JP7469354B2 - Method for producing fine metal particles - Google Patents
Method for producing fine metal particles Download PDFInfo
- Publication number
- JP7469354B2 JP7469354B2 JP2022055626A JP2022055626A JP7469354B2 JP 7469354 B2 JP7469354 B2 JP 7469354B2 JP 2022055626 A JP2022055626 A JP 2022055626A JP 2022055626 A JP2022055626 A JP 2022055626A JP 7469354 B2 JP7469354 B2 JP 7469354B2
- Authority
- JP
- Japan
- Prior art keywords
- metal particles
- temperature
- gas
- metal
- temperature range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002923 metal particle Substances 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229910001111 Fine metal Inorganic materials 0.000 title claims description 25
- 239000007789 gas Substances 0.000 claims description 71
- 239000002184 metal Substances 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 51
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 229930195733 hydrocarbon Natural products 0.000 claims description 31
- 150000002430 hydrocarbons Chemical class 0.000 claims description 31
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 25
- 229910052799 carbon Inorganic materials 0.000 description 25
- 239000002245 particle Substances 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000003628 erosive effect Effects 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Catalysts (AREA)
- Powder Metallurgy (AREA)
Description
本開示は、微細金属粒子の製造方法に関する。 This disclosure relates to a method for producing fine metal particles.
金属を微粒化する技術として、固体金属の粉砕や、溶融した金属を噴射冷却するアトマイズ法(例えば、特許文献1参照)等がある。しかしながら、従来の多くの技術はマイクロメートルオーダーの粒径までの微粒化技術であり、サブミクロンオーダーの粒径まで金属を微粒化することには不向きである。これに対し、本開示の発明者らの研究により、金属粒子を触媒として炭化水素の直接分解を行うと、金属がサブミクロンオーダーの粒径まで微細化できることを明らかにしている(本願出願人により出願された特願2021-177811号)。 Technologies for atomizing metal include pulverization of solid metals and atomization, which involves spraying and cooling molten metal (see, for example, Patent Document 1). However, many conventional techniques are only capable of atomizing metals to particle sizes on the order of micrometers, and are not suitable for atomizing metals to particle sizes on the order of submicrons. In contrast, research by the inventors of the present disclosure has revealed that direct decomposition of hydrocarbons using metal particles as a catalyst can atomize metals to particle sizes on the order of submicrons (Patent Application No. 2021-177811 filed by the applicant of the present application).
しかしながら、本開示の発明者らの研究では、金属粒子を触媒として炭化水素の直接分解を行うことにより、金属がサブミクロンオーダーの粒径まで微細化できることは明らかになったものの、さらに効率的に金属をサブミクロンオーダーの粒径まで微細化することが望まれている。 However, although the research of the inventors of this disclosure has revealed that metals can be refined to submicron particle sizes by directly decomposing hydrocarbons using metal particles as a catalyst, there is a need to refine metals to submicron particle sizes more efficiently.
上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる微細金属粒子の製造方法を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present disclosure aims to provide a method for producing fine metal particles that can efficiently atomize metal to a particle size on the submicron order.
上記目的を達成するため、本開示に係る微細金属粒子の製造方法は、金属粒子を準備するステップと、炭化水素を含む供給ガスを前記金属粒子に供給し、600℃~900℃の温度範囲で前記供給ガスと前記金属粒子とを接触させるステップと、前記供給ガスを不活性ガスに切り替えて、該不活性ガスを前記金属粒子に供給し、前記温度範囲内の温度を600℃未満に低下するステップと、前記温度範囲内の温度を600℃未満に低下した後、再び前記温度範囲内の温度に上昇させるステップと、再び前記温度範囲内の温度に上昇させた後に、前記不活性ガスを前記供給ガスに切り替えて、前記供給ガスを前記金属粒子に供給し、前記供給ガスと前記金属粒子とを接触させるステップとを含み、前記金属粒子を形成する金属は鉄である。
In order to achieve the above-mentioned object, the method for producing fine metal particles according to the present disclosure includes the steps of preparing metal particles, supplying a supply gas containing a hydrocarbon to the metal particles and contacting the supply gas with the metal particles in a temperature range of 600°C to 900°C , switching the supply gas to an inert gas and supplying the inert gas to the metal particles and lowering the temperature within the temperature range to less than 600°C, lowering the temperature within the temperature range to less than 600°C and then raising the temperature again to within the temperature range, and after raising the temperature again to within the temperature range, switching the inert gas back to the supply gas, supplying the supply gas to the metal particles and contacting the supply gas with the metal particles , wherein the metal forming the metal particles is iron .
本開示の微細金属粒子の製造方法によれば、炭化水素をカーボン及び水素に直接分解する反応の触媒として金属粒子が機能する。この触媒作用の過程で、生成した水素による水素侵食によって金属粒子に粒界が生じ、この粒界を起点として、金属粒子から微粒子がマイグレーションにより移動し、生成したカーボンと反応して金属カーバイドが形成される。水素侵食に伴って金属のカーバイド化が進行し、サブミクロンオーダーの粒径の微粒子に分割されていく。生成したカーボンは、600℃~900℃の温度範囲では金属中に溶解しているが、温度を600℃未満に低下する間に、金属へのカーボンの溶解度が低下することによりカーボンが金属の外に追い出される。カーボンが金属の外に追い出される際に金属粒子が破壊されるので、温度を低下させない場合に比べて、金属粒子がより微細化される。これにより、温度を再び600℃~900℃の温度範囲に上昇させた後の触媒活性が向上するので、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる。 According to the method for producing fine metal particles disclosed herein, metal particles function as a catalyst for a reaction that directly decomposes hydrocarbons into carbon and hydrogen. During this catalytic process, grain boundaries are generated in the metal particles due to hydrogen erosion by the hydrogen generated, and starting from these grain boundaries, fine particles migrate from the metal particles and react with the generated carbon to form metal carbides. Carbidization of the metal progresses with hydrogen erosion, and the metal is divided into fine particles with a particle size on the submicron order. The generated carbon is dissolved in the metal in the temperature range of 600°C to 900°C, but as the temperature is lowered to below 600°C, the solubility of carbon in the metal decreases, and the carbon is expelled from the metal. Since the metal particles are destroyed when the carbon is expelled from the metal, the metal particles are further refined compared to when the temperature is not lowered. As a result, the catalytic activity is improved after the temperature is raised again to the temperature range of 600°C to 900°C, so the metal can be efficiently refined to a particle size on the submicron order.
以下、本開示の実施形態による微細金属粒子の製造方法について、図面に基づいて説明する。以下で説明する実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。 The method for producing fine metal particles according to an embodiment of the present disclosure will be described below with reference to the drawings. The embodiment described below shows one aspect of the present disclosure, does not limit the disclosure, and can be modified as desired within the scope of the technical concept of the present disclosure.
<本開示の発明者らの先行研究による知見>
本願出願人の先願(特願2021-177811号)では、600℃~900℃の温度で金属粒子に炭化水素を含むガスを接触させることで、金属をサブミクロンオーダーの粒径まで微細化できることを明らかにした。この方法では、炭化水素をカーボン及び水素に直接分解する反応の触媒として金属粒子が機能する。この触媒作用の過程で、生成した水素による水素侵食によって金属粒子に粒界が生じ、この粒界を起点として、金属粒子から微粒子がマイグレーションにより移動し、生成したカーボンと反応して金属カーバイドが形成される。水素侵食に伴って金属のカーバイド化が進行し、サブミクロンオーダーの粒径の微粒子に分割されていく。このようにして、金属をサブミクロンオーダーの粒径まで微粒化することができる。先願では、微細化できる金属として、鉄、ニッケル、コバルト、又はこれらのうちの少なくとも2つの合金を例示している。この知見に基づき、本開示では以下において、さらに効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる微細金属粒子の製造方法を説明する。
<Findings from prior research by the inventors of the present disclosure>
In the applicant's prior application (Japanese Patent Application No. 2021-177811), it was revealed that metal can be refined to a particle size of submicron order by contacting metal particles with a gas containing hydrocarbon at a temperature of 600 ° C. to 900 ° C. In this method, the metal particles function as a catalyst for a reaction that directly decomposes hydrocarbons into carbon and hydrogen. In the process of this catalytic action, grain boundaries are generated in the metal particles due to hydrogen erosion by the generated hydrogen, and starting from these grain boundaries, fine particles move by migration from the metal particles and react with the generated carbon to form metal carbide. Carbidization of the metal progresses with hydrogen erosion, and the metal is divided into fine particles with a particle size of submicron order. In this way, the metal can be refined to a particle size of submicron order. In the prior application, iron, nickel, cobalt, or an alloy of at least two of these metals are exemplified as metals that can be refined. Based on this knowledge, in the following, the present disclosure will describe a method for producing fine metal particles that can more efficiently refine metal to a particle size of submicron order.
<本開示の一実施形態に係る微細金属粒子の製造方法を実施するための装置の構成>
図1に示されるように、本開示の一実施形態に係る微細金属粒子の製造方法を実施するための装置1は、微粒化される金属粒子2が収容された反応器3を備えている。反応器3には、反応器3の内部、特に金属粒子2を昇温するための加熱装置4(例えば、スチームが流通するジャケット等)が設けられている。反応器3には、炭化水素を含む供給ガスを反応器3に供給するための供給ライン5と、反応器3から流出する流出ガスが流通する流出ガス流通ライン6とが接続されている。
<Configuration of an apparatus for carrying out a method for producing fine metal particles according to an embodiment of the present disclosure>
As shown in Fig. 1, an
金属粒子2を形成する金属は、鉄、ニッケル、コバルト、又はこれらのうちの少なくとも2つの合金である。また、供給ガスは炭化水素のみを含んでもよいが、炭化水素の他に不活性ガス(窒素又は希ガス)を含んでもよい。さらに、炭化水素としては、メタンのみでもよいし、メタンと2以上の炭素を含む少なくとも1種類の炭化水素(エタン、エチレン、プロパン等)との混合物であってもよい。このような混合物を直接分解される炭化水素として使用する場合、混合物の組成は、メタンが90vol%であるとともに2以上の炭素を含む少なくとも1種類の炭化水素が10vol%であることが好ましい。
The metal forming the
<本開示の一実施形態に係る微細金属粒子の製造方法>
次に、本開示の一実施形態に係る微細金属粒子の製造方法について説明する。反応器3内に、微粒化される金属粒子2を収容する。次に、供給ライン5を介して反応器3内に供給ガスを供給し、反応器3内で供給ガスを金属粒子2に接触させる。この際、供給ガス中の炭化水素は、金属粒子2の触媒作用によって水素とカーボンに直接分解される。この分解反応(「直接分解反応」とも言う)における炭化水素としてメタンを例にすると、下記の反応式(1)で表される反応が反応器3内で生じる。
CH4→2H2+C ・・・(1)
尚、この分解反応を促進するために、加熱装置4によって金属粒子2の温度を600℃~900℃の範囲に維持することが好ましい。
<Method of manufacturing fine metal particles according to an embodiment of the present disclosure>
Next, a method for producing fine metal particles according to an embodiment of the present disclosure will be described.
CH4 → 2H2 +C...(1)
In order to promote this decomposition reaction, it is preferable to maintain the temperature of the
本開示の製造方法では、供給ガスと金属粒子2との接触中に、温度を600℃未満に低下した後、再び600℃~900℃の範囲に上昇させる。反応式(1)の活性が十分に上がるまでには数時間がかかることから、温度を低下させるタイミングについては、反応式(1)の活性が十分に上がった後が好ましい。反応式(1)の活性が十分に上がるまでに必要な時間が経験上分かっている場合は、反応開始からその時間が経過した後に温度を低下すればよい。そのような時間が分かっていない場合には、流出ガス流通ライン6を流通する流出ガスを定期的にサンプリングし、ガスクロマトグラフで流出ガスの組成を分析することにより、炭化水素の転化率の経時変化が得られるので、この経時変化から、温度を下げるタイミングを決定することができる。
In the manufacturing method disclosed herein, the temperature is lowered to less than 600°C during contact between the supply gas and the
本開示の製造方法によれば、金属粒子2が炭化水素をカーボン及び水素に直接分解する反応の触媒として機能する過程で、生成した水素による水素侵食によって金属粒子に粒界が生じ、この粒界を起点として、金属粒子から微粒子がマイグレーションにより移動し、生成したカーボンと反応して金属カーバイドが形成される。水素侵食に伴って金属のカーバイド化が進行し、サブミクロンオーダーの粒径の微粒子に分割されていく。生成したカーボンは、600℃~900℃の温度範囲では金属中に溶解しているが、温度を600℃未満に低下する間に、金属へのカーボンの溶解度が低下することによりカーボンが金属の外に追い出される。カーボンが金属の外に追い出される際に金属粒子が破壊されるので、温度を低下させない場合に比べて、金属粒子がより微細化される。これにより、温度を再び600℃~900℃の温度範囲に上昇させた後の触媒活性が向上するので、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる。尚、反応式(1)の活性が十分に上がった後に温度を下げることが好ましいと述べたが、鉄の内部に溶解したカーボンが温度の低下によって析出することで活性が向上することからすれば、必ずしも活性が十分に上がった後でなくても、活性が十分に上がる前、少なくとも活性の発現を確認できた後であれば、同様の効果が得られると考えられる。
According to the manufacturing method of the present disclosure, in the process in which the
<実験装置の構成>
後述する実施例1及び2並びに比較例1及び2によって、本開示の製造方法の作用効果を検証するが、その検証のために行われる実験で使用する実験装置の構成を図2に示す。実験装置20は、金属粒子2を載置した目皿28を内部に収容する内径16mmの石英製の反応器23を備えている。反応器23は、電気炉24で加熱可能になっている。反応器23には、供給ガス又はアルゴンを供給するための供給ライン25と、供給ガスに含まれる炭化水素の直接分解反応によって生成した水素を含む流出ガスが反応器23から流出後に流通する流出ガス流通ライン26とが接続されている。流出ガス流通ライン26は、流出ガスの組成を測定するためのガスクロマトグラフ27に接続されている。
<Experimental Equipment Configuration>
The effect of the manufacturing method of the present disclosure will be verified by Examples 1 and 2 and Comparative Examples 1 and 2 described below. The configuration of the experimental apparatus used in the experiments performed for the verification is shown in FIG. 2. The
<実験方法>
次に、実施例1及び2並びに比較例1及び2の実験方法について説明する。この実験装置20において、金属粒子2を反応器23内の目皿28上に設置した後、反応器23内をアルゴンで置換した。次に、反応器23内にアルゴンを流通させながら、電気炉24を起動して、反応器23内を800℃まで昇温した。反応器23内の温度が800℃となったら、反応器23内に供給するガスを供給ガスに切り替えて、炭化水素を直接分解する実験を行った。
<Experimental Method>
Next, the experimental methods of Examples 1 and 2 and Comparative Examples 1 and 2 will be described. In this
実施例1及び2については、反応器23内に供給するガスを供給ガスに切り替えてから8時間経過後に、電気炉24を停止し、反応器23内に供給するガスをアルゴンに切り替えることによって反応器23内をアルゴンで置換した。1~4時間放置することで、反応器23内の温度が25℃となった。10時間後、反応器23内にアルゴンを流通させながら、電気炉24を起動して、反応器23内の温度を100℃/minの昇温速度で800℃まで昇温した。反応器23内の温度が800℃となったら、反応器23内に供給するガスを供給ガスに切り替えて、炭化水素を直接分解する実験を再開した。比較例1及び2については、反応容器23内の温度を低下せず、実験終了まで800℃を維持した。
For Examples 1 and 2, 8 hours after the gas supplied to the
実施例1及び2並びに比較例1及び2の実験条件を下記表1に示す。尚、金属粒子2として、株式会社ニラコから入手可能な電解鉄製粒子を使用した。この電解鉄製粒子は、平均粒径が45μmであり、鉄の純度は99質量%である。
The experimental conditions for Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below. Note that electrolytic iron particles available from Nilaco Corporation were used as
実施例1及び2並びに比較例1及び2のそれぞれの直接分解反応の実験において、ガスクロマトグラフ27によって測定された反応ガスの組成から、下記式(2)によって、供給ガス転化率CR[%]を算出した。
CR=(1-H1/H0)×100 ・・・(2)
ここで、H0は供給ガスが持つ水素原子数であり、H1は反応ガス中の炭化水素ガスが持つ水素原子数である。それぞれのガスが持つ水素原子数は、それぞれのガス組成と流量とから算出することができる。
In the direct cracking reaction experiments of Examples 1 and 2 and Comparative Examples 1 and 2, the feed gas conversion rate CR [%] was calculated from the composition of the reaction gas measured by the
CR=(1−H 1 /H 0 )×100 (2)
Here, H0 is the number of hydrogen atoms contained in the supply gas, and H1 is the number of hydrogen atoms contained in the hydrocarbon gas in the reaction gas. The number of hydrogen atoms contained in each gas can be calculated from the composition and flow rate of each gas.
実施例1及び2並びに比較例1及び2のそれぞれの供給ガス転化率の経時変化を図3に示す。実施例1及び2では、反応器23内に供給ガスを供給してから(直接分解反応を開始してから)8時間経過後に、供給ガスの供給を停止して温度を25℃まで低下し、その後再び800℃まで昇温してから供給ガスの供給を再開しているが、図3ではこの操作の期間は経時時間にカウントしていない。すなわち、反応器23内に供給ガスを供給してから8時間後のプロットの後のプロットは、この操作が終わって直接分解反応が再開した後のプロットとなっている。このため、図3では、実施例1及び2における供給ガス転化率の経時変化は、反応器23内に供給ガスを供給してから8時間後に急変するようになっている。実施例1及び2のそれぞれと比較例1及び2のそれぞれとを比較すると、反応器23内に供給ガスを供給してから8時間経過後の供給ガス転化率が増加している。
The change over time of the feed gas conversion rate in each of Examples 1 and 2 and Comparative Examples 1 and 2 is shown in Figure 3. In Examples 1 and 2, after 8 hours have elapsed since the feed gas was supplied into the reactor 23 (since the direct decomposition reaction was started), the supply of the feed gas was stopped and the temperature was lowered to 25°C, and then the temperature was raised again to 800°C, and the supply of the feed gas was resumed. However, in Figure 3, the period of this operation is not counted as the elapsed time. In other words, the plot after the plot 8 hours after the feed gas was supplied into the
図4には、実施例1及び2のそれぞれにおいて、温度低下開始直前の供給ガス転化率と温度低下後に直接分解反応を再開した時の供給ガス転化率との比較を示す。図4から、炭化水素の直接分解中に温度を25℃まで低下し、その後温度を基に戻して直接分解反応を再開することで、供給ガス転化率が上昇することがわかった。また、供給ガス転化率が上昇する効果は、供給ガスとしてメタンのみを使用した場合に比べて、2以上の炭素を含む炭化水素を含んだ供給ガスを使用した場合の方が大きいこともわかった。 Figure 4 shows a comparison of the feed gas conversion rate immediately before the start of the temperature reduction and the feed gas conversion rate when the direct cracking reaction was resumed after the temperature reduction in each of Examples 1 and 2. It was found from Figure 4 that the feed gas conversion rate increases when the temperature is reduced to 25°C during the direct cracking of hydrocarbons and then the temperature is returned to the original temperature to resume the direct cracking reaction. It was also found that the effect of increasing the feed gas conversion rate is greater when a feed gas containing hydrocarbons with two or more carbon atoms is used than when only methane is used as the feed gas.
したがって、600℃~900℃の温度範囲で炭化水素を直接分解している間に温度を25℃に低下した後に再び温度を元の温度範囲に戻すことによって、この操作の後における供給ガス転化率がこの操作前における供給ガス転化率よりも上昇するので、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができると言える。 Therefore, by lowering the temperature to 25°C while directly cracking hydrocarbons in the temperature range of 600°C to 900°C and then returning the temperature to the original temperature range, the feed gas conversion rate after this operation is higher than the feed gas conversion rate before this operation, so it can be said that metals can be efficiently atomized to particle sizes on the submicron order.
上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows:
[1]一の態様に係る微細金属粒子の製造方法は、
金属粒子を準備するステップと、
炭化水素を含む供給ガスを前記金属粒子に供給するステップと
を含み、
前記供給ガスと前記金属粒子との接触は600℃~900℃の温度範囲で行われ、
前記供給ガスと前記金属粒子との接触中に、前記温度範囲内の温度を600℃未満に低下した後、再び前記温度範囲内の温度に上昇させる。
[1] A method for producing fine metal particles according to one embodiment includes the steps of:
Providing metal particles;
supplying a feed gas comprising a hydrocarbon to the metal particles;
contacting the feed gas with the metal particles at a temperature in the range of 600° C. to 900° C.;
During contact of the feed gas with the metal particles, the temperature within the temperature range is reduced to below 600° C. and then increased back into the temperature range.
本開示の微細金属粒子の製造方法によれば、炭化水素をカーボン及び水素に直接分解する反応の触媒として金属粒子が機能する。この触媒作用の過程で、生成した水素による水素侵食によって金属粒子に粒界が生じ、この粒界を起点として、金属粒子から微粒子がマイグレーションにより移動し、生成したカーボンと反応して金属カーバイドが形成される。水素侵食に伴って金属のカーバイド化が進行し、サブミクロンオーダーの粒径の微粒子に分割されていく。生成したカーボンは、600℃~900℃の温度範囲では金属中に溶解しているが、温度を600℃未満に低下する間に、金属へのカーボンの溶解度が低下することによりカーボンが金属の外に追い出される。カーボンが金属の外に追い出される際に金属粒子が破壊されるので、温度を低下させない場合に比べて、金属粒子がより微細化される。これにより、温度を再び600℃~900℃の温度範囲に上昇させた後の触媒活性が向上するので、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる。 According to the method for producing fine metal particles disclosed herein, metal particles function as a catalyst for a reaction that directly decomposes hydrocarbons into carbon and hydrogen. During this catalytic process, grain boundaries are generated in the metal particles due to hydrogen erosion by the hydrogen generated, and starting from these grain boundaries, fine particles migrate from the metal particles and react with the generated carbon to form metal carbides. Carbidization of the metal progresses with hydrogen erosion, and the metal is divided into fine particles with a particle size on the submicron order. The generated carbon is dissolved in the metal in the temperature range of 600°C to 900°C, but as the temperature is lowered to below 600°C, the solubility of carbon in the metal decreases, and the carbon is expelled from the metal. Since the metal particles are destroyed when the carbon is expelled from the metal, the metal particles are further refined compared to when the temperature is not lowered. As a result, the catalytic activity is improved after the temperature is raised again to the temperature range of 600°C to 900°C, so the metal can be efficiently refined to a particle size on the submicron order.
[2]別の態様に係る微細金属粒子の製造方法は、[1]の微細金属粒子の製造方法であって、
炭化水素の転化率を測定するステップを含み、
測定された前記転化率が予め決められた設定値以上となったら、前記温度範囲内の温度を600℃未満に低下した後、再び前記温度範囲内の温度に上昇させる。
[2] A method for producing fine metal particles according to another embodiment is the method for producing fine metal particles according to [1],
measuring the conversion of the hydrocarbons;
When the measured conversion rate reaches or exceeds a predetermined set value, the temperature within the temperature range is lowered to below 600° C., and then increased back to within the temperature range.
このような製造方法によれば、十分な量のカーボンが生成された後に、温度の低下及び再度の上昇を行うことになる。そうすると、不十分な量のカーボンしか生成されていないときのこの動作を行う場合に比べて、カーボンが金属の外に追い出される量が多いので、金属がより微細化される。これにより、効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる。 With this manufacturing method, the temperature is lowered and then raised again after a sufficient amount of carbon has been produced. This results in a greater amount of carbon being expelled from the metal than would be the case if this operation were performed when only an insufficient amount of carbon had been produced, resulting in a finer metal. This allows the metal to be efficiently atomized to a particle size on the submicron order.
[3]さらに別の態様に係る微細金属粒子の製造方法は、[1]または[2]の微細金属粒子の製造方法であって、
前記供給ガスは、
90vol%のメタンと、
10vol%の2以上の炭素を含む炭化水素と
を含む。
[3] A method for producing fine metal particles according to yet another embodiment is the method for producing fine metal particles according to [1] or [2],
The feed gas is
90 vol% methane;
and 10 vol. % of hydrocarbons containing 2 or more carbon atoms.
このような製造方法によれば、2以上の炭素を含む炭化水素の方がメタンに比べて分解しやすいので、メタンのみの供給ガスを使用した場合に比べて、より効率的に金属をサブミクロンオーダーの粒径まで微粒化することができる。 With this production method, since hydrocarbons containing two or more carbon atoms are easier to decompose than methane, metals can be atomized to submicron particle sizes more efficiently than when only methane is used as a feed gas.
[4]さらに別の態様に係る微細金属粒子の製造方法は、[1]~[3]のいずれかの微細金属粒子の製造方法であって、
前記金属粒子を形成する金属は、鉄、ニッケル、コバルト、又はこれらのうちの少なくとも2つの合金である。
[4] A method for producing fine metal particles according to yet another embodiment is a method for producing fine metal particles according to any one of [1] to [3],
The metal forming the metal particles is iron, nickel, cobalt, or an alloy of at least two of them.
このような製造構成によれば、鉄製、ニッケル製、コバルト製、又はこれらのうちの少なくとも2つの合金製の微細金属粒子を得ることができる。 This manufacturing configuration makes it possible to obtain fine metal particles made of iron, nickel, cobalt, or an alloy of at least two of these.
2 金属粒子 2 Metal particles
Claims (3)
炭化水素を含む供給ガスを前記金属粒子に供給し、600℃~900℃の温度範囲で前記供給ガスと前記金属粒子とを接触させるステップと、
前記供給ガスを不活性ガスに切り替えて、該不活性ガスを前記金属粒子に供給し、前記温度範囲内の温度を600℃未満に低下するステップと、
前記温度範囲内の温度を600℃未満に低下した後、再び前記温度範囲内の温度に上昇させるステップと、
再び前記温度範囲内の温度に上昇させた後に、前記不活性ガスを前記供給ガスに切り替えて、前記供給ガスを前記金属粒子に供給し、前記供給ガスと前記金属粒子とを接触させるステップと
を含み、
前記金属粒子を形成する金属は鉄である、微細金属粒子の製造方法。 Providing metal particles;
supplying a feed gas comprising a hydrocarbon to the metal particles and contacting the feed gas with the metal particles at a temperature range of 600° C. to 900° C .;
switching the supply gas to an inert gas and supplying the inert gas to the metal particles to reduce the temperature within the temperature range to less than 600°C;
reducing the temperature within the temperature range to less than 600° C. and then increasing the temperature back within the temperature range;
After increasing the temperature to within the temperature range again, the inert gas is switched to the supply gas, and the supply gas is supplied to the metal particles to contact the supply gas with the metal particles.
Including,
A method for producing fine metal particles , wherein the metal forming the metal particles is iron .
測定された前記転化率が予め決められた設定値以上となったら、前記温度範囲内の温度を600℃未満に低下した後、再び前記温度範囲内の温度に上昇させる、請求項1に記載の微細金属粒子の製造方法。 measuring the conversion of the hydrocarbons;
2. The method for producing fine metal particles according to claim 1, wherein when the measured conversion rate reaches or exceeds a predetermined set value, the temperature within the temperature range is lowered to less than 600°C, and then the temperature is increased back to within the temperature range.
90vol%のメタンと、
10vol%の2以上の炭素を含む炭化水素と
を含む、請求項1または2に記載の微細金属粒子の製造方法。 The feed gas is
90 vol% methane;
3. The method for producing fine metal particles according to claim 1 or 2, further comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022055626A JP7469354B2 (en) | 2022-03-30 | 2022-03-30 | Method for producing fine metal particles |
PCT/JP2023/007950 WO2023189197A1 (en) | 2022-03-30 | 2023-03-03 | Method for producing fine metal particles |
TW112108649A TWI859757B (en) | 2022-03-30 | 2023-03-09 | Method for producing fine metal particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022055626A JP7469354B2 (en) | 2022-03-30 | 2022-03-30 | Method for producing fine metal particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023147875A JP2023147875A (en) | 2023-10-13 |
JP7469354B2 true JP7469354B2 (en) | 2024-04-16 |
Family
ID=88201251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022055626A Active JP7469354B2 (en) | 2022-03-30 | 2022-03-30 | Method for producing fine metal particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7469354B2 (en) |
WO (1) | WO2023189197A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321670A (en) | 2000-05-17 | 2001-11-20 | Japan Steel Works Ltd:The | Hydrocarbon decomposing material and hydrocarbon decomposing device |
JP2006043645A (en) | 2004-08-06 | 2006-02-16 | Asao Tada | Catalyst for direct decomposition of lower hydrocarbon |
JP2006096590A (en) | 2004-09-28 | 2006-04-13 | Asao Tada | Apparatus for directly cracking lower hydrocarbon |
JP2006315891A (en) | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon |
JP2007527348A (en) | 2003-11-21 | 2007-09-27 | スタットオイル エイエスエイ | Method for converting hydrocarbons |
WO2008111653A1 (en) | 2007-03-14 | 2008-09-18 | Taiyo Nippon Sanso Corporation | Catalyst body for production of brush-shaped carbon nanostructure, process for producing catalyst body, brush-shaped carbon nanostructure, and process for producing the same |
JP2013095616A (en) | 2011-10-28 | 2013-05-20 | Kassui Plant Kk | Catalytic reactor |
JP2019073411A (en) | 2017-10-16 | 2019-05-16 | 国立研究開発法人産業技術総合研究所 | System for decomposing methane into carbon and hydrogen to produce hydrogen |
JP2021138562A (en) | 2020-03-03 | 2021-09-16 | 国立大学法人京都大学 | Method for producing hydrogen |
WO2022145277A1 (en) | 2020-12-28 | 2022-07-07 | 三菱重工業株式会社 | Appartus and method for direct decomposition of hydrocarbons |
-
2022
- 2022-03-30 JP JP2022055626A patent/JP7469354B2/en active Active
-
2023
- 2023-03-03 WO PCT/JP2023/007950 patent/WO2023189197A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321670A (en) | 2000-05-17 | 2001-11-20 | Japan Steel Works Ltd:The | Hydrocarbon decomposing material and hydrocarbon decomposing device |
JP2007527348A (en) | 2003-11-21 | 2007-09-27 | スタットオイル エイエスエイ | Method for converting hydrocarbons |
JP2006043645A (en) | 2004-08-06 | 2006-02-16 | Asao Tada | Catalyst for direct decomposition of lower hydrocarbon |
JP2006096590A (en) | 2004-09-28 | 2006-04-13 | Asao Tada | Apparatus for directly cracking lower hydrocarbon |
JP2006315891A (en) | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon |
WO2008111653A1 (en) | 2007-03-14 | 2008-09-18 | Taiyo Nippon Sanso Corporation | Catalyst body for production of brush-shaped carbon nanostructure, process for producing catalyst body, brush-shaped carbon nanostructure, and process for producing the same |
JP2013095616A (en) | 2011-10-28 | 2013-05-20 | Kassui Plant Kk | Catalytic reactor |
JP2019073411A (en) | 2017-10-16 | 2019-05-16 | 国立研究開発法人産業技術総合研究所 | System for decomposing methane into carbon and hydrogen to produce hydrogen |
JP2021138562A (en) | 2020-03-03 | 2021-09-16 | 国立大学法人京都大学 | Method for producing hydrogen |
WO2022145277A1 (en) | 2020-12-28 | 2022-07-07 | 三菱重工業株式会社 | Appartus and method for direct decomposition of hydrocarbons |
Also Published As
Publication number | Publication date |
---|---|
TW202342200A (en) | 2023-11-01 |
JP2023147875A (en) | 2023-10-13 |
WO2023189197A1 (en) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60500625A (en) | Electric arc conversion method and device | |
US3404078A (en) | Method of generating a plasma arc with a fluidized bed as one electrode | |
WO2018015547A1 (en) | Manufacture of tungsten monocarbide (wc) spherical powder | |
US20020160909A1 (en) | Process and apparatus for the thermal treatment of pulverulent substances | |
US6372015B1 (en) | Method for production of metal powder | |
CA2472607A1 (en) | Catalyst enhancement | |
JP6222132B2 (en) | Hydrocarbon carbon dioxide reforming method | |
CN114149263B (en) | Spherical casting tungsten carbide powder and preparation method thereof | |
Shabgard et al. | The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process | |
JP3007983B1 (en) | Manufacturing method of ultra fine carbon tube | |
JP7469354B2 (en) | Method for producing fine metal particles | |
WO2022145277A1 (en) | Appartus and method for direct decomposition of hydrocarbons | |
TWI859757B (en) | Method for producing fine metal particles | |
CN111515408B (en) | NiTi alloy powder and preparation method and application thereof | |
JPH10296093A (en) | Device for manufacturing catalyst and fine particle catalyst manufactured by the device | |
JP2009214013A (en) | Method and apparatus for continuously regenerating fischer-tropsch synthesis catalyst | |
CA2417591A1 (en) | Carbon monoxide hydrogenation | |
JP7291191B2 (en) | Method for producing fine metal particles | |
CA2420963A1 (en) | Carbon monoxide hydrogenation process | |
JP4918646B2 (en) | Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus | |
JP2002180112A (en) | Method for manufacturing high melting point metal powder material | |
JP2017039631A (en) | Method for producing mixed gas | |
Ananthapadmanabhan et al. | Particle morphology and size distribution of plasma processed aluminium powder | |
US20230373784A1 (en) | Method and apparatus for producing product gas and use | |
RU2002113993A (en) | METHOD FOR PRODUCING TRANSITION METAL POWDERS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240206 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20240206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7469354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |