JP7333026B2 - Ductless dynamic insulation and heat storage system - Google Patents
Ductless dynamic insulation and heat storage system Download PDFInfo
- Publication number
- JP7333026B2 JP7333026B2 JP2018035800A JP2018035800A JP7333026B2 JP 7333026 B2 JP7333026 B2 JP 7333026B2 JP 2018035800 A JP2018035800 A JP 2018035800A JP 2018035800 A JP2018035800 A JP 2018035800A JP 7333026 B2 JP7333026 B2 JP 7333026B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- heat
- wall
- attic
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Building Environments (AREA)
- Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)
Description
建物外皮において、冬期は熱損失を、夏期は熱取得を、それぞれ抑える熱回収型の断熱技術「ダイナミックインシュレーション(DI:Dynamic Insulatiom)」(以下DIという)である。DIは、室外の新鮮外気が通気機能を持つ窓や壁を通過して室内に流入する際に、流入気流と逆方向の熱輸送を移流により妨げる仕組みである。熱回収の効果を適切に実現するには躯体性能上、高い気密性能が要求され、換気動力の負荷にも一考を要する。実用化されれば住宅の断熱材を厚くしなくても熱損失・取得の抑制を図ることができ、新鮮外気を取り入れるためのレジスターが不要になる。 It is a heat recovery type thermal insulation technology called "Dynamic Insulation (DI)" (hereinafter referred to as DI) that suppresses heat loss in winter and heat gain in summer in the building envelope . DI is a mechanism that hinders heat transport in the direction opposite to the incoming airflow by advection when fresh outdoor air flows into the room through windows and walls that have a ventilation function. In order to realize the effect of heat recovery appropriately, high airtightness is required in terms of structural performance, and consideration must be given to the load of ventilation power. If it is put into practical use, it will be possible to reduce heat loss and heat gain without having to thicken the insulation of the house, and the need for a register to take in fresh outside air will be eliminated.
また太陽熱や夜間の放射冷却熱を効率的に蓄放熱可能とするダイナミックストレージ(以下DSという)とを融合させた、ダイナミックストレージシステム(以下DSSという)を用いた建築物に関するものである。 The present invention also relates to a building using a dynamic storage system (hereinafter referred to as DSS) , which is integrated with a dynamic storage (hereinafter referred to as DS ) that can efficiently store and release solar heat and radiative cooling heat at night.
建築物の壁や屋根といった外皮の断熱・気密層の内外に通気を取る二重のDIシステムは、ガラス窓に対する応用例以外になく、一般に一重のDI層あるいは壁体自身に通気孔を設けて通気させる方法しかなかった。 The double DI system, which ventilates inside and outside the insulation and airtight layers of the outer skin such as the walls and roofs of buildings, has no application other than glass windows. The only way was to vent.
外壁における外側DI層と内側DI層をそれぞれ独立して制御する方法は存在するが、両方を全熱交換器を介して制御することによりDI技術を構築する技術は無かった。 Although there are methods for independently controlling the outer and inner DI layers in the outer wall, there has been no technology for constructing DI technology by controlling both via a total heat exchanger.
内側DI層に配置する蓄熱材は、熱伝導率が低いため蓄放熱に長時間かかったが、本発明のように小さく薄いパッケージ化する等、数時間単位で両側面から蓄放熱を効果的に行う工夫は無かった。 Since the heat storage material placed in the inner DI layer has low thermal conductivity, it took a long time to store and release heat. I had no idea what to do.
外壁の内外DI層及び屋根DI層、小屋裏内外空間、天井裏空間、床下空間を換気経路として一体に扱う換気システムは無かった。 There was no ventilation system that integrated the inner and outer DI layers of the outer wall, the roof DI layer, the inner and outer spaces of the attic, the space above the ceiling, and the space under the floor as a ventilation route.
DIの一部を用いた空気循環式エアサイクルシステムにおいて全熱交換装置を用いた出願(先行技術文献に示す)があるが、外壁の内外DI層及びDSを用いた記述がない。 There is an application (shown in the prior art document) using a total heat exchange device in an air circulation type air cycle system using a part of DI , but there is no description of using inner and outer DI layers and DS of the outer wall.
特開2001‐279837 Japanese Patent Application Laid-Open No. 2001-279837
従来の空気循環式建物では、外壁外側DI層の空気を方位別に制御する手立てがないため、四季を通じた昼夜の建物外壁からの受熱・放熱を制御できない。 In a conventional air circulation type building, there is no way to control the direction of the air in the DI layer outside the outer wall, so it is not possible to control the heat received/dissipated from the outer wall of the building day and night throughout the four seasons.
空気循環式建物に熱交換式換気装置を組み込む場合、必要以上にダクト経路が長くなり、外壁外側DI層の空気を熱交換式換気装置で方位別に制御するためには、外壁外側DI層上部に空気を収集するためのスカートダクトと制御弁を設け、さらにダクトの一部にダクトファンも必要となる。また、これらを制御するシステム機器も設置しなければならない。 When installing a heat exchange ventilation system in an air circulation type building, the duct path becomes longer than necessary. A skirt duct and control valve are provided to collect the air , and a duct fan is also required in part of the duct. In addition, system equipment to control these must also be installed.
また、従来の空気循環式建物には蓄熱材がなく、外壁内側DI層を流通する空気の暖気から温熱を、もしくは冷気から冷熱を蓄熱し、タイムラグにより放熱することによるDSの効果が得られない。 In addition, there is no heat storage material in conventional air circulation type buildings, and the effect of DS is obtained by storing warm heat from the warm air flowing through the DI layer inside the outer wall, or cold heat from the cold air, and dissipating heat with a time lag. do not have.
さらに、外皮に取り付く窓においてはDIを全く考慮されておらず、建物の大開口窓の上下ではDI層が分断され、DIの効果が半減する。 Furthermore, DI is not considered at all for windows attached to the outer skin, and the DI layer is divided above and below the large opening window of the building , and the effect of DI is halved.
本発明はこれらの問題点を解決するべくなされたものであり、その目的とするところは、建物全体の熱損失量を、断熱材の量を増やさずに低減させ、太陽熱や地熱、夜間の冷気などを回収して外壁内側DI層内の潜熱蓄熱材に蓄熱し、タイムラグにより還元することにより、四季を通じた昼夜の建物外皮からの受熱・放熱を制御し、年間を通じた建物換気と室内環境を保全することである。 The present invention was made to solve these problems, and its purpose is to reduce the amount of heat loss in the entire building without increasing the amount of insulation, and to By recovering and storing the heat in the latent heat storage material in the DI layer inside the outer wall and reducing it with a time lag, it is possible to control the heat received and released from the building skin day and night throughout the four seasons, and to improve the building ventilation and indoor environment throughout the year. It is to preserve.
一般的に、壁自体に通気孔を設けて壁内に直接外気又は室内空気を通すことによってDI効果を得る手法は、壁内・室内表面結露の可能性や換気が不十分になるなど、建物の耐久性や室内の快適性を損なう可能性がある。 In general, the method of obtaining the DI effect by providing ventilation holes in the wall itself and allowing the outside air or indoor air to pass directly through the wall is not effective because of the possibility of dew condensation inside the wall/indoor surface and insufficient ventilation, etc. durability and interior comfort.
省エネ化が重要課題となっている建築業界において、断熱性能を高めるには外皮の断熱材を厚くする手段しかなく、断熱材を厚くすることによるコスト増、施工手間増や、室内空間を狭める等が課題となっている。 In the construction industry, where energy conservation has become an important issue, the only way to improve insulation performance is to increase the thickness of the insulation material on the outer skin. is an issue.
季節ごと及び日中、夜間ごとに外壁内外DI層の空気制御を行うには、相当のダクト配管とダンパー制御が必要となり、施工が難しくなることやコストアップにつながる。そのため建物の天井裏空間や床下空間を利用することで、部材を減らしダクトレスによる施工性の向上を図りコストダウンにつなげる。 In order to control the air in the DI layer inside and outside the outer wall each season, daytime, and nighttime, considerable duct piping and damper control are required, leading to difficulty in construction and an increase in cost. Therefore, by using the space above the ceiling and under the floor of the building, we will reduce the number of components and improve workability by eliminating ducts, which will lead to cost reduction.
建築物の壁や屋根といった外皮に設ける二重のDI層を有するDIシステムであり、建物外皮における断熱・気密層の外側及び内側にそれぞれDI層を設け、冬期における外側のDI層は下部より外気を取り入れ、室内側からの損失熱及び外側からの太陽熱を回収しながら新鮮外気として室内に取り込む。 This is a DI system that has a double DI layer provided on the outer skin such as the walls and roofs of buildings. DI layers are provided on the outer and inner sides of the thermal insulation and airtight layer of the building skin. is introduced into the room as fresh outside air while recovering heat loss from the indoor side and solar heat from the outside.
一方、夏期における外側のDI層は、夜間の放射冷却により低温の空気を室内に取り込み、日中は外部の太陽熱や外気からの熱を回収してそのまま排熱し、室内に外からの高い熱が入らないようにする。 On the other hand, during the summer, the outer DI layer takes in low-temperature air into the room through radiative cooling at night, and collects heat from the outside solar heat and the outside air during the day and discharges the heat as it is, allowing high heat from the outside to enter the room. do not enter.
外壁外側DI層から得られた新鮮外気を室内に取り込む際、全熱交換器を通じて室内空気と熱交換して室内に導入するが、冬期の日中に太陽熱の集熱により室温よりも高い温度の空気を得られた場合及び夏期の夜間に放射冷却により室温よりも低い温度の空気を得られた場合は熱交換器を介さずバイパスを使って直接室内に導入することで熱ロスをできるだけ低減する。 When the fresh outside air obtained from the DI layer outside the outer wall is taken into the room, it is introduced into the room after exchanging heat with the room air through the total heat exchanger. When air is obtained, or when air with a temperature lower than room temperature is obtained by radiative cooling at night in summer, heat loss is reduced as much as possible by introducing it directly into the room using a bypass without going through a heat exchanger. .
外壁内側DI層の通気により、室内空気が循環することになるため、室内表面温度を維持することができる。 The ventilation of the DI layer inside the outer wall circulates the room air, so that the room surface temperature can be maintained.
外壁内側DI層内には蓄熱材を設置し、外壁外側DI層から得られる太陽熱又は放射冷却熱による温熱又は冷熱を蓄熱し、室内の暖房及び冷房負荷の低減に利用することが可能となっている A heat storage material is installed in the DI layer on the inner side of the outer wall, and heat or cold heat from the solar heat or radiant cooling heat obtained from the outer wall outer DI layer can be stored and used to reduce the indoor heating and cooling load. ing
基本性能として365日、8760時間、常時DI及びDSによるDSS技術で熱損失低減効果と建物躯体も含めた換気により、人も建物も健康・長寿命などを得ることが可能である。 The basic performance is 365 days, 8760 hours, and the DSS technology with constant DI and DS can provide heat loss reduction effect and ventilation including the building frame, making it possible to obtain health and longevity for both people and buildings.
以下に、本発明の実施の形態について図を参照しつつ説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
図3に示す建築物の壁といった建物外皮の断熱・気密層1-3の外側と内側にそれぞれ通気層(外壁外側DI層1-1、外壁内側DI層1-2という)が配置された二重のDI層を有するDIシステムであり、外壁外側DI層1-1には下部より外気吸気口2-1、外壁外側DI層1-1上部には方位ごとに外壁外側DI層1-1内の空気の流れを制御する方位別開閉式ダンパー2-2を有している。この方位別開閉式ダンパー2-2を介して外壁外側DI層1-1の上部が、断熱・気密層の外側と内側に分割された小屋裏空間の内、小屋裏外側空間1-4と連通している。さらに、小屋裏外側空間1-4の頂部には外壁外側DI層1-1を通過して小屋裏外側空間1-4に流入した外気を排気するための開閉式ダンパー2-3を備えた排気箱1-8を配している。夏期の太陽熱排熱モードでは、日中において外壁外側DI層1-1で受熱した太陽熱をこの排熱箱1-8から吸・排気口1-9より外気へ排熱する。小屋裏外側空間1-4に流入した空気は、熱交換式換気装置2-4の新鮮外気吸入口から室内1-6に供給し、床に設けたダンパー付きガラリ2-6を通して床下空間1-7に移動し、床下空間1-7と連通した外壁内側DI層1-2の蓄熱材3を通じて小屋裏内側空間1-5に流入し、熱交換式換気装置2-4を介して外に排気される。この時、小屋裏外側空間1-4から供給される新鮮外気と小屋裏内側空間1-5に流入した汚染空気は、熱交換式換気装置2-4において熱交換後に室内1-6に供給又は外気に排気されることを特徴とする請求項1記載の空気循環式建築物1である。これにより主に太陽熱を受ける外壁外側DI層1-1において、太陽熱を取得した後、そのまま小屋裏外側空間1-4より排熱されるため、断熱・気密層1-3より室内側に外からの熱が侵入することを防止でき、冷房負荷を軽減する効果がある。 Two ventilation layers (outer wall outer DI layer 1-1 and outer wall inner DI layer 1-2) are placed on the outer and inner sides of the heat insulation/airtight layer 1-3 of the building envelope such as the building wall shown in Fig. 3, respectively. This is a DI system with multiple DI layers, with an outside air intake port 2-1 from the bottom of the outer wall outer DI layer 1-1, and an outer wall outer DI layer 1-1 upper part for each direction It has a direction-specific opening and closing damper 2-2 that controls the air flow in the direction. The upper part of the outer wall outer DI layer 1-1 communicates with the attic outer space 1-4 in the attic space divided into the outer and inner sides of the heat insulating and airtight layer through this orientation-dependent opening and closing damper 2-2. are doing. Furthermore, at the top of the attic outer space 1-4, an exhaust is provided with an openable damper 2-3 for exhausting the outside air that has passed through the outer wall outer DI layer 1-1 and flowed into the attic outer space 1-4. Boxes 1-8 are arranged. In the summertime solar heat exhaust mode, solar heat received by the outer wall outer DI layer 1-1 during the daytime is exhausted from the heat exhaust box 1-8 to the outside air through the intake/ exhaust port 1-9. The air that has flowed into the attic outside space 1-4 is supplied to the room 1-6 from the fresh outside air intake port of the heat exchange type ventilation device 2-4, and is sent to the underfloor space 1- through the damper-equipped louver 2-6 provided on the floor. 7, flows into the attic inner space 1-5 through the heat storage material 3 of the outer wall inner DI layer 1-2 communicating with the underfloor space 1-7, and exhausts to the outside via the heat exchange type ventilation device 2-4. be done. At this time, the fresh outside air supplied from the attic outer space 1-4 and the polluted air that flowed into the attic inner space 1-5 are supplied or 2. An air circulation type building 1 according to claim 1, characterized in that it is exhausted to the outside air. As a result, in the outer wall outer DI layer 1-1, which mainly receives solar heat, after the solar heat is taken in, the heat is discharged from the attic outer space 1-4, so that the heat from the outside enters the room through the heat insulating/airtight layer 1-3. It can prevent heat from entering and has the effect of reducing the cooling load.
図4に示す夏期の夜間放射冷却モードでは、外壁外側DI層1-1において夜間の放射冷却によって冷やされた空気が小屋裏外側空間1-4に流入し、その空気が熱交換を行わないバイパス機能を有する熱交換式換気装置2-4を通して小屋裏室内側空間1-5に供給される。小屋裏室内側空間1-5は、蓄熱材3が設置された外壁内側DI層1-2と連通し、蓄熱材3に蓄冷しながら床下空間1-7に流入させる。室内1-6の空気は天井面に配したダンパー付換気扇2-5を介して小屋裏内側空間1-5に送風し、外壁内側DI層1-2を通気させて床下空間1-7に送風し、床面に配したダンパー付ガラリ2-6から室内1-6に新鮮外気として供給される。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項1記載の空気循環式建築物1である。これにより夜間の冷熱を断熱・気密層1-3の室内側に取入れ蓄熱材3に蓄冷することができ、その熱を高温になる日中に放冷することで冷房負荷を軽減する効果がある。 In the summer nighttime radiative cooling mode shown in FIG. 4, the air cooled by nighttime radiative cooling in the outer wall outer DI layer 1-1 flows into the attic outer space 1-4, and the air does not exchange heat. The air is supplied to the attic interior space 1-5 through a functional heat exchange ventilator 2-4. The attic interior space 1-5 communicates with the outer wall inner DI layer 1-2 in which the heat storage material 3 is installed, and flows into the underfloor space 1-7 while accumulating cold in the heat storage material 3. - 特許庁The air in the room 1-6 is sent to the space 1-5 inside the attic through the ventilation fan 2-5 with a damper installed on the ceiling surface, and is sent to the space 1-7 under the floor by ventilating the DI layer 1-2 inside the outer wall. Then, it is supplied as fresh outside air to the room 1-6 from the damper-equipped louver 2-6 arranged on the floor. The air circulation type building 1 according to claim 1, characterized in that the amount of air blown by the ventilating fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, cold heat at night can be taken into the indoor side of the heat insulating/airtight layer 1-3 and stored in the heat storage material 3, and the heat can be released during the day when the temperature is high, which has the effect of reducing the cooling load. .
図5に示す冬期の太陽熱蓄熱モードでは、主に太陽の日射を受ける南面などの外壁外側DI層1-1を介して太陽熱を受熱し暖められた新鮮外気を小屋裏外側空間1-4に流入させる。小屋裏外側空間1-4に流入した空気は、熱交換を行わないバイパス機能を有する熱交換式換気装置2-4を通して小屋裏室内側空間1-5に供給される。小屋裏室内側空間1-5は、蓄熱材3が設置された外壁内側DI層1-2と連通し、蓄熱材3に蓄熱しながら床下空間1-7に流入させる。室内1-6の空気は天井面に配したダンパー付換気扇2-5を介して小屋裏内側空間1-5に送風し、外壁内側DI層1-2を通気させて床下空間1-7に送風し、床面に配したダンパー付ガラリ2-6から室内1-6に新鮮外気として供給される。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項1記載の空気循環式建築物1である。これにより外壁外側DI層1-1では、断熱・気密層1-3の室内側からの貫流熱を回収するとともに外からの太陽熱を取得し、その熱を断熱・気密層1-3の室内側に取り入れ、さらに蓄熱材3に蓄熱することにより暖房負荷を軽減する効果がある。 In the winter solar heat storage mode shown in Fig. 5, the fresh outside air warmed by receiving solar heat through the outer wall outer DI layer 1-1, such as the south face, which mainly receives the sun's insolation, flows into the attic outer space 1-4. Let The air that has flowed into the attic outer space 1-4 is supplied to the attic inner space 1-5 through a heat exchange ventilator 2-4 having a bypass function that does not exchange heat. The attic interior space 1-5 communicates with the outer wall inner DI layer 1-2 in which the heat storage material 3 is installed, and flows into the underfloor space 1-7 while storing heat in the heat storage material 3. - 特許庁The air in the room 1-6 is sent to the space 1-5 inside the attic through the ventilation fan 2-5 with a damper installed on the ceiling surface, and is sent to the space 1-7 under the floor by ventilating the DI layer 1-2 inside the outer wall. Then, it is supplied as fresh outside air to the room 1-6 from the damper-equipped louver 2-6 arranged on the floor. The air circulation type building 1 according to claim 1, characterized in that the amount of air blown by the ventilating fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, in the outer wall outer DI layer 1-1 , the through-flow heat from the indoor side of the heat insulating/airtight layer 1-3 is recovered, and the solar heat from the outside is acquired, and the heat is transferred to the indoor side of the heat insulating/airtight layer 1-3. By incorporating the heat into the heat storage material 3 and further storing heat in the heat storage material 3, there is an effect of reducing the heating load.
図6に示す冬期の蓄熱利用モードでは、外壁外側DI層1-1を介して小屋裏外側空間1-4に流入した新鮮外気を、熱交換式換気装置2-4を通して室内1-6に供給する。これと同時に室内1-6の空気は、天井のダンパー付換気扇2-5から小屋裏内側空間1-5に流入後、外壁内側DI層1-2を蓄熱材3から熱を授受しながら通過させ、その後、床下空間1-7を通して床面に設置したダンパー付ガラリ2-6を介して室内1-6に供給する。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項1記載の空気循環式建築物1である。これにより外壁外側DI層1-1では、断熱・気密層1-3の室内側からの貫流熱を回収し、その熱を断熱・気密層1-3の室内側に取り入れ、さらに日中は蓄熱材3に蓄熱した熱を放熱することにより暖房負荷を軽減する効果がある。 In the winter heat storage utilization mode shown in FIG. 6, fresh outside air that has flowed into the attic outer space 1-4 through the outer wall outer DI layer 1-1 is supplied to the room 1-6 through the heat exchange type ventilation device 2-4. do. At the same time, the air in the room 1-6 flows into the space 1-5 inside the attic from the ventilation fan 2-5 with a damper on the ceiling, and then passes through the DI layer 1-2 inside the outer wall while receiving heat from the heat storage material 3. After that, it is supplied to the room 1-6 through the underfloor space 1-7 and the damper-equipped louver 2-6 installed on the floor. The air circulation type building 1 according to claim 1, characterized in that the amount of air blown by the ventilating fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, in the outer wall outer DI layer 1-1, the through-flow heat from the indoor side of the thermal insulation/airtight layer 1-3 is recovered, the heat is taken into the indoor side of the thermal insulation/airtight layer 1-3, and the heat is stored during the daytime. By dissipating the heat stored in the material 3, there is an effect of reducing the heating load.
図7及び図8に示す建築物の壁や屋根といった建物外皮の断熱・気密層1-3の外側と内側にそれぞれ通気層(外壁外側DI層1-1、外壁内側DI層1-2、屋根DI層1-10という)が配置された二重のDI層を有するDIシステムであり、外壁外側DI層1-1には下部より外気吸気口2-1、上部には連通した屋根DI層1-10がある。屋根DI層1-10の頂部には外壁外側DI層1-1及び屋根DI層1-10を通過してきた外気が、開閉式ダンパー2-3を擁する排気口1-8と吸・排気口1-9を備えた換気箱1-11を配している。夏期の太陽熱排熱モードでは、日中の主に太陽熱が当たる南面等において外壁外側DI層1-1及び屋根DI層1-10で受熱した太陽熱をこの換気箱1-11から外気へ排熱する。太陽熱があまり当たらない南面等以外の面における外壁外側DI層1-1及び屋根DI層1-10を通過してきた外気は、換気箱1-11から熱交換式換気装置2-4の新鮮外気吸入口から室内1-6に供給し、床に設けたダンパー付きガラリ2-6を通して床下空間1-7に移動し、床下空間1-7と連通した外壁内側DI層1-2の蓄熱材3を通じて小屋裏内側空間1-5に流入し、熱交換式換気装置2-4を介して外に排気される。この時、屋根DI層1-10から供給される新鮮外気と小屋裏内側空間1-5に流入した汚染空気は、熱交換式換気装置2-4において熱交換後に室内1-6に供給又は外気に排気されることを特徴とする請求項2記載の空気循環式建築物1である。これにより主に太陽熱を受ける外壁外側DI層1-1と屋根DI層1-10において、太陽熱を取得した後、そのまま屋根DI層1-10頂部の吸・排気口1-9より排熱されるため、断熱・気密層1-3より室内側に外からの熱が侵入することを防止でき、冷房負荷を軽減する効果がある。 Ventilation layers (outer wall outer DI layer 1-1, outer wall inner DI layer 1-2, roof DI layer 1-10) are arranged, and the outer wall outer DI layer 1-1 has an outside air intake port 2-1 from the bottom, and the roof DI layer 1 connected to the top. There is -10. At the top of the roof DI layer 1-10, outside air that has passed through the outer wall outer DI layer 1-1 and the roof DI layer 1-10 passes through an exhaust port 1-8 having an openable damper 2-3 and an intake /exhaust port. Ventilation box 1-11 with 1-9 is arranged. In the summertime solar heat exhaust mode, the solar heat received by the outer wall outer DI layer 1-1 and the roof DI layer 1-10 on the south side, which is mainly exposed to solar heat during the daytime, is exhausted from this ventilation box 1-11 to the outside air. . Outside air that has passed through the outer wall outer DI layer 1-1 and the roof DI layer 1-10 on surfaces other than the south side, which is not exposed to much solar heat, is fresh outside air from the ventilation box 1-11 to the heat exchange type ventilation device 2-4. Heat is supplied from the suction port to the room 1-6, moves to the underfloor space 1-7 through the damper-equipped gallery 2-6 provided in the floor, and heat storage material 3 of the outer wall inner DI layer 1-2 communicating with the underfloor space 1-7 The air flows into the attic inner space 1-5 through the attic and is exhausted outside through the heat exchange type ventilation device 2-4. At this time, the fresh outside air supplied from the roof DI layer 1-10 and the contaminated air that flowed into the attic inner space 1-5 are supplied to the room 1-6 after heat exchange in the heat exchange type ventilation device 2-4, or 3. The air circulation type building 1 according to claim 2, wherein the air is exhausted to. As a result, the outer wall outer DI layer 1-1 and the roof DI layer 1-10, which mainly receive solar heat, receive the solar heat, and then the heat is exhausted from the intake/ exhaust ports 1-9 at the top of the roof DI layer 1-10. , the heat insulation/airtight layer 1-3 can prevent heat from entering the room from the outside, thereby reducing the cooling load.
図9及び図10に示す夏期の夜間放射冷却モードでは、外壁外側DI層1-1及び屋根DI層1-10において夜間の放射冷却によって冷やされた空気が換気箱1-11に流入し、その空気が熱交換を行わないバイパス機能を有する熱交換式換気装置2-4を通して小屋裏内側空間1-5に供給される。小屋裏内側空間1-5は、蓄熱材3が設置された外壁室内側DI層1-2と連通し、蓄熱材3に蓄冷しながら床下空間1-7に流入させる。室内1-6の空気は天井面に配したダンパー付換気扇2-5を介して小屋裏内側空間1-5に送風し、外壁内側DI層1-2を通気させて床下空間1-7に送風し、床面に配したダンパー付ガラリ2-6から室内1-6に新鮮外気として供給される。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項1記載の空気循環式建築物1である。これにより夜間の冷熱を断熱・気密層1-3の室内側に取入れ蓄熱材3に蓄冷することができ、その熱を高温になる日中に放冷することで冷房負荷を軽減する効果がある。 In the nighttime radiative cooling mode shown in FIGS. 9 and 10, air cooled by nighttime radiative cooling in the outer wall outer DI layer 1-1 and the roof DI layer 1-10 flows into the ventilation box 1-11, where Air is supplied to the attic inner space 1-5 through a heat exchange ventilator 2-4 having a bypass function that does not exchange heat. The attic inner space 1-5 communicates with the outer wall indoor inner DI layer 1-2 in which the heat storage material 3 is installed, and flows into the underfloor space 1-7 while storing coolness in the heat storage material 3. - 特許庁The air in the room 1-6 is sent to the space 1-5 inside the attic through the ventilation fan 2-5 with a damper installed on the ceiling surface, and is sent to the space 1-7 under the floor by ventilating the DI layer 1-2 inside the outer wall. Then, it is supplied as fresh outside air to the room 1-6 from the damper-equipped louver 2-6 arranged on the floor. The air circulation type building 1 according to claim 1, characterized in that the amount of air blown by the ventilating fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, cold heat at night can be taken into the indoor side of the heat insulating/airtight layer 1-3 and stored in the heat storage material 3, and the heat can be released during the day when the temperature is high, which has the effect of reducing the cooling load. .
図11及び図12に示す冬期の太陽熱蓄熱モードでは、主に太陽の日射を受ける南面などの外壁外側DI層1-1及び屋根DI層1-10を介して太陽熱を受熱し暖められた新鮮外気を換気箱1-11に流入させ、その空気は熱交換を行わないバイパス機能を有する熱交換式換気装置2-4を通して小屋裏内側空間1-5に供給される。太陽の日射を受けない南面等以外の外壁外側DI層1-1及び屋根DI層1-10を通過して換気箱1-11に入り外気へ排気する。小屋裏内側空間1-5は、蓄熱材3が設置された外壁室内側DI層1-2と連通し、蓄熱材3に蓄熱しながら床下空間1-7に流入させる。室内1-6の空気は天井面に配したダンパー付換気扇2-5を介して小屋裏内側空間1-5に送風し、外壁内側DI層1-2を通気させて床下空間1-7に送風し、床面に配したダンパー付ガラリ2-6から室内1-6に新鮮外気として供給される。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項2記載の空気循環式建築物1である。これにより外壁外側DI層1-1及び屋根DI層1-10では、断熱・気密層1-3の室内側からの貫流熱を回収するとともに外からの太陽熱を取得し、その熱を断熱・気密層1-3の室内側に取り入れ、さらに蓄熱材3に蓄熱することにより暖房負荷を軽減する効果がある。 In the winter solar heat storage mode shown in FIGS. 11 and 12, the fresh outside air is warmed by receiving solar heat via the outer wall outer DI layer 1-1 and the roof DI layer 1-10, such as the south face, which mainly receives the sun's insolation. is introduced into the ventilation box 1-11, and the air is supplied to the attic inner space 1-5 through a heat exchange type ventilation device 2-4 having a bypass function that does not exchange heat. The air passes through the outer wall outer DI layer 1-1 and the roof DI layer 1-10 except for the south face, which does not receive the sun's insolation, and enters the ventilation box 1-11 and is exhausted to the outside air. The attic inner space 1-5 communicates with the outer wall indoor inner DI layer 1-2 in which the heat storage material 3 is installed, and flows into the underfloor space 1-7 while storing heat in the heat storage material 3. - 特許庁The air in the room 1-6 is sent to the space 1-5 inside the attic through the ventilation fan 2-5 with a damper installed on the ceiling surface, and is sent to the space 1-7 under the floor by ventilating the DI layer 1-2 inside the outer wall. Then, it is supplied as fresh outside air to the room 1-6 from the damper-equipped louver 2-6 arranged on the floor. The air circulation type building 1 according to claim 2, characterized in that the amount of air blown by the ventilation fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, in the outer wall outer DI layer 1-1 and the roof DI layer 1-10, the through-flow heat from the indoor side of the heat insulating/airtight layer 1-3 is recovered, and the solar heat from the outside is acquired, and the heat is transferred to the heat insulating/airtight layer. Incorporating the heat into the indoor side of the layer 1-3 and storing heat in the heat storage material 3 has the effect of reducing the heating load.
図13及び図14に示す冬期の蓄熱利用モードでは、外壁外側DI層1-1および屋根DI層1-10を介して換気箱1-11に流入した新鮮外気を、熱交換式換気装置2-4を通して室内1-6に供給する。これと同時に室内1-6の空気は、天井のダンパー付換気扇2-5から小屋裏内側空間1-5に流入後、外壁内側DI層1-2を蓄熱材3から熱を授受しながら通過させ、その後、床下空間1-7を通して床面に設置したダンパー付ガラリ2-6を介して室内1-6に供給する。この時ダンパー付換気扇2-5の送風量は熱交換式換気装置2-4の送風量よりも大きくすることを特徴とする請求項2記載の空気循環式建築物1である。これにより外壁外側DI層1-1及び屋根DI層1-10では、断熱・気密層1-3の室内側からの貫流熱を回収し、その熱を断熱・気密層1-3の室内側に取り入れ、さらに日中は蓄熱材3に蓄熱した熱を放熱することにより暖房負荷を軽減する効果がある。 In the winter heat storage utilization mode shown in FIGS. 13 and 14, the fresh outside air that has flowed into the ventilation box 1-11 through the outer wall outer DI layer 1-1 and the roof DI layer 1-10 is transferred to the heat exchange ventilation system 2-. Supply room 1-6 through 4. At the same time, the air in the room 1-6 flows into the space 1-5 inside the attic from the ventilation fan 2-5 with a damper on the ceiling, and then passes through the DI layer 1-2 inside the outer wall while receiving heat from the heat storage material 3. After that, it is supplied to the room 1-6 through the underfloor space 1-7 and the damper-equipped louver 2-6 installed on the floor. The air circulation type building 1 according to claim 2, characterized in that the amount of air blown by the ventilation fan 2-5 with a damper at this time is made larger than the amount of air blown by the heat exchange type ventilator 2-4. As a result, in the outer wall outer DI layer 1-1 and the roof DI layer 1-10, the through-flow heat from the indoor side of the heat insulating/airtight layer 1-3 is recovered, and the heat is transferred to the indoor side of the heat insulating/airtight layer 1-3. In addition, during the daytime, the heat stored in the heat storage material 3 is radiated, thereby reducing the heating load.
図15から図20に示すものは、請求項1、2記載の建築物1の外壁に設けられる窓においても外壁外側DI層1-1と外壁内側DI層1-2にそれぞれサッシ4を設け二重窓構造(外側DI窓4-1、内側DI窓4-2)とし、外壁外側DI層1-1と外壁内側DI層1-2がサッシの間を介して上下に連通させることを可能とすることを特徴する請求項1、2記載の空気循環式建築物1である。 15 to 20, the windows installed on the outer wall of the building 1 according to claims 1 and 2 are provided with sashes 4 on the outer wall outer DI layer 1-1 and the outer wall inner DI layer 1-2, respectively. A multi-layered window structure (outer DI window 4-1, inner DI window 4-2) is used, and the outer wall outer DI layer 1-1 and the outer wall inner DI layer 1-2 can be vertically communicated through the sash. The air circulation type building 1 according to claims 1 and 2 is characterized by:
図15、図16に示すものは構造躯体の外側に断熱・気密層1-3を用い、外壁外側DI層1-1を設け、外側DI窓4-1と内側DI窓4-2の間だけを通気させた場合のDI窓構造である。さらに図17~図20に示すものは外壁内側DI層1-2をも通気させる場合のDI窓構造である。 15 and 16 use a heat insulating/airtight layer 1-3 on the outside of the structural frame, provide an outer wall outer DI layer 1-1, and only between the outer DI window 4-1 and the inner DI window 4-2. This is the DI window structure when the is ventilated. 17 to 20 are DI window structures in which the outer wall inner DI layer 1-2 is also ventilated.
ここで図17、図18によるものは、外側DI窓4-1にペアガラスを用いた断熱サッシを設置し、外壁内側DI層1-2にもペアガラスを用いた断熱サッシを設置している。しかし温暖地では、外側DI窓4-1をシングルガラスとしてもよく、さらなる温暖地域では両方ともシングルガラスとしてもよい。 17 and 18, a heat insulating sash using double glass is installed on the outer DI window 4-1, and a heat insulating sash using double glass is also installed on the outer wall inner DI layer 1-2. . However, in warmer climates the outer DI window 4-1 may be single glazed, and in more temperate climates both may be single glazed.
また、上下の通気口にはメッシュ状の防虫網を用いた例を示している。さらに、室内遮蔽用具には遮蔽板を用いているが、シャッターや、ブラインド、ロールスクリーン、カーテン、ブラインド、障子等などの代用も可能である。 Moreover, an example of using a mesh-like insect net for the upper and lower vents is shown. Furthermore, although shielding plates are used as indoor shielding tools, shutters, blinds, roll screens, curtains, blinds, shoji screens, etc. can be substituted.
ここで図19、図20によるものは、外側DI窓4-1にペアガラスを用いた断熱サッシを設置し、内側DI窓4-2にはトリプルガラスを用いた断熱サッシを設置している。これは、寒冷地でのガラス面の断熱強化を図ったもので、適宜断熱サッシの仕様変更を可能とする。 19 and 20, the outer DI window 4-1 is provided with a heat insulating sash using double glass, and the inner DI window 4-2 is provided with a heat insulating sash using triple glass. This is intended to strengthen the heat insulation of the glass surface in cold regions, and allows the specifications of the heat insulation sash to be changed as appropriate.
また、外壁外側DI層の上下の通気口、外壁内側DI層1-2の上下の通気口にはガラリ状の通気部材を用いた例を示している。ここで、この通気部材を開閉可能とし、通気量を調節することも可能とすることでDIシステムの機能向上を図ることができる。さらに、室内遮蔽用具には遮蔽用ロールスクリーンや、カーテン、ブラインド、障子等を具備して制御可能としている。 Further, an example of using a rattle-like ventilation member for the upper and lower vents of the outer wall outer DI layer and the upper and lower vents of the outer wall inner DI layer 1-2 is shown. The function of the DI system can be improved by making the ventilation member openable and closable and adjusting the amount of ventilation. In addition, indoor shielding tools are equipped with shielding roll screens, curtains, blinds, shoji screens, etc., and can be controlled.
1 本発明の空気循環式建築物
1-1 外壁外側DI層
1-2 外壁内側DI層
1-3 断熱・気密層
1-4 小屋裏外側空間
1-5 小屋裏内側空間
1-6 室内
1-7 床下空間
1-8 排気箱
1-9 吸・排気口
1-10 屋根DI層
1-11 換気箱
2-1 外気吸気口
2-2 方位別開閉式ダンパー
2-3 開閉式ダンパー
2-4 熱交換式換気装置
2-5 ダンパー付き換気扇
2-6 床ダンパー付きガラリ
2-7 天井ダンパー付きガラリ
3 蓄熱材
4-1 外側DI窓
4-2 内側DI窓
1 Air circulation type building of the present invention
1-1 Outer wall outer DI layer
1-2 External wall inner DI layer
1-3 Thermal insulation/airtight layer
1-4 Space outside the attic
1-5 Space inside the attic
1-6 Indoor
1-7 Underfloor space
1-8 exhaust box
1-9 Intake/exhaust port
1-10 Roof DI layer
1-11 ventilation box
2-1 Outside air intake
2-2 Orientation-dependent opening and closing dampers
2-3 Openable damper
2- 4 heat exchange ventilator
2-5 Ventilation fan with damper
2-6 floor damper garari
2-7 Rattle with ceiling damper
3 Heat storage material
4-1 Outer DI window
4-2 Inside DI window
Claims (4)
外壁外側DI層には下部に外気吸気口、上部に方位ごとに外壁外側DI層内の空気の流れを制御する方位別開閉式ダンパーを有し、
これを介して外壁外側DI層の上部が、小屋裏の断熱・気密層の外側と内側に分割された小屋裏空間の内、小屋裏外側空間と連通し、
小屋裏外側空間の頂部には外壁外側DI層を通過して小屋裏外側空間に流入した外気を排気するための開閉式ダンパーを備えた排気箱を配し、
小屋裏外気側空間から吸気した空気に対して熱交換を行う機能と熱交換を行わないバイパス機能を有する熱交換式換気装置と、
熱交換式換気装置を通して開放時は室内、閉鎖時は小屋裏内側空間に新鮮外気を導入する天井用開閉式ダンパー付きガラリと、
室内と小屋裏内側空間の境界には室内を負圧にするための開閉式ダンパー付き換気扇と、
床下空間と室内を連通させる床用開閉式ダンパー付きガラリとを備えることを特徴とする空気循環式建築物。A dynamic insulation (hereinafter referred to as DI) system having a double DI layer in which ventilation layers (hereinafter referred to as DI layers) are arranged on the outer and inner sides of the heat insulating and airtight layer of the building envelope such as the wall of the building,
The outer wall outer DI layer has an outside air intake port at the bottom and an opening and closing damper for each direction that controls the air flow in the outer wall outer DI layer at the top.
Through this, the upper part of the outer wall outer DI layer communicates with the attic outer space in the attic space divided into the outside and the inside of the heat insulating and airtight layer of the attic,
At the top of the attic outside space, an exhaust box equipped with an openable damper for exhausting outside air that has flowed into the attic outside space through the outer wall DI layer is arranged,
a heat exchange ventilator having a function of exchanging heat with the air taken in from the attic outside air side space and a bypass function of not exchanging heat;
Through the heat-exchange ventilation system, fresh air is introduced into the room when open and into the space inside the attic when closed.
At the boundary between the room and the space inside the attic, there is a ventilation fan with an opening and closing damper to make the room negative pressure,
An air circulation type building characterized by comprising a floor louver with opening and closing type damper for connecting an underfloor space and a room.
外壁外側DI層には下部に外気吸気口、上部に連通した屋根DI層があり、
屋根DI層の頂部には外壁外側DI層及び屋根DI層を通過してきた外気が開閉式ダンパーを擁する排気口と室内への吸気口を備えた換気箱を通過するように配し、
屋根DI層を通過してきた外気を小屋裏外気側空間から吸気した空気に対して熱交換を行う機能と室内に給気するための熱交換を行わないバイパス機能を有する熱交換式換気装置と、
熱交換式換気装置を通して開放時は室内、閉鎖時は小屋裏空間に新鮮外気を導入する天井用開閉式ダンパー付きガラリと、
室内と小屋裏空間の境界には室内空間を負圧にするための開閉式ダンパー付き換気扇と、
床下空間と室内を連通させる床用開閉式ダンパー付きガラリとを備えることを特徴とする空気循環式建築物。A DI system with double DI layers on the walls and roof of a building,
The outer wall outer DI layer has an outside air intake at the bottom and a roof DI layer connected to the top.
At the top of the roof DI layer, outside air that has passed through the outer wall outer DI layer and the roof DI layer is arranged to pass through a ventilation box equipped with an exhaust port with an openable damper and an intake port into the room,
A heat exchange ventilator having a function of exchanging heat with the air that has passed through the roof DI layer and taken in from the attic outside air side space, and a bypass function that does not perform heat exchange for supplying air to the room;
Through a heat-exchange ventilation system , the ceiling is equipped with an opening and closing damper that introduces fresh air into the room when it is open, and into the attic when it is closed.
At the boundary between the room and the attic space, a ventilation fan with an opening and closing damper to make the indoor space negative pressure,
An air circulation type building characterized by comprising a floor louver with opening and closing type damper for connecting an underfloor space and a room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018035800A JP7333026B2 (en) | 2018-02-08 | 2018-02-08 | Ductless dynamic insulation and heat storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018035800A JP7333026B2 (en) | 2018-02-08 | 2018-02-08 | Ductless dynamic insulation and heat storage system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019138128A JP2019138128A (en) | 2019-08-22 |
JP7333026B2 true JP7333026B2 (en) | 2023-08-24 |
Family
ID=67693453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018035800A Active JP7333026B2 (en) | 2018-02-08 | 2018-02-08 | Ductless dynamic insulation and heat storage system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7333026B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110848843B (en) * | 2019-11-13 | 2021-07-23 | 河南五方合创建筑设计有限公司 | Passive radiation refrigeration dehumidification device |
CN111609501B (en) * | 2020-06-04 | 2021-09-21 | 重庆大学 | Passive ventilation system utilizing solar energy and geothermal energy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340382A (en) | 2001-05-17 | 2002-11-27 | Gungo:Kk | House |
WO2009019874A1 (en) | 2007-08-06 | 2009-02-12 | Toshio Iizuka | Building with air thermal insulation properties |
JP2013117353A (en) | 2011-12-04 | 2013-06-13 | Okaken:Kk | Underfloor heat storage air-conditioning system, and energy-saving house including the same |
JP2014051874A (en) | 2012-09-10 | 2014-03-20 | Hirabayashi Kensetsu Co Ltd | Energy-saving ventilation system for air-tightness house |
JP2017223102A (en) | 2016-06-16 | 2017-12-21 | ジェイ建築システム株式会社 | Double window system for dynamic insulation (DI) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650004B2 (en) * | 1987-11-20 | 1994-06-29 | 鐘淵化学工業株式会社 | Building wall structure |
JPH081309B2 (en) * | 1988-04-02 | 1996-01-10 | 株式会社アイジー技術研究所 | House |
JP3065914B2 (en) * | 1995-06-28 | 2000-07-17 | フクビ化学工業株式会社 | Ventilated structures |
-
2018
- 2018-02-08 JP JP2018035800A patent/JP7333026B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002340382A (en) | 2001-05-17 | 2002-11-27 | Gungo:Kk | House |
WO2009019874A1 (en) | 2007-08-06 | 2009-02-12 | Toshio Iizuka | Building with air thermal insulation properties |
JP2013117353A (en) | 2011-12-04 | 2013-06-13 | Okaken:Kk | Underfloor heat storage air-conditioning system, and energy-saving house including the same |
JP2014051874A (en) | 2012-09-10 | 2014-03-20 | Hirabayashi Kensetsu Co Ltd | Energy-saving ventilation system for air-tightness house |
JP2017223102A (en) | 2016-06-16 | 2017-12-21 | ジェイ建築システム株式会社 | Double window system for dynamic insulation (DI) |
Non-Patent Citations (1)
Title |
---|
NEDO省エネルギー技術フォーラム2016 <ダイナミックストレージシステムを活用する住宅の省エネに関する技術開発>,日本,2017年11月10日,https://web.archive.org/web/20171110234037/https://www.nedo.go.jp/content/100803716.pdf |
Also Published As
Publication number | Publication date |
---|---|
JP2019138128A (en) | 2019-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A critical review of combined natural ventilation techniques in sustainable buildings | |
US8726586B1 (en) | Energy-efficient building structure having a dynamic thermal enclosure | |
JP5870450B2 (en) | Double skin curtain wall and air conditioning system | |
US8152608B1 (en) | Solar energy intercept and waste heat recovery system | |
US10598403B2 (en) | Mechanical ventilation heat recovery apparatus | |
JP7463125B2 (en) | Ventilation system | |
JP7333026B2 (en) | Ductless dynamic insulation and heat storage system | |
CN210288762U (en) | Modularized dynamic building surface using natural energy | |
JP5370880B2 (en) | Energy saving building | |
JP3944181B2 (en) | Building air conditioning system | |
US4505259A (en) | Heat regulation system and method for building structure | |
JP3149506U (en) | PA (passive / active) hybrid air conditioning system | |
JP6938115B2 (en) | Double skin unit and air conditioning system | |
JP2007100437A (en) | Double window ventilation system | |
JP7181819B2 (en) | ventilation system | |
JP5084407B2 (en) | Building air conditioning system | |
JP2018080904A (en) | Urban type passive design | |
CN220355509U (en) | Outer wall ventilation elevation device | |
JP2007092323A (en) | Roof structure with venting skin and building having roof structure with venting skin | |
JP6748904B2 (en) | Operating method of multi-function double skin system with vertical opening/closing mechanism | |
JP3727229B2 (en) | Air circulation type air conditioning system | |
JP2568697B2 (en) | Air conditioning ventilation hot water supply system | |
JP5653413B2 (en) | Energy saving building | |
KR101139908B1 (en) | Air conditioning system for cavity of double skin facade | |
JP3850768B2 (en) | Building air circulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180627 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220920 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220920 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20221122 |
|
C12 | Written invitation by the commissioner to file intermediate amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C12 Effective date: 20221122 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230206 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7333026 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |