JP7272798B2 - Dose calculation method, dose calculation program - Google Patents
Dose calculation method, dose calculation program Download PDFInfo
- Publication number
- JP7272798B2 JP7272798B2 JP2019003717A JP2019003717A JP7272798B2 JP 7272798 B2 JP7272798 B2 JP 7272798B2 JP 2019003717 A JP2019003717 A JP 2019003717A JP 2019003717 A JP2019003717 A JP 2019003717A JP 7272798 B2 JP7272798 B2 JP 7272798B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- dose
- shield
- outdoor space
- evaluation point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Radiation-Therapy Devices (AREA)
Description
特許法第30条第2項適用 2018年日本原子力学会 春の年会 開催日 平成30年3月26日Application of Article 30, Paragraph 2 of the Patent Act 2018 Spring Annual Meeting of the Atomic Energy Society of Japan Date March 26, 2018
本発明は、例えば放射線施設の線量計算方法、線量計算プログラムに関するものである。 The present invention relates to, for example, a dose calculation method and a dose calculation program for radiation facilities.
従来、電子リニアック(直線加速器)等の放射線発生装置が設置された放射線照射室では、管理区域外への放射線の漏洩を抑え、管理区域境界の実効線量を法令で定める値以下にするため、コンクリートや鉄を使った厚い遮蔽壁が設けられる。 Conventionally, in radiation irradiation rooms where radiation generators such as electronic linacs (linear accelerators) are installed, in order to suppress the leakage of radiation outside the controlled area and to keep the effective dose at the boundary of the controlled area below the value stipulated by law, concrete and a thick shielding wall made of iron.
国内では、放射線施設の管理区域境界の線量評価は、非特許文献1に記載の簡易計算式で計算するのが一般的である。また、より複雑な遮蔽の場合は、対象を3次元モデル化した上で、モンテカルロ法による放射線輸送計算により、実効線量を計算することができる。 In Japan, it is common to use the simple calculation formula described in Non-Patent Document 1 to evaluate doses at the boundaries of controlled areas of radiation facilities. In the case of more complicated shielding, the effective dose can be calculated by a three-dimensional model of the object and radiation transport calculation by the Monte Carlo method.
上記の他に、放射線施設の線量評価の簡易計算式は非特許文献2~4にまとめられている。特に、非特許文献2には、X線の利用線錐が照射室の迷路に向けられ、X線が迷路壁を透過したのちに、迷路の奥側の壁で1回散乱し、照射室出入り口に到達するX線の実効線量の簡易計算式について、図5を用いて以下のように記載されている。 In addition to the above, non-patent documents 2 to 4 summarize simple calculation formulas for dose evaluation of radiation facilities. In particular, in Non-Patent Document 2, a cone of X-rays is directed to the maze of the irradiation room, and after the X-rays pass through the wall of the maze, they are scattered once by the inner wall of the maze, and the entrance and exit of the irradiation room A simple calculation formula for the effective dose of X-rays reaching . is described below with reference to FIG.
ただし、DwTは照射室入り口Eでの線量、Wは照射線量、Umは方向利用率、Bprは迷路壁Mの透過率、αpは壁Pにおける反射率、Apは壁Pにおける最大照射範囲、dpは線源Sから壁Pの中心までの距離、d’’は壁Pの中心から照射室入り口Eまでの距離である。 where DwT is the dose at the entrance E of the irradiation chamber, W is the irradiation dose, Um is the directional utilization rate, Bpr is the transmittance of the maze wall M, αp is the reflectance at wall P, and Ap is the reflectance at wall P. dp is the distance from the radiation source S to the center of the wall P, and d'' is the distance from the center of the wall P to the entrance E of the irradiation chamber.
ところで、近年の免震構造の普及により、照射室直下の免震層の線量評価のニーズが増えている。 By the way, with the spread of seismic isolation structures in recent years, there is an increasing need for dose evaluation of the seismic isolation layer directly below the irradiation room.
上記の従来の簡易計算法では、免震層のある床に向けて照射したX線のように、X線が床を透過し、免震層内の天井の低い空間で反射するような経路を通る評価点については、精度良く評価することが難しい。 In the conventional simple calculation method described above, X-rays pass through the floor and are reflected in the space with a low ceiling inside the seismic isolation layer, such as the X-rays irradiated toward the floor with the seismic isolation layer. It is difficult to accurately evaluate the passing evaluation points.
また、従来のモンテカルロ法による線量計算は、簡易計算式に比べ計算時間が必要であり、計算体系によっては数日から1週間程度必要である。 In addition, the dose calculation by the conventional Monte Carlo method requires more calculation time than the simple calculation formula, and requires several days to a week depending on the calculation system.
本発明は、上記に鑑みてなされたものであって、放射線照射室の床下などの室外空間の線量を精度良く計算することのできる線量計算方法、線量計算プログラムを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a dose calculation method and a dose calculation program capable of accurately calculating the dose in an outdoor space such as under the floor of a radiation irradiation room.
上記した課題を解決し、目的を達成するために、本発明に係る線量計算方法は、放射線を照射する線源を有する放射線照射室の周囲に設けられた放射線遮蔽用の遮蔽体の外側の室外空間の線量を計算する方法であって、線源から照射されて遮蔽体を透過する放射線のうち少なくとも一部が遮蔽体内で散乱して、室外空間内に設定した所定の評価点に到達すると仮定して、線源から照射された放射線が遮蔽体内で散乱して評価点に到達する寄与の値と、線源から照射された放射線が遮蔽体を透過した後に、遮蔽体の外側の室外空間で多重反射して評価点に到達する寄与の値とを合算して評価点の線量を求めることを特徴とする。 In order to solve the above-described problems and achieve the object, the dose calculation method according to the present invention provides an outdoor dose calculation method outside a radiation shielding shield provided around a radiation irradiation room having a radiation source for irradiating radiation. A method of calculating the dose in space, assuming that at least part of the radiation emitted from the radiation source and transmitted through the shield scatters within the shield and reaches a predetermined evaluation point set in the outdoor space. Then, the value of the contribution that the radiation emitted from the source scatters inside the shield and reaches the evaluation point, and the value of the contribution of the radiation emitted from the source after passing through the shield in the outdoor space outside the shield It is characterized in that the dose at the evaluation point is obtained by summing the value of the contribution that reaches the evaluation point through multiple reflection.
