JP7457489B2 - planetary gearbox - Google Patents
planetary gearbox Download PDFInfo
- Publication number
- JP7457489B2 JP7457489B2 JP2019217182A JP2019217182A JP7457489B2 JP 7457489 B2 JP7457489 B2 JP 7457489B2 JP 2019217182 A JP2019217182 A JP 2019217182A JP 2019217182 A JP2019217182 A JP 2019217182A JP 7457489 B2 JP7457489 B2 JP 7457489B2
- Authority
- JP
- Japan
- Prior art keywords
- planetary gear
- gear
- planetary
- internal gear
- internal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Landscapes
- Retarders (AREA)
- Gears, Cams (AREA)
Description
本発明は、遊星歯車装置に関する。 The present invention relates to a planetary gear system.
従来から、モータ等の駆動源の出力軸の回転速度を減速するために減速機が用いられている。減速機としては例えば、太陽歯車、内歯車、及び、太陽歯車と内歯車との間に設けられている遊星歯車を同軸上に複数段備える複合遊星歯車装置が知られている(特許文献1参照)。 BACKGROUND ART Conventionally, a speed reducer has been used to reduce the rotational speed of an output shaft of a drive source such as a motor. As a reduction gear, for example, a compound planetary gear device is known, which includes a sun gear, an internal gear, and a plurality of coaxial stages of planetary gears provided between the sun gear and the internal gear (see Patent Document 1). ).
ところで、遊星歯車装置において、歯車から発する騒音を低減するために、はすば歯車が用いられている。 By the way, in planetary gear systems, helical gears are used to reduce noise emitted from the gears.
しかしながら、はすば歯車は、動力を伝達する際に、軸線方向(スラスト方向)に分力が生じる。このため、はすば歯車を用いる遊星歯車装置は、遊星歯車に生じるスラスト方向の分力により、遊星歯車の端面及びその受け面である内歯車の端面に摩擦が生じていた。従来のはすば歯車を用いる遊星歯車装置では、この摩擦により効率の低下する場合や、あるいは歯車が摩耗して耐久性の低下につながる場合があり、上記スラスト方向の分力を低減することが求められていた。 However, when a helical gear transmits power, component force is generated in the axial direction (thrust direction). For this reason, in planetary gear devices using helical gears, friction occurs between the end surfaces of the planetary gears and the end surfaces of the internal gears serving as the receiving surfaces thereof due to component forces in the thrust direction generated in the planetary gears. In conventional planetary gear systems that use helical gears, this friction can reduce efficiency, or the gears can wear out, leading to decreased durability, so it is not possible to reduce the component force in the thrust direction. It was wanted.
本発明は、上述の課題を一例とするものであり、効率と寿命とを両立することができる遊星歯車装置を提供することを目的とする。 The present invention takes the above-mentioned problem as an example, and an object of the present invention is to provide a planetary gear device that can achieve both efficiency and longevity.
上記目的を達成するために、本発明に係る遊星歯車装置は、第1内歯車と、前記第1内歯車と軸線方向に離間して設けられている第2内歯車と、前記第1内歯車に噛み合う複数の第1遊星歯車、及び、前記第2内歯車に噛み合う複数の第2遊星歯車を有し、一組の前記第1遊星歯車及び前記第2遊星歯車が一体となって回転するように軸線方向に連結されている複数の遊星歯車ユニットと、を備え、前記第1内歯車、前記第1遊星歯車、前記第2内歯車、及び、前記第2遊星歯車は、軸線方向に対して所定のねじれ角を有するはすば歯車によって構成され、前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車の軸線方向に対する傾く方向、及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車の軸線方向に対する傾く方向が同一であり、前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、異なっていて、前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、前記第1内歯車及び前記第1遊星歯車と前記第2内歯車及び前記第2遊星歯車それぞれの軸線方向に働く力に基づいて定められている。 In order to achieve the above object, the planetary gear device according to the present invention comprises a first internal gear, a second internal gear spaced apart from the first internal gear in the axial direction, a plurality of first planetary gears meshing with the first internal gear, and a plurality of second planetary gears meshing with the second internal gear, and a plurality of planetary gear units connected in the axial direction so that a set of the first planetary gears and the second planetary gears rotate together, and the first internal gear, the first planetary gears, the second internal gear, and the second planetary gears are constituted by helical gears having a predetermined twist angle with respect to the axial direction, and the first internal gear and the first planetary gears are constituted by helical gears having a predetermined twist angle with respect to the axial direction. The direction of inclination of the helical gear relative to the axial direction and the direction of inclination of the helical gears constituting the second internal gear and the second planetary gear relative to the axial direction are the same, the twist angles of the helical gears constituting the first internal gear and the first planetary gear and the twist angles of the helical gears constituting the second internal gear and the second planetary gear are different, and the twist angles of the helical gears constituting the first internal gear and the first planetary gear and the twist angles of the helical gears constituting the second internal gear and the second planetary gear are determined based on the forces acting in the axial direction of the first internal gear and the first planetary gear and the second internal gear and the second planetary gear, respectively.
本発明の一態様に係る遊星歯車装置において、前記第2内歯車及び前記第2遊星歯車は、前記第1内歯車及び前記第1遊星歯車と歯数が異なっていて、前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、前記第1内歯車及び前記第1遊星歯車と前記第2内歯車及び前記第2遊星歯車それぞれの軸線方向に働く力が等しくなるように定められている。 In a planetary gear device according to one aspect of the present invention, the second internal gear and the second planetary gear have a different number of teeth than the first internal gear and the first planetary gear, and the helical gears constituting the first internal gear and the first planetary gear and the helical gears constituting the second internal gear and the second planetary gear are set so that the forces acting in the axial direction of the first internal gear and the first planetary gear and the second internal gear and the second planetary gear are equal.
本発明に係る遊星歯車装置によれば、効率と寿命とを両立することができる。 According to the planetary gear device according to the present invention, both efficiency and longevity can be achieved.
以下、本発明の実施の形態に係る遊星歯車装置について図面を参照しながら説明する。 Hereinafter, a planetary gear device according to an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の実施の形態に係る遊星歯車装置2を備える駆動装置1の構成を概略的に示す斜視図である。図1に示すように、駆動装置1は、本発明の実施の形態に係る遊星歯車装置2と、駆動源としてのモータ3とを有している。
FIG. 1 is a perspective view schematically showing the configuration of a drive device 1 including a
[遊星歯車装置の構成]
次に、駆動装置1が備える本実施の形態に係る遊星歯車装置2の構成を説明する。
[Structure of planetary gear device]
Next, the configuration of the
図2は、遊星歯車装置2の構成を概略的に示す軸線方向に沿った断面図である。また、図3は、遊星歯車装置2のA-A断面図である。
FIG. 2 is a cross-sectional view along the axial direction schematically showing the configuration of the
以下、説明の便宜上、遊星歯車装置2において、出力側(図2の矢印a方向側)を外側とし、入力側(図2の矢印b方向側)を内側とする。また、説明の便宜上、遊星歯車装置2や駆動装置1の各構成について、遊星歯車装置2及び駆動装置1における入力軸20の軸線xに基づいて説明する。遊星歯車装置2を構成している歯車は、単体においてそれぞれ軸線を有している。
Hereinafter, for convenience of explanation, in the
図2及び図3に示すように、本実施の形態に係る遊星歯車装置2は、第1内歯車120と、第1内歯車120と軸線x方向に離間して設けられている第2内歯車220と、第1内歯車120に噛み合う複数の第1遊星歯車130,140,150,160、及び、第2内歯車220に噛み合う複数の第2遊星歯車230,240,250,260を有し、一組の第1遊星歯車130,140,150,160及び第2遊星歯車230,240,250,260が一体となって回転するように軸線x方向に連結されている複数の遊星歯車ユニット310,320,330,340と、を備える遊星歯車装置である。第1内歯車120、第1遊星歯車130,140,150,160、第2内歯車220、及び、第2遊星歯車230,240,250,260は、軸線x方向に対して所定のねじれ角を有するはすば歯車によって構成されている。第1内歯車120及び第1遊星歯車130,140,150,160を構成するはすば歯車の軸線x方向に対する傾く方向、及び第2内歯車220及び第2遊星歯車230,240,250,260を構成するはすば歯車の軸線x方向に対する傾く方向が同一である。第1内歯車120及び第1遊星歯車130,140,150,160を構成するはすば歯車のねじれ角及び第2内歯車220及び前記第2遊星歯車230,240,250,260を構成するはすば歯車のねじれ角は、異なっている。第1内歯車120及び第1遊星歯車130,140,150,160を構成するはすば歯車のねじれ角及び第2内歯車220及び第2遊星歯車230,240,250,260を構成するはすば歯車のねじれ角は、第1内歯車120及び第1遊星歯車130,140,150,160と第2内歯車220及び第2遊星歯車230,240,250,260それぞれの軸線x方向に働く力に基づいて定められている。以下、遊星歯車装置2の構成及び動作を具体的に説明する。
As shown in FIGS. 2 and 3, the
筐体部10は、遊星歯車装置2の入力側(内側b)を覆う入力側筐体11と、遊星歯車装置2の出力側(外側a)を覆う出力側筐体12とを有している。入力側筐体11は、入力軸20の一部など、遊星歯車装置2の構成要素のうち、モータ3に近い入力側に配置されている構成要素を収容している。入力側筐体11は、軸線x方向において入力側の端部に入力軸20の入力端部21を露出させることができるように入力側開口部13が設けられている。出力側筐体12は、出力部40、及び、第2内歯車220など、遊星歯車装置2の構成要素のうち、軸線x方向においてモータ3とは反対側の出力側に配置されている構成要素を収容している。出力側筐体12は、軸線x方向において出力側の端部に出力部40の出力端部41を露出させることができるように出力側開口部14が設けられている。
The
筐体部10は、入力側筐体11と出力側筐体12とを突き合わせて接合することで、遊星歯車装置2の構成要素を収容する。筐体部10は、軸線x方向において、入力側筐体11と出力側筐体12との間に、第1内歯車120の径方向外側に設けられている挟持リブ121が挟持されている。筐体部10は、挟持リブ121を挟んで入力側筐体11と出力側筐体12とを突き合わせて接合することで、筐体部10が第1内歯車120の固定部材として機能する。
The
入力軸20は、筐体部10の入力側筐体11内部において軸線xに一致または略一致するように配置されている。入力軸20は、入力端部21がモータ3の回転軸(不図示)と共働して回転可能に接続されることで、モータ3からの回転力が入力される。入力軸20は、例えば、径方向内側の軸中心に空洞部22が設けられている中空軸である。なお、入力軸20は、中空軸に限定されず、空洞部を有しない中実の軸であってもよい。入力軸20は、径方向外側に太陽歯車110が形成されている。
The
図4は、遊星歯車装置2が備える太陽歯車110、遊星歯車ユニット310,320,330,340、第1内歯車120、及び第2内歯車220を示すためのA-A断面図である。
FIG. 4 is an AA sectional view showing the
図4に示すように、遊星歯車装置2は、太陽歯車110と、複数段の遊星歯車を有する遊星歯車ユニット310,320,330,340と、複数段の内歯車により構成されている、3K型の複合遊星歯車機構である。複数段の遊星歯車は、具体的には、例えば、第1遊星歯車130,140,150,160及び第2遊星歯車230,240,250,260である。また、複数段の内歯車は、具体的には、例えば、第1内歯車120及び第2内歯車220である。なお、本実施の形態において、遊星歯車機構の段数は、遊星歯車装置2の例に限定されない。また、本実施の形態において、遊星歯車機構は、太陽歯車を有していない、2K-H型などの複合遊星歯車機構であってもよい。
As shown in FIG. 4, the
上述したように、太陽歯車110、第1内歯車120、第1遊星歯車130,140,150,160、第2内歯車220、及び、第2遊星歯車230,240,250,260は、いずれも軸線x方向に対して所定のねじれ角β1,β2を有するはすば歯車によって構成される。以下の説明において、遊星歯車装置2における入力側の歯車である、第1内歯車120、第1遊星歯車130,140,150,160を複数段の遊星歯車機構のうち第1段の遊星歯車機構(以下、「第1遊星歯車機構100」。)ともいう。また、以下の説明において、第2内歯車220、第2遊星歯車230,240,250,260を複数段の遊星歯車機構のうち第2段の遊星歯車機構(以下、「第2遊星歯車機構200」。)ともいう。
As described above, the
太陽歯車110は、入力軸20の径方向外側に形成されている。太陽歯車110は、遊星歯車ユニット310,320,330,340を構成している第1遊星歯車130,140,150,160と噛み合う。このため、太陽歯車110は、ねじれ角β1のほか、モジュール、圧力角などの歯車の基本的な仕様である諸元が第1内歯車120及び第1遊星歯車130,140,150,160と共通しているはすば歯車である。
The
図5は、遊星歯車装置2が備える第1遊星歯車130,140,150,160と第1内歯車120とを示すための平面図である。
FIG. 5 is a plan view showing the first
図2乃至図5に示すように、第1内歯車120は、入力軸20の径方向外側に設けられている。第1内歯車120は、径方向内側に設けられている第1内歯車本体122が太陽歯車110及び第1遊星歯車130,140,150,160に面し、第1遊星歯車130,140,150,160と噛み合う。このため、第1内歯車120は、第1内歯車本体122に、ねじれ角β1のほか、モジュール、圧力角などの歯車の基本的な仕様である諸元が太陽歯車110及び第1遊星歯車130,140,150,160と共通しているはすば歯車が構成されている。第1内歯車120は、上述したように径方向外側に設けられている挟持リブ121が筐体部10に挟持されていることにより、筐体部10に固定されている。
As shown in FIGS. 2 to 5, the first
図6は、遊星歯車装置2が備える第2遊星歯車230,240,250,260と第2内歯車220とを示すための平面図である。
FIG. 6 is a plan view showing the second
図2乃至図4、及び図6に示すように、第2内歯車220は、入力軸20の径方向外側であり、かつ、第1内歯車120に対して軸線x方向において出力側に設けられている。第2内歯車220は、第2遊星歯車230,240,250,260に面し、第2遊星歯車230,240,250,260と噛み合う。このため、第2内歯車220は、径方向内側に、ねじれ角β2のほか、モジュール、圧力角などの歯車の基本的な仕様である諸元が第2遊星歯車230,240,250,260と共通しているはすば歯車である第2内歯車本体221が構成されている。第2内歯車220は、第2内歯車本体221の出力側に、第2内歯車軸部222が構成されている。第2内歯車220は、出力側筐体12に取り付けられている軸受50に支持されている。第2内歯車220は、軸受50に支持されていることにより、第2遊星歯車230,240,250,260から伝達される回転力に応じて回転可能に構成されている。第2内歯車220は、軸線xの位置に中空軸である入力軸20との間で軸線x方向において連通している貫通孔を構成するために、軸線xを中心として環状の孔部223が設けられている。
As shown in FIGS. 2 to 4 and 6, the second
図7は、遊星歯車装置2が備える太陽歯車110、遊星歯車ユニット310,320,330,340、及びキャリア170,270を示すための側面図である。また、図8は、遊星歯車装置2が備える遊星歯車ユニット310,320,330,340を示すための側面図である。
FIG. 7 is a side view showing the
図7及び図8に示すように、複数の遊星歯車ユニット310,320,330,340は、軸線xに平行な軸を軸線として、太陽歯車110の径方向外側かつ第1内歯車120の径方向内側に配置されている。複数の遊星歯車ユニット310,320,330,340は、それぞれ軸線x方向において入力側に第1遊星歯車130,140,150,160が構成されている。第1遊星歯車130,140,150,160は、太陽歯車110、及び、第1内歯車120の双方と噛み合う。このため、第1遊星歯車130,140,150,160は、ねじれ角β1のほか、モジュール、圧力角などの歯車の基本的な仕様である諸元が太陽歯車110及び第1内歯車120と共通しているはすば歯車が構成されている。なお、遊星歯車ユニット310,320,330,340は、第1遊星歯車130,140,150,160の歯の位置と、第2遊星歯車230,240,250,260との歯の位置との周方向における角度の差(位相差)は、特に限定されない。また、遊星歯車ユニット310,320,330,340は、いずれのユニットも第1遊星歯車130,140,150,160と第2遊星歯車230,240,250,260との間に設計上の位相差がなくてもよい。
7 and 8, the multiple
また、遊星歯車ユニット310,320,330,340は、それぞれ軸線x方向において出力側に第2遊星歯車230,240,250,260が構成されている。第2遊星歯車230,240,250,260は、第2内歯車220と噛み合う。このため、第2遊星歯車230,240,250,260は、ねじれ角β2のほか、モジュール、圧力角などの歯車の基本的な仕様である諸元が第2内歯車220と共通しているはすば歯車が構成されている。
Further, the
以上のように、遊星歯車ユニット310,320,330,340は、第1遊星歯車130,140,150,160のねじれ角β1は、第2遊星歯車230,240,250,260のねじれ角β2と異なっている。
As described above, in the
遊星歯車ユニット310,320,330,340において、遊星歯車軸部311,321,331,341と各遊星歯車との間には軸受が設けられており、第1遊星歯車130,140,150,160、及び、第2遊星歯車230,240,250,260は、それぞれ遊星歯車軸部311,321,331,341に対して一体となって回転する。つまり、遊星歯車ユニット310,320,330,340において、第1遊星歯車130,140,150,160と、第2遊星歯車230,240,250,260とは、一体となって共働して回転する。
In the
遊星歯車ユニット310,320,330,340は、周方向にそれぞれ所定の角度θを設けて等間隔で配置されている。角度θは、遊星歯車ユニット310,320,330,340の数に応じて定まる。遊星歯車ユニット310,320,330,340は、キャリア170に固定された遊星歯車軸部311,321,331,341に対して回転可能に支持されており、太陽歯車110から伝達される回転力により軸線xを中心に自転及び公転する。
The
ここで、遊星歯車ユニット310,320,330,340のうち、遊星歯車ユニット320は、遊星歯車軸部321の出力端部321aと第2遊星歯車240の出力側の端部240aとの間に移動規制部として機能するスペーサ部322が設けられている。スペーサ部322は、遊星歯車ユニット320がキャリア170に支持されている状態において、キャリア170の出力側の端部170aと第2遊星歯車240の端部240aとの間に生じる間隙(遊び)を解消している。
Here, among the
遊星歯車ユニット320は、遊星歯車軸部321の入力端部321bと第1遊星歯車140の入力側の端部140bとの間に移動規制部として機能するスペーサ部323が設けられている。スペーサ部323は、遊星歯車ユニット320がキャリア170に支持されている状態において、キャリア170の入力側の端部170bと第1遊星歯車140の端部140bとの間に生じる間隙(遊び)を解消している。
In the
なお、遊星歯車装置2において、スペーサ部が設けられている遊星歯車ユニットは、上述した遊星歯車ユニット310に限定されず、他の遊星歯車ユニット320,330,340に設けられていてもよい。また、スペーサ部が設けられている遊星歯車ユニットの数は、少なくとも1つの遊星歯車ユニットであればよいため、複数の遊星歯車ユニット310,320,330,340にスペーサ部が設けられていてもよい。
In the
また、遊星歯車ユニット310,320,330,340において、第1遊星歯車130,140,150,160、第2遊星歯車230,240,250,260、及び、遊星歯車軸部311,321,331,341は、それぞれ別部材により製作したものを組み立てても、あるいは、切削加工などにより一体で成形してもよい。また、遊星歯車装置2において、搭載される遊星歯車ユニット310,320,330,340の数は、上述の4個に限定されず、適宜選択可能である。
Furthermore, in the
出力部40は、筐体部10の出力側筐体12内部において軸線xに一致または略一致するように配置されている。出力部40は、出力端部41が第2内歯車220の第2内歯車軸部222の出力側の端部と接続している。出力部40は、出力端部42が出力側の回転軸(不図示)と共働して軸線x周りに回転可能に接続される。このため、出力部40の出力端部42からは、モータ3からの回転力が出力される。出力部40は、例えば、径方向内側の軸中心に空洞部43が設けられている中空軸である。なお、出力部40は、中空軸に限定されず、空洞部を有しない中実の軸であってもよい。また、出力部40を設けず、第2内歯車220の第2内歯車軸部222を直接出力側の回転軸とすることも可能である。
The
[遊星歯車装置の動作]
次に、以上説明した構成を備える遊星歯車装置2の動作について説明する。
[Operation of planetary gear system]
Next, the operation of the
遊星歯車装置2において、図1及び図2に示すように、入力軸20は、入力端部21がモータ3の回転軸(不図示)に接続されているため、モータ3からの回転力により回転する。複数の遊星歯車ユニット310、320,330,340は、入力軸20の径方向外側に形成されている太陽歯車110と複数の第1遊星歯車130,140,150,160が噛み合っているため、入力軸20が回転することで太陽歯車110と第1内歯車120との間で回転する。
In the
第2内歯車220は、遊星歯車ユニット310,320,330,340の第2遊星歯車230,240,250,260と噛み合っているため、遊星歯車ユニット310,320,330,340が回転することで回転する。ここで、第2内歯車220は、遊星歯車ユニット310,320,330,340に構成されている第1遊星歯車130,140,150,160と第2遊星歯車230,240,250,260との歯数の差により減速して回転する。出力部40は、第2内歯車220とともに回転可能に構成されているため、第2内歯車220が回転することにより回転する。
Since the second
遊星歯車装置2は、第1遊星歯車機構100を構成している太陽歯車110、第1内歯車120、及び、第1遊星歯車130,140,150,160のねじれ角β1と、第2遊星歯車機構200を構成している第2内歯車220及び第2遊星歯車230,240,250,260のねじれ角β2と異なっている。このように、第1遊星歯車130,140,150,160のねじれ角β1と、第2遊星歯車230,240,250,260のねじれ角β2を異なる角度とすることで、位相誤差があった場合に、適切な噛み合い位置を得るためにz軸方向に移動する移動量を少なくすることが可能となる。また、遊星歯車装置2は、入力軸20からの回転力が出力部40から出力される際に減速される減速機として機能する。このため、第1遊星歯車130,140,150,160の歯数は、第2遊星歯車230,240,250,260の歯数よりも多い。
The
図9は、遊星歯車装置2が備える第1遊星歯車130,140,150,160及び第2遊星歯車230,240,250,260に加わる分力を示すための模式図である。また、図10は、遊星歯車装置2が備える太陽歯車110、第2内歯車220、及び、第2遊星歯車230,240,250,260の回転方向と第2遊星歯車230,240,250,260に加わる分力を示すための模式図である。
FIG. 9 is a schematic diagram showing component forces applied to the first
図9に示すように、第1内歯車120及び第1遊星歯車130,140,150,160を構成するはすば歯車の軸線x方向に対する傾く方向、及び、第2内歯車220及び第2遊星歯車230,240,250,260を構成するはすば歯車の軸線x方向に対する傾く方向(ねじれ方向)が同一である。このため、図9及び図10に示すように、遊星歯車装置2は、第1遊星歯車130,140,150,160に加わる接線方向の分力(接線荷重)Y1の方向と第2遊星歯車230,240,250,260に加わる接線荷重Y2の方向とが反対の方向となっている。また、遊星歯車装置2は、第2遊星歯車230,240,250,260の回転方向RP2と太陽歯車110の回転方向RS1及び第2内歯車220の回転方向R2とが反対の方向となっている。
As shown in FIG. 9, the directions in which the helical gears constituting the first
図11は、遊星歯車装置2が備える遊星歯車ユニット310,320,330,340に加わる分力、及び、遊星歯車ユニット310,320,330,340と遊星歯車軸部311,321,331,341との摩擦面Frを示すための模式図である。
FIG. 11 shows component forces applied to the
図9及び図11に示すように、遊星歯車装置2は、第1遊星歯車130,140,150,160に加わる軸線x方向に働く力、つまりスラスト方向の分力(スラスト荷重)T1の方向と第2遊星歯車230,240,250,260に加わるスラスト荷重T2の方向とが反対の方向となっている。このため、遊星歯車装置2が備える遊星歯車ユニット310,320,330,340において、第1遊星歯車130,140,150,160と遊星歯車軸部311,321,331,341との接触面Fr1は、スラスト荷重T1による摩擦力X1を受ける。また、遊星歯車ユニット310,320,330,340において、第2遊星歯車230,240,250,260と遊星歯車軸部311,321,331,341との接触面Fr2は、スラスト荷重T2による摩擦力を受ける。
As shown in FIGS. 9 and 11, the
遊星歯車装置2において、遊星歯車ユニット310,320,330,340が有する第1遊星歯車130,140,150,160のねじれ角β1と第2遊星歯車230,240,250,260のねじれ角β2とが異なっている。ここで、ねじれ角β1,β2は、第1内歯車120及び第1遊星歯車130,140,150,160に加わるスラスト荷重T1と第2内歯車220及び第2遊星歯車230,240,250,260に加わるスラスト荷重T2に基づいて、スラスト荷重T1とスラスト荷重T2とが等しくなるように定められている。
In the
図12は、遊星歯車装置2が備える遊星歯車に加わる分力を示すための模式図である。
FIG. 12 is a schematic diagram showing component forces applied to the planetary gears included in the
上述したように、遊星歯車装置2が備える遊星歯車は、いずれもはすば歯車を用いている。図12に示すように、はすば歯車は、ねじれ角βを有しているため、スラスト荷重Tが発生する。
As described above, the planetary gears included in the
スラスト荷重:T、半径方向荷重:S、接線荷重:F、円周方向荷重:f、及び、歯面に垂直な方向の荷重:Vには、
T=F・tanβ…(1)
S=F・tanαn/cosβ…(2)
f=F/cosβ…(3)
V=f/cosαn=F/(cosβ・cosαn)…(4)
の関係がある。ここで、歯車圧力角:αnとする。
Thrust load: T, radial load: S, tangential load: F, circumferential load: f, and load in the direction perpendicular to the tooth surface: V.
T=F・tanβ…(1)
S=F・tanαn/cosβ…(2)
f=F/cosβ…(3)
V=f/cosαn=F/(cosβ・cosαn)…(4)
There is a relationship between Here, it is assumed that the gear pressure angle is αn.
なお、はすば歯車は、通常歯車同士が滑らずに力を伝えるため、摩擦力X,TT1は無視できるが、2段遊星歯車においてスラスト荷重Tの差分が生じる場合は以下の摩擦力X,TT1を考慮する。
X=TT1・cosβ…(5)
TT1=μV…(6)
ここで、μ:摩擦係数
In addition, since helical gears normally transmit force without slipping between the gears, frictional forces X and TT1 can be ignored. However, when a difference in thrust load T occurs in a two-stage planetary gear, the following frictional forces X and TT1 must be taken into consideration.
X = TT1 · cosβ ... (5)
TT1=μV...(6)
Where μ is the friction coefficient
図13は、遊星歯車装置2が備える遊星歯車ユニット310,320,330,340に加わる力を示すための模式図である。
FIG. 13 is a schematic diagram showing the forces applied to the
遊星歯車装置2において、遊星歯車ユニット310,320,330,340は、第1遊星歯車130,140,150,160と第2遊星歯車230,240,250,260とにより構成される2段はすば遊星歯車である。このような遊星歯車ユニット310,320,330,340において、スラスト荷重T1,T2により軸線x方向に滑らない条件は、摩擦力X1,X2を考慮するとT1>T2となり、以下の式(6)により定められる。
In the
T1-T2≦X1+X2…(6) T1-T2≦X1+X2…(6)
ここで、T1、T2、X1、X2は、式(1)~式(5)より、
T1=F1・tanβ1…(7)
T2=F2・tanβ2…(8)
X1=μ・F1/cosαn1…(9)
X2=μ・F2/cosαn2…(10)
である。
これら式(7)~式(10)を式(6)に代入すると、
Here, T1, T2, X1, and X2 are expressed by the following formulas (1) to (5):
T1 = F1 tan β1 ... (7)
T2 = F2 tan β2 ... (8)
X1=μ·F1/cosαn1 (9)
X2=μ·F2/cosαn2 (10)
It is.
Substituting these formulas (7) to (10) into formula (6), we get
F1・tanβ1-F2・tanβ2≦μ・F1/cosαn1+μ・F2/cosαn2…(11)
となる。
F1·tanβ1−F2·tanβ2≦μ·F1/ cosαn1 +μ·F2/cosαn2 (11)
It becomes.
ここで、β1を先に決め、スラスト方向に動かない限界のβ2を求める。具体的には、式(11)を以下の式(12)に変形することにより求められる。 Here, β1 is determined first, and the limit β2 that does not move in the thrust direction is determined. Specifically, it is obtained by transforming equation (11) into equation (12) below.
tanβ2≦F1/F2(tanβ1-μ/cosαn1)-μ/cosαn2…(12) tanβ2≦F1/F2 (tanβ1−μ/cosαn1)−μ/cosαn2…( 12 )
以上の式(12)の関係を満たすねじれ角β1,β2のはすば歯車を用いるように構成されていることにより、遊星歯車装置2は、使用状態において、スラスト荷重T1とスラスト荷重T2とを等しくすることができるとともに、スラスト荷重T1とスラスト荷重T2との方向を軸線x方向において反対方向にすることができる。つまり、遊星歯車装置2は、摩擦力X1、X2、スラスト荷重T1、スラスト荷重T2のx軸方向の力の差分を最小限に抑えることができる。つまり、遊星歯車装置2によれば、第1遊星歯車機構100を構成するはすば歯車のねじれ角β1及び第2遊星歯車機構200を構成するはすば歯車のねじれ角β2の差が式(12)の条件を満たす角度以下であれば遊星歯車ユニット310,320,330,340が軸線x方向に移動することを抑えることができる。また、遊星歯車装置2は、式(12)の関係を満たすようにねじれ角β1,β2を選択すれば適宜角度を設定することができるため、ねじれ角β1,β2の選択範囲が広がり、上述のような作用を奏する遊星歯車装置を容易に設計することができる。
By being configured to use helical gears with helical angles β1 and β2 that satisfy the relationship of equation (12) above, the
従って、第1内歯車120及び第1遊星歯車130,140,150,160を構成するはすば歯車の軸線x方向に対する傾く方向、及び第2内歯車220及び第2遊星歯車230,240,250,260を構成するはすば歯車の軸線x方向に対する傾く方向が同一であり、第1遊星歯車機構100を構成するはすば歯車のねじれ角β1及び第2遊星歯車機構200を構成するはすば歯車のねじれ角β2が以上の式(12)の関係を満たすように異なっている遊星歯車装置2によれば遊星歯車ユニット310,320,330,340の軸線x方向の移動を抑えることで、摩擦面Fr1,Fr2での摩擦と伝達効率の低下を防ぐことが可能となるため、効率と寿命とを両立することができる。
Therefore, the direction of inclination of the helical gears constituting the first
その他、当業者は、従来公知の知見に従い、本発明を適宜改変することができる。かかる改変によってもなお本発明の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 In addition, those skilled in the art can modify the present invention as appropriate based on conventionally known knowledge. As long as such modifications still have the structure of the present invention, they are, of course, included within the scope of the present invention.
1…駆動装置、2…遊星歯車装置、3…モータ、10…筐体部、11…入力側筐体、12…出力側筐体、13…入力側開口部、14…出力側開口部、20…入力軸、21…入力端部、22…空洞部、30…軸受、31…遊星歯車軸部、40…出力部、41…出力端部、42…出力端部、43…空洞部、100…第1遊星歯車機構、110…太陽歯車、120…第1内歯車、121…挟持リブ、122…第1内歯車本体、130,140,150,160…第1遊星歯車、140b…端部、170…キャリア、170a…端部、200…第2遊星歯車機構、220…第2内歯車、221…第2内歯車本体、222…第2内歯車軸部、223…孔部、230,240,250,260…第2遊星歯車、240a…端部、270…キャリア、270b…端部、310,320,330,340…遊星歯車ユニット、311,321,331,341…遊星歯車軸部、321a…出力端部、321b…入力端部、322,323…スペーサ部 DESCRIPTION OF SYMBOLS 1... Drive device, 2... Planetary gear device, 3... Motor, 10... Housing part, 11... Input side housing, 12... Output side housing, 13... Input side opening, 14... Output side opening, 20 ...Input shaft, 21...Input end, 22...Cavity, 30...Bearing, 31...Planetary gear shaft, 40...Output part, 41...Output end, 42...Output end, 43...Cavity, 100... First planetary gear mechanism, 110... Sun gear, 120... First internal gear, 121... Clamping rib, 122... First internal gear body, 130, 140, 150, 160... First planetary gear, 140b... End, 170 ...Carrier, 170a...End, 200...Second planetary gear mechanism, 220...Second internal gear, 221...Second internal gear main body, 222...Second internal gear shaft, 223...Hole, 230, 240, 250 , 260... Second planetary gear, 240a... End, 270... Carrier, 270b... End, 310, 320, 330, 340... Planetary gear unit, 311, 321, 331, 341... Planetary gear shaft, 321a... Output End part, 321b...Input end part, 322, 323... Spacer part
Claims (2)
前記第1内歯車と軸線方向に離間して設けられている第2内歯車と、
前記第1内歯車に噛み合う複数の第1遊星歯車、及び、前記第2内歯車に噛み合う複数の第2遊星歯車を有し、一組の前記第1遊星歯車及び前記第2遊星歯車が一体となって回転するように軸線方向に連結されている複数の遊星歯車ユニットと、
を備える遊星歯車装置であり、
前記第1内歯車、前記第1遊星歯車、前記第2内歯車、及び、前記第2遊星歯車は、軸線方向に対して所定のねじれ角を有するはすば歯車によって構成され、
前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車の軸線方向に対する傾く方向、及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車の軸線方向に対する傾く方向が同一であり、
前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、異なっていて、
前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、前記第1内歯車及び前記第1遊星歯車と前記第2内歯車及び前記第2遊星歯車それぞれの軸線方向に働く力に基づいて定められていて、
前記第1遊星歯車の軸線方向に対するねじれ角をβ1、前記第2遊星歯車の軸線方向に対するねじれ角をβ2、前記第1遊星歯車の歯車圧力角をαn1、前記第2遊星歯車の歯車圧力角をαn2、摩擦係数をμとするとき、先に決めた前記ねじれ角β1から、スラスト方向に動かない限界のβ2を以下の式
tanβ2≦F1/F2(tanβ1-μ/cosαn1)-μ/cosαn2
から求める、
遊星歯車装置。 a first internal gear;
a second internal gear provided apart from the first internal gear in the axial direction;
a plurality of first planetary gears that mesh with the first internal gear; and a plurality of second planetary gears that mesh with the second internal gear; one set of the first planetary gear and the second planetary gear are integrally formed; a plurality of planetary gear units connected in the axial direction so as to rotate together;
A planetary gear device comprising:
The first internal gear, the first planetary gear, the second internal gear, and the second planetary gear are configured by helical gears having a predetermined helix angle with respect to the axial direction,
A direction in which the helical gears constituting the first internal gear and the first planetary gear are tilted with respect to the axial direction, and a direction in which the helical gears constituting the second internal gear and the second planetary gear are tilted with respect to the axial direction. are the same,
The helix angles of the helical gears constituting the first internal gear and the first planetary gear and the helical gears constituting the second internal gear and the second planetary gear are different,
The helix angle of the helical gears constituting the first internal gear and the first planetary gear, and the helix angle of the helical gears constituting the second internal gear and the second planetary gear are the same as those of the first internal gear. and determined based on forces acting in the axial direction of each of the first planetary gear, the second internal gear, and the second planetary gear ,
The torsion angle of the first planetary gear with respect to the axial direction is β1, the torsion angle of the second planetary gear with respect to the axial direction is β2, the gear pressure angle of the first planetary gear is αn1, and the gear pressure angle of the second planetary gear is When αn2 and the friction coefficient are μ, the limit β2 that does not move in the thrust direction is calculated from the above-determined torsion angle β1 using the following formula.
tanβ2≦F1/F2 (tanβ1−μ/cosαn1)−μ/cosαn2
seek from ,
Planetary gear system.
前記第1内歯車及び前記第1遊星歯車を構成するはすば歯車のねじれ角及び前記第2内歯車及び前記第2遊星歯車を構成するはすば歯車のねじれ角は、前記第1内歯車及び前記第1遊星歯車と前記第2内歯車及び前記第2遊星歯車それぞれの軸線方向に働く力が等しくなるように定められている、
請求項1に記載の遊星歯車装置。 The second internal gear and the second planetary gear have a different number of teeth from the first internal gear and the first planetary gear,
The helix angle of the helical gears constituting the first internal gear and the first planetary gear, and the helix angle of the helical gears constituting the second internal gear and the second planetary gear are the same as those of the first internal gear. and the forces acting in the axial direction of the first planetary gear, the second internal gear, and the second planetary gear are set to be equal.
The planetary gear system according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019217182A JP7457489B2 (en) | 2019-11-29 | 2019-11-29 | planetary gearbox |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019217182A JP7457489B2 (en) | 2019-11-29 | 2019-11-29 | planetary gearbox |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021085509A JP2021085509A (en) | 2021-06-03 |
JP7457489B2 true JP7457489B2 (en) | 2024-03-28 |
Family
ID=76085822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019217182A Active JP7457489B2 (en) | 2019-11-29 | 2019-11-29 | planetary gearbox |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7457489B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7517360B2 (en) | 2022-03-31 | 2024-07-17 | 株式会社アイシン | Vehicle drive device and method for manufacturing planetary gear mechanism |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015230052A (en) | 2014-06-05 | 2015-12-21 | アイシン・エィ・ダブリュ株式会社 | Planetary gear mechanism |
JP2019100460A (en) | 2017-12-04 | 2019-06-24 | アイシン精機株式会社 | Planetary gear reduction mechanism |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06257646A (en) * | 1993-03-02 | 1994-09-16 | Shimpo Ind Co Ltd | Mechanical reduction gear |
-
2019
- 2019-11-29 JP JP2019217182A patent/JP7457489B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015230052A (en) | 2014-06-05 | 2015-12-21 | アイシン・エィ・ダブリュ株式会社 | Planetary gear mechanism |
JP2019100460A (en) | 2017-12-04 | 2019-06-24 | アイシン精機株式会社 | Planetary gear reduction mechanism |
Also Published As
Publication number | Publication date |
---|---|
JP2021085509A (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439897B2 (en) | Torque transmission joint and electric power steering device | |
WO2017110840A1 (en) | Rotation transmitting device with integrated planetary gear mechanisms | |
JP2017203546A (en) | Driving device | |
KR101007069B1 (en) | Gear box having double planetary gear system | |
JP4590299B2 (en) | Carrier support structure for planetary gear reducer | |
JP7457489B2 (en) | planetary gearbox | |
JP6993242B2 (en) | Differential device | |
WO2018030177A1 (en) | Planetary gear speed reduction device | |
US7056256B2 (en) | Differential apparatus | |
US20150367493A1 (en) | A gearbox for a power tool and a power tool with such a gearbox | |
JP6219783B2 (en) | Planetary gear unit carrier | |
JP3490162B2 (en) | Rotary member coupling structure of transmission | |
JP2011247292A (en) | Rotor support structure | |
KR102589191B1 (en) | A Low Vibration Eccentric Reducer | |
JP7457490B2 (en) | planetary gear system | |
JP6568749B2 (en) | Planetary roller type power transmission device | |
WO2023238400A1 (en) | Planetary gear reducer | |
JP7145194B2 (en) | planetary gear reducer | |
JP6034331B2 (en) | Rotating direction changing device in one direction | |
KR102364348B1 (en) | A cycloid reducer assembly | |
JP2019039545A (en) | Reduction gear and driving device | |
WO2024057460A1 (en) | Differential device for vehicle | |
JP4947770B2 (en) | Decelerator | |
JP7057137B2 (en) | Differential device | |
JP2019078323A (en) | Vehicle damper mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20220209 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230808 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7457489 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |