で1質量部)に変更した以外は、実施例14と同様にして、吸水性樹脂組成物(15)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 15]
A water-absorbent resin composition (15) was obtained in the same manner as in Example 14, except that the amount of the water-dispersible emulsion A was changed to 2.5 parts by mass (1 part by mass in terms of solid content). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of the binder contained in the water-absorbent resin composition was 0.94% by mass.

[実施例16]
水分散性エマルジョンAを7.5質量部(固形分換算で3質量部)に変更した以外は、実施例14と同様にして、吸水性樹脂組成物(16)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 16]
A water-absorbent resin composition (16) was obtained in the same manner as in Example 14, except that the amount of the water-dispersible emulsion A was changed to 7.5 parts by mass (3 parts by mass in terms of solid content). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of the binder contained in the water-absorbent resin composition was 0.96% by mass.

[実施例17]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、エポスターS(株式会社日本触媒製、トリアジン基含有ポリマー、平均粒子径0.2μm、25℃のイオン交換水への溶解度は0質量%である)を0.3質量部添加混合し、その後、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(17)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.93質量%であった。
[Example 17]
0.3 parts by mass of Eposter S (manufactured by Nippon Shokubai Co., Ltd., triazine group-containing polymer, average particle size 0.2 μm, solubility in ion-exchanged water at 25° C. is 0% by mass) was added and mixed with 100 parts by mass of the water-absorbent resin (1) obtained in Production Example 1, and then passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (17). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of binder contained in the water-absorbent resin composition was 0.93% by mass.

[実施例18]
エポスターS(株式会社日本触媒製、トリアジン基含有ポリマー、平均粒子径0.2μm、25℃のイオン交換水への溶解度は0質量%である)を1質量部に変更した以外は、実施例17と同様にして、吸水性樹脂組成物(18)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 18]
A water absorbent resin composition (18) was obtained in the same manner as in Example 17, except that Eposter S (manufactured by Nippon Shokubai Co., Ltd., triazine group-containing polymer, average particle size 0.2 μm, solubility in ion-exchanged water at 25° C. is 0 mass%) was changed to 1 part by mass. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of the binder contained in the water absorbent resin composition was 0.94 mass%.

[実施例19]
エポスターS(株式会社日本触媒製、トリアジン基含有ポリマー、平均粒子径0.2μm、25℃のイオン交換水への溶解度は0質量%である)を3質量部に変更した以外は、実施例17と同様にして、吸水性樹脂組成物(19)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.95質量%であった。
[Example 19]
A water absorbent resin composition (19) was obtained in the same manner as in Example 17, except that Eposter S (manufactured by Nippon Shokubai Co., Ltd., triazine group-containing polymer, average particle size 0.2 μm, solubility in ion-exchanged water at 25° C. is 0 mass%) was changed to 3 parts by mass. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of the binder contained in the water absorbent resin composition was 0.95 mass%.

[実施例20]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、ポリ4-ビニルピリジン(Strem Chemicals, Inc.製、ピリジン基含有ポリマー、250μm以下)を1質量部(固形分換算)添加混合し、その後、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(20)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.96質量%であった。
[Example 20]
100 parts by mass of the water absorbent resin (1) obtained in Production Example 1 was mixed with 1 part by mass (solid content equivalent) of poly4-vinylpyridine (Strem Chemicals, Inc., pyridine group-containing polymer, 250 μm or less), and then passed through a JIS standard sieve with an opening of 850 μm to obtain a water absorbent resin composition (20). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of the binder contained in the water absorbent resin composition was 0.96% by mass.

[実施例21](キレート剤なし)
製造例6で得られた、吸水性樹脂(6)100質量部に対して、水分散性エマルジョンAを2.5質量部(固形分換算で1質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(21)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 21] (No chelating agent)
2.5 parts by mass (1 part by mass in terms of solid content) of water-dispersible emulsion A was added and mixed with 100 parts by mass of the water-absorbent resin (6) obtained in Production Example 6, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (21). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2. The amount of binder contained in the water-absorbent resin composition was 0.94% by mass.

[実施例22](バインダなし)
製造例5で得られた、吸水性樹脂(5)100質量部に対して、エポスターS(株式会社日本触媒製、トリアジン基含有ポリマー、平均粒子径0.2μm、25℃のイオン交換水への溶解度は0質量%である)を1質量部添加混合し、その後、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(22)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 22] (No binder)
100 parts by mass of the water-absorbing resin (5) obtained in Production Example 5 was mixed with 1 part by mass of Eposter S (manufactured by Nippon Shokubai Co., Ltd., triazine group-containing polymer, average particle size 0.2 μm, solubility in ion-exchanged water at 25° C. is 0% by mass), and then passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbing resin composition (22). The cumulative particle size and span value, deodorization test results, CRC, and AAP measurement results are shown in Table 2.

[実施例23]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、水分散性エマルジョンAを0.75質量部(固形分換算で0.3質量部)添加混合し、その後Chromalite PCG600Mを0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(23)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表3に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.94質量%であった。
[Example 23]
0.75 parts by mass (0.3 parts by mass in terms of solid content) of water-dispersible emulsion A was added and mixed with 100 parts by mass of the water-absorbent resin (1) obtained in Production Example 1, and then 0.5 parts by mass (solid content equivalent) of Chromalite PCG600M was added and mixed, and the mixture was heated at 60 ° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (23). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 3. The amount of binder contained in the water-absorbent resin composition was 0.94% by mass.

[比較例1]
製造例1で得られた吸水性樹脂(1)を、そのまま比較用吸水性樹脂組成物(1)として用いた。累積粒径およびスパン値、累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1および2に示した。
[Comparative Example 1]
The water absorbent resin (1) obtained in Production Example 1 was used as it was as a comparative water absorbent resin composition (1). The cumulative particle size and span value, the cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Tables 1 and 2.

[比較例2]
製造例4で得られた、吸水性樹脂(4)100質量部に対して、Chromalite PCG600Mを0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、比較用吸水性樹脂組成物(2)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。
[Comparative Example 2]
0.5 parts by mass (solid content equivalent) of Chromalite PCG600M was added and mixed with 100 parts by mass of the water absorbent resin (4) obtained in Production Example 4, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a comparative water absorbent resin composition (2). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1.

[比較例3]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、細孔構造を有しない微粒子であるエポスターMX020W(日本触媒社製、スチレン-アクリル系微粒子、平均粒子径0.02μm、理論比表面積333m/g)を1.0質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、比較用吸水性樹脂組成物(3)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。
[Comparative Example 3]
1.0 part by mass (solid content equivalent) of Eposter MX020W (styrene-acrylic fine particles, average particle diameter 0.02 μm, theoretical specific surface area 333 m 2 /g, manufactured by Nippon Shokubai Co., Ltd.), which is a fine particle having no pore structure, was added and mixed with 100 parts by mass of the water absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a comparative water absorbent resin composition (3). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1.

[比較例4]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、HSZ-500KOA(東ソー株式会社製、L型ゼオライト、SiO/Al=6.1(mol/mol)、平均粒子径3μm、比表面積290m/g、平均細孔直径8Å)を1.0質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、比較用吸水性樹脂組成物(4)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。
[Comparative Example 4]
1.0 part by mass (solid content equivalent) of HSZ-500KOA (L-type zeolite, manufactured by Tosoh Corporation, SiO 2 /Al 2 O 3 =6.1 (mol/mol), average particle size 3 μm, specific surface area 290 m 2 /g, average pore diameter 8 Å) was added and mixed with 100 parts by mass of the water absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a comparative water absorbent resin composition (4). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1.

[比較例5]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、ペルオキシ一硫酸カリウム(Aldrich社製、製品名OXONE)を0.5質量部(固形分換算)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、比較用吸水性樹脂組成物(5)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表1に示した。
[Comparative Example 5]
0.5 parts by mass (solid content equivalent) of potassium peroxymonosulfate (manufactured by Aldrich, product name OXONE) was added and mixed with 100 parts by mass of the water absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a comparative water absorbent resin composition (5). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 1.

[比較例6]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、30質量%のエポミンP-1000(株式会社日本触媒製、水溶性ポリエチレンイミン(含窒素非複素環樹脂))の水溶液を3.3質量部(固形分換算で1質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、比較用吸水性樹脂組成物(6)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 6]
3.3 parts by mass (1 part by mass in terms of solid content) of an aqueous solution of 30% by mass of Epomin P-1000 (manufactured by Nippon Shokubai Co., Ltd., water-soluble polyethyleneimine (nitrogen-containing non-heterocyclic resin)) was added and mixed with 100 parts by mass of the water absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a comparative water absorbent resin composition (6). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例7]
水分散性エマルジョンA添加混合後の加熱温度を150℃に変更した以外は、実施例14と同様にして、比較用吸水性樹脂組成物(7)を得た。
[Comparative Example 7]
A comparative water-absorbent resin composition (7) was obtained in the same manner as in Example 14, except that the heating temperature after the addition and mixing of the water-dispersible emulsion A was changed to 150°C.

[実施例24]
製造例1で得られた、吸水性樹脂(1)100質量部に対して、25質量%の水溶性ポリマーB(2-イソプロペニル-2-オキサゾリン/アクリル酸エチル/メタクリル酸メチル/メトキシポリエチレングリコールアクリレート(n=9)=50/22/3/25質量%、重量平均分子量=約40,000、LogP=1.07)の水溶液を4質量部(固形分換算で1質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(24)を得た。消臭試験結果、CRC、AAP測定結果を表2に示した。なお、当該吸水性樹脂組成物中に含まれるバインダの量は、0.95質量%であった。
[Example 24]
4 parts by mass (1 part by mass in terms of solid content) of 25% by mass of water-soluble polymer B (2-isopropenyl-2-oxazoline / ethyl acrylate / methyl methacrylate / methoxypolyethylene glycol acrylate (n = 9) = 50 / 22 / 3 / 25% by mass, weight average molecular weight = about 40,000, Log P = 1.07) was added and mixed with 100 parts by mass of the water-absorbent resin (1) obtained in Production Example 1, and the mixture was heated at 60 ° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (24). The deodorization test results, CRC and AAP measurement results are shown in Table 2. The amount of binder contained in the water-absorbent resin composition was 0.95% by mass.

[製造例7]
アクリル酸(216.2g)に、内部架橋剤である10質量%ポリエチレングリコールジアクリレート(重量平均分子量;523)水溶液(3.92g)、および、キレート剤である20質量%エチレンジアミン四酢酸二ナトリウム水溶液(0.66g)を添加した溶液(A)と、48.5質量%の水酸化ナトリウム水溶液(180.6g)を50℃に調温した脱イオン水(209.8g)で希釈した溶液(B)とを、容量1.5L、内径80mmのポリプロピレン製の容器にそれぞれ調製した。マグネチックスターラーを用いて上記溶液(A)を攪拌しながら、上記溶液(B)を加えて混合することで、溶液(C)を調製した。
[Production Example 7]
A solution (A) was prepared by adding 10% by weight polyethylene glycol diacrylate (weight average molecular weight: 523) aqueous solution (3.92 g) as an internal crosslinking agent and 20% by weight disodium ethylenediaminetetraacetate aqueous solution (0.66 g) as a chelating agent to acrylic acid (216.2 g), and a solution (B) was prepared by diluting 48.5% by weight sodium hydroxide aqueous solution (180.6 g) with deionized water (209.8 g) adjusted to 50 ° C. in a polypropylene container with a capacity of 1.5 L and an inner diameter of 80 mm. The solution (C) was prepared by adding and mixing the solution (B) while stirring the solution (A) using a magnetic stirrer.

その後、上記溶液(C)の攪拌を継続し、溶液(C)の温度が95℃となった時点(=重合開始温度)で、溶液(C)に、重合開始剤として10質量%の過硫酸ナトリウム水溶液(3.6g)を加えて、約3秒間攪拌し、単量体水溶液(7)とした。Thereafter, stirring of the above solution (C) was continued, and when the temperature of solution (C) reached 95°C (=polymerization initiation temperature), a 10% by mass aqueous solution of sodium persulfate (3.6 g) was added to solution (C) as a polymerization initiator and stirred for approximately 3 seconds to obtain a monomer aqueous solution (7).

次に、上記単量体水溶液(7)をバット型容器に、大気開放系で流し込んだ。なお、当該バット型容器は、底面の大きさが250mm×250mm、上面の大きさが640mm×640mm、高さが50mm、中心断面が台形状であり、内面にテフロン(商標)シートを貼付した容器であった。また、当該バット型容器は、100℃に加熱されたホットプレート上に載置し、プレヒートしておいた。上記単量体水溶液(7)を上記バット型容器に流し込んだ後、約5秒後に重合反応が開始した。当該重合反応は、水蒸気を発生しながら上方に向かって単量体水溶液(7)が四方八方に膨張、発泡しながら進行した後、バット型容器の底面より若干大きいサイズにまで、得られた含水ゲル(7)が収縮して終了した。なお、当該重合反応(膨張、収縮)は約1分間以内に終了したが、その後、2分間はバット型容器内に含水ゲル(7)の状態を保持した。当該重合反応によって、気泡を含む含水ゲル(7)を得た。Next, the monomer aqueous solution (7) was poured into a bat-shaped container in an open-air system. The bat-shaped container had a bottom size of 250 mm x 250 mm, a top size of 640 mm x 640 mm, a height of 50 mm, a trapezoidal central cross section, and a Teflon (trademark) sheet attached to the inner surface. The bat-shaped container was placed on a hot plate heated to 100°C and preheated. After the monomer aqueous solution (7) was poured into the bat-shaped container, the polymerization reaction started about 5 seconds later. The polymerization reaction proceeded while the monomer aqueous solution (7) expanded and foamed in all directions while generating steam, and then the resulting hydrogel (7) shrunk to a size slightly larger than the bottom of the bat-shaped container, and ended. The polymerization reaction (expansion and contraction) ended within about 1 minute, but the hydrogel (7) was maintained in the bat-shaped container for 2 minutes after that. The polymerization reaction yielded a hydrogel (7) containing air bubbles.

次に、上記重合反応で得られた含水ゲル(7)を16等分した後、多孔板を有する卓上型ミートチョッパー(MEAT-CHOPPER TYPE:12VR-400KSOX、飯塚工業株式会社製)を用い、含水ゲルの投入と同時に、25℃の0.2質量%の亜硫酸水素ナトリウム水溶液を含水ゲルに、含水ゲルの固形分100質量部(265g)に対して25質量部添加しながらゲル粉砕を行い、粒子状含水ゲル(7)を得た。Next, the hydrous gel (7) obtained by the above polymerization reaction was divided into 16 equal parts, and then the gel was crushed using a tabletop meat chopper with a perforated plate (MEAT-CHOPPER TYPE: 12VR-400KSOX, manufactured by Iizuka Kogyo Co., Ltd.) while simultaneously adding the hydrous gel and adding 25 parts by mass of a 0.2% by mass aqueous solution of sodium hydrogen sulfite at 25°C to the hydrous gel per 100 parts by mass (265 g) of the solid content of the hydrous gel, thereby obtaining a particulate hydrous gel (7).

次に、上記粒子状含水ゲル(7)450gを目開き300μm(50メッシュ)の金網上に広げて載せ、静置乾燥機内(通気流回分乾燥機71-S6型(サタケ化学機械工業(株) 製))を用いて180℃で30分間乾燥することで、粒子状の乾燥重合体(7)を得た。Next, 450 g of the particulate hydrogel (7) was spread on a wire mesh with an opening of 300 μm (50 mesh) and dried at 180° C. for 30 minutes in a static dryer (ventilated batch dryer 71-S6 (manufactured by Satake Chemical Machinery Co., Ltd.)) to obtain a particulate dried polymer (7).

続いて、当該乾燥重合体(7)をロールミル(WML型ロール粉砕機、有限会社井ノ口技研社製)に投入して粉砕し、その後、目開き150μmのJIS標準篩を用いて当該篩を通過する粒子を分級することにより、微粉状の吸水性樹脂(7)を得た。Next, the dried polymer (7) was put into a roll mill (WML type roll mill, manufactured by Inokuchi Giken Co., Ltd.) and pulverized, and then the particles passing through a JIS standard sieve with a mesh size of 150 μm were classified to obtain a fine powder of water-absorbent resin (7).

次に、微粉状の吸水性樹脂(7)300gを80℃のウォーターバスで保温された5Lモルタルミキサー(西日本試験機製作所製)に入れ、該モルタルミキサーの攪拌羽根を60Hz/100Vで高速回転させながら、造粒用の水性液としての0.05質量%過酸化水素水溶液300gを80℃に加熱しておいたのちに一気に投入した。投入から10秒以内に微粉状の吸水性樹脂(7)と水とは混合されて造粒物となり、投入から1分後に取り出すことにより、造粒ゲル(7)を得た。Next, 300 g of the fine powdered water-absorbent resin (7) was placed in a 5 L mortar mixer (manufactured by Nishinippon Shikenki Seisakusho) kept warm in a water bath at 80°C, and while rotating the stirring blades of the mortar mixer at high speed of 60 Hz/100 V, 300 g of a 0.05 mass% aqueous hydrogen peroxide solution as an aqueous liquid for granulation was heated to 80°C and then added all at once. Within 10 seconds after addition, the fine powdered water-absorbent resin (7) and water were mixed to form granules, and the granulated gel (7) was obtained by removing the granules 1 minute after addition.

[製造例8]
製造例7と同じ条件の重合とゲル粉砕を繰り返し行い、粒子状含水ゲル(8)を得た。
[Production Example 8]
Polymerization and gel crushing were repeated under the same conditions as in Production Example 7 to obtain a particulate hydrogel (8).

次に、上記粒子状含水ゲル(8)360gと製造例7で得られた造粒ゲル(7)90gを併せて目開き300μm(50メッシュ)の金網上に広げて載せ、静置乾燥機内(通気流回分乾燥機71-S6型(サタケ化学機械工業(株) 製))を用いて180℃で30分間乾燥することで、粒子状の乾燥重合体(7)を得た。Next, 360 g of the particulate hydrogel (8) and 90 g of the granulated gel (7) obtained in Production Example 7 were combined and spread on a wire mesh with an opening of 300 μm (50 mesh), and dried at 180° C. for 30 minutes in a static dryer (ventilated batch dryer 71-S6 (manufactured by Satake Chemical Machinery Co., Ltd.)) to obtain a particulate dried polymer (7).

続いて、当該乾燥重合体(8)をロールミル(WML型ロール粉砕機、有限会社井ノ口技研社製)に投入して粉砕し、その後、目開き850μmおよび150μmの二種類のJIS標準篩を用いて、ロータップ式篩分級機で分級することで、不定形破砕状の吸水性樹脂(8)を得た。Next, the dried polymer (8) was put into a roll mill (WML type roll grinder, manufactured by Inokuchi Giken Co., Ltd.) and crushed, and then classified by a Rotap type sieve classifier using two types of JIS standard sieves with mesh sizes of 850 μm and 150 μm to obtain an irregularly crushed water absorbent resin (8).

次に、エチレングリコールジグリシジルエーテル(商品名:デナコールEX-810、ナガセケムテックス社製、0.025質量部)、プロピレングリコール(1.35質量部)、脱イオン水(3.15質量部)からなる表面架橋剤溶液(8)を、上記不定形破砕状の吸水性樹脂(8)(100質量部)に添加し、スパチュラで均一になるまで混合することで、加湿混合物(8)を得た。続いて、当該加湿混合物(8)をステンレス製の容器に均一に入れ、180℃で40分間加熱処理し、表面架橋された吸水性樹脂(8)を得た。Next, a surface cross-linking agent solution (8) consisting of ethylene glycol diglycidyl ether (product name: Denacol EX-810, Nagase Chemtex Corporation, 0.025 parts by mass), propylene glycol (1.35 parts by mass), and deionized water (3.15 parts by mass) was added to the irregularly crushed water absorbent resin (8) (100 parts by mass) and mixed with a spatula until uniform, thereby obtaining a humidified mixture (8). Next, the humidified mixture (8) was uniformly placed in a stainless steel container and heat-treated at 180°C for 40 minutes, obtaining a surface-cross-linked water absorbent resin (8).

次いで2.5質量%亜硫酸水素ナトリウム水溶液2.0質量部を添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂(8)を得た。Next, 2.0 parts by mass of a 2.5% by mass aqueous solution of sodium hydrogen sulfite was added and mixed, and the mixture was further heated at 60°C for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin (8).

[製造例9]
製造例7において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を2.64gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液を脱イオン水とし、微粉造粒で投入する過酸化水素水溶液の濃度を0.1質量%としたこと以外は、製造例7と同様にして、造粒ゲル(9)を得た。
[Production Example 9]
A granulated gel (9) was obtained in the same manner as in Production Example 7, except that the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 2.64 g, the aqueous sodium hydrogensulfite solution added in the gel crushing was deionized water, and the concentration of the aqueous hydrogen peroxide solution added in the fine powder granulation was 0.1 mass%.

[製造例10]
製造例8において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を2.64gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液を脱イオン水とし、粒子状含水ゲルと併せる造粒ゲルを製造例9で得られた造粒ゲル(9)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液の濃度を5.0質量%としたこと以外は、製造例8と同様にして、吸水性樹脂(10)を得た。
[Production Example 10]
In Production Example 8, except that the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution added in polymerization was 2.64 g, the aqueous sodium hydrogensulfite solution added in gel crushing was deionized water, the granulated gel to be combined with the particulate hydrous gel was the granulated gel (9) obtained in Production Example 9, and the concentration of the aqueous sodium hydrogensulfite solution added after surface crosslinking was 5.0 mass%, a water absorbent resin (10) was obtained in the same manner as in Production Example 8.

[製造例11]
製造例9において、重合で添加するキレート剤を20質量%ジエチレントリアミン5酢酸三ナトリウム水溶液としたこと以外は、製造例9と同様にして、造粒ゲル(11)を得た。
[Production Example 11]
A granulated gel (11) was obtained in the same manner as in Production Example 9, except that the chelating agent added in the polymerization was a 20% by mass aqueous solution of trisodium diethylenetriaminepentaacetate.

[製造例12]
製造例10において、重合で添加するキレート剤を20質量%ジエチレントリアミン5酢酸三ナトリウム水溶液とし、粒子状含水ゲルと併せる造粒ゲルを製造例11で得られた造粒ゲル(11)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液の濃度を7.5質量%としたこと以外は、製造例10と同様にして、吸水性樹脂(12)を得た。
[Production Example 12]
In Production Example 10, a chelating agent added in polymerization was a 20 mass% aqueous solution of trisodium diethylenetriaminepentaacetate, a granulated gel to be combined with a particulate hydrogel was the granulated gel (11) obtained in Production Example 11, and a concentration of an aqueous solution of sodium hydrogen sulfite to be added after surface crosslinking was 7.5 mass%, except that a water absorbent resin (12) was obtained in the same manner as in Production Example 10.

[製造例13]
製造例11において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を1.32gとし、微粉造粒で投入する0.1質量%過酸化水素水溶液を0.2質量%亜硫酸水素ナトリウム水溶液としたこと以外は、製造例11と同様にして、造粒ゲル(13)を得た。
[Production Example 13]
A granulated gel (13) was obtained in the same manner as in Production Example 11, except that the amount of 20% by mass disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 1.32 g, and the 0.1% by mass hydrogen peroxide aqueous solution added in the fine powder granulation was changed to a 0.2% by mass sodium hydrogen sulfite aqueous solution.

[製造例14]
製造例12において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を1.32gとし、粒子状含水ゲルと併せる造粒ゲルを製造例13で得られた造粒ゲル(13)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液の濃度を5.0質量%としたこと以外は、製造例12と同様にして、吸水性樹脂(14)を得た。
[Production Example 14]
A water absorbent resin (14) was obtained in the same manner as in Production Example 12, except that in Production Example 12, the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 1.32 g, the granulated gel to be combined with the particulate hydrogel was the granulated gel (13) obtained in Production Example 13, and the concentration of the sodium hydrogensulfite aqueous solution added after surface crosslinking was 5.0 mass%.

[製造例15]
製造例13において、重合で添加するエチレンジアミン四酢酸二ナトリウム水溶液の濃度を1.0質量%とし、微粉造粒で投入する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液としたこと以外は、製造例13と同様にして、造粒ゲル(15)を得た。
[Production Example 15]
A granulated gel (15) was obtained in the same manner as in Production Example 13, except that the concentration of the disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 1.0 mass%, and the aqueous sodium hydrogensulfite solution added in the fine powder granulation was an aqueous sodium sulfite solution.

[製造例16]
製造例14において、重合で添加するエチレンジアミン四酢酸二ナトリウム水溶液の濃度を1.0質量%とし、粒子状含水ゲルと併せる造粒ゲルを製造例15で得られた造粒ゲル(15)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液としたこと以外は、製造例14と同様にして、吸水性樹脂(16)を得た。
[Production Example 16]
In Production Example 14, except that the concentration of the disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 1.0 mass%, the granulated gel to be combined with the particulate hydrogel was the granulated gel (15) obtained in Production Example 15, and the sodium hydrogensulfite aqueous solution to be added after the surface crosslinking was an aqueous sodium sulfite solution, a water absorbent resin (16) was obtained in the same manner as in Production Example 14.

[製造例17]
製造例7において、重合で添加する10質量%ポリエチレングリコールジアクリレート(重量平均分子量;523)水溶液を2.04g、20質量%エチレンジアミン四酢酸二ナトリウム水溶液を3.97g、脱イオン水を246.3gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を1.0質量%とし、微粉造粒で投入する過酸化水素水溶液の濃度を0.3質量%としたこと以外は、製造例7と同様にして、造粒ゲル(17)を得た。
[Production Example 17]
In Production Example 7, the amount of 10 mass% polyethylene glycol diacrylate (weight average molecular weight: 523) aqueous solution added in the polymerization was 2.04 g, the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution was 3.97 g, and the amount of deionized water was 246.3 g, the concentration of the sodium hydrogensulfite aqueous solution added in the gel crushing was 1.0 mass%, and the concentration of the hydrogen peroxide aqueous solution added in the fine powder granulation was 0.3 mass%, except that a granulated gel (17) was obtained in the same manner as in Production Example 7.

[製造例18]
製造例8において、重合で添加する10質量%ポリエチレングリコールジアクリレート(重量平均分子量;523)水溶液を2.04g、20質量%エチレンジアミン四酢酸二ナトリウム水溶液を3.97g、脱イオン水を246.3gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を1.0質量%とし、粒子状含水ゲルと併せる造粒ゲルを製造例17で得られた造粒ゲル(17)としたこと以外は、製造例8と同様にして、吸水性樹脂(18)を得た。
[Production Example 18]
In Production Example 8, the amount of 10 mass% polyethylene glycol diacrylate (weight average molecular weight: 523) aqueous solution added in the polymerization was 2.04 g, the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution was 3.97 g, and the amount of deionized water was 246.3 g, the concentration of the sodium hydrogensulfite aqueous solution added in the gel crushing was 1.0 mass%, and the granulated gel to be combined with the particulate hydrous gel was the granulated gel (17) obtained in Production Example 17. Except for this, a water absorbent resin (18) was obtained in the same manner as in Production Example 8.

[製造例19]
製造例17において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を1.32gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を1.2質量%とし、微粉造粒で投入する過酸化水素水溶液の濃度を0.2質量%としたこと以外は、製造例17と同様にして、造粒ゲル(19)を得た。
[Production Example 19]
A granulated gel (19) was obtained in the same manner as in Production Example 17, except that in Production Example 17, the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution added in the polymerization was 1.32 g, the concentration of the sodium hydrogensulfite aqueous solution added in the gel crushing was 1.2 mass%, and the concentration of the hydrogen peroxide aqueous solution added in the fine powder granulation was 0.2 mass%.

[製造例20]
製造例18において、重合で添加する20質量%エチレンジアミン四酢酸二ナトリウム水溶液を1.32gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を1.2質量%とし、粒子状含水ゲルと併せる造粒ゲルを製造例19で得られた造粒ゲル(19)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液を脱イオン水としたこと以外は、製造例18と同様にして、吸水性樹脂(20)を得た。
[Production Example 20]
In Production Example 18, except that the amount of 20 mass% disodium ethylenediaminetetraacetate aqueous solution added in polymerization was 1.32 g, the concentration of the sodium hydrogensulfite aqueous solution added in gel crushing was 1.2 mass%, the granulated gel to be combined with the particulate hydrogel was the granulated gel (19) obtained in Production Example 19, and the sodium hydrogensulfite aqueous solution added after surface crosslinking was deionized water, a water absorbent resin (20) was obtained in the same manner as in Production Example 18.

[製造例21]
製造例17において、重合で添加するキレート剤を20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液0.66gとしたこと以外は、製造例17と同様にして、造粒ゲル(21)を得た。
[Production Example 21]
A granulated gel (21) was obtained in the same manner as in Production Example 17, except that the chelating agent added in the polymerization was 0.66 g of a 20 mass % aqueous solution of pentasodium ethylenediaminetetramethylenephosphonate.

[製造例22]
製造例18において、重合で添加するキレート剤を20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液0.66gとし、粒子状含水ゲルと併せる造粒ゲルを製造例21で得られた造粒ゲル(21)としたこと以外は、製造例18と同様にして、吸水性樹脂(22)を得た。
[Production Example 22]
A water absorbent resin (22) was obtained in the same manner as in Production Example 18, except that in Production Example 18, the chelating agent added in the polymerization was 0.66 g of a 20 mass% aqueous solution of pentasodium ethylenediaminetetramethylenephosphonic acid, and the granulated gel to be combined with the particulate hydrogel was the granulated gel (21) obtained in Production Example 21.

[製造例23]
製造例21において、重合で添加する20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液を3.97gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を0.8質量%とし、微粉造粒で投入する0.3質量%過酸化水素水溶液を0.2質量%亜硫酸水素ナトリウム水溶液としたこと以外は、製造例21と同様にして、造粒ゲル(23)を得た。
[Production Example 23]
A granulated gel (23) was obtained in the same manner as in Production Example 21, except that in Production Example 21, the amount of 20 mass% pentasodium ethylenediaminetetramethylenephosphonate aqueous solution added in the polymerization was 3.97 g, the concentration of the aqueous sodium hydrogensulfite solution added in the gel crushing was 0.8 mass%, and the 0.3 mass% aqueous hydrogen peroxide solution added in the fine powder granulation was changed to a 0.2 mass% aqueous sodium hydrogensulfite solution.

[製造例24]
製造例22において、重合で添加する20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液を3.97gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液の濃度を0.8質量%とし、粒子状含水ゲルと併せる造粒ゲルを製造例23で得られた造粒ゲル(23)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液の濃度を1.25質量%としたこと以外は、製造例22と同様にして、吸水性樹脂(24)を得た。
[Production Example 24]
In Production Example 22, except that the amount of 20 mass% pentasodium ethylenediaminetetramethylenephosphonic acid aqueous solution added in polymerization was 3.97 g, the concentration of the aqueous sodium hydrogensulfite solution added in gel crushing was 0.8 mass%, the granulated gel to be combined with the particulate hydrous gel was the granulated gel (23) obtained in Production Example 23, and the concentration of the aqueous sodium hydrogensulfite solution added after surface crosslinking was 1.25 mass%, a water absorbent resin (24) was obtained in the same manner as in Production Example 22.

[製造例25]
製造例23において、重合で添加する20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液を1.32gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液とし、微粉造粒で投入する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液としたこと以外は、製造例23と同様にして、造粒ゲル(25)を得た。
[Production Example 25]
A granulated gel (25) was obtained in the same manner as in Production Example 23, except that in Production Example 23, the amount of 20 mass% pentasodium ethylenediaminetetramethylenephosphonate aqueous solution added in the polymerization was 1.32 g, the aqueous sodium hydrogensulfite solution added in the gel crushing was an aqueous sodium sulfite solution, and the aqueous sodium hydrogensulfite solution added in the fine powder granulation was an aqueous sodium sulfite solution.

[製造例26]
製造例24において、重合で添加する20質量%エチレンジアミンテトラメチレンホスホン酸5ナトリウム水溶液を1.32gとし、ゲル粉砕で添加する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液とし、粒子状含水ゲルと併せる造粒ゲルを製造例25で得られた造粒ゲル(25)とし、表面架橋後に添加する亜硫酸水素ナトリウム水溶液を亜硫酸ナトリウム水溶液としたこと以外は、製造例24と同様にして、吸水性樹脂(26)を得た。
[Production Example 26]
In Production Example 24, except that the amount of 20 mass% pentasodium ethylenediaminetetramethylenephosphonate aqueous solution added in polymerization was 1.32 g, the aqueous sodium hydrogensulfite solution added in gel crushing was an aqueous sodium sulfite solution, the granulated gel combined with the particulate hydrogel was the granulated gel (25) obtained in Production Example 25, and the aqueous sodium hydrogensulfite solution added after surface crosslinking was an aqueous sodium sulfite solution, a water absorbent resin (26) was obtained in the same manner as in Production Example 24.

[製造例27]
製造例8において、乾燥重合体(8)をロールミルで2回粉砕したこと以外は、製造例8と同様にして、吸水性樹脂(27)を得た。
[Production Example 27]
A water-absorbent resin (27) was obtained in the same manner as in Production Example 8, except that the dried polymer (8) was pulverized twice with a roll mill.

[製造例28]
製造例27において、粉砕後、目開き850μmおよび106μmの二種類のJIS標準篩を用いて、ロータップ式篩分級機で分級したこと以外は、製造例27と同様にして、吸水性樹脂(28)を得た。
[Production Example 28]
In Production Example 27, after pulverization, the product was classified using two types of JIS standard sieves having openings of 850 μm and 106 μm with a Rotap type sieve classifier in the same manner as in Production Example 27, except that a water absorbent resin (28) was obtained.

[実施例25]
製造例8で得られた、吸水性樹脂(8)100質量部に対して、40質量%の水分散性エマルジョンA(スチレン/アクリル酸ブチル/2-イソプロペニル-2-オキサゾリン/ジビニルベンゼン=58.1/21.8/20.0/0.1質量%、LogP=3.29、平均粒径:80nm)を1.25質量部(固形分換算で0.5質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(25)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 25]
1.25 parts by mass (0.5 parts by mass in terms of solid content) of 40% by mass of water-dispersible emulsion A (styrene / butyl acrylate / 2-isopropenyl-2-oxazoline / divinylbenzene = 58.1 / 21.8 / 20.0 / 0.1 mass%, Log P = 3.29, average particle size: 80 nm) was added and mixed with 100 parts by mass of the water-absorbent resin (8) obtained in Production Example 8, and the mixture was further heated at 60 ° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (25). The cumulative particle size and span value, deodorization test results, CRC, and AAP measurement results are shown in Table 2.

[実施例26]
実施例25において、吸水性樹脂(8)を、製造例10で得られた吸水性樹脂(10)に変更した以外は実施例25と同様にして、吸水性樹脂組成物(26)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 26]
A water absorbent resin composition (26) was obtained in the same manner as in Example 25, except that the water absorbent resin (8) in Example 25 was changed to the water absorbent resin (10) obtained in Production Example 10. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例27]
実施例25において、吸水性樹脂(8)を、製造例12で得られた吸水性樹脂(12)に変更した以外は実施例25と同様にして、吸水性樹脂組成物(27)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 27]
A water absorbent resin composition (27) was obtained in the same manner as in Example 25, except that the water absorbent resin (8) in Example 25 was changed to the water absorbent resin (12) obtained in Production Example 12. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例28]
実施例25において、吸水性樹脂(8)を、製造例14で得られた吸水性樹脂(14)100質量部に変更した以外は実施例25と同様にして、吸水性樹脂組成物(28)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 28]
A water absorbent resin composition (28) was obtained in the same manner as in Example 25, except that the water absorbent resin (8) was changed to 100 parts by mass of the water absorbent resin (14) obtained in Production Example 14. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例29]
実施例25において、吸水性樹脂(8)を、製造例16で得られた吸水性樹脂(16)に変更した以外は実施例25と同様にして、吸水性樹脂組成物(29)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 29]
A water absorbent resin composition (29) was obtained in the same manner as in Example 25, except that the water absorbent resin (8) in Example 25 was changed to the water absorbent resin (16) obtained in Production Example 16. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例30]
製造例18で得られた、吸水性樹脂(18)100質量部に対して、25質量%の水溶性ポリマーB(2-イソプロペニル-2-オキサゾリン/アクリル酸エチル/メタクリル酸メチル/メトキシポリエチレングリコールアクリレート(n=9)=50/22/3/25質量%、重量平均分子量=約40,000、LogP=1.07)の水溶液を2質量部(固形分換算で0.5質量部)添加混合し、さらに混合物を60℃で30分間加熱した。その後、混合物を解砕し、目開き850μmのJIS標準篩を通過させ、吸水性樹脂組成物(30)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 30]
2 parts by mass (0.5 parts by mass in terms of solid content) of 25% by mass of water-soluble polymer B (2-isopropenyl-2-oxazoline / ethyl acrylate / methyl methacrylate / methoxypolyethylene glycol acrylate (n = 9) = 50 / 22 / 3 / 25% by mass, weight average molecular weight = about 40,000, Log P = 1.07) was added and mixed with 100 parts by mass of the water-absorbent resin (18) obtained in Production Example 18, and the mixture was heated at 60 ° C. for 30 minutes. Thereafter, the mixture was crushed and passed through a JIS standard sieve with an opening of 850 μm to obtain a water-absorbent resin composition (30). The cumulative particle size and span value, deodorization test results, CRC, and AAP measurement results are shown in Table 2.

[実施例31]
実施例30において、吸水性樹脂(18)を、製造例20で得られた吸水性樹脂(20)に変更した以外は実施例30と同様にして、吸水性樹脂組成物(31)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 31]
A water absorbent resin composition (31) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (20) obtained in Production Example 20. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例32]
実施例30において、吸水性樹脂(18)を、製造例22で得られた、吸水性樹脂(22)に変更した以外は実施例30と同様にして、吸水性樹脂組成物(32)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 32]
A water absorbent resin composition (32) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (22) obtained in Production Example 22. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例33]
実施例30において、吸水性樹脂(18)を、製造例24で得られた吸水性樹脂(24)に変更した以外は実施例30と同様にして、吸水性樹脂組成物(33)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 33]
A water absorbent resin composition (33) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (24) obtained in Production Example 24. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例34]
実施例30において、吸水性樹脂(18)を、製造例26で得られた吸水性樹脂(26)に変更した以外は実施例30と同様にして、吸水性樹脂組成物(34)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 34]
A water absorbent resin composition (34) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (26) obtained in Production Example 26. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例35]
実施例30において、吸水性樹脂(18)を、製造例27で得られた吸水性樹脂(27)に変更した以外は実施例30と同様にして、吸水性樹脂組成物(35)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 35]
A water absorbent resin composition (35) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (27) obtained in Production Example 27. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[実施例36]
実施例14において、吸水性樹脂(1)を、製造例27で得られた吸水性樹脂(27)に変更した以外は実施例14と同様にして、吸水性樹脂組成物(36)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Example 36]
A water absorbent resin composition (36) was obtained in the same manner as in Example 14, except that the water absorbent resin (1) in Example 14 was changed to the water absorbent resin (27) obtained in Production Example 27. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例8]
製造例8で得られた吸水性樹脂(8)を、そのまま比較用吸水性樹脂組成物(8)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 8]
The water-absorbent resin (8) obtained in Production Example 8 was used as it was as a comparative water-absorbent resin composition (8). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例9]
製造例10で得られた吸水性樹脂(10)を、そのまま比較用吸水性樹脂組成物(9)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 9]
The water absorbent resin (10) obtained in Production Example 10 was used as it was as a comparative water absorbent resin composition (9). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例10]
製造例12で得られた吸水性樹脂(12)を、そのまま比較用吸水性樹脂組成物(10)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 10]
The water absorbent resin (12) obtained in Production Example 12 was used as it was as a comparative water absorbent resin composition (10). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例11]
製造例14で得られた吸水性樹脂(14)を、そのまま比較用吸水性樹脂組成物(11)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 11]
The water absorbent resin (14) obtained in Production Example 14 was used as it was as a comparative water absorbent resin composition (11). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例12]
製造例16で得られた吸水性樹脂(16)を、そのまま比較用吸水性樹脂組成物(12)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 12]
The water absorbent resin (16) obtained in Production Example 16 was used as it was as a comparative water absorbent resin composition (12). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例13]
製造例18で得られた吸水性樹脂(18)を、そのまま比較用吸水性樹脂組成物(13)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 13]
The water absorbent resin (18) obtained in Production Example 18 was used as it was as a comparative water absorbent resin composition (13). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例14]
製造例20で得られた吸水性樹脂(20)を、そのまま比較用吸水性樹脂組成物(14)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 14]
The water absorbent resin (20) obtained in Production Example 20 was used as it was as a comparative water absorbent resin composition (14). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例15]
製造例22で得られた吸水性樹脂(22)を、そのまま比較用吸水性樹脂組成物(15)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 15]
The water absorbent resin (22) obtained in Production Example 22 was used as it was as a comparative water absorbent resin composition (15). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例16]
製造例24で得られた吸水性樹脂(24)を、そのまま比較用吸水性樹脂組成物(16)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 16]
The water absorbent resin (24) obtained in Production Example 24 was used as it was as a comparative water absorbent resin composition (16). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例17]
製造例26で得られた吸水性樹脂(26)を、そのまま比較用吸水性樹脂組成物(17)として用いた。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 17]
The water absorbent resin (26) obtained in Production Example 26 was used as it was as a comparative water absorbent resin composition (17). The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例18]
実施例30において、吸水性樹脂(18)を、製造例28で得られた吸水性樹脂(28)に変更した以外は実施例30と同様にして、比較用吸水性樹脂組成物(18)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 18]
A comparative water absorbent resin composition (18) was obtained in the same manner as in Example 30, except that the water absorbent resin (18) in Example 30 was changed to the water absorbent resin (28) obtained in Production Example 28. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

[比較例19]
実施例14において、吸水性樹脂(1)を、製造例28で得られた吸水性樹脂(28)に変更した以外は実施例14と同様にして、比較用吸水性樹脂組成物(19)を得た。累積粒径およびスパン値、消臭試験結果、CRC、AAP測定結果を表2に示した。
[Comparative Example 19]
A comparative water absorbent resin composition (19) was obtained in the same manner as in Example 14, except that the water absorbent resin (1) in Example 14 was changed to the water absorbent resin (28) obtained in Production Example 28. The cumulative particle size and span value, the deodorization test results, and the CRC and AAP measurement results are shown in Table 2.

<考察>
表1に示される結果より、以下の考察を行う。なお、消臭試験の結果が3.00以上であると本願の所期の効果が得られていないことを意味し、消臭試験の結果が3.00未満であれば本願の所期の効果が得られていることを意味する。
<Considerations>
The following considerations are made from the results shown in Table 1. Note that a deodorization test result of 3.00 or more means that the desired effect of the present application is not being obtained, and a deodorization test result of less than 3.00 means that the desired effect of the present application is being obtained.

比較例1、8~17と、実施例を比較すると、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含む吸水性樹脂組成物は、消臭試験において、尿臭の強度レベルが大幅に減少しており、高い尿臭抑制効果を有することがわかる。特に、実施例1と実施例23を比較すると、疎水性多孔質ポリマー吸着剤と含窒素複素環を有する樹脂を併用することにより、尿臭抑制効果がさらに向上することが分かる。 Comparing Comparative Examples 1, 8 to 17 with the Examples, it can be seen that the water-absorbent resin composition containing at least one of the components of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle significantly reduced the intensity level of urine odor in the deodorization test, and has a high urine odor suppression effect. In particular, comparing Example 1 with Example 23, it can be seen that the urine odor suppression effect is further improved by using a hydrophobic porous polymer adsorbent in combination with a resin having a nitrogen-containing heterocycle.

一方、比較例2、18、19と、実施例を比較すると、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含んでいても、スパン値が本発明の範囲外であると、得られる尿臭抑制効果が大幅に低減してしまうことがわかる。On the other hand, when comparing Comparative Examples 2, 18, and 19 with the Examples, it can be seen that even if the composition contains at least one of the components of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, if the span value is outside the range of the present invention, the urine odor suppression effect obtained is significantly reduced.

また、比較例3および4より、疎水性多孔質ポリマーの代わりに、細孔構造を有しない微粒子や、無機系多孔質吸着剤であるゼオライトを用いた場合、吸着剤の総比表面積は実施例と同等程度であるにも関わらず十分な消臭効果が得られない。このことから、吸着剤としては細孔構造を有する疎水性多孔質ポリマーであることが必要であることが分かる。 In addition, from Comparative Examples 3 and 4, when microparticles without a pore structure or zeolite, an inorganic porous adsorbent, are used instead of the hydrophobic porous polymer, a sufficient deodorizing effect cannot be obtained even though the total specific surface area of the adsorbent is about the same as in the Examples. This shows that the adsorbent needs to be a hydrophobic porous polymer with a pore structure.

また、比較例5より、疎水性多孔質ポリマー吸着剤の代わりに、アンモニア、トリメチルアミン、ジメチルジスルフィド等の臭気原因物質と結合し、消臭効果を示すと言われているペルオキソ一硫酸カリウムを用いても、十分な消臭効果が得られない。 Furthermore, Comparative Example 5 shows that even when potassium peroxomonosulfate, which is said to bind with odor-causing substances such as ammonia, trimethylamine, and dimethyl disulfide and exhibit a deodorizing effect, is used instead of the hydrophobic porous polymer adsorbent, a sufficient deodorizing effect cannot be obtained.

また、比較例6より、窒素を含んでいても複素環化合物ではない樹脂を使用した場合、尿臭抑制効果が得られないことが分かる。 Furthermore, Comparative Example 6 shows that when a resin that contains nitrogen but is not a heterocyclic compound is used, the urine odor suppression effect is not obtained.

また、比較例7より、含窒素複素環を有する樹脂を吸水性樹脂に添加後、表面処理時に想定されるような温度で加熱すると、尿臭抑制効果が得られないことが分かる。 Furthermore, Comparative Example 7 shows that when a resin having a nitrogen-containing heterocycle is added to a water-absorbent resin and then heated at a temperature expected during surface treatment, the urine odor suppression effect is not obtained.

よって、本発明の解題を解決するには、「吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分を含み、スパン値が特定値以下である」との構成が重要であることが分かる。Therefore, in order to solve the problem of the present invention, it is important that the composition "contains a water-absorbent resin and at least one of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle, and has a span value that is less than or equal to a specific value."

本出願は、2020年10月21日に出願された日本特許出願番号2020-176572号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
This application is based on Japanese Patent Application No. 2020-176572, filed on October 21, 2020, the disclosure of which is hereby incorporated by reference in its entirety.

Claims (14)

吸水性樹脂と、疎水性多孔質ポリマー吸着剤および含窒素複素環を有する樹脂の少なくとも一方の成分とを含み、
前記含窒素複素環が、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、ピリダジン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、ピラゾール環またはオキサゾリン環から選ばれ、
下記式1で表されるスパン値が、1.10以下である、吸水性樹脂組成物。

D(90%)は、粒子径の累積粒径分布において、最小径からの累積が90%となる粒子径(単位:μm)
D(10%)は、粒子径の累積粒径分布において、最小径からの累積が10%となる粒子径(単位:μm)
D(50%)は、粒子径の累積粒径分布において、最小径からの累積が50%となる粒子径(単位:μm)
ここで、D(90%)、D(10%)、D(50%)は、質量基準で累積した値である。
The present invention relates to a water-absorbent resin, and at least one of a hydrophobic porous polymer adsorbent and a resin having a nitrogen-containing heterocycle,
the nitrogen-containing heterocycle is selected from a pyridine ring, a pyrazine ring, a triazine ring, a pyrimidine ring, a pyridazine ring, an imidazole ring, an oxazole ring, an oxadiazole ring, a triazole ring, a pyrazole ring, or an oxazoline ring;
A water-absorbent resin composition having a span value represented by the following formula 1 of 1.10 or less.

D(90%) is the particle size at which the cumulative particle size distribution from the minimum diameter is 90% (unit: μm)
D(10%) is the particle size (unit: μm) at which the cumulative particle size distribution from the minimum diameter is 10%.
D(50%) is the particle size at which the cumulative particle size distribution from the minimum diameter is 50% (unit: μm)
Here, D(90%), D(10%), and D(50%) are cumulative values based on mass.
前記含窒素複素環を有する樹脂が、水不溶性または下記式1で規定されるLogPが1.5以上の水に分散可能なポリマーである、請求項1に記載の吸水性樹脂組成物。

(式1中、VMLogP(i)は、ポリマー繰り返し単位(i)の両端をメチル化した仮想モノマー単位(Virtual Monomer(VM))の25℃での“n-オクタノール-水分配係数”の計算値であり、MR(i)は、繰り返し単位(i)の“モル比率(Mol Ratio(MR)”)である。)
2. The water-absorbing resin composition according to claim 1 , wherein the resin having a nitrogen-containing heterocycle is a water-insoluble or water-dispersible polymer having a LogP of 1.5 or more as defined by the following formula 1:

(In formula 1, VMLogP(i) is the calculated value of the "n-octanol-water partition coefficient" at 25°C of a virtual monomer unit (VM) in which both ends of a polymer repeating unit (i) are methylated, and MR(i) is the "molar ratio (Mol Ratio (MR))" of the repeating unit (i).)
前記含窒素複素環を有する樹脂の平均粒径が、50~250,000nmである、請求項に記載の吸水性樹脂組成物。 3. The water-absorbing resin composition according to claim 2 , wherein the average particle diameter of the resin having a nitrogen-containing heterocycle is 50 to 250,000 nm. 前記疎水性多孔質ポリマー吸着剤が、疎水性単量体由来の構成単位を含み、平均細孔直径が50~1000Åの多孔質重合体である、請求項1~のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 3 , wherein the hydrophobic porous polymer adsorbent is a porous polymer containing a constitutional unit derived from a hydrophobic monomer and having an average pore diameter of 50 to 1000 Å. 前記疎水性多孔質ポリマー吸着剤の比表面積が、20~2000m/gである、請求項1~のいずれかに1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 4 , wherein the specific surface area of the hydrophobic porous polymer adsorbent is 20 to 2000 m 2 /g. 前記吸水性樹脂100質量部に対する前記含窒素複素環を有する樹脂の含有量が、0.01~30質量部である、請求項1~のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 5 , wherein the content of the resin having a nitrogen-containing heterocycle is 0.01 to 30 parts by mass based on 100 parts by mass of the water-absorbing resin. 前記吸水性樹脂100質量部に対する前記疎水性多孔質ポリマー吸着剤の含有量が、0.05~10質量部である、請求項1~のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to any one of claims 1 to 5 , wherein the content of said hydrophobic porous polymer adsorbent is 0.05 to 10 parts by mass relative to 100 parts by mass of said water-absorbent resin. 接触角が、35°以上である、請求項1~のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 7 , which has a contact angle of 35° or more. 前記吸水性樹脂と、前記成分とを結着する、バインダを含む、請求項1~のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 8 , further comprising a binder that binds the water-absorbing resin and the component. 前記バインダが、ポリオールである、請求項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to claim 9 , wherein the binder is a polyol. キレート剤を含む、請求項1~10のいずれか1項に記載の吸水性樹脂組成物。 The water-absorbing resin composition according to any one of claims 1 to 10 , further comprising a chelating agent. 前記吸水性樹脂の加圧下吸水倍率(AAP4.83kPa)が、5g/g以上である、請求項1~11のいずれか1項に記載の吸水性樹脂組成物。 The water absorbent resin composition according to any one of claims 1 to 11 , wherein the water absorbent resin has a water absorption capacity under pressure (AAP 4.83 kPa) of 5 g/g or more. 請求項1~12のいずれか1項に記載の吸水性樹脂組成物を含む、吸収体。 An absorbent comprising the water-absorbent resin composition according to any one of claims 1 to 12 . 請求項13に記載の吸収体と、液透過性を有する表面シート、液不透過性を有する背面シートとを備える、吸収性物品。 An absorbent article comprising the absorbent body according to claim 13 , a liquid-permeable top sheet, and a liquid-impermeable back sheet.
JP2022557600A 2020-10-21 2021-10-21 Water-absorbent resin composition Active JP7488910B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020176572 2020-10-21
JP2020176572 2020-10-21
PCT/JP2021/038905 WO2022085755A1 (en) 2020-10-21 2021-10-21 Water-absorbable resin composition

Publications (2)

Publication Number Publication Date
JPWO2022085755A1 JPWO2022085755A1 (en) 2022-04-28
JP7488910B2 true JP7488910B2 (en) 2024-05-22

Family

ID=81289812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022557600A Active JP7488910B2 (en) 2020-10-21 2021-10-21 Water-absorbent resin composition

Country Status (2)

Country Link
JP (1) JP7488910B2 (en)
WO (1) WO2022085755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768435B (en) * 2023-05-29 2024-05-07 浙江赛诚生态科技有限公司 Environment-friendly silt stabilizing curing agent and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197818A (en) 1998-11-05 2000-07-18 Nippon Shokubai Co Ltd Water absorbent and its preparation
JP2004001355A (en) 2001-09-19 2004-01-08 Nippon Shokubai Co Ltd Absorber, absorbent article, water absorbent resin, and its manufacturing method and evaluating method
JP2005194376A (en) 2004-01-07 2005-07-21 Nippon Shokubai Co Ltd Water-absorbing resin composition, method for producing the same, and absorber and absorbing article using the same
WO2005120594A1 (en) 2004-06-07 2005-12-22 Dow Global Technologies Inc. Polymers with odor control properties and method for their preparation
JP2006116535A (en) 2004-09-24 2006-05-11 Nippon Shokubai Co Ltd Particulate water absorbent with water absorbent resin as principal component
WO2014119553A1 (en) 2013-01-29 2014-08-07 株式会社日本触媒 Water-absorbable resin material and method for producing same
JP2017140332A (en) 2016-02-12 2017-08-17 花王株式会社 Absorbent article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197818A (en) 1998-11-05 2000-07-18 Nippon Shokubai Co Ltd Water absorbent and its preparation
JP2004001355A (en) 2001-09-19 2004-01-08 Nippon Shokubai Co Ltd Absorber, absorbent article, water absorbent resin, and its manufacturing method and evaluating method
JP2005194376A (en) 2004-01-07 2005-07-21 Nippon Shokubai Co Ltd Water-absorbing resin composition, method for producing the same, and absorber and absorbing article using the same
WO2005120594A1 (en) 2004-06-07 2005-12-22 Dow Global Technologies Inc. Polymers with odor control properties and method for their preparation
JP2006116535A (en) 2004-09-24 2006-05-11 Nippon Shokubai Co Ltd Particulate water absorbent with water absorbent resin as principal component
WO2014119553A1 (en) 2013-01-29 2014-08-07 株式会社日本触媒 Water-absorbable resin material and method for producing same
JP2017140332A (en) 2016-02-12 2017-08-17 花王株式会社 Absorbent article

Also Published As

Publication number Publication date
JPWO2022085755A1 (en) 2022-04-28
WO2022085755A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6320968B2 (en) Particulate water-absorbing agent and method for producing the same
US10525445B2 (en) Particulate water absorbing agent and water absorbent article
US20210115198A1 (en) Water-absorbent resin powder and production method thereof
JP5084513B2 (en) Method for producing modified water-absorbing resin
JP5591448B2 (en) Water absorbing agent and method for producing the same
JP4758669B2 (en) Amorphous crushed particulate water-absorbing agent
JP5706351B2 (en) Particulate water-absorbing agent mainly composed of water-absorbing resin
EP3112022A1 (en) Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method
JP5952431B2 (en) Water-absorbing resin material and method for producing the same
EP4252728A2 (en) Water absorbing agent based on polyacrylic acid and/or a salt thereof
JP2006068731A (en) Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
CN106132534B (en) Particulate water-absorbing agent and method for producing same
JP2006233008A (en) Water absorptive resin composition and its manufacturing method
JP7488910B2 (en) Water-absorbent resin composition
JP3712453B2 (en) Water-absorbing resin, water-absorbing resin composition and absorber
JP5079938B2 (en) Water absorbent composition
JP4860019B2 (en) Water-absorbing agent and production method and use thereof
JP4500134B2 (en) Particulate water-absorbing resin composition
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin
JP2007056071A (en) Method for preparing modified water absorbent resin
WO2022196763A1 (en) Method for producing water absorbent resin
WO2024204126A1 (en) Particulate water absorbent, absorber containing said particulate water absorbent, and sanitary product containing said absorber
JP2007321010A (en) Method for surface treating water-absorbing resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510

R150 Certificate of patent or registration of utility model

Ref document number: 7488910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150