また、本発明に係る他の線量計算方法は、上述した発明において、室外空間での放射線の多重反射の反射率を、エネルギーの減衰によらず一定値と仮定して、室外空間で多重反射して評価点に到達する寄与の値を求めることを特徴とする。 In addition, another dose calculation method according to the present invention is based on the above-described invention, assuming that the reflectance of multiple reflection of radiation in the outdoor space is a constant value regardless of the attenuation of the energy, and multiple reflection in the outdoor space is performed. It is characterized by obtaining the value of the contribution that reaches the evaluation point by
また、本発明に係る他の線量計算方法は、上述した発明において、線源から照射された放射線のエネルギーと、遮蔽体の材質と、室外空間を挟んで遮蔽体の表面に対向する物体の材質と、線源から照射された放射線が遮蔽体を透過した後に、物体の表面で反射して評価点に向かう放射線による線量率と、物体の表面で反射した後、遮蔽体の表面で反射して評価点に向かう放射線による線量率とに基づいて、室外空間での放射線の多重反射の反射率を求め、求めた反射率を用いて、室外空間で多重反射して評価点に到達する寄与の値を求めることを特徴とする。 Further, another dose calculation method according to the present invention is the energy of radiation emitted from the radiation source, the material of the shield, and the material of the object facing the surface of the shield across the outdoor space , the dose rate due to the radiation emitted from the source that passes through the shield and then reflects off the surface of the object and travels toward the evaluation point, and the Calculate the reflectance of multiple reflections of radiation in the outdoor space based on the dose rate due to the radiation heading toward the evaluation point, and use the obtained reflectance to determine the value of the contribution that reaches the evaluation point after multiple reflections in the outdoor space. is characterized by asking for
また、本発明に係る線量計算プログラムは、上述した線量計算方法をコンピュータに実行させることを特徴とする。 A dose calculation program according to the present invention causes a computer to execute the dose calculation method described above.
本発明に係る線量計算方法によれば、放射線を照射する線源を有する放射線照射室の周囲に設けられた放射線遮蔽用の遮蔽体の外側の室外空間の線量を計算する方法であって、線源から照射されて遮蔽体を透過する放射線のうち少なくとも一部が遮蔽体内で散乱して、室外空間内に設定した所定の評価点に到達すると仮定して、線源から照射された放射線が遮蔽体内で散乱して評価点に到達する寄与の値と、線源から照射された放射線が遮蔽体を透過した後に、遮蔽体の外側の室外空間で多重反射して評価点に到達する寄与の値とを合算して評価点の線量を求めるので、例えば放射線照射室の床下などの室外空間の線量を、モンテカルロ法によることなく迅速かつ精度良く計算することができるという効果を奏する。 According to the dose calculation method according to the present invention, a method for calculating the dose of an outdoor space outside a radiation shielding shield provided around a radiation irradiation room having a radiation source for irradiating radiation, Assuming that at least part of the radiation emitted from the source and transmitted through the shield scatters within the shield and reaches a predetermined evaluation point set in the outdoor space, the radiation emitted from the source is shielded. The contribution value that scatters inside the body and reaches the evaluation point, and the contribution value that reaches the evaluation point after the radiation emitted from the source passes through the shield and is multiple-reflected in the outdoor space outside the shield. are summed up to determine the dose at the evaluation point, the effect is that the dose in an outdoor space such as under the floor of a radiation irradiation room can be calculated quickly and accurately without using the Monte Carlo method.
また、本発明に係る他の線量計算方法によれば、室外空間での放射線の多重反射の反射率を、エネルギーの減衰によらず一定値と仮定して、室外空間で多重反射して評価点に到達する寄与の値を求めるので、室外空間の線量を迅速に計算することができるという効果を奏する。 Further, according to another dose calculation method according to the present invention, the reflectance of the multiple reflection of radiation in the outdoor space is assumed to be a constant value regardless of the attenuation of the energy, and the evaluation point is obtained by multiple reflection in the outdoor space. Since the value of the contribution reaching to is obtained, there is an effect that the dose in the outdoor space can be calculated quickly.
また、本発明に係る他の線量計算方法によれば、線源から照射された放射線のエネルギーと、遮蔽体の材質と、室外空間を挟んで遮蔽体の表面に対向する物体の材質と、線源から照射された放射線が遮蔽体を透過した後に、物体の表面で反射して評価点に向かう放射線による線量率と、物体の表面で反射した後、遮蔽体の表面で反射して評価点に向かう放射線による線量率とに基づいて、室外空間での放射線の多重反射の反射率を求め、求めた反射率を用いて、室外空間で多重反射して評価点に到達する寄与の値を求めるので、着目する経路に多重反射を含む放射線の線量を迅速かつ精度良く計算することができるという効果を奏する。 Further, according to another dose calculation method according to the present invention, the energy of the radiation emitted from the radiation source, the material of the shield, the material of the object facing the surface of the shield across the outdoor space, and the radiation After the radiation emitted from the source passes through the shield, it reflects off the surface of the object and travels to the evaluation point. Based on the dose rate due to the directed radiation, the reflectance of the multiple reflection of the radiation in the outdoor space is obtained, and using the obtained reflectance, the value of the contribution of the multiple reflection in the outdoor space to reach the evaluation point is obtained. , the dose of radiation including multiple reflections in the path of interest can be calculated quickly and accurately.
また、本発明に係る線量計算プログラムによれば、上述した線量計算方法をコンピュータに実行させるので、室外空間の線量をモンテカルロ法によることなく迅速かつ精度良く計算することができるという効果を奏する。 Further, according to the dose calculation program according to the present invention, since the computer executes the dose calculation method described above, the dose of the outdoor space can be calculated quickly and accurately without using the Monte Carlo method.
以下に、本発明に係る線量計算方法、線量計算プログラムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a dose calculation method and a dose calculation program according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.
(線量計算方法)
まず、本発明に係る線量計算方法の実施の形態について説明する。
(Dose calculation method)
First, an embodiment of a dose calculation method according to the present invention will be described.
図1に示すように、線源Sが放射線照射室に設置されており、線源SからX線(放射線)がビーム状(X-ray beam)に照射されるものする。放射線照射室の床は放射線遮蔽用の遮蔽体aで構成され、遮蔽体aの直下には空間b(室外空間)が配置されているものとする。本実施の形態では、放射線照射室として医療用リニアック室を想定し、空間bとして免震層を想定している。 As shown in FIG. 1, a radiation source S is installed in a radiation irradiation room, and X-rays (radiation) are emitted from the radiation source S in the form of a beam (X-ray beam). Assume that the floor of the radiation irradiation room is composed of a shield a for shielding radiation, and a space b (outdoor space) is arranged immediately below the shield a. In this embodiment, a medical linac room is assumed as the radiation irradiation room, and a seismic isolation layer is assumed as the space b.
線源Sからビーム状に照射したX線について、遮蔽体a内で散乱し空間b内の評価点Eに到達するX線(経路I)、遮蔽体aを透過した後に空間bで多重反射を起こし、最終的に空間bの下側の床(または奥側の壁)eの表面dで反射し評価点Eに到達するX線(経路II)、遮蔽体aを透過した後に空間bの中で多重反射を経て、最終的に遮蔽体aの表面cで散乱し評価点Eに到達するX線(経路III)の3経路に分けて考える。図1に、X線の経路を示す。 Regarding the X-rays irradiated in the form of a beam from the radiation source S, the X-rays (path I) that scatter within the shield a and reach the evaluation point E in the space b, pass through the shield a and undergo multiple reflections in the space b. X-rays (path II) that are raised and finally reflected by the surface d of the floor (or wall on the far side) e below the space b and reach the evaluation point E (path II), after passing through the shield a, in the space b After undergoing multiple reflections at , the X-rays are finally scattered on the surface c of the shield a and reach the evaluation point E (path III). FIG. 1 shows the paths of X-rays.
X線の経路Iの実効線量率DS(Sv/h)は、遮蔽体aと空間bの境界の壁表面cでの散乱とみなし、以下の式(2)で計算する。ここで、WはX線の線源Sから真下に1m離れた位置での最大線量率(Gy/h)、Bは遮蔽体aの透過率、FはGyをSvに変える換算係数(Sv/Gy)、Uは方向利用率、ACはX線利用線錐の表面cにおける照射面積、αSは表面cでの反射点(X線利用線錐の中心軸と表面cの交点)における角度θSでの反射率、dC0は線源Sから表面cでの反射点までの距離、dCは表面c上の反射点から評価点Eまでの距離である。
The effective dose rate D S (Sv/h) of the X-ray path I is assumed to be scattering on the wall surface c of the boundary between the shield a and the space b, and is calculated by the following formula (2). Here, W is the maximum dose rate (Gy/h) at a
X線の経路IIの実効線量率DF(Sv/h)については、次のように考える。X線の一部は遮蔽体aを透過した後に遮蔽体表面cと床表面dを往復するように多重反射を繰り返す。また、床表面dでの反射の際に、一部が反射率αFで評価点Eに向かう。多重反射の反射率を一定値rとし、公比r2の無限等比級数の和として扱い、X線の経路IIの実効線量率DFを以下の式(3)で計算する。ここで、AFはX線利用線錐の床表面dにおける照射面積、αFは床表面dでの反射点(X線利用線錐の中心軸と床表面dの交点)における角度θFでの反射率、dF0は線源Sから床表面dでの反射点までの距離、dFは床表面d上の反射点から評価点Eまでの距離である。 The effective dose rate D F (Sv/h) of X-ray path II is considered as follows. After passing through the shield a, part of the X-rays repeat multiple reflections so as to go back and forth between the shield surface c and the floor surface d. Also, when reflected by the floor surface d, a portion of the light travels toward the evaluation point E with a reflectance αF . Letting the reflectance of multiple reflection be a constant value r, treat it as a sum of infinite geometric series with a common ratio r2 , and calculate the effective dose rate DF of X-ray path II by the following equation (3). Here, A F is the irradiation area of the X-ray cone on the floor surface d, and α F is the angle θ F at the reflection point on the floor surface d (the intersection of the central axis of the X-ray cone and the floor surface d). dF0 is the distance from the radiation source S to the reflection point on the floor surface d, and dF is the distance from the reflection point on the floor surface d to the evaluation point E.
X線の経路IIIの実効線量率DC(Sv/h)は、遮蔽体aを透過し、床表面dから表面cに反射率rで反射したX線が、空間b内で多重反射を起こすと考え、経路IIと同様に無限等比級数の和の式を使い、以下の式(4)で計算できる。ここで、αCは表面cでの反射点(X線利用線錐の中心軸と表面cの交点)における角度θCでの反射率である。 The effective dose rate D C (Sv/h) of the X-ray path III is that the X-rays transmitted through the shield a and reflected from the floor surface d to the surface c with a reflectance r cause multiple reflections in the space b. Considering that, using the formula for the sum of infinite geometric series in the same way as for path II, it can be calculated by the following formula (4). Here, α C is the reflectance at the angle θ C at the reflection point on the surface c (the intersection of the central axis of the X-ray cone and the surface c).
上記の3式(式(2)~(4))をまとめたものが空間bの評価点Eにおける実効線量率D(Sv/h)である。特に、線源Sから真下1mの位置での照射面積をAICとすると、AIC=AC/dC0
2=AF/dF0
2であるため、以下の式(5)で表すことができる。
The effective dose rate D (Sv/h) at the evaluation point E in the space b is a summary of the above three equations (equations (2) to (4)). In particular, when the irradiation area at a
評価点Eが空間bの中間の高さの場合、反射率がαF=αCとなる。また、反射点から評価点Eまでの距離は、X線利用線錐の中心軸から評価点Eまでの距離dに近似(d≒dC≒dF)することができる。 When the evaluation point E is at the middle height of the space b, the reflectance is α F =α C . Also, the distance from the reflection point to the evaluation point E can be approximated to the distance d from the central axis of the X-ray cone to the evaluation point E (d≈d C ≈d F ).
評価点Eが空間b内のX線利用線錐が直接届く範囲とその近傍にある場合は、本発明の方法で得られる実効線量率が過小評価になるため注意が必要である。単純なX線の透過線が支配的になるからである。 If the evaluation point E is in the range directly reached by the X-ray cone in the space b or in the vicinity thereof, the effective dose rate obtained by the method of the present invention will be underestimated, so care must be taken. This is because the transmission line of simple X-rays becomes dominant.
透過率Bの計算は周知の手法を使うことができる。一例として、上記の非特許文献1に記載の手法により、X線のエネルギー、遮蔽体の材質(コンクリート、鉄、鉛など)と厚さから求めることができる。 A well-known method can be used to calculate the transmittance B. As an example, it can be determined from the X-ray energy, the material (concrete, iron, lead, etc.) and the thickness of the shield by the method described in Non-Patent Document 1 above.
反射率αS,αF,αCの計算は周知の手法を使うことができる。一例として、ChiltonとHuddlestonの半経験式により、X線のエネルギーと反射角から求めることができる。 A well-known technique can be used to calculate the reflectances α S , α F , and α C . As an example, it can be obtained from the X-ray energy and reflection angle according to the semi-empirical formula of Chilton and Huddleston.
多重反射の反射率rは、例えば、後述の方法により計算することが可能であるが、後述の方法に限定されない。なお、反射率rは、加速器エネルギーや表面c、床表面dの材質に応じた値がデータベース化され、計算時に必要な値が得られることが望ましい。 The reflectance r of multiple reflection can be calculated, for example, by the method described later, but is not limited to the method described later. As for the reflectance r, it is desirable that the value corresponding to the accelerator energy and the material of the surface c and the floor surface d be stored in a database so that the necessary value can be obtained at the time of calculation.
したがって、実際の計算では、X線の照射条件(線源から1m離れた位置での最大線量率、照射面積、方向利用率)、施設のレイアウト、遮蔽体aの遮蔽率、評価点Eの位置、空間b内の多重反射の反射率r、表面c、床表面dでの反射角に応じた反射率が必要である。換算係数Fは定数であり、1を使用する。
Therefore, in actual calculations, X-ray irradiation conditions (maximum dose rate at a
(線量計算プログラム)
次に、本発明に係る線量計算プログラムの実施の形態について説明する。本実施の形態に係る線量計算プログラムは、上記の線形計算方法をコンピュータに実行させるものである。
(Dose calculation program)
Next, an embodiment of a dose calculation program according to the present invention will be described. A dose calculation program according to the present embodiment causes a computer to execute the linear calculation method described above.
図2は、本実施の形態の線量計算プログラムのフローチャートの一例である。この計算プログラムでは、空間b内の任意の点の実効線量を計算する。 FIG. 2 is an example of a flow chart of a dose calculation program according to this embodiment. This calculation program calculates the effective dose at any point in the space b.
まず、X線の照射条件(線源Sから1m離れた位置での最大線量率、照射面積、方向利用率、加速器エネルギー)、遮蔽体aの構造(材質、厚さ)、評価点Eの位置をパラメーターとして入力する(ステップS1)。透過率や反射率を入力パラメーターとしてもよい。
First, X-ray irradiation conditions (maximum dose rate at a
加速器エネルギーと遮蔽体aの構造から、遮蔽体aの透過率Bが得られる(ステップS4)。評価点Eの位置に応じて、反射点から評価点Eの距離と反射角を求め(ステップS2)、エネルギーと反射角に応じた反射率αS,αF,αCが得られる(ステップS3)。予め準備したデータベースから加速器エネルギーや表面c、床表面dの材質に応じた多重反射の反射率rが得られる(ステップS5)。以上の値を使うことで、評価点Eの実効線量が計算される(ステップS6)。 The transmittance B of the shield a is obtained from the accelerator energy and the structure of the shield a (step S4). According to the position of the evaluation point E, the distance from the reflection point to the evaluation point E and the angle of reflection are obtained (step S2), and the reflectances α S , α F , and α C corresponding to the energy and the angle of reflection are obtained (step S3 ). From a database prepared in advance, the reflectance r of multiple reflection corresponding to the accelerator energy and the material of the surface c and the floor surface d is obtained (step S5). Using the above values, the effective dose at evaluation point E is calculated (step S6).
本実施の形態によれば、線源Sから照射されて遮蔽体aを透過するX線のうち少なくとも一部が遮蔽体a内で散乱して評価点Eに到達すると仮定して、線源Sから照射されたX線が遮蔽体a内で散乱して評価点Eに到達する寄与の値と、線源Sから照射されたX線が遮蔽体aを透過した後に、遮蔽体aの外側の空間bで多重反射して評価点Eに到達する寄与の値とを合算して評価点Eの実効線量を求める。このため、従来、適切な簡易計算式がなかった医療用リニアック室直下の免震層の実効線量を、モンテカルロ法によることなく迅速かつ精度良く計算することができる。 According to the present embodiment, assuming that at least some of the X-rays irradiated from the radiation source S and transmitted through the shield a are scattered within the shield a and reach the evaluation point E, the radiation source S The value of the contribution that the X-rays emitted from from are scattered within the shield a and reach the evaluation point E, and the outside of the shield a after the X-rays emitted from the source S pass through the shield a The effective dose at the evaluation point E is obtained by summing the value of the contribution that reaches the evaluation point E after multiple reflections in the space b. Therefore, the effective dose of the seismic isolation layer immediately below the medical linac room, for which there was no suitable simple calculation formula, can be calculated quickly and accurately without using the Monte Carlo method.
また、空間bのような層間でのX線の多重反射がある場合に、エネルギーの減衰によらず多重反射の反射率rを一定値と仮定して、無限等比級数の和の考え方を使って定式化し、空間bで多重反射して評価点Eに到達する寄与の値を求めるので、空間bの実効線量を迅速に計算することができる。 Also, when there is multiple reflection of X-rays between layers such as the space b, assuming that the reflectance r of the multiple reflection is a constant value regardless of the attenuation of the energy, the idea of the sum of infinite geometric series is used. , and the value of the contribution reaching the evaluation point E after multiple reflections in the space b is obtained, so the effective dose in the space b can be calculated quickly.
なお、上記の実施の形態は、ビーム状にX線が照射される施設であればいかなる施設にも適用可能であり、医療用リニアックに限定されない。また、線源からのX線の照射方向は床方向に限定されず、例えば照射室の天井方向や、側壁方向に遮蔽体と同様の構造がある場合に、適用可能である。 It should be noted that the above-described embodiment can be applied to any facility where X-rays are irradiated in the form of a beam, and is not limited to a medical linac. Further, the irradiation direction of the X-rays from the radiation source is not limited to the floor direction, and can be applied, for example, when there is a structure similar to the shield in the ceiling direction or the side wall direction of the irradiation room.
(線量計算装置)
次に、本発明に係る線量計算装置の実施の形態について説明する。
(Dose calculator)
Next, an embodiment of a dose calculation device according to the present invention will be described.
本実施の形態に係る線量計算装置は、上述した線量計算方法を装置として具現化したものであり、例えば入力部、記憶部、演算部、出力部とからなる。この線量計算装置は、例えばCPUを有するコンピュータ、メモリ、ディスプレイ、キーボード等のハードウェア、これらハードウェアを用いて実行されるコンピュータプログラム等のソフトウェアにより構成することができる。 A dose calculation apparatus according to the present embodiment is an apparatus that embodies the dose calculation method described above, and includes, for example, an input section, a storage section, a calculation section, and an output section. This dose calculation device can be composed of, for example, a computer having a CPU, hardware such as a memory, a display, a keyboard, etc., and software such as a computer program executed using these hardware.
入力部は、上記のステップS1の入力パラメータを入力するためのものであり、例えばキーボードなどで構成することができる。記憶部は、加速器エネルギーや表面c、床表面dの材質に応じた値などの計算用データを記憶するデータベースなどで構成することができる。 The input unit is for inputting the input parameters in step S1, and can be configured by, for example, a keyboard. The storage unit can be composed of a database or the like that stores calculation data such as values corresponding to the accelerator energy and the material of the surface c and the floor surface d.
演算部は、上記のステップS2~S6の各計算を実行するものであり、例えばコンピュータと演算ソフトウェアなどで構成することができる。出力部は、上記の演算部による演算処理結果を出力するものであり、例えばディスプレイやプリンタなどで構成することができる。 The calculation unit executes the calculations in steps S2 to S6 described above, and can be composed of, for example, a computer and calculation software. The output unit outputs the result of arithmetic processing by the arithmetic unit, and can be configured by, for example, a display or a printer.
このように構成した線量計算装置によれば、従来、適切な簡易計算式がなかった医療用リニアック室直下の免震層の実効線量を、モンテカルロ法によることなく迅速かつ精度良く計算することができる。 According to the dose calculation device configured in this way, the effective dose of the seismic isolation layer immediately below the medical linac room, for which there was no suitable simple calculation formula, can be calculated quickly and accurately without using the Monte Carlo method. .
(本発明の効果の検証)
次に、本発明の効果を検証するために行った計算結果について説明する。
(Verification of effects of the present invention)
Next, calculation results performed to verify the effects of the present invention will be described.
本検証では、上記の線量計算方法による計算結果(実施例)と、モンテカルロ法による計算結果(比較例)を比較することによって、本発明の効果を検証した。計算条件は、X線が遮蔽体aから2.295m離れた位置から真下に円錐状に照射されるものとし、照射条件はW=360Gy/h、AIC=0.16m2、U=1とした。遮蔽体aと床eは普通コンクリートとし、遮蔽体aの厚さは1.8m、透過率は上記の非特許文献1に記載の手法により求めてB=1.18×10-42.1/180とした。空間bの高さは1.0mとし、評価点EはX線利用線錐の中心軸から水平方向に3~9m離れ、空間bの中間の高さに位置するものとした。また、空間b内の多重反射の反射率rは0.4とした。比較例のモンテカルロ計算コードには、MCNP5を使用し、利用線錐の中心軸からの水平距離1m毎の点を評価した。 In this verification, the effect of the present invention was verified by comparing the calculation result (example) by the dose calculation method described above and the calculation result (comparative example) by the Monte Carlo method. The calculation conditions are that the X-rays are irradiated in a cone from a position 2.295 m away from the shield a, and the irradiation conditions are W = 360 Gy/h, A IC = 0.16 m 2 , and U = 1. bottom. The shield a and the floor e are made of ordinary concrete, the thickness of the shield a is 1.8 m, and the transmittance is obtained by the method described in Non-Patent Document 1 above, and B=1.18×10 −42.1/ 180 . The height of the space b was set to 1.0 m, and the evaluation point E was positioned at the middle height of the space b, 3 to 9 m in the horizontal direction from the center axis of the X-ray cone. Also, the reflectance r of multiple reflection in the space b was set to 0.4. MCNP5 was used as the Monte Carlo calculation code of the comparative example, and points at horizontal distances of 1 m from the center axis of the cone used were evaluated.
図3に比較結果を示す。この図に示すように、本実施例と比較例の結果の差は最大で19%であった。したがって、本発明によれば、従来、適切な簡易計算式がなかった医療用リニアック室直下の免震層の実効線量を比較的精度良く計算できることがわかる。 FIG. 3 shows the comparison results. As shown in this figure, the maximum difference between the results of this example and the comparative example was 19%. Therefore, according to the present invention, it is possible to calculate with relatively high accuracy the effective dose of the seismic isolation layer immediately below the medical linac room, for which there was no suitable simple calculation formula in the past.
(多重反射の反射率の計算方法)
次に、上記の多重反射の反射率の計算方法の一例について説明する。
(Calculation method of reflectance of multiple reflection)
Next, an example of a method for calculating the reflectance of multiple reflection will be described.
上記の実施の形態では、空間b内でX線が多重反射を生じ、その時の反射率(多重散乱率)をエネルギーの減衰によらず一定値として扱うことで実効線量を簡易に計算できる方法を示したが、X線のエネルギーや周囲の材質に応じた多重反射の反射率が必要である。そこで、反射率を以下のようにして計算する。 In the above embodiment, the X-ray causes multiple reflection in the space b, and the effective dose can be easily calculated by treating the reflectance (multiple scattering rate) at that time as a constant value regardless of the energy attenuation. As shown, the reflectance of multiple reflections is required depending on the energy of the X-rays and the surrounding material. Therefore, the reflectance is calculated as follows.
まず、評価点Eが空間bの中間の高さの場合の実効線量率DF、DCをそれぞれDF’、DC’とする。反射率がαF=αCに、反射点から評価点Eまでの距離がdF=dFになるため、比を取ると以下の式(6)が成り立ち、反射率rを求めるにはDC’とDF’を求めればよいことがわかる。 First, the effective dose rates D F and D C when the evaluation point E is at the middle height of the space b are defined as D F ′ and D C ′, respectively. Since the reflectance is α F =α C and the distance from the reflection point to the evaluation point E is d F =d F , the following equation (6) holds when taking the ratio. It can be seen that C ' and D F ' should be obtained.
図4は、多重反射の反射率rを求める計算プログラムのフローチャートの一例である。この図に示すように、まず、加速器エネルギーと遮蔽体aおよび床eの材質をパラメーターとして入力する(ステップS11)。床表面dおよび床eでのX線の相互作用を無視させたモンテカルロ計算により、空間bの中間高さに位置する評価点Eで実効線量DSが算出される(ステップS13)。同じ位置にある評価点Eに対し、遮蔽体a側から評価点Eに到達するX線のみの実効線量を求めるモンテカルロ計算により、実効線量DS+DC’を計算する(ステップS12)。さらに、床e側から評価点Eに到達するX線のみの実効線量を求めるモンテカルロ計算により、実効線量DF’を計算する(ステップS15)。DSとDS+DC’から、DC’を求め(ステップS14)、DF’とDC’から反射率rを求める(ステップS16)。 FIG. 4 is an example of a flow chart of a calculation program for obtaining the reflectance r of multiple reflection. As shown in this figure, first, the accelerator energy and the materials of the shield a and the floor e are input as parameters (step S11). The effective dose DS is calculated at the evaluation point E located at the middle height of the space b by Monte Carlo calculation ignoring X-ray interactions on the floor surface d and the floor e (step S13). An effective dose D S +D C ' is calculated by Monte Carlo calculation for determining the effective dose of only X-rays reaching the evaluation point E from the shield a side with respect to the evaluation point E located at the same position (step S12). Further, the effective dose D F ' is calculated by Monte Carlo calculation for determining the effective dose of only X-rays reaching the evaluation point E from the floor e side (step S15). D C ' is obtained from D S and D S +D C ' (step S14), and reflectance r is obtained from D F ' and D C ' (step S16).
上記の反射率rの計算方法によれば、1つの照射条件から、プログラム内の実効線量の計算方法を変えるだけで遮蔽体a透過後の空間bにおける多重反射の反射率rを計算により求めることができる。着目する経路に多重反射を含むX線の実効線量計算が可能になる。 According to the calculation method of the reflectance r described above, it is possible to calculate the reflectance r of multiple reflections in the space b after passing through the shield a by simply changing the calculation method of the effective dose in the program from one irradiation condition. can be done. Effective dose calculation of X-rays including multiple reflections in the path of interest becomes possible.
以上説明したように、本発明に係る線量計算方法によれば、放射線を照射する線源を有する放射線照射室の周囲に設けられた放射線遮蔽用の遮蔽体の外側の室外空間の線量を計算する方法であって、線源から照射されて遮蔽体を透過する放射線のうち少なくとも一部が遮蔽体内で散乱して、室外空間内に設定した所定の評価点に到達すると仮定して、線源から照射された放射線が遮蔽体内で散乱して評価点に到達する寄与の値と、線源から照射された放射線が遮蔽体を透過した後に、遮蔽体の外側の室外空間で多重反射して評価点に到達する寄与の値とを合算して評価点の線量を求めるので、例えば放射線照射室の床下などの室外空間の線量を、モンテカルロ法によることなく迅速かつ精度良く計算することができる。 As described above, according to the dose calculation method according to the present invention, the dose of the outdoor space outside the radiation shielding shield provided around the radiation irradiation room having the radiation source for irradiating radiation is calculated. In the method, assuming that at least part of the radiation emitted from the radiation source and transmitted through the shield is scattered within the shield and reaches a predetermined evaluation point set in the outdoor space, The value of the contribution of the emitted radiation scattering within the shield and reaching the evaluation point, and the evaluation point after the radiation emitted from the source passes through the shield and is multiple-reflected in the outdoor space outside the shield. Since the dose at the evaluation point is obtained by summing the contribution value reaching the , the dose in the outdoor space such as the floor of the radiation irradiation room can be calculated quickly and accurately without using the Monte Carlo method.
また、本発明に係る他の線量計算方法によれば、室外空間での放射線の多重反射の反射率を、エネルギーの減衰によらず一定値と仮定して、室外空間で多重反射して評価点に到達する寄与の値を求めるので、室外空間の線量を迅速に計算することができる。 Further, according to another dose calculation method according to the present invention, the reflectance of the multiple reflection of radiation in the outdoor space is assumed to be a constant value regardless of the attenuation of the energy, and the evaluation point is obtained by multiple reflection in the outdoor space. By determining the value of the contribution reaching
また、本発明に係る他の線量計算方法によれば、線源から照射された放射線のエネルギーと、遮蔽体の材質と、室外空間を挟んで遮蔽体の表面に対向する物体の材質と、線源から照射された放射線が遮蔽体を透過した後に、物体の表面で反射して評価点に向かう放射線による線量率と、物体の表面で反射した後、遮蔽体の表面で反射して評価点に向かう放射線による線量率とに基づいて、室外空間での放射線の多重反射の反射率を求め、求めた反射率を用いて、室外空間で多重反射して評価点に到達する寄与の値を求めるので、着目する経路に多重反射を含む放射線の線量を迅速かつ精度良く計算することができる。 Further, according to another dose calculation method according to the present invention, the energy of the radiation emitted from the radiation source, the material of the shield, the material of the object facing the surface of the shield across the outdoor space, and the radiation After the radiation emitted from the source passes through the shield, it reflects off the surface of the object and travels to the evaluation point. Based on the dose rate due to the directed radiation, the reflectance of the multiple reflection of the radiation in the outdoor space is obtained, and using the obtained reflectance, the value of the contribution of the multiple reflection in the outdoor space to reach the evaluation point is obtained. , the dose of radiation including multiple reflections in the path of interest can be calculated quickly and accurately.
また、本発明に係る線量計算プログラムによれば、上述した線量計算方法をコンピュータに実行させるので、室外空間の線量をモンテカルロ法によることなく迅速かつ精度良く計算することができる。 Further, according to the dose calculation program according to the present invention, since the computer executes the dose calculation method described above, the dose in the outdoor space can be calculated quickly and accurately without using the Monte Carlo method.
以上のように、本発明に係る線量計算方法、線量計算プログラムは、医療用リニアック室などの放射線照射室の直下にある免震層などの室外空間の光子線による放射線量を計算するのに有用であり、特に、実効線量を迅速かつ精度良く計算するのに適している。 As described above, the dose calculation method and dose calculation program according to the present invention are useful for calculating the radiation dose due to photon beams in an outdoor space such as a seismic isolation layer immediately below a radiation irradiation room such as a medical linac room. , which is particularly suitable for calculating the effective dose quickly and accurately.
E 評価点
S 線源
a 遮蔽体
b 空間
c 表面
d 表面
e 床(または壁)
E evaluation point S radiation source a shield b space c surface d surface e floor (or wall)
Claims (3)
前記線源から照射されて前記遮蔽体を透過する放射線のうち少なくとも一部が前記遮蔽体内で散乱して、前記室外空間内に設定した所定の評価点に到達すると仮定して、
前記線源から照射された放射線が前記遮蔽体内で散乱して前記評価点に到達することによる第一の線量を求めるステップと、前記線源から照射された放射線が前記遮蔽体を透過した後に、前記遮蔽体の外側の前記室外空間で多重反射して前記構造体の前記室外空間側の表面から前記評価点に到達することによる第二の線量を求めるステップと、前記線源から照射された放射線が前記遮蔽体を透過した後に、前記遮蔽体の外側の前記室外空間で多重反射して前記遮蔽体の前記室外空間側の表面から前記評価点に到達することによる第三の線量を求めるステップと、前記第一の線量と前記第二の線量と前記第三の線量とを合算して前記評価点の線量を求めるステップを有し、
前記第一の線量は、前記線源から放射線の照射方向に所定距離だけ離れた前記放射線照射室内の位置での最大線量率と、前記遮蔽体の透過率と、方向利用率と、前記遮蔽体の前記室外空間側の表面における放射線の照射面積と、放射線の照射方向の軸線と前記遮蔽体の前記室外空間側の表面との交点である第一の反射点における前記評価点に対する反射率と、前記線源から前記第一の反射点までの距離と、前記第一の反射点から前記評価点までの距離とに基づいて求められ、
前記第二の線量は、前記室外空間での放射線の多重反射の反射率と、前記最大線量率と、前記透過率と、前記方向利用率と、前記構造体の前記室外空間側の表面における放射線の照射面積と、放射線の照射方向の軸線と前記構造体の前記室外空間側の表面との交点である第二の反射点における前記評価点に対する反射率と、前記線源から前記第二の反射点までの距離と、前記第二の反射点から前記評価点までの距離とに基づいて求められ、
前記第三の線量は、前記室外空間での放射線の多重反射の反射率と、前記最大線量率と、前記透過率と、前記方向利用率と、前記構造体の前記室外空間側の表面における放射線の照射面積と、放射線の照射方向の軸線と前記遮蔽体の前記室外空間側の表面との交点である第三の反射点における前記評価点に対する反射率と、前記線源から前記第二の反射点までの距離と、前記第三の反射点から前記評価点までの距離とに基づいて求められることを特徴とする線量計算方法。 Calculate the dose of an outdoor space formed between a radiation shield provided around a radiation irradiation room having a radiation source and a structure provided outside the shield. a method,
Assuming that at least part of the radiation emitted from the radiation source and transmitted through the shield is scattered within the shield and reaches a predetermined evaluation point set in the outdoor space,
obtaining a first dose due to the radiation emitted from the radiation source scattering within the shield and reaching the evaluation point; and after the radiation emitted from the radiation source passes through the shield, obtaining a second dose due to multiple reflection in the outdoor space outside the shield and reaching the evaluation point from the surface of the structure on the outdoor space side ; and radiation emitted from the radiation source. A step of obtaining a third dose by reaching the evaluation point from the outdoor space side surface of the shield through multiple reflection in the outdoor space outside the shield after passing through the shield; , adding the first dose, the second dose, and the third dose to determine the dose at the evaluation point;
The first dose is a maximum dose rate at a position in the radiation irradiation chamber separated from the radiation source by a predetermined distance in the irradiation direction of radiation, a transmittance of the shield, a directional utilization factor, and the shield. a radiation irradiation area on the surface on the outdoor space side of and a reflectance with respect to the evaluation point at a first reflection point that is the intersection of the axis of the irradiation direction of the radiation and the surface of the shield on the outdoor space side; Based on the distance from the radiation source to the first reflection point and the distance from the first reflection point to the evaluation point,
The second dose is the reflectance of multiple reflection of radiation in the outdoor space, the maximum dose rate, the transmittance, the directional utilization factor, and the radiation on the outdoor space side surface of the structure. and the reflectance with respect to the evaluation point at the second reflection point, which is the intersection of the axis of the irradiation direction of the radiation and the surface of the structure on the outdoor space side, and the second reflection from the radiation source obtained based on the distance to the point and the distance from the second reflection point to the evaluation point ,
The third dose is the reflectance of multiple reflection of radiation in the outdoor space, the maximum dose rate, the transmittance, the directional utilization factor, and the radiation on the outdoor space side surface of the structure. and the reflectance with respect to the evaluation point at the third reflection point, which is the intersection of the axis of the irradiation direction of the radiation and the surface of the shield on the outdoor space side, and the second reflection from the radiation source A dose calculation method , wherein the dose is calculated based on a distance to a point and a distance from the third reflection point to the evaluation point .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003717A JP7272798B2 (en) | 2019-01-11 | 2019-01-11 | Dose calculation method, dose calculation program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003717A JP7272798B2 (en) | 2019-01-11 | 2019-01-11 | Dose calculation method, dose calculation program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020110367A JP2020110367A (en) | 2020-07-27 |
JP7272798B2 true JP7272798B2 (en) | 2023-05-12 |
Family
ID=71666141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019003717A Active JP7272798B2 (en) | 2019-01-11 | 2019-01-11 | Dose calculation method, dose calculation program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7272798B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221860A (en) | 1999-11-29 | 2001-08-17 | Mitsubishi Electric Corp | Dose equivalent evaluation method of radiation equipment, recording medium having computer program for evaluating dose equivalent recorded thereon and dose equivalent evaluation apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452598A (en) * | 1990-06-20 | 1992-02-20 | Nec Corp | Medical radiation shielding chamber |
-
2019
- 2019-01-11 JP JP2019003717A patent/JP7272798B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221860A (en) | 1999-11-29 | 2001-08-17 | Mitsubishi Electric Corp | Dose equivalent evaluation method of radiation equipment, recording medium having computer program for evaluating dose equivalent recorded thereon and dose equivalent evaluation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2020110367A (en) | 2020-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Beam modeling and beam model commissioning for Monte Carlo dose calculation‐based radiation therapy treatment planning: Report of AAPM Task Group 157 | |
Han et al. | Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model‐based convolution methods in heterogeneous media | |
Fogliata et al. | Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water | |
Scott et al. | Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small‐field measurements | |
Resch et al. | Evaluation of electromagnetic and nuclear scattering models in GATE/Geant4 for proton therapy | |
US10500419B2 (en) | Radiation shields for LINAC head and system | |
Fix et al. | Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types | |
Liang et al. | A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation | |
Qin et al. | Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy | |
Garcı́a-Vicente et al. | Experimental validation tests of fast Fourier transform convolution and multigrid superposition algorithms for dose calculation in low-density media | |
Hernandez-Adame et al. | Design of a treatment room for an 18-MV linac | |
Aziz et al. | Monte Carlo simulation of X-ray room shielding in diagnostic radiology using PHITS code | |
JP7272798B2 (en) | Dose calculation method, dose calculation program | |
Rijken et al. | Conservatism in linear accelerator bunker shielding | |
Beigi et al. | Safe bunker designing for the 18MV Varian 2100 Clinac: a comparison between Monte Carlo simulation based upon data and new protocol recommendations | |
Lai et al. | Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths | |
Ibitoye et al. | Design and evaluation of structural shielding of a typical radiotherapy facility using egsnrc monte carlo code | |
Williams et al. | Deterministic calculations of photon spectra for clinical accelerator targets | |
Carver et al. | Real‐time simulator for designing electron dual scattering foil systems | |
Khabaz | Specifying the flux and dose-equivalent buildup factors for infinite slabs irradiated by radionuclide neutron sources | |
Tóth et al. | The evaluation of the neutron dose equivalent in the two-bend maze | |
Karim Karoui et al. | Monte Carlo simulation of photon buildup factors for shielding materials in radiotherapy X‐ray facilities | |
JP2001221860A (en) | Dose equivalent evaluation method of radiation equipment, recording medium having computer program for evaluating dose equivalent recorded thereon and dose equivalent evaluation apparatus | |
Al-Affan et al. | A novel technique to optimise the length of a linear accelerator treatment room maze without compromising radiation protection | |
R. Stevenson | Shielding high energy accelerators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190208 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7272798 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |