JP7259740B2 - Reinforcing fiber bundle, method for producing same, and chopped fiber bundle and fiber-reinforced resin molding material using the same - Google Patents
Reinforcing fiber bundle, method for producing same, and chopped fiber bundle and fiber-reinforced resin molding material using the same Download PDFInfo
- Publication number
- JP7259740B2 JP7259740B2 JP2019512692A JP2019512692A JP7259740B2 JP 7259740 B2 JP7259740 B2 JP 7259740B2 JP 2019512692 A JP2019512692 A JP 2019512692A JP 2019512692 A JP2019512692 A JP 2019512692A JP 7259740 B2 JP7259740 B2 JP 7259740B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- fiber
- reinforcing fiber
- bundle
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 699
- 239000012783 reinforcing fiber Substances 0.000 title claims description 364
- 229920005989 resin Polymers 0.000 title claims description 155
- 239000011347 resin Substances 0.000 title claims description 155
- 238000004519 manufacturing process Methods 0.000 title claims description 62
- 239000012778 molding material Substances 0.000 title description 84
- 239000003795 chemical substances by application Substances 0.000 claims description 165
- 238000004513 sizing Methods 0.000 claims description 165
- 238000000926 separation method Methods 0.000 claims description 147
- 238000000034 method Methods 0.000 claims description 99
- 229920002647 polyamide Polymers 0.000 claims description 29
- 239000004952 Polyamide Substances 0.000 claims description 26
- 239000003431 cross linking reagent Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 24
- 229920000877 Melamine resin Polymers 0.000 claims description 9
- 238000009825 accumulation Methods 0.000 claims description 8
- 150000004985 diamines Chemical class 0.000 claims description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 4
- 125000006353 oxyethylene group Chemical group 0.000 claims description 4
- 125000001302 tertiary amino group Chemical group 0.000 claims description 4
- 239000004640 Melamine resin Substances 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 74
- 230000008569 process Effects 0.000 description 51
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 38
- 239000004745 nonwoven fabric Substances 0.000 description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 238000003825 pressing Methods 0.000 description 27
- 238000012360 testing method Methods 0.000 description 22
- 238000001035 drying Methods 0.000 description 21
- 230000001105 regulatory effect Effects 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 20
- 230000008859 change Effects 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 19
- 229920005992 thermoplastic resin Polymers 0.000 description 18
- 238000000576 coating method Methods 0.000 description 17
- 238000010030 laminating Methods 0.000 description 17
- 239000012452 mother liquor Substances 0.000 description 17
- 229910001220 stainless steel Inorganic materials 0.000 description 17
- 239000010935 stainless steel Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 239000004744 fabric Substances 0.000 description 16
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- 238000004804 winding Methods 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- -1 polybutylene terephthalate Polymers 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000007654 immersion Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920001778 nylon Polymers 0.000 description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000004202 carbamide Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 4
- 229920006122 polyamide resin Polymers 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 206010044625 Trichorrhexis Diseases 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 239000003733 fiber-reinforced composite Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical class C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- QEWYKACRFQMRMB-UHFFFAOYSA-N fluoroacetic acid Chemical compound OC(=O)CF QEWYKACRFQMRMB-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229920006345 thermoplastic polyamide Polymers 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 1
- FGSUUFDRDVJCLT-UHFFFAOYSA-N 3-methylazepan-2-one Chemical compound CC1CCCCNC1=O FGSUUFDRDVJCLT-UHFFFAOYSA-N 0.000 description 1
- YLIIGKBLXUJUIG-UHFFFAOYSA-N 7-hexylazepan-2-one Chemical compound CCCCCCC1CCCCC(=O)N1 YLIIGKBLXUJUIG-UHFFFAOYSA-N 0.000 description 1
- JAWSTIJAWZBKOU-UHFFFAOYSA-N 7-methylazepan-2-one Chemical compound CC1CCCCC(=O)N1 JAWSTIJAWZBKOU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000012704 multi-component copolymerization Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/55—Epoxy resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/59—Polyamides; Polyimides
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
本発明は、生産性や成形の際の流動性、成形品の力学特性に優れる強化繊維束とそのチョップド繊維束、およびその製造方法、ならびにそれを用いた繊維強化樹脂成形材料その製造方法に関する。 TECHNICAL FIELD The present invention relates to reinforcing fiber bundles and chopped fiber bundles that are excellent in productivity, fluidity during molding, and mechanical properties of molded products, a method for producing the same, and a method for producing a fiber-reinforced resin molding material using the same.
不連続の強化繊維(例えば、炭素繊維)の束状集合体(以下、繊維束ということもある。)とマトリックス樹脂からなる成形材料を用いて、加熱、加圧成形により、所望形状の成形品を製造する技術は広く知られている。このような成形材料において、単糸数が多い繊維束からなる成形材料では成形の際の流動性には優れるが、成形品の力学特性は劣る傾向がある。これに対し、成形時の流動性と成形品の力学特性の両立を狙い、成形材料内の繊維束として、任意の単糸数に調整した繊維束が使用されている。繊維束の単糸数を調整する方法として、例えば特許文献1、2には、複数の繊維束を事前に巻き取った複数繊維束巻取体を用いて、分繊処理を行う方法が開示されている。しかし、これらの方法は、事前処理の繊維束の単糸数の制約を受けるため、調整範囲が限定され、所望の単糸数へ調整しづらいものであった。
Using a molding material consisting of a bundle-like assembly (hereinafter also referred to as a fiber bundle) of discontinuous reinforcing fibers (for example, carbon fibers) and a matrix resin, a molded product of a desired shape is formed by heat and pressure molding. is widely known. Among such molding materials, a molding material composed of fiber bundles having a large number of single yarns is excellent in fluidity during molding, but the molded product tends to be inferior in mechanical properties. On the other hand, fiber bundles adjusted to an arbitrary number of single yarns are used as the fiber bundles in the molding material in order to achieve both fluidity during molding and mechanical properties of the molded product. As a method of adjusting the number of single yarns of a fiber bundle, for example,
また、特許文献3~6には、円盤状の回転刃を用いて繊維束を所望の単糸数に縦スリットする方法が開示されている。これらの方法は、回転刃のピッチを変更することで単糸数の調整が可能ではあるものの、長手方向にわたって縦スリットされた繊維束は集束性がないため、縦スリット後の糸をボビンに巻き取ったり、巻き取ったボビンから繊維束を巻き出すことといった取扱いが困難になりやすい。また、縦スリット後の繊維束を搬送する際には、縦スリットによって発生した枝毛状の繊維束が、ガイドロールや送りロールなどに巻きつき、搬送が容易でなくなる恐れがある。また成形材料とした際に、単糸が多く含まれるため流動性に劣るという問題があった。
Further,
特許文献7、8には、工程安定性やコンポジット物性向上を狙った、ポリアミド系のサイジング剤が塗布された強化繊維が提案されている。工程安定性やコンポジット物性は向上したものの、サイジング剤塗布工程において乾燥あるいは変性に時間がかかるため生産性に劣るという問題があった。 Patent Literatures 7 and 8 propose reinforcing fibers coated with a polyamide-based sizing agent with the aim of improving process stability and composite physical properties. Although the process stability and composite physical properties were improved, there was a problem of poor productivity due to the time required for drying or denaturation in the sizing agent coating process.
そこで本発明は、上記要求に鑑み、生産性や成形の際の流動性、成形品の力学特性に優れる強化繊維束とそのチョップド繊維束、およびその製造方法、ならびにそれを用いた繊維強化樹脂成形材料を提供することを課題とする。 Therefore, in view of the above requirements, the present invention provides a reinforcing fiber bundle that is excellent in productivity, fluidity during molding, and mechanical properties of molded products, a chopped fiber bundle thereof, a method for producing the same, and fiber-reinforced resin molding using the same. The task is to provide materials.
上記課題を解決するために、本発明は以下の構成を有する。
(1)強化繊維表面に、エポキシ基、ウレタン基、アミノ基、カルボキシル基等の官能基を有する化合物のいずれか、または、それらを混合したものを含む第1のサイジング剤と、ポリアミド系樹脂を含む第2のサイジング剤とが付着していることを特徴とする強化繊維束。
(2)単位幅当りの繊維本数が600本/mm以上1,600本/mm未満であり、強化繊維束のドレープ値が120mm以上240mm以下であることを特徴とする、(1)に記載の強化繊維束。
(3)硬度が39g以上200g以下であることを特徴とする(1)または(2)に記載の強化繊維束。
(4)ポリアミド系樹脂の付着量が0.1重量%以上5重量%以下であることを特徴とする(1)~(3)のいずれかに記載の強化繊維束。
(5)前記強化繊維束を5分間水に浸漬後、水から取り出した後における幅をW2とし、浸漬前における幅をW1とした場合の幅変化率W2/W1が0.5以上1.1以下であることを特徴とする(1)~(4)のいずれかに記載の強化繊維束。
(6)前記強化繊維束を25℃、5分間水に浸漬し、絶乾した後の空気中でのドレープ値D2が、110mm以上240mm以下であることを特徴とする(1)~(5)のいずれかに記載の強化繊維束。
(7)複数の束に分繊された分繊処理区間と、未分繊処理区間とが交互に形成されている(1)~(6)のいずれかに記載の強化繊維束。
(8)1つの未分繊処理区間を挟んで隣接する分繊処理区間の長さが異なる長さを含むことを特徴とする、(1)~(7)のいずれかに記載の強化繊維束。
(9)(1)~(8)のいずれかに記載の強化繊維束を切断してなるチョップド繊維束であって、前記チョップド繊維束を25℃、5分間水に浸漬後、取り出した後における幅をW4とし、浸漬前における幅をW3とした場合の幅変化率W4/W3が0.6以上1.1以下であることを特徴とするチョップド繊維束。
(10)前記強化繊繊維束を長手方向に対して所定角度θ(0°<θ<90°)で切断してなる(9)に記載のチョップド繊維束。
(11)(9)または(10)に記載のチョップド繊維束とマトリックス樹脂とを含む繊維強化樹脂成形材料。
(12)前記マトリックス樹脂がポリアミドであることを特徴とする、(11)に記載の繊維強化樹脂成形材料。
(13)エポキシ基、ウレタン基、アミノ基、カルボキシル基等の官能基を有する化合物のいずれか、または、それらを混合したものを含む第1のサイジング剤が付着した強化繊維に水溶性ポリアミドを付与することを特徴とする強化繊維束の製造方法。
(14)前記強化繊維束を開繊、拡幅する拡幅工程(I)を含むことを特徴とする、(13)に記載の強化繊維束の製造方法
(15)拡幅した前記強化繊維束にサイジング剤を塗布した後に架橋剤と反応させて強化繊維束を作製するサイジング剤付与工程(II)をさらに含むことを特徴とする(14)に記載の強化繊維束の製造方法。
(16)前記架橋剤がメラミン樹脂、ユリア樹脂、フェノール樹脂、エポキシ樹脂から選ばれる少なくとも1種の樹脂からなることを特徴とする、(15)に記載の強化繊維束の製造方法。
(17)前記架橋剤と前記サイジング剤の重量比が0.02以上1以下であることを特徴とする、(14)~(16)のいずれかに記載の強化繊維束の製造方法。
(18)前記サイジング剤付与工程(II)において、強化繊維束の全サイジング剤付着量が0.5重量%以上5重量%以下となるように前記サイジング剤を塗布することを特徴とする、(14)~(17)のいずれかに記載の強化繊維束の製造方法。
(19)前記拡幅工程(I)において、強化繊維束の単位幅あたりの単糸数が1,600本/mm以下になるように拡幅することを特徴とする、(14)~(18)のいずれかに記載の強化繊維束の製造方法。
(20)水溶性ポリアミドが付与された前記強化繊維を熱処理する工程を含むことを特徴とする、(13)~(19)のいずれかに記載の強化繊維束の製造方法。
(21)前記熱処理の温度が130~350℃であることを特徴とする、(20)に記載の強化繊維束の製造方法。
(22)前記熱処理の時間が0.33~15分であることを特徴とする、(20)または(21)に記載の強化繊維束の製造方法。
(23)前記熱処理後の水溶性ポリアミドがエステル結合、および/または、炭素-炭素の二重結合を有することを特徴とする、(20)~(22)のいずれかに記載の強化繊維束の製造方法。
(24)前記水溶性ポリアミドが、主鎖中に三級アミノ基および/またはオキシエチレン基を有するジアミンとジカルボン酸とを重合して得られたものからなることを特徴とする、(13)~(23)のいずれかに記載の強化繊維束の製造方法。
(25)前記強化繊維を分繊処理する工程を含むことを特徴とする、(13)~(24)のいずれかに記載の強化繊維束の製造方法。
(26)前記強化繊維束を長手方向に沿って走行させながら、複数の突出部を具備する分繊手段を前記強化繊維束に突き入れて分繊処理部を生成する分繊工程(III)と、
少なくとも1つの前記分繊処理部における前記突出部と前記強化繊維束との接触部に単糸が交絡する絡合部を形成する絡合工程(IV)と、
前記分繊手段を前記強化繊維束から抜き取り、前記絡合部を含む絡合蓄積部を通過させた後、前記分繊手段を前記強化繊維束に再度突き入れる再突き入れ工程(V)と、
複数の束に分割された分繊処理区間と未分繊処理区間とを交互に形成する分繊処理工程(VI)とをさらに含むことを特徴とする、(13)~(25)のいずれかに記載の強化繊維束の製造方法。
(27)前記分繊処理工程(VI)において、1つの未分繊処理区間を挟んで隣接する分繊処理区間の長さが異なる長さを含むことを特徴とする(26)に記載の強化繊維束の製造方法。In order to solve the above problems, the present invention has the following configurations.
(1) A first sizing agent containing a compound having a functional group such as an epoxy group, a urethane group, an amino group, a carboxyl group, or a mixture thereof on the surface of the reinforcing fiber, and a polyamide resin. A reinforcing fiber bundle characterized by being attached with a second sizing agent containing.
(2) The number of fibers per unit width is 600/mm or more and less than 1,600/mm, and the drape value of the reinforcing fiber bundle is 120 mm or more and 240 mm or less. Reinforcing fiber bundles.
(3) The reinforcing fiber bundle according to (1) or (2), which has a hardness of 39 g or more and 200 g or less.
(4) The reinforcing fiber bundle according to any one of (1) to (3), wherein the polyamide-based resin is attached in an amount of 0.1% by weight or more and 5% by weight or less.
(5) The width change rate W2/W1 is 0.5 or more and 1.1, where W2 is the width of the reinforcing fiber bundle after being immersed in water for 5 minutes and after being removed from the water, and W1 is the width before immersion. The reinforcing fiber bundle according to any one of (1) to (4), characterized by the following.
(6) The reinforcing fiber bundle is immersed in water at 25° C. for 5 minutes, and the drape value D2 in the air after absolute drying is 110 mm or more and 240 mm or less (1) to (5). The reinforcing fiber bundle according to any one of .
(7) The reinforcing fiber bundle according to any one of (1) to (6), in which the divided sections divided into a plurality of bundles and the undivided sections are alternately formed.
(8) The reinforcing fiber bundle according to any one of (1) to (7), characterized in that the splitting treatment sections adjacent to each other with one unsplitting treatment section interposed therebetween include different lengths. .
(9) A chopped fiber bundle obtained by cutting the reinforcing fiber bundle according to any one of (1) to (8), wherein the chopped fiber bundle is immersed in water at 25 ° C. for 5 minutes and then taken out. A chopped fiber bundle, wherein a width change rate W4/W3 is 0.6 or more and 1.1 or less when the width is W4 and the width before immersion is W3.
(10) The chopped fiber bundle according to (9), which is obtained by cutting the reinforcing fiber bundle at a predetermined angle θ (0°<θ<90°) with respect to the longitudinal direction.
(11) A fiber-reinforced resin molding material comprising the chopped fiber bundle according to (9) or (10) and a matrix resin.
(12) The fiber-reinforced resin molding material according to (11), wherein the matrix resin is polyamide.
(13) A water-soluble polyamide is imparted to reinforcing fibers to which a first sizing agent containing any of compounds having functional groups such as epoxy groups, urethane groups, amino groups, carboxyl groups, or a mixture thereof is attached. A method for producing a reinforcing fiber bundle, characterized by:
(14) The method for producing a reinforcing fiber bundle according to (13), characterized by including a widening step (I) of opening and widening the reinforcing fiber bundle (15) Adding a sizing agent to the widened reinforcing fiber bundle The method for producing a reinforcing fiber bundle according to (14), further comprising a step (II) of applying a sizing agent to produce a reinforcing fiber bundle by reacting with a cross-linking agent after applying the sizing agent.
(16) The method for producing a reinforcing fiber bundle according to (15), wherein the cross-linking agent comprises at least one resin selected from melamine resin, urea resin, phenol resin, and epoxy resin.
(17) The method for producing a reinforcing fiber bundle according to any one of (14) to (16), wherein the weight ratio of the cross-linking agent and the sizing agent is 0.02 or more and 1 or less.
(18) In the sizing agent application step (II), the sizing agent is applied so that the total sizing agent adhesion amount of the reinforcing fiber bundle is 0.5% by weight or more and 5% by weight or less, 14) A method for producing a reinforcing fiber bundle according to any one of (17).
(19) Any one of (14) to (18), wherein in the widening step (I), the number of single yarns per unit width of the reinforcing fiber bundle is widened to 1,600/mm or less. The method for producing a reinforcing fiber bundle according to 1.
(20) The method for producing a reinforcing fiber bundle according to any one of (13) to (19), which includes a step of heat-treating the reinforcing fibers to which the water-soluble polyamide has been applied.
(21) The method for producing a reinforcing fiber bundle according to (20), wherein the temperature of the heat treatment is 130 to 350°C.
(22) The method for producing a reinforcing fiber bundle according to (20) or (21), wherein the heat treatment is performed for 0.33 to 15 minutes.
(23) The reinforcing fiber bundle according to any one of (20) to (22), wherein the water-soluble polyamide after the heat treatment has an ester bond and/or a carbon-carbon double bond. Production method.
(24) The water-soluble polyamide is obtained by polymerizing a diamine having a tertiary amino group and/or an oxyethylene group in the main chain and a dicarboxylic acid, (13)- (23) A method for producing a reinforcing fiber bundle according to any one of (23).
(25) The method for producing a reinforcing fiber bundle according to any one of (13) to (24), including a step of separating the reinforcing fibers.
(26) A separating step (III) of inserting a separating means having a plurality of protrusions into the reinforcing fiber bundle while running the reinforcing fiber bundle along the longitudinal direction to generate a separating portion; ,
an entangling step (IV) of forming an entangled portion in which single yarns are entangled at a contact portion between the projecting portion and the reinforcing fiber bundle in at least one of the fiber separating units;
a re-inserting step (V) of extracting the separating means from the reinforcing fiber bundle, passing the separating means through an entangled accumulation portion including the entangled portion, and then thrusting the separating means into the reinforcing fiber bundle again;
Any one of (13) to (25), further comprising a fiber separation treatment step (VI) for alternately forming fiber separation treatment sections divided into a plurality of bundles and non-fiber separation treatment sections. The method for producing the reinforcing fiber bundle according to 1.
(27) Reinforcement according to (26), characterized in that in the fiber separation treatment step (VI), the lengths of the fiber separation treatment sections adjacent to each other with one non-fiber separation treatment section interposed therebetween include different lengths. A method for producing a fiber bundle.
本発明に係る強化繊維束の製造方法によれば、分繊・形態安定化された強化繊維束の生産性を高めることが可能になる。得られた強化繊維束を切断/散布し、不連続繊維中間基材とした際に、成形の際の流動性と成形品の力学特性をバランスよく発現させることができる。 According to the method for manufacturing a reinforcing fiber bundle according to the present invention, it is possible to increase the productivity of the separated and morphologically stabilized reinforcing fiber bundle. When the obtained reinforcing fiber bundle is cut/dispersed to form a discontinuous fiber intermediate base material, it is possible to develop fluidity during molding and mechanical properties of the molded article in a well-balanced manner.
本発明で使用される強化繊維の種類としては制限がないが、炭素繊維、ガラス繊維、アラミド繊維、金属繊維が好ましい。なかでも炭素繊維が好ましい。炭素繊維としては、特に限定されないが、例えば、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系などの炭素繊維が力学特性の向上、繊維強化熱可塑性樹脂の軽量化効果の観点から好ましく使用でき、これらは1種または2種以上を併用してもよい。中でも、得られる繊維強化熱可塑性樹脂の強度と弾性率とのバランスの観点から、PAN系炭素繊維がさらに好ましい。 Although there are no restrictions on the types of reinforcing fibers used in the present invention, carbon fibers, glass fibers, aramid fibers, and metal fibers are preferred. Among them, carbon fiber is preferred. The carbon fiber is not particularly limited, but for example, polyacrylonitrile (PAN)-based, pitch-based, rayon-based carbon fibers can be preferably used from the viewpoint of improving mechanical properties and reducing the weight of fiber-reinforced thermoplastic resins. These may be used singly or in combination of two or more. Among them, PAN-based carbon fibers are more preferable from the viewpoint of the balance between strength and elastic modulus of the resulting fiber-reinforced thermoplastic resin.
強化繊維の単繊維径は0.5μm以上が好ましく、2μm以上がより好ましく、4μm以上がさらに好ましい。また、強化繊維の単繊維径は20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。強化繊維のストランド強度は3.0GPa以上が好ましく、4.0GPa以上がより好ましく、4.5GPa以上がさらに好ましい。強化繊維のストランド弾性率は200GPa以上が好ましく、220GPa以上がより好ましく、240GPa以上がさらに好ましい。強化繊維のストランド強度または弾性率がそれぞれ、この範囲であれば、成形品の力学特性を高めることができる。 The single fiber diameter of the reinforcing fibers is preferably 0.5 μm or more, more preferably 2 μm or more, and even more preferably 4 μm or more. Further, the single fiber diameter of the reinforcing fibers is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. The strand strength of the reinforcing fibers is preferably 3.0 GPa or higher, more preferably 4.0 GPa or higher, and even more preferably 4.5 GPa or higher. The strand elastic modulus of the reinforcing fiber is preferably 200 GPa or higher, more preferably 220 GPa or higher, even more preferably 240 GPa or higher. If the strand strength or elastic modulus of the reinforcing fiber is within this range, the mechanical properties of the molded product can be enhanced.
強化繊維束を拡幅する工程において、拡幅された強化繊維束の単位幅あたり単糸数は600本/mm以上が好ましく、700本/mm以上がより好ましく、800本/mm以上がさらに好ましい。600本/mm未満の場合、成形材料の流動性に劣る懸念がある。強化繊維束の単位幅あたり単糸数は1,600本/mm以下が好ましく、1,400本/mm以下がより好ましく、1,200本/mm以下がさらに好ましい。1,600本/mmを超える場合、成形品の力学特性が劣る懸念がある。繊維強化樹脂成形材料を構成する強化繊維束の単位幅あたり単糸数の導出方法は後述する。 In the step of widening the reinforcing fiber bundle, the number of single yarns per unit width of the widened reinforcing fiber bundle is preferably 600/mm or more, more preferably 700/mm or more, and even more preferably 800/mm or more. If it is less than 600 lines/mm, there is a concern that the fluidity of the molding material may be poor. The number of single yarns per unit width of the reinforcing fiber bundle is preferably 1,600/mm or less, more preferably 1,400/mm or less, and even more preferably 1,200/mm or less. If it exceeds 1,600 lines/mm, there is a concern that the mechanical properties of the molded product will be inferior. A method for deriving the number of single yarns per unit width of the reinforcing fiber bundles constituting the fiber-reinforced resin molding material will be described later.
強化繊維を拡幅する工程において、拡幅された強化繊維束の厚みは0.01mm以上が好ましく、0.03mm以上がより好ましく、0.05mm以上がさらに好ましい。0.01mm未満の場合、成形材料の流動性に劣る懸念がある。また、強化繊維束の厚みは0.2mm以下が好ましく、0.18mm以下がより好ましく、0.16mm以下がさらに好ましい。0.2mmを超える場合、成形品の力学特性が劣る懸念がある。 In the step of widening the reinforcing fibers, the thickness of the widened reinforcing fiber bundle is preferably 0.01 mm or more, more preferably 0.03 mm or more, and even more preferably 0.05 mm or more. If it is less than 0.01 mm, there is a concern that the fluidity of the molding material may be poor. Also, the thickness of the reinforcing fiber bundle is preferably 0.2 mm or less, more preferably 0.18 mm or less, and even more preferably 0.16 mm or less. If it exceeds 0.2 mm, there is a concern that the mechanical properties of the molded product may deteriorate.
本発明で使用されるサイジング剤は1次サイジング剤と2次サイジング剤からなる。1次サイジング剤がまず強化繊維束に付与され、その後、2次サイジング剤が強化繊維束に付与される。2次サイジング剤の種類としては、水溶性ポリアミドを主成分として含有することがよく、水溶性ポリアミドは主鎖中に三級アミノ基および/またはオキシエチレン基を有するジアミンとカルボン酸より重縮合して得られるポリアミド樹脂であり、前記ジアミンとして、ピペラジン環を有するN、N′-ビス(γ―アミノプロピル)ピペラジン、N-(β―アミノエチル)ピペラジン等主鎖中に三級アミノ基を含むモノマ、オキシエチレンアルキルアミン等の主鎖中にオキシエチレン基を含むアルキルジアミンが有用である。又、ジカルボン酸としてはアジピン酸、セバシン酸等がある。また、1次サイジング剤には、熱処理温度を低くしたり、熱処理時間を短縮したりするため、エポキシ基、ウレタン基、アミノ基、カルボキシル基等の官能基を有する化合物のいずれか、あるいは、それらを混合したものがよい。また、あらかじめ溶剤あるいは強化繊維表層に架橋剤を添加することがよい。架橋剤の種類としては特に限定されないが、メラミン樹脂、ユリア樹脂、フェノール樹脂、エポキシ樹脂から選ばれる少なくとも1種の樹脂であることが好ましい。サイジング剤に対する架橋剤の重量比の下限は0.02以上が好ましく、0.03以上がより好ましく、0.04以上がさらに好ましい。一方、サイジング剤に対する架橋剤の重量比の上限は1以下が好ましく、0.8以下がより好ましく、0.6以下がさらに好ましい。この範囲であれば熱処理温度を低くしたり、熱処理時間を短縮することが可能である。 The sizing agent used in the present invention consists of a primary sizing agent and a secondary sizing agent. A primary sizing agent is first applied to the reinforcing fiber bundles, and then a secondary sizing agent is applied to the reinforcing fiber bundles. The secondary sizing agent preferably contains a water-soluble polyamide as a main component, and the water-soluble polyamide is polycondensed from a diamine having a tertiary amino group and/or an oxyethylene group in the main chain and a carboxylic acid. A polyamide resin obtained by the above diamine containing a tertiary amino group in the main chain such as N,N'-bis(γ-aminopropyl)piperazine, N-(β-aminoethyl)piperazine, etc. having a piperazine ring Monomers, alkyldiamines containing oxyethylene groups in the backbone such as oxyethylenealkylamines are useful. Dicarboxylic acids include adipic acid and sebacic acid. In order to lower the heat treatment temperature and shorten the heat treatment time, the primary sizing agent is either a compound having a functional group such as an epoxy group, a urethane group, an amino group, or a carboxyl group, or any of them. A mixture of Moreover, it is preferable to add a solvent or a cross-linking agent to the reinforcing fiber surface layer in advance. Although the type of the cross-linking agent is not particularly limited, it is preferably at least one resin selected from melamine resin, urea resin, phenol resin, and epoxy resin. The lower limit of the weight ratio of the cross-linking agent to the sizing agent is preferably 0.02 or more, more preferably 0.03 or more, and even more preferably 0.04 or more. On the other hand, the upper limit of the weight ratio of the cross-linking agent to the sizing agent is preferably 1 or less, more preferably 0.8 or less, and even more preferably 0.6 or less. Within this range, the heat treatment temperature can be lowered and the heat treatment time can be shortened.
本発明の水溶性のポリアミドは共重合体であってもよい。共重合成分としては、例えばα-ピロリドン、α-ピペリドン、ε-カプロラクタム、α-メチル-ε-カプロラクタム、ε-メチル-ε-カプロラクタム、ε-ラウロラクタムなどのラクタムをあげることができ、二元共重合もしくは多元共重合も可能であるが、共重合比率は水溶性という物性を妨げない範囲において決定される。好ましくはラクタム環を持つ共重合成分比率を30重量%以内にしないとポリマーが水に完溶しなくなる。 The water-soluble polyamide of the present invention may be a copolymer. Examples of copolymer components include lactams such as α-pyrrolidone, α-piperidone, ε-caprolactam, α-methyl-ε-caprolactam, ε-methyl-ε-caprolactam, and ε-laurolactam. Copolymerization or multi-component copolymerization is also possible, but the copolymerization ratio is determined within a range that does not interfere with the physical property of water solubility. Preferably, the polymer does not completely dissolve in water unless the proportion of the copolymer component having a lactam ring is within 30% by weight.
しかしながら、前記範囲外の共重合成分比率に難水溶性のポリマーであっても、有機及び無機酸を用いて溶液を酸性にした場合溶解性が増大し、水可溶性になり使用が可能になる。有機酸としては、酢酸、クロル酢酸、プロピオン酸、マレイン酸、しゅう酸、フルオロ酢酸等があり、無機酸としては、一般的な鉱酸類である塩酸、硫酸、リン酸等を挙げることができる。 However, even a poorly water-soluble polymer with a copolymer component ratio outside the above range becomes more soluble in water and usable when the solution is acidified with an organic or inorganic acid. Examples of organic acids include acetic acid, chloroacetic acid, propionic acid, maleic acid, oxalic acid and fluoroacetic acid. Examples of inorganic acids include common mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid.
この水溶性ポリアミドはサイジング剤が付与されていない強化繊維束に1次サイジング剤として用いてもよいし、サイジング剤が前もって付与されている強化繊維束に2次サイジング剤として用いてもよい。 This water-soluble polyamide may be used as a primary sizing agent for reinforcing fiber bundles to which no sizing agent is applied, or may be used as a secondary sizing agent for reinforcing fiber bundles to which a sizing agent is previously applied.
強化繊維束に付与された全サイジング剤の付着量は5重量%以下が好ましく、4重量%以下がより好ましく、3重量%以下がさらに好ましい。サイジング剤の付着量が5重量%を超えると、繊維束の柔軟性が欠けてきて硬くなりすぎ、ボビンの巻き取り、巻き出しがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維束形態が得られない可能性が生じる。サイジング剤の付着量は0.1重量%以上が好ましく、0.3重量%以上がより好ましく、0.5重量%以上がさらに好ましい。 The amount of the total sizing agent applied to the reinforcing fiber bundle is preferably 5% by weight or less, more preferably 4% by weight or less, and even more preferably 3% by weight or less. If the amount of the sizing agent adhered exceeds 5% by weight, the fiber bundle loses flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, there is a possibility that single filament splitting occurs during cutting, and an ideal chopped fiber bundle shape cannot be obtained. The amount of the sizing agent attached is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and even more preferably 0.5% by weight or more.
サイジング剤の付着量が0.1重量%未満の場合、成形品を作製しようとすると、マトリックスと強化繊維との接着性が低下する傾向にあり、成形品の力学特性が低くなる可能性がある。また、フィラメントがばらけ、毛羽が発生することにより、ボビンからの巻き出し性が低下したり、ニップローラー、カッター刃への巻きつきが発生しうる。サイジング剤の付着量の導出方法は後述する。 When the amount of the sizing agent attached is less than 0.1% by weight, the adhesiveness between the matrix and the reinforcing fibers tends to decrease when trying to produce a molded product, and the mechanical properties of the molded product may decrease. . In addition, the filaments may be loosened and fuzz may be generated, resulting in deterioration of the unwinding property from the bobbin or winding on the nip roller or cutter blade. A method for deriving the adhesion amount of the sizing agent will be described later.
サイジング剤は、強化繊維表面に均質に付着したものであることが好ましい。均質に付着させる方法としては特に限定されるものではないが、例えば、これらサイジング剤を水またはアルコール、酸性水溶液0.1重量%以上、好ましくは1重量%~20重量%の濃度に溶解して、その高分子溶液にローラーを介して繊維束をサイジング剤処理液に浸漬する方法、サイジング剤処理液の付着したローラーに繊維束を接する方法、サイジング剤処理液を霧状にして繊維束に吹き付ける方法などがある。この際、繊維に対するサイジング剤有効成分の付着量が適正範囲内で均一に付着するように、サイジング剤処理液濃度、温度、糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に繊維束を超音波で加振させることはより好ましい。 The sizing agent is preferably homogeneously attached to the surface of the reinforcing fibers. The method for homogeneously attaching the sizing agent is not particularly limited. , a method in which the fiber bundle is immersed in the sizing agent treatment liquid via a roller in the polymer solution, a method in which the fiber bundle is brought into contact with a roller to which the sizing agent treatment liquid has adhered, and a sizing agent treatment liquid is atomized and sprayed onto the fiber bundle. There are methods. At this time, it is preferable to control the concentration of the sizing agent treatment liquid, temperature, yarn tension, etc. so that the amount of the sizing agent active ingredient adhered to the fibers is uniformly within an appropriate range. Further, it is more preferable to vibrate the fiber bundle with ultrasonic waves when applying the sizing agent.
強化繊維束に付着したサイジング剤中の水やアルコールなどの溶剤を除去するには、熱処理や風乾、遠心分離などのいずれの方法を用いてもよいが、中でもコストの観点から熱処理が好ましい。熱処理の加熱手段としては、例えば、熱風、熱板、ローラー、赤外線ヒーターなどを使用することができる。この加熱処理条件も重要であり、取り扱い性、マトリックス材との接着性の良否に関わってくる。すなわち、サイジング剤を繊維束に付与した後の加熱処理温度と時間はサイジング剤の成分と付着量によって調整すべきである。前記水溶性ポリアミドの場合、熱劣化を防止する観点から、室温~180℃で乾燥し、水分を除去した後、熱処理するのが好ましい。熱処理温度の下限は130℃以上が好ましく、200℃以上がより好ましい。熱処理温度の上限は350℃以下が好ましく、280℃以下がより好ましい。この熱処理温度は、前記水溶性ポリアミドが空気中の酸素によって自己架橋したり、水溶性を失う温度である。この処理後のポリアミドはエステル結合、および/または、炭素-炭素の二重結合を有してもよい。熱処理により、水溶性ポリマーが不溶になり吸湿性も失うため、フィラメントを集束したストランドのべたつきがなくなり、後加工の作業性が向上するだけでなく、マトリックス材への密着性がよくなり取り扱いやすい繊維束を提供できる。熱処理時間としては0.3分以上が好ましい。また10分以下が好ましく、6分以下がより好ましく、2分以下がさらに好ましい。この範囲であれば、ライン速度を上げ生産性を高めることができる。なお、熱処理後、23±5℃の雰囲気下でエイジング処理を行うことで、繊維束の硬度をさらに高めることができる。 Any method such as heat treatment, air drying, or centrifugation may be used to remove the solvent such as water or alcohol in the sizing agent attached to the reinforcing fiber bundle, but heat treatment is preferred from the viewpoint of cost. As heating means for heat treatment, for example, hot air, a hot plate, a roller, an infrared heater, or the like can be used. This heat treatment condition is also important, and is related to the ease of handling and the quality of adhesion to the matrix material. That is, the heat treatment temperature and time after applying the sizing agent to the fiber bundle should be adjusted according to the components and amount of the sizing agent. In the case of the water-soluble polyamide, from the viewpoint of preventing thermal deterioration, it is preferable to heat-treat after drying at room temperature to 180° C. to remove moisture. The lower limit of the heat treatment temperature is preferably 130°C or higher, more preferably 200°C or higher. The upper limit of the heat treatment temperature is preferably 350°C or lower, more preferably 280°C or lower. This heat treatment temperature is the temperature at which the water-soluble polyamide undergoes self-crosslinking or loses its water-solubility due to oxygen in the air. The polyamide after this treatment may have ester bonds and/or carbon-carbon double bonds. Heat treatment makes the water-soluble polymer insoluble and loses its hygroscopicity, so the strands that bundle the filaments are not sticky and workability in post-processing is improved. Can provide bundles. The heat treatment time is preferably 0.3 minutes or longer. Also, the time is preferably 10 minutes or less, more preferably 6 minutes or less, and even more preferably 2 minutes or less. Within this range, the line speed can be increased and the productivity can be enhanced. After the heat treatment, the hardness of the fiber bundle can be further increased by performing an aging treatment in an atmosphere of 23±5°C.
この水溶性ポリアミド樹脂を用いたサイジング剤は各種マトリックス材との親和性に優れておりコンポジット物性を著しく向上せしめるが、特にポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、及びポリエーテルアミドイミド系樹脂において優れた密着性の改善効果がある。 Sizing agents using this water-soluble polyamide resin have excellent affinity with various matrix materials and significantly improve the physical properties of composites. It has an excellent adhesion improvement effect in resins.
前記水溶性ポリアミドを2次サイジング剤として用いる場合は、1次サイジング剤が付与された強化繊維束に前記方法と同様のつけ方でもよいし、強化繊維束の製造工程において付与してもよい。特定の強化繊維束の製造において、該強化繊維束の製造工程中のいずれかのタイミングで行われるサイジング剤の付与について例示すると、例えば、サイジング剤を溶媒(分散させる場合の分散媒含む)中に溶解(分散も含む)したサイジング剤処理液を調製し、該サイジング剤処理液を繊維束に塗布した後に、溶媒を乾燥・気化させ、除去することにより、サイジング剤を繊維束に付与することが一般的に行われる。 When the water-soluble polyamide is used as the secondary sizing agent, it may be applied to the reinforcing fiber bundle to which the primary sizing agent has been applied in the same manner as described above, or may be applied during the manufacturing process of the reinforcing fiber bundle. In the production of a specific reinforcing fiber bundle, to give an example of the application of the sizing agent at any time during the manufacturing process of the reinforcing fiber bundle, for example, the sizing agent is added to the solvent (including the dispersion medium when dispersed) The sizing agent can be applied to the fiber bundle by preparing a dissolved (including dispersed) sizing agent treatment liquid, applying the sizing agent treatment liquid to the fiber bundle, and then drying and evaporating the solvent to remove it. commonly done.
本発明におけるサイジング剤の熱分解開始温度は200℃以上が好ましく、250℃以上がより好ましく、300℃以上がさらに好ましい。熱分解開始温度の導出方法は後述する。 The thermal decomposition starting temperature of the sizing agent in the present invention is preferably 200° C. or higher, more preferably 250° C. or higher, and even more preferably 300° C. or higher. A method for deriving the thermal decomposition start temperature will be described later.
本発明で使用されるサイジング剤塗布後の強化繊維束のドレープ値D1は120mm以上がよく、145mm以上が好ましく、170mm以上がより好ましい。ドレープ値D1が120mmより小さくなるとフィラメントがばらけ、毛羽が発生することにより、ボビンからの巻き出し性の低下、ニップローラー、カッター刃への巻きつきが発生しうる。また、サイジング剤塗布後の強化繊維束のドレープ値D1は240mm以下であることがよく、230mm以下が好ましく、220mm以下がより好ましい。ドレープ値D1が240mmを超えると、繊維束の柔軟性が欠けてきて硬くなりすぎ、ボビンの巻き取り、巻き出しがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維束形態が得られない可能性がある。強化繊維束のドレープ値の導出方法は後述する。 The drape value D1 of the reinforcing fiber bundle after application of the sizing agent used in the present invention is preferably 120 mm or more, preferably 145 mm or more, and more preferably 170 mm or more. If the drape value D1 is less than 120 mm, the filaments may be loosened and fluff may be generated, resulting in deterioration of unwindability from the bobbin and winding on the nip roller and cutter blade. Further, the drape value D1 of the reinforcing fiber bundle after application of the sizing agent is preferably 240 mm or less, preferably 230 mm or less, and more preferably 220 mm or less. When the drape value D1 exceeds 240 mm, the fiber bundle lacks flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, there is a possibility that single filament cracking may occur during cutting, and an ideal chopped fiber bundle shape cannot be obtained. A method for deriving the drape value of the reinforcing fiber bundle will be described later.
次にドレープ値D1を測定した強化繊維束を25℃の水に、5分間浸漬処理後、取り出し、絶乾した後、前記方法と同様の方法で測定したドレープ値をドレープ値D2とする。ドレープ値D2(束硬さ)の下限は110mm以上が好ましく、145mm以上がより好ましく、170mm以上がさらに好ましい。またドレープ値D1(束硬さ)の上限は240mm以下が好ましく、230mm以下がより好ましく、220mm以下がさらに好ましい。ドレープ値D2が110mmより小さくなるとフィラメントがばらけ、毛羽が発生することにより、ボビンからの巻き出し性の低下、ニップローラー、カッター刃への巻きつきが発生しうる。一方、ドレープ値D2が240mmを超えると、繊維束の柔軟性が欠けてきて硬くなりすぎ、ボビンの巻き取り、巻き出しがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維形態が得られない可能性が生じる。 Next, the reinforcing fiber bundle whose drape value D1 was measured was immersed in water at 25° C. for 5 minutes, taken out, and dried completely. The lower limit of the drape value D2 (bundle hardness) is preferably 110 mm or more, more preferably 145 mm or more, and even more preferably 170 mm or more. The upper limit of the drape value D1 (bundle hardness) is preferably 240 mm or less, more preferably 230 mm or less, and even more preferably 220 mm or less. If the drape value D2 is less than 110 mm, the filaments may become loose and fluff may be generated, resulting in deterioration of unwindability from the bobbin and winding on the nip roller and cutter blade. On the other hand, when the drape value D2 exceeds 240 mm, the fiber bundle lacks flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, single filament splitting may occur during cutting, and the ideal chopped fiber configuration may not be obtained.
本発明で使用されるサイジング剤塗布後の強化繊維束の束硬度は39g以上が好ましく、70g以上がより好ましく、120g以上がさらに好ましい。硬度が39g未満の場合、フィラメントがばらけ、毛羽が発生することにより、ボビンからの巻き出し性の低下、ニップローラー、カッター刃への巻きつきが発生しうる。繊維強化熱可塑性樹脂成形材料を構成する強化繊維束の束硬度は200g以下であることが好ましく、190g以下がより好ましく、180g以下がさらに好ましい。強化繊維束の硬度が200gを超えると、強化繊維束のワインダーでの巻き取り性が低下し、本発明の効果を発揮しない。強化繊維束の束硬度の導出方法は後述する。 The bundle hardness of the reinforcing fiber bundle after application of the sizing agent used in the present invention is preferably 39 g or more, more preferably 70 g or more, and even more preferably 120 g or more. If the hardness is less than 39 g, the filaments may be loosened and fuzz may be generated, resulting in deterioration of unwindability from the bobbin and winding on the nip roller and cutter blade. The bundle hardness of the reinforcing fiber bundles constituting the fiber-reinforced thermoplastic resin molding material is preferably 200 g or less, more preferably 190 g or less, even more preferably 180 g or less. If the hardness of the reinforcing fiber bundle exceeds 200 g, the windability of the reinforcing fiber bundle with a winder is lowered, and the effects of the present invention are not exhibited. A method for deriving the bundle hardness of the reinforcing fiber bundle will be described later.
本発明で使用されるサイジング剤塗布後の強化繊維束を水へ浸漬する前の幅をW1、強化繊維束を25℃の水に、5分間浸漬した後、取り出し、1分間水を切った後における幅をW2とすると、強化繊維束の幅変化率W2/W1は0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましい。強化繊維束の幅変化率W2/W1が0.5より小さいと強化繊維束に付着されているサイジング剤の水可溶の物性が残っていることにより、分繊処理をした後、分繊された繊維束が再凝集することがあり、再凝集すると、最適な単糸数に調整された繊維束の形態を保持することが困難になる。最適な単糸数に調整された繊維束の形態に保持できないと、分繊繊維束を切断/散布し、不連続繊維束の中間基材とする際に、最適な形態の中間基材にすることが困難となり、成形の際の流動性と成形品の力学特性をバランスよく発現させることが困難となる。また幅変化率W2/W1は1.1以下であることが好ましい。幅変化率W2/W1が1.1を超えると繊維束の柔軟性が欠けてきて硬くなりすぎ、ボビンの巻き取り、巻き出しがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維束形態が得られない可能性が生じる。強化繊維束の幅変化率W2/W1の導出方法は後述する。 The width before immersion in water of the reinforcing fiber bundle after application of the sizing agent used in the present invention is W1, the reinforcing fiber bundle is immersed in water at 25 ° C. for 5 minutes, taken out, and drained for 1 minute. , the width change rate W2/W1 of the reinforcing fiber bundle is preferably 0.5 or more, more preferably 0.6 or more, and still more preferably 0.7 or more. If the width change rate W2/W1 of the reinforcing fiber bundle is less than 0.5, the sizing agent adhered to the reinforcing fiber bundle remains water-soluble, so that the fiber is separated after the fiber separation treatment. When the fiber bundle is re-aggregated, it becomes difficult to maintain the shape of the fiber bundle adjusted to the optimum number of single yarns. If the form of the fiber bundle adjusted to the optimum number of single yarns cannot be maintained, the divided fiber bundle is cut/dispersed to form an intermediate base material of the discontinuous fiber bundle in an optimum form. becomes difficult, and it becomes difficult to develop the fluidity during molding and the mechanical properties of the molded product in a well-balanced manner. Also, the width change rate W2/W1 is preferably 1.1 or less. If the width change rate W2/W1 exceeds 1.1, the fiber bundle lacks flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, there is a possibility that single filament splitting occurs during cutting, and an ideal chopped fiber bundle shape cannot be obtained. A method for deriving the width change rate W2/W1 of the reinforcing fiber bundle will be described later.
次に、本発明における分繊繊維束について説明する。分繊繊維束とは、複数の単糸からなる繊維束の長手方向に沿って、複数の束に分繊された分繊処理区間と、未分繊処理区間とが交互に形成された強化繊維束であり、前記強化繊維束にサイジング剤が塗布されているものである。未分繊処理区間は分繊繊維束の幅方向で連続であってもよいし、不連続であってもよい。また、1つの未分繊処理区間を挟んで隣接する分繊処理区間の長さは同一であってもよいし、異なっていてもよい。 Next, the split fiber bundle in the present invention will be described. A split fiber bundle is a reinforcing fiber in which a split treatment section divided into a plurality of bundles and an unsplit treatment section are alternately formed along the longitudinal direction of a fiber bundle composed of a plurality of single filaments. A sizing agent is applied to the reinforcing fiber bundle. The unsplit treated section may be continuous or discontinuous in the width direction of the split fiber bundle. In addition, the lengths of the fiber-dividing sections adjacent to each other with one non-fiber-fiber-dividing section interposed therebetween may be the same or different.
本発明における分繊繊維束の製造方法について説明する。図1は、本発明における繊維束に分繊処理を施した分繊繊維束の一例を示しており、図2は、その分繊処理の一例を示している。本発明における分繊繊維束の製造方法について、図2を用いて説明する。図2は、走行する繊維束に分繊手段を突き入れた一例を示す(A)概略平面図、(B)概略側面図である。図中の繊維束走行方向a(矢印)が繊維束100の長手方向であり、図示されない繊維束供給装置から連続的に繊維束100が供給されていることを表す。
A method for producing a split fiber bundle according to the present invention will be described. FIG. 1 shows an example of a split fiber bundle obtained by subjecting a fiber bundle to a splitting treatment in the present invention, and FIG. 2 shows an example of the splitting treatment. A method for producing a split fiber bundle according to the present invention will be described with reference to FIG. FIG. 2 is (A) a schematic plan view and (B) a schematic side view showing an example in which a separating means is thrust into a traveling fiber bundle. The fiber bundle traveling direction a (arrow) in the drawing is the longitudinal direction of the
分繊手段200は、繊維束100に突き入れ易い突出形状を有する突出部210を具備しており、走行する繊維束100に突き入れ、繊維束100の長手方向に略平行な分繊処理部150を生成する。ここで、分繊手段200は、繊維束100の側面に沿う方向に突き入れることが好ましい。繊維束の側面とは、繊維束の断面が、横長の楕円もしくは横長の長方形のような扁平形状であるとした場合の断面端部における垂直方向の面(例えば、図2に示す繊維束100の側表面に相当する)である。また、具備する突出部210は、1つの分繊手段200につき1つでもよく、また複数であってもよい。1つの分繊手段200で突出部210が複数ある場合、突出部210の磨耗頻度が減ることから、交換頻度を減らすことも可能となる。さらに、分繊する繊維束数に応じて、複数の分繊手段200を同時に用いることも可能である。複数の分繊手段200を、並列、互い違い、位相をずらす等して、複数の突出部210を任意に配置することができる。
The fiber separating means 200 includes a protruding
複数の単糸からなる繊維束100を、分繊手段200により本数のより少ない分繊束に分けていく場合、複数の単糸は、実質的に繊維束100内で、引き揃った状態ではなく、単糸レベルでは交絡している部分が多いため、分繊処理中に接触部211付近に単糸が交絡する絡合部160を形成する場合がある。
When the
ここで、絡合部160を形成するとは、例えば、分繊処理区間内に予め存在していた単糸同士の交絡を分繊手段200により接触部211に形成(移動)させる場合や、分繊手段200によって新たに単糸が交絡した集合体を形成(製造)させる場合等が挙げられる。
Here, forming the
本発明における分繊繊維束においては強化繊維表面にサイジング剤を塗布しているため、強化繊維同士が拘束されており、上記分繊処理時における擦過等による単糸の発生を大幅に削減することができ、上記記載の絡合部160の発生を大幅に削減することができる。
In the split fiber bundle of the present invention, since a sizing agent is applied to the surface of the reinforcing fibers, the reinforcing fibers are restrained to each other, and the generation of single yarns due to rubbing or the like during the splitting process can be greatly reduced. , and the occurrence of the
任意の範囲に分繊処理部150を生成した後、分繊手段200を繊維束100から抜き取る。この抜き取りによって分繊処理が施された分繊処理区間110が生成し、それと同時に上記のように生成された絡合部160が分繊処理区間110の端部部位に蓄積され、絡合部160が蓄積した絡合蓄積部120が生成する。また、分繊処理中に繊維束から発生した毛羽は毛羽溜まり140として分繊処理時に絡合蓄積部120付近に生成する。
After the fiber
その後再度分繊手段200を繊維束100に突き入れることで、未分繊処理区間130が生成し、繊維束100の長手方向に沿って、分繊処理区間110と未分繊処理区間130とが交互に配置されてなる分繊繊維束180が形成される。本発明における分繊繊維束180では、未分繊処理区間130の含有率が3%以上50%以下であることが好ましい。ここで、未分繊処理区間130の含有率とは、繊維束100の全長に対し未分繊処理区間130の合計生成長の割合として定義する。未分繊処理区間130の含有率が3%未満だと、分繊繊維束180を切断/散布し、不連続繊維束の中間基材として成形に用いる際の流動性が乏しくなり、50%を超えるとそれを用いて成形した成形品の力学特性が低下する。
After that, by thrusting the separating means 200 into the
また、個々の区間の長さとしては、上記分繊処理区間110の長さが、30mm以上1500mm以下であることが好ましく、上記未分繊処理区間130の長さが、1mm以上150mm以下であることが好ましい。
As for the length of each section, it is preferable that the length of the fiber
繊維束100の走行速度は変動の少ない安定した速度が好ましく、一定の速度がより好ましい。
The running speed of the
分繊手段200は、本発明の目的が達成できる範囲であれば特に制限がなく、金属製の針や薄いプレート等の鋭利な形状のような形状を備えたものが好ましい。分繊手段200は、分繊処理を行う繊維束100の幅方向に対して、複数の分繊手段200を設けることが好ましく、分繊手段200の数は、分繊処理を行う繊維束100の構成単糸本数F(本)によって任意に選択できる。分繊手段200の数は、繊維束100の幅方向に対して、(F/10,000-1)個以上(F/50-1)個未満とすることが好ましい。(F/10,000-1)個未満であると、後工程で強化繊維複合材料にした際に力学特性の向上が発現しにくく、(F/50-1)個以上であると分繊処理時に糸切れや毛羽立ちの恐れがある。
The fiber separating means 200 is not particularly limited as long as the object of the present invention can be achieved, and preferably has a sharp shape such as a metal needle or a thin plate. As for the separating means 200, it is preferable to provide a plurality of separating means 200 in the width direction of the
本発明では、繊維束が走行する場合に限らず、図3に示すように、静止状態の繊維束100に対して、分繊手段200を突き入れ(矢印(1))、その後、分繊手段200を繊維束100に沿って走行(矢印(2))させながら分繊処理部150を生成し、その後、分繊手段200を抜き取る(矢印(3))方法でもよい。その後は、図4(A)に示すように、静止していた繊維束100を矢印(3)、(4)で示すタイミングにて所定距離だけ移動させた後に、分繊手段200を元の位置(矢印(4))に戻してもよいし、図4(B)に示すように、繊維束100は移動させず、分繊手段200が絡合蓄積部120を経過するまで移動(矢印(4))させてもよい。
The present invention is not limited to the case where the fiber bundle runs, as shown in FIG. A method may also be used in which the
繊維束100を所定距離だけ移動させつつ分繊処理を行う場合には、図3(B)または図4(A)に示すように、分繊手段200を突き入れている分繊処理時間(矢印(2)で示す動作の時間)と、分繊手段200を抜き取り、再度繊維束に突き入れるまでの時間(矢印(3)、(4)、(1)で示す動作の時間)が、制御されることが好ましい。この場合、分繊手段200の移動方向は図の(1)~(4)の繰り返しとなる。
When performing the separating process while moving the
また、繊維束100は移動させず、分繊手段200が絡合蓄積部120を通過するまで分繊手段200を移動させつつ分繊処理を行う場合には、図4(B)に示すように、分繊手段を突き入れている分繊処理時間(矢印(2)または矢印(6)で示す動作の時間)と、分繊手段200を抜き取り、再度繊維束に突き入れるまでの時間(矢印(3)、(4)、(5)または矢印(3)、(4)、(1)で示す動作の時間)が、制御されることが好ましい。この場合にも、分繊手段200の移動方向は図の(1)~(4)の繰り返しとなる。
Further, when the
このように、分繊手段200によって、分繊処理区間と未分繊処理区間とが交互に形成され、未分繊処理区間が繊維束の全長に対して所定範囲内の比率になるように分繊繊維束が製造される。
In this way, the
なお、繊維束100を構成する単糸の交絡状態によっては、任意長さの未分繊処理区間を確保する(例えば図2において、分繊処理区間110を処理後、所定長さの未分繊処理区間130を確保した上で次の分繊処理部150を処理する)ことなく、分繊処理区間の終端部近傍から、引き続き分繊処理を再開することもできる。例えば、図4(A)に示すように、繊維束100を間欠的に移動させながら分繊処理を行う場合は、分繊手段200が分繊処理を行った(矢印(2))後、繊維束100の移動長さを、直前で分繊処理した長さより短くすることで、再度分繊手段200を突き入れる位置(矢印(1))が、直前に分繊処理した分繊処理区間に重ねることができる。一方、図4(B)に示すように分繊手段200自身を移動させながら分繊処理を行う場合は、一旦、分繊手段200を抜き取った後(矢印(3))、所定長さを移動させる(矢印(4))ことなく、再び分繊手段200を繊維束に突き入れる(矢印(5))ことができる。
Note that depending on the state of entanglement of the single yarns forming the
このような分繊処理は、繊維束100を構成する複数の単糸同士が交絡している場合、繊維束内で単糸が実質的に引き揃った状態にはないため、繊維束100の幅方向に対して、既に分繊処理された位置や、分繊手段200を抜き取った箇所と同じ位置に再度分繊手段200を突き入れても、単糸レベルで突き入れる位置がずれやすく、直前に形成された分繊処理区間とは、分繊された状態(空隙)が連続することなく、別々の分繊処理区間として存在させることができる。
When the plurality of single yarns forming the
分繊処理1回あたり分繊する分繊処理区間の長さ(分繊距離170)は、分繊処理を行う繊維束の単糸交絡状態にもよるが、30mm以上1,500mm未満が好ましい。30mm未満であると分繊処理の効果が不十分であり、1,500mm以上になると強化繊維束によっては糸切れや毛羽立ちの恐れがある。 The length of the segmentation section (segmentation distance 170) that is segmented per segmentation process is preferably 30 mm or more and less than 1,500 mm, although it depends on the entangled state of the single yarns of the fiber bundle to be subjected to the segmentation process. If it is less than 30 mm, the effect of the fiber separation treatment is insufficient, and if it is 1,500 mm or more, depending on the reinforcing fiber bundle, there is a risk of yarn breakage or fluffing.
さらに、分繊手段200が複数設けられる場合には、交互に形成される分繊処理区間と未分繊処理区間とを、繊維束の幅方向に対して、略平行に複数設けることもできる。この際、前述したように、複数の分繊手段200を、並列、互い違い、位相をずらす等して、複数の突出部210を任意に配置することができる。
Furthermore, when a plurality of separating means 200 are provided, a plurality of alternately formed fiber separation treatment sections and non-fiber separation treatment sections may be provided substantially parallel to the width direction of the fiber bundle. At this time, as described above, the plurality of fiber separating means 200 can be arranged in parallel, staggered, out of phase, or the like, and the plurality of protruding
また更に、複数の突出部210を、独立して制御することもできる。詳細は後述するが、分繊処理に要する時間や、突出部210が検知する押圧力により、個々の突出部210が独立して分繊処理することも好ましい。
Furthermore,
いずれの場合であっても、繊維束走行方向の上流側に配置した、繊維束を巻き出す巻き出し装置(図示せず)などから繊維束を巻き出す。繊維束の巻き出し方向は、ボビンの回転軸と垂直に交わる方向に引き出す横出し方式や、ボビン(紙管)の回転軸と同一方向に引き出す縦出し方式が考えられるが、解除撚りが少ないことを勘案すると横出し方式が好ましい。 In either case, the fiber bundle is unwound from a fiber bundle unwinding device (not shown) or the like arranged upstream in the fiber bundle running direction. Regarding the unwinding direction of the fiber bundle, it is possible to use a horizontal method in which the fiber bundle is drawn out in a direction perpendicular to the bobbin rotation axis, or a vertical method in which the fiber bundle is drawn out in the same direction as the bobbin (paper tube) rotation axis. Considering this, the lateral extension method is preferable.
また、巻き出し時のボビンの設置姿勢については、任意の方向に設置することができる。中でも、クリールにボビンを突き刺した状態において、クリール回転軸固定面でない側のボビンの端面が水平方向以外の方向を向いた状態で設置する場合は、繊維束に一定の張力がかかった状態で保持されることが好ましい。繊維束に一定の張力が無い場合は、繊維束がパッケージ(ボビンに繊維束が巻き取られた巻体)からズレ落ちパッケージから離れる、もしくは、パッケージから離れた繊維束がクリール回転軸に巻きつくことで、巻き出しが困難になることが考えられる。 In addition, the bobbin can be installed in any direction during unwinding. Among other things, when the bobbin is pierced into the creel and the end face of the bobbin on the side that is not the fixing surface of the creel rotation shaft faces in a direction other than the horizontal direction, the fiber bundle is held in a state where a certain amount of tension is applied. preferably. If the fiber bundle does not have a constant tension, the fiber bundle slips and falls from the package (a winding body in which the fiber bundle is wound on the bobbin), or the fiber bundle that has separated from the package winds around the creel rotating shaft. Therefore, it is conceivable that unwinding becomes difficult.
また、巻き出しパッケージの回転軸固定方法としては、クリールを使う方法の他に、平行に並べた2本のローラーの上に、ローラーと平行にパッケージを載せ、並べたローラーの上でパッケージを転がすようにして、繊維束を巻き出す、サーフェス巻き出し方式も適用可能である。 In addition to using a creel as a method of fixing the rotation axis of the unwinding package, the package is placed on two parallel rollers and rolled on the rollers. A surface unwinding method, in which the fiber bundle is unwound in this manner, is also applicable.
また、クリールを使った巻き出しの場合、クリールにベルトをかけ、その一方を固定し、もう一方に錘を吊るす、バネで引っ張るなどして、クリールにブレーキをかけることで、巻き出し繊維束に張力を付与する方法が考えられる。この場合、巻き径に応じて、ブレーキ力を可変することが、張力を安定させる手段として有効である。 In the case of unwinding using a creel, a belt is attached to the creel, one of which is fixed, and the other is hung with a weight or pulled by a spring to apply a brake to the creel, thereby allowing the unwound fiber bundle to A method of applying tension is conceivable. In this case, varying the braking force in accordance with the winding diameter is effective as means for stabilizing the tension.
また、分繊後の単糸本数の調整には、繊維束を拡幅する方法と、繊維束の幅方向に並べて配置した複数の分繊手段のピッチによって調整が可能である。分繊手段のピッチを小さくし、繊維束幅方向により多くの分繊手段を設けることで、より単糸本数の少ない、いわゆる細束に分繊処理が可能となる。また、分繊手段のピッチを狭めずとも、分繊処理を行う前に繊維束を拡幅し、拡幅した繊維束をより多くの分繊手段で分繊することでも、単糸本数の調整が可能である。 Further, the number of single yarns after splitting can be adjusted by a method of widening the fiber bundle and the pitch of a plurality of splitting means arranged side by side in the width direction of the fiber bundle. By reducing the pitch of the separating means and providing more separating means in the width direction of the fiber bundle, it is possible to separate a so-called fine bundle, which has a smaller number of single yarns. In addition, without narrowing the pitch of the separating means, the number of single yarns can be adjusted by widening the fiber bundle before performing the separating process and separating the widened fiber bundle by more separating means. is.
ここで拡幅とは、繊維束100の幅を拡げる処理を意味する。拡幅処理方法としては特に制限がなく、振動ロールを通過させる振動拡幅法、圧縮した空気を吹き付けるエア拡幅法などが好ましい。
Here, widening means processing for widening the width of the
本発明では分繊手段200の突き入れと抜き取りを繰り返して分繊処理部150を形成する。その際、再度突き入れるタイミングは、分繊手段200を抜き取った後の経過時間で設定することが好ましい。また、再度抜き取るタイミングも、分繊手段200を突き入れた後の経過時間で設定することが好ましい。突き入れ、および/または抜き取りのタイミングを時間で設定することで、所定距離間隔の分繊処理区間110および、未分繊処理区間130を生成することが可能となり、分繊処理区間110と未分繊処理区間130の比率も任意に決定することが可能となる。また、所定時間間隔は、常時同じでもよいが、分繊処理を進めた距離に応じて長くしていく、もしくは短くしていくことや、その時々の繊維束の状態に応じて、例えば繊維束が元々もっている毛羽や単糸の交絡が少ない場合には、所定時間間隔を短くするなど、状況に応じて変化させてもよい。
In the present invention, the
繊維束100に分繊手段200を突き入れると、分繊処理の経過にしたがって、生成する絡合部160が突出部210を押し続けるため、分繊手段200は絡合部160から押圧力を受ける。
When the
前述の通り、複数の単糸は実質的に繊維束100内で引き揃った状態ではなく、単糸レベルで交絡している部分が多く、さらに繊維束100の長手方向においては、交絡が多い箇所と少ない箇所が存在する場合がある。単糸交絡の多い箇所は分繊処理時の押圧力の上昇が早くなり、逆に、単糸交絡の少ない箇所は押圧力の上昇が遅くなる。したがって、本発明の分繊手段200には、繊維束100からの押圧力を検知する押圧力検知手段を備えることが好ましい。
As described above, the plurality of single yarns are not substantially aligned in the
また、分繊手段200の前後で繊維束100の張力が変化することがあるため、分繊手段200の近辺には繊維束100の張力を検知する張力検知手段を少なくとも1つ備えてもよく、複数備えて張力差を演算してもよい。これら押圧力、張力、張力差の検知手段は、個別に備えることもでき、いずれかを組み合わせて設けることもできる。ここで、張力を検知する張力検知手段は、分繊手段200から繊維束100の長手方向に沿って前後の少なくとも一方10~1,000mm離れた範囲に配置することが好ましい。
Since the tension of the
これら押圧力、張力、張力差は、検出した値に応じて分繊手段200の抜き出しを制御することが好ましい。検出した値の上昇に伴って、任意に設定した上限値を超えた場合に分繊手段200を抜き出すよう制御することが更に好ましい。上限値は、押圧力、張力の場合は0.01~5N/mmの範囲、張力差は0.01~0.8N/mmの範囲で上限値を設定することが好ましい。なお、上限値は、繊維束の状態に応じて、±10%の幅で変動させてもよい。ここで、押圧力、張力、張力差の単位(N/mm)は、繊維束100の幅あたりに作用する力を示す。
It is preferable to control withdrawal of the fiber separating means 200 according to the detected values of the pressing force, the tension, and the tension difference. It is more preferable to perform control so that the separating means 200 is pulled out when an arbitrarily set upper limit is exceeded as the detected value rises. It is preferable to set the upper limits of the pressing force and tension in the range of 0.01 to 5 N/mm, and the tension difference in the range of 0.01 to 0.8 N/mm. Note that the upper limit value may vary within a range of ±10% depending on the state of the fiber bundle. Here, the unit (N/mm) of the pressing force, tension, and tension difference indicates the force acting per width of the
押圧力、張力、張力差の上限値の範囲を下回ると、分繊手段200を突き入れてすぐに、分繊手段200を抜き取る押圧力や張力、張力差に到達するため、十分な分繊距離が取れず、分繊処理区間110が短くなりすぎ、本発明で得ようとする分繊処理が施された繊維束が得られなくなる。一方、上限値の範囲を上回ると、分繊手段200を突き入れた後、分繊手段200を抜き取る押圧力や張力、張力差に到達する前に繊維束100に単糸の切断が増えるため、分繊処理が施された繊維束が枝毛状に飛び出すことや、発生する毛羽が増えるなどの不具合が発生しやすくなる。飛び出した枝毛は、搬送中のロールに巻きついたり、毛羽は駆動ロールに堆積し繊維束に滑りを発生させたりする等、搬送不良を発生させやすくする。
When the pressing force, tension, and tension difference are below the upper limit range, the pressing force, tension, and tension difference for withdrawing the separating means 200 are reached immediately after the separating means 200 is inserted, so a sufficient separating distance is required. is not removed, the fiber
分繊手段200の抜き取りタイミングを時間で制御する場合とは異なり、押圧力、張力、張力差を検知する場合には、分繊処理時に繊維束100を切断するほどの力がかかる前に分繊手段200を抜き取るため、繊維束100に無理な力がかからなくなり、連続した分繊処理が可能になる。
Unlike the case of controlling the withdrawal timing of the separating means 200 by time, in the case of detecting the pressing force, the tension, and the tension difference, the separation process is performed before a force sufficient to cut the
更に、繊維束100が部分的に切断されたような枝切れや毛羽立ちの発生を抑えつつ、分繊処理区間110が長く、かつ、絡合蓄積部120の形状が長手方向に安定的な繊維束100を得るためには、押圧力は、0.04~2.0N/mm、張力は0.02~0.2N/mm範囲、張力差は0.05~0.5N/mmの範囲とすることが好ましい。
Furthermore, the
繊維束100に突き入れた分繊手段200から繊維束100の長手方向に沿った前後の少なくとも一方10~1,000mm離れた範囲において、繊維束100の撚りの有無を検知する撮像手段を具備することも好ましい。この撮像により、撚りの位置をあらかじめ特定し、撚りに分繊手段200を突き入れないように制御することで、突き入れミスを防止することができる。また、突き入れた分繊手段200に撚りが接近した際に、分繊手段200を抜き出すこと、つまり撚りを分繊処理しないことで、繊維束100の狭幅化を防ぐことが出来る。ここで、突き入れミスとは、撚りに分繊手段200を突き入れてしまい、繊維束100を分繊手段200の突き入れ方向に押し動かすのみで、分繊処理されないことをいう。
An imaging means for detecting the presence or absence of twisting of the
分繊手段200が繊維束100の幅方向に複数存在し、かつ、等間隔に配置される構成では、繊維束100の幅が変化すると、分繊された単糸本数も変化するため、安定した単糸本数の分繊処理が行えなくなることがある。また、撚りを無理やり分繊処理すると、繊維束100を単糸レベルで切断し毛羽を多く発生させるため、絡合部160が集積されてなる絡合蓄積部120の形状が大きくなる。大きな絡合蓄積部120を残しておくと、巻体から解舒される繊維束100に引っかかりやすくなる。
In a configuration in which a plurality of separating means 200 exist in the width direction of the
繊維束100の撚りを検知した場合、前述の撚りに分繊手段200を突き入れないように制御する以外にも、繊維束100の走行速度を変化させてもよい。具体的には、撚りを検知した後、分繊手段200が繊維束100から抜き出ているタイミングで、撚りが分繊手段200を経過するまでの間、繊維束100の走行速度を早くすることで、効率よく撚りを回避することができる。
When the twist of the
また、撮像手段で得られた画像を演算する画像演算処理手段を更に備え、画像演算処理手段の演算結果に基づき、分繊手段200の押圧力を制御する押圧力制御手段を更に備えてもよい。例えば、画像演算処理手段が撚りを検知した場合、分繊手段が撚りを経過する際の撚りの通過性をよくすることが出来る。具体的には、撮像手段により撚りを検知し、突出部210が検知した撚りに接触する直前から通過するまで、押圧力が低減するように分繊手段200を制御することが好ましい。撚りを検知した際、押圧力の上限値の0.01~0.8倍の範囲に低減させることが好ましい。この範囲を下回る場合、実質的に押圧力を検知できなくなり、押圧力の制御が困難になったり、制御機器自体の検出精度を高める必要が生じる。また、この範囲を上回る場合には、撚りを分繊処理する頻度が多くなり、繊維束が細くなる。
Further, the apparatus may further include an image arithmetic processing means for calculating an image obtained by the imaging means, and may further comprise a pressing force control means for controlling the pressing force of the fiber sorting means 200 based on the computation result of the image arithmetic processing means. . For example, when the image arithmetic processing means detects the twist, the passability of the twist can be improved when the fiber separating means passes the twist. Specifically, it is preferable to detect the twist by the imaging means and control the fiber sorting means 200 so that the pressing force is reduced from immediately before the projecting
突出部210を備えた分繊手段200を単純に繊維束100に突き入れる以外にも、分繊手段として回転可能な回転分繊手段220を用いることも好ましい態様である。図5は、回転分繊手段を突き入れる移動サイクルの一例を示す説明図である。回転分繊手段220は繊維束100の長手方向に直交する回転軸240を備えた回転機構を有しており、回転軸240の表面には突出部210が設けられている。図中の繊維束走行方向b(矢印)に沿って繊維束100が走行するのに合わせ、回転分繊手段220に設けられた突出部210が繊維束100に突き入れられ、分繊処理が始まる。ここで、図示は省略するが、回転分繊手段220は、押圧力検知機構と回転停止位置保持機構を有していることが好ましい。双方機構によって、所定の押圧力が回転分繊手段220に作用するまでは、図5(A)の位置で回転停止位置を保持し分繊を続ける。突出部210に絡合部160が生じる等、所定の押圧力を超えると、図5(B)のように、回転分繊手段220が回転を始める。その後、図5(C)のように、突出部210(黒丸印)が繊維束100から抜け、次の突出部210(白丸印)が繊維束100に突き入る動作を行う。図5(A)~図5(C)の動作が短ければ短いほど、未分繊処理区間は短くなるため、繊維束の分繊処理区間の割合を多くしたい場合には図5(A)~図5(C)の動作を短くすることが好ましい。
In addition to simply inserting the fiber separating means 200 having the projecting
回転分繊手段220に突出部210を多く配置することで、分繊処理割合の多い繊維束100を得られたり、回転分繊手段220の寿命を長くしたりすることができる。分繊処理割合の多い繊維束とは、繊維束内における分繊処理された長さを長くした繊維束もしくは、分繊処理された区間と未分繊処理の区間との発生頻度を高めた繊維束のことである。また、1つの回転分繊手段に設けられた突出部210の数が多いほど、繊維束100と接触して突出部210が磨耗する頻度を減らすことにより、寿命を長くすることができる。突出部210を設ける数としては、円盤状の外縁に等間隔に3~12個配置することが好ましく、より好ましくは4~8個である。
By arranging a large number of projecting
このように、分繊処理割合と突出部の寿命とを優先させつつ、繊維束幅が安定した繊維束100を得ようとする場合、回転分繊手段220には、撚りを検知する撮像手段を有していることが好ましい。具体的には、撮像手段が撚りを検知するまでの通常時は、回転分繊手段220は回転および停止を間欠的に繰り返すことで分繊処理を行い、撚りを検知した場合には、回転分繊手段220の回転速度を通常時より上げる、および/または停止時間を短くすることで、繊維束幅を安定させることができる。前記停止時間をゼロに、つまり、停止せず連続して回転し続けることもできる。
In this way, when it is attempted to obtain the
また、回転分繊手段220の間欠的な回転と停止を繰り返す方法以外にも、常に回転分繊手段220を回転し続けてもよい。その際、繊維束100の走行速度と回転分繊手段220の回転速度とを、相対的にいずれか一方を早くする、もしくは遅くすることが好ましい。速度が同じ場合には、突出部210を繊維束100に突き刺す/抜き出す、の動作が行われるため、分繊処理区間は形成できるものの、繊維束100に対する分繊作用が弱いため、分繊処理が十分に行われない場合がある。またいずれか一方の速度が相対的に早過ぎる、もしくは遅すぎる場合には、繊維束100と突出部210とが接触する回数が多くなり、擦過によって糸切れする恐れがあり、連続生産性に劣ることがある。
In addition to the method of repeating intermittent rotation and stopping of the rotary separating means 220, the rotary separating means 220 may be continuously rotated. At that time, it is preferable to relatively speed up or slow down either one of the running speed of the
本発明では、分繊手段200、回転分繊手段220の突き入れと抜き取りを、分繊手段200、回転分繊手段220の往復移動によって行う往復移動機構を更に有してもよい。また、分繊手段200、回転分繊手段220を繊維束100の繰り出し方向に沿って往復移動させるための往復移動機構を更に有することも好ましい態様である。往復移動機構には、圧空や電動のシリンダやスライダなどの直動アクチュエータを用いることができる。
The present invention may further include a reciprocating mechanism for performing the insertion and extraction of the separating means 200 and the rotary separating means 220 by reciprocating the separating means 200 and the rotary separating means 220 . It is also a preferred embodiment to further have a reciprocating mechanism for reciprocating the separating means 200 and the rotating separating means 220 along the feeding direction of the
繊維束に強化繊維を用いる場合の分繊処理区間の数は、ある幅方向の領域において少なくとも(F/10,000-1)箇所以上(F/50-1)箇所未満の分繊処理区間数を有することが好ましい。ここで、Fは分繊処理を行う繊維束を構成する総単糸本数(本)である。分繊処理区間の数は、ある幅方向の領域において少なくとも(F/10,000-1)箇所以上分繊処理区間を有することで、分繊繊維束を所定の長さにカットし不連続繊維強化複合材料にした際に、不連続繊維強化複合材料中の強化繊維束端部が細かく分割されるため、力学特性に優れた不連続繊維強化複合材料を得ることができる。また、分繊繊維束をカットせず連続繊維として用いる際は、後工程で樹脂等を含浸し強化繊維複合材料とする際に、分繊処理区間が多く含まれる領域から、強化繊維束内に樹脂が含浸する起点となり、成形時間が短縮できるとともに、強化繊維複合材料中のボイド等を低減させることができる。分繊処理区間数を(F/50-1)箇所未満とすることで、得られる分繊繊維束が糸切れを起こしにくく、繊維強化複合材料とした際の力学特性の低下を抑制できる。 When reinforcing fibers are used in the fiber bundle, the number of fiber separation processing sections is at least (F/10,000-1) or more and less than (F/50-1) in a certain width direction area. It is preferred to have Here, F is the total number of single yarns constituting the fiber bundle to be subjected to the splitting process. The number of fiber separation treatment sections is such that at least (F/10,000-1) or more fiber separation treatment sections are provided in a certain width direction region, so that the fiber bundle is cut into a predetermined length and discontinuous fibers are obtained. When the reinforced composite material is formed, the ends of the reinforcing fiber bundles in the discontinuous fiber reinforced composite material are finely divided, so that a discontinuous fiber reinforced composite material having excellent mechanical properties can be obtained. In addition, when the split fiber bundle is used as continuous fibers without being cut, when impregnating with resin or the like in a post-process to make a reinforcing fiber composite material, from the region containing many fiber split treatment sections, It serves as a starting point for resin impregnation, thereby shortening the molding time and reducing voids and the like in the reinforcing fiber composite material. By setting the number of splitting treatment sections to less than (F/50-1) points, the resulting split fiber bundle is less likely to break, and a decrease in mechanical properties when used as a fiber-reinforced composite material can be suppressed.
分繊処理区間を、繊維束100の長手方向に周期性や規則性を持たせて設けると、後工程で分繊繊維束を所定の長さにカットした不連続繊維とする場合、所定の分繊繊維束本数へ制御しやすくすることができる。
If the fiber separation treatment section is provided with periodicity and regularity in the longitudinal direction of the
次に本発明におけるサイジング剤付与のタイミングについて説明する。図6は、本発明に係る強化繊維束の製造方法において、強化繊維束の製造工程中におけるサイジング剤付与工程のタイミング例を示している。図6には、繊維束100が分繊処理工程300を経て分繊繊維束180に形成される工程中において、サイジング剤付与工程400が、分繊処理工程300よりも前に行われるパターンAと、分繊処理工程300よりも後に行われるパターンBとが示されている。パターンA、パターンBのいずれのタイミングも可能である。
Next, the timing of application of the sizing agent in the present invention will be described. FIG. 6 shows an example of the timing of the step of applying the sizing agent during the manufacturing process of the reinforcing fiber bundle in the manufacturing method of the reinforcing fiber bundle according to the present invention. FIG. 6 shows pattern A and pattern A in which the sizing
図7は、本発明に係る繊維束拡幅工程301を含む強化繊維束の製造方法において、強化繊維束の製造工程中におけるサイジング剤付与工程400のタイミング例を示している。図7には、繊維束100が繊維束拡幅工程301と分繊処理工程300とをこの順に経て分繊繊維束180に形成される工程中において、サイジング剤付与工程400が、繊維束拡幅工程301よりも前に行われるパターンCと、繊維束拡幅工程301と分繊処理工程300との間で行われるパターンDと、分繊処理工程300よりも後に行われるパターンEとが示されている。パターンC、パターンD、パターンEのいずれのタイミングも可能であるが、最適な分繊処理を達成できる観点から、パターンDのタイミングが最も好ましい。
FIG. 7 shows an example of the timing of the sizing
図8は、本発明に係る繊維強化熱可塑性樹脂成形材料を構成する強化繊維束の製造方法において、強化繊維束の製造工程中における、サイジング剤塗布工程と乾燥工程を含むサイジング剤付与工程のタイミング例を示している。サイジング剤付与工程400は、サイジング剤塗布工程401と乾燥工程402を含むが、図8には、これらサイジング剤塗布工程401と乾燥工程402を含むサイジング剤付与工程400が、繊維束100が分繊処理工程300を経て分繊繊維束180に形成される工程中において、分繊処理工程300よりも前に行われるパターンFと、分繊処理工程300よりも後に行われるパターンGとが示されている。パターンF、パターンGのいずれのタイミングも可能である。パターンFは、図6におけるパターンAと、パターンGは、図6におけるパターンBと実質的に同一である。
FIG. 8 shows the timing of the sizing agent applying step including the sizing agent application step and the drying step during the step of manufacturing the reinforcing fiber bundle in the method for producing the reinforcing fiber bundle constituting the fiber-reinforced thermoplastic resin molding material according to the present invention. shows an example. The sizing
図9は、本発明に係る繊維強化熱可塑性樹脂成形材料を構成する強化繊維束の製造方法において、強化繊維束の製造工程中における、サイジング剤塗布工程と乾燥工程を含むサイジング剤付与工程の別のタイミング例を示している。図9に示すタイミング例におけるパターンHでは、サイジング剤付与工程400におけるサイジング剤塗布工程401と乾燥工程402とが分離されてそれぞれ別のタイミングで行われる。サイジング剤塗布工程401は、分繊処理工程300よりも前に行われ、乾燥工程402は、分繊処理工程300よりも後に行われる。
FIG. 9 shows the difference between the sizing agent application step and the sizing agent application step including the drying step in the manufacturing process of the reinforcing fiber bundle in the method for producing the reinforcing fiber bundle constituting the fiber-reinforced thermoplastic resin molding material according to the present invention. timing example. In pattern H in the timing example shown in FIG. 9, the sizing
図10は、本発明に係る繊維束拡幅工程を含む強化繊維束の製造方法における、サイジング剤塗布工程と乾燥工程を含むサイジング剤付与工程のタイミング例を示しており、繊維束100が繊維束拡幅工程301と分繊処理工程300とをこの順に経て分繊繊維束180に形成される工程中において、サイジング剤付与工程のサイジング剤塗布工程401が、繊維束拡幅工程301よりも前に行われ、乾燥工程402については、繊維束拡幅工程301と分繊処理工程300との間で行われるパターンIと、分繊処理工程300よりも後に行われるパターンJが示されている。
FIG. 10 shows an example of the timing of the sizing agent applying step including the sizing agent application step and the drying step in the method for manufacturing a reinforcing fiber bundle including the fiber bundle widening step according to the present invention. During the step of forming the
図11は、本発明に係る繊維束拡幅工程を含む強化繊維束の製造方法における、サイジング剤塗布工程と乾燥工程を含むサイジング剤付与工程の別のタイミング例を示しており、繊維束100が繊維束拡幅工程301と分繊処理工程300とをこの順に経て分繊繊維束180に形成される工程中において、サイジング剤付与工程のサイジング剤塗布工程401が、繊維束拡幅工程301と分繊処理工程300との間で行われ、乾燥工程402が、分繊処理工程300よりも後に行われるパターンKが示されている。
FIG. 11 shows another timing example of the sizing agent applying step including the sizing agent application step and the drying step in the method for manufacturing a reinforcing fiber bundle including the fiber bundle widening step according to the present invention. In the process of forming the
このように、本発明に係る強化繊維束の製造方法においては、各種のタイミングでサイジング剤を付与することが可能である。 Thus, in the method for producing a reinforcing fiber bundle according to the present invention, it is possible to apply the sizing agent at various timings.
本発明の繊維強化熱可塑性樹脂成形材料を構成するチョップド強化繊維束の平均束幅は0.03mm以上が好ましく、0.05mm以上がより好ましく、0.07mm以上がさらに好ましい。0.03mm未満の場合、成形材料の流動性に劣る懸念がある。繊維強化熱可塑性樹脂成形材料を構成する強化繊維束の平均束幅は3mm以下が好ましく、2mm以下がより好ましく、1mm以下がさらに好ましい。3mmを超える場合、成形品の力学特性が劣る懸念がある。 The average bundle width of the chopped reinforcing fiber bundles constituting the fiber-reinforced thermoplastic resin molding material of the present invention is preferably 0.03 mm or more, more preferably 0.05 mm or more, and still more preferably 0.07 mm or more. If it is less than 0.03 mm, there is a concern that the fluidity of the molding material may be poor. The average bundle width of the reinforcing fiber bundles constituting the fiber-reinforced thermoplastic resin molding material is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less. If it exceeds 3 mm, there is a concern that the mechanical properties of the molded product may deteriorate.
本発明で使用されるチョップド強化繊維束内の平均繊維数の上限は4,000本以下が好ましく、3,000本以下がより好ましく、2,000本以下がさらに好ましい。この範囲であれば成形品の力学特性を高めることができる。また束内平均繊維数下限は50本以上が好ましく、100本以上がより好ましく、200本以上がさらに好ましい。この範囲であれば成形材料の流動性を高めることができる。平均繊維数の導出方法は後述する。 The upper limit of the average number of fibers in the chopped reinforcing fiber bundle used in the present invention is preferably 4,000 or less, more preferably 3,000 or less, and even more preferably 2,000 or less. Within this range, the mechanical properties of the molded article can be enhanced. The lower limit of the average number of fibers in the bundle is preferably 50 or more, more preferably 100 or more, and even more preferably 200 or more. Within this range, the fluidity of the molding material can be enhanced. A method for deriving the average number of fibers will be described later.
本発明に係る、サイジング剤塗布後のチョップド強化繊維束を水へ浸漬する前の幅をW3、強化繊維束を25℃の水に、5分間浸漬した後、取り出し、1分間水を切った後における幅をW4とすると、強化繊維束の幅変化率W4/W3は0.6以上が好ましく、0.7以上がより好ましく、0.8以上がさらに好ましい。強化繊維束の幅変化率W4/W3が0.6より小さいと強化繊維束に付着されているサイジング剤の水可溶の物性が残っていることにより、繊維束が再凝集することがあり、再凝集すると、最適な単糸数に調整された繊維束の形態を保持することが困難になる。最適な単糸数に調整された繊維束の形態に保持できないと、最適な形態の中間基材にすることができず、成形の際の流動性と成形品の力学特性をバランスよく発現させることが困難となる。また幅変化率W4/W3は1.1以下であることが好ましい。幅変化率W4/W3が1.1を超えると繊維束の柔軟性が欠けてきて硬くなりすぎ、ボビンの巻き取り、巻き出しがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維束形態が得られない可能性が生じる。強化繊維束の幅変化率W4/W3の導出方法は後述する。 According to the present invention, the width of the chopped reinforcing fiber bundle after application of the sizing agent before being immersed in water is W3, and the reinforcing fiber bundle is immersed in water at 25 ° C. for 5 minutes, taken out, and drained for 1 minute. Assuming that the width of the reinforcing fiber bundle is W4, the width change rate W4/W3 of the reinforcing fiber bundle is preferably 0.6 or more, more preferably 0.7 or more, and still more preferably 0.8 or more. If the width change rate W4/W3 of the reinforcing fiber bundle is less than 0.6, the water-soluble physical properties of the sizing agent attached to the reinforcing fiber bundle may remain, causing the fiber bundle to reaggregate. Reaggregation makes it difficult to maintain the shape of the fiber bundle adjusted to the optimum number of single yarns. If it is not possible to maintain the form of a fiber bundle adjusted to the optimum number of single yarns, it is not possible to obtain an optimum form of the intermediate base material, and it is impossible to develop fluidity during molding and the mechanical properties of the molded product in a well-balanced manner. becomes difficult. Also, the width change rate W4/W3 is preferably 1.1 or less. If the width change rate W4/W3 exceeds 1.1, the fiber bundle lacks flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, there is a possibility that single filament splitting occurs during cutting, and an ideal chopped fiber bundle shape cannot be obtained. A method for deriving the width change rate W4/W3 of the reinforcing fiber bundle will be described later.
本発明において、チョップド繊維束の束状集合体に含浸するマトリックス熱可塑性樹脂としては特に限定されず、例えば、ポリアミド樹脂、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。特に、上記熱可塑性樹脂としてポリアミド系樹脂を使用することが好ましく、さらにポリアミドに無機系の酸化防止剤を配合させることが好ましい。本発明に用いる熱可塑性ポリアミド樹脂としては、例えば、環状ラクタムの開環重合またはω-アミノカルボン酸の重縮合で得られるナイロン6、ナイロン11、ナイロン12やジアミンとジカルボン酸の重縮合で得られるナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロンMFD6、2種以上のジアミンとジカルボン酸の重縮合で得られるナイロン66・6・6I、ナイロン66・6・12などの共重合ナイロンなどが好適に使用することができる。特にナイロン6、66、610は機械的特性とコストの観点から好ましい。
In the present invention, the matrix thermoplastic resin impregnated into the bundle-like aggregate of chopped fiber bundles is not particularly limited, and examples thereof include polyamide resin, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate ( PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer, vinyl chloride, fluororesins such as polytetrafluoroethylene, and silicone. In particular, it is preferable to use a polyamide-based resin as the thermoplastic resin, and it is preferable to blend an inorganic antioxidant with the polyamide. The thermoplastic polyamide resin used in the present invention includes, for example,
また、本発明に用いるハロゲン化銅あるいはその誘導体としては、ヨウ化銅、臭化銅、塩化銅、メルカプトベンズイミダゾールとヨウ化銅との錯塩などが挙げられる。なかでもヨウ化銅、メルカプトベンズイミダゾールとヨウ化銅との錯塩を好適に使用できる。ハロゲン化銅あるいはその誘導体の添加量としては、熱可塑性ポリアミド樹脂100重量部に対し0.001~5重量部の範囲にあることが好ましい。添加量が0.001部未満では予熱時の樹脂分解や発煙、臭気を抑えることができず、5重量部以上では改善効果の向上が見られなくなる。更に0.002~1重量部が熱安定化効果とコストのバランスから好ましい。 Copper halides or derivatives thereof used in the present invention include copper iodide, copper bromide, copper chloride, complex salts of mercaptobenzimidazole and copper iodide, and the like. Among them, copper iodide and a complex salt of mercaptobenzimidazole and copper iodide can be preferably used. The amount of copper halide or its derivative to be added is preferably in the range of 0.001 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic polyamide resin. If the amount added is less than 0.001 part, resin decomposition, smoke and odor during preheating cannot be suppressed, and if the amount is 5 parts by weight or more, the improvement effect cannot be improved. Furthermore, 0.002 to 1 part by weight is preferable from the balance between the heat stabilization effect and the cost.
本発明において、チョップド繊維束の束状集合体にマトリックス樹脂を含浸する方法は特に限定するものではなく、上記熱可塑性樹脂を含浸する方法を例示すると、熱可塑性樹脂繊維を含有する束状集合体を作製し、束状集合体に含まれる熱可塑性樹脂繊維をそのままマトリックス樹脂として使用してもかまわないし、熱可塑性樹脂繊維を含まない束状集合体を原料として用い、繊維強化熱可塑性樹脂成形材料を製造する任意の段階でマトリックス樹脂を含浸してもかまわない。 In the present invention, the method for impregnating the matrix resin into the bundle aggregate of chopped fiber bundles is not particularly limited. and the thermoplastic resin fibers contained in the bundle-like aggregate can be used as it is as a matrix resin, or a bundle-like aggregate that does not contain thermoplastic resin fibers can be used as a raw material to produce a fiber-reinforced thermoplastic resin molding material. may be impregnated with the matrix resin at any stage during the production of the
また、熱可塑性樹脂繊維を含有する束状集合体を原料として用いる場合であっても、繊維強化熱可塑性樹脂成形材料を製造する任意の段階でマトリックス樹脂を含浸することもできる。このような場合、熱可塑性樹脂繊維を構成する樹脂とマトリックス樹脂は同一の樹脂であってもかまわないし、異なる樹脂であってもかまわない。熱可塑性樹脂繊維を構成する樹脂とマトリックス樹脂が異なる場合は、両者は相溶性を有するか、あるいは、親和性が高い方が好ましい。 Moreover, even when a bundle-like assembly containing thermoplastic resin fibers is used as a raw material, it is possible to impregnate the matrix resin at any stage during the production of the fiber-reinforced thermoplastic resin molding material. In such a case, the resin constituting the thermoplastic resin fiber and the matrix resin may be the same resin or different resins. When the resin constituting the thermoplastic resin fiber and the matrix resin are different, it is preferable that the two have compatibility or a high affinity.
繊維強化熱可塑性樹脂成形材料を製造するに際し、束状集合体への、マトリックス樹脂である熱可塑性樹脂の含浸を、含浸プレス機を用いて実施することができる。プレス機としてはマトリックス樹脂の含浸に必要な温度、圧力を実現できるものであれば特に制限はなく、上下する平面状のプラテンを有する通常のプレス機や、1対のエンドレススチールベルトが走行する機構を有するいわゆるダブルベルトプレス機を用いることができる。かかる含浸工程においてはマトリックス樹脂を、フィルム、不織布又は織物等のシート状とした後、不連続繊維マットと積層し、その状態で上記プレス機等を用いてマトリックス樹脂を溶融・含浸することができるし、粒子状のマトリックス樹脂を束状集合体上に散布し積層体としてもよいし、もしくはチョップド繊維束を散布する際に同時に散布し、束状集合体内部に混ぜてもよい。 In the production of the fiber-reinforced thermoplastic resin molding material, impregnation of the thermoplastic resin, which is the matrix resin, into the bundle aggregate can be carried out using an impregnation press. The press machine is not particularly limited as long as it can achieve the temperature and pressure required for impregnation with the matrix resin, and a normal press machine having a flat platen that moves up and down, or a mechanism in which a pair of endless steel belts run. A so-called double belt press can be used. In the impregnation step, the matrix resin can be formed into a sheet such as a film, nonwoven fabric, or woven fabric, laminated with a discontinuous fiber mat, and in this state, the matrix resin can be melted and impregnated using the press machine or the like. Alternatively, a matrix resin in the form of particles may be dispersed on the bundle-like aggregate to form a laminate, or the chopped fiber bundle may be dispersed at the same time and mixed inside the bundle-like aggregate.
繊維強化樹脂成形材料に占める強化繊維の体積含有量としては、全体体積の20体積%以上が好ましく、25体積%以上がより好ましく、30体積%以上がさらに好ましい。強化繊維の体積含有量が20体積%未満になると、繊維強化樹脂成形材料の力学特性も低下する傾向にある。一方、また、繊維強化樹脂成形材料に占める強化繊維の体積含有量は70体積%以下が好ましく、65体積%以下がより好ましく、60体積%以下がさらに好ましい。強化繊維の体積含有量が70体積%を超えると、繊維強化樹脂成形材料の力学特性は向上しやすいものの、成形性が低下する傾向にある。 The volume content of the reinforcing fibers in the fiber-reinforced resin molding material is preferably 20% by volume or more, more preferably 25% by volume or more, and even more preferably 30% by volume or more. When the volume content of reinforcing fibers is less than 20% by volume, the mechanical properties of the fiber-reinforced resin molding material tend to deteriorate. On the other hand, the volume content of reinforcing fibers in the fiber-reinforced resin molding material is preferably 70% by volume or less, more preferably 65% by volume or less, and even more preferably 60% by volume or less. If the volume content of the reinforcing fibers exceeds 70% by volume, the mechanical properties of the fiber-reinforced resin molding material tend to improve, but the moldability tends to deteriorate.
次に、本発明の実施例、比較例について説明する。なお、本発明は本実施例や比較例によって何ら制限されるものではない。 Next, examples of the present invention and comparative examples will be described. It should be noted that the present invention is not limited at all by these examples and comparative examples.
(1)使用原料
・強化繊維束(1):炭素繊維束(ZOLTEK社製“PX35”、単糸数50,000本、“13”(エポキシ)サイジング剤、サイジング剤付着量1.5重量%)を用いた。
・強化繊維束(2):炭素繊維束(ZOLTEK社製“PX35”、単糸数50,000本、サイジング剤なし)を用いた。
・強化繊維束(3):ガラス繊維束(日東紡績製240TEX、単糸数1,600本)を用いた。
・強化繊維束(4):炭素繊維束(ZOLTEK社製“PX35”、単糸数50,000本、サイジング剤なし)を用いた。
・樹脂シート(1): ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001)からなるポリアミドマスターバッチを用いて、目付150g/m2のシートを作製した。
・樹脂シート(2): 未変性ポリプロピレン樹脂(プライムポリマー(株)社製、“プライムポリプロ”(登録商標)J106MG)90質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製、“アドマー”(登録商標)QE800)10質量%とからなるポリプロピレンマスターバッチを用いて、シートを作製した。
・サイジング剤(1): 水溶性ポリアミド(東レ(株)社製、“T-70”)を用いた。
・サイジング剤(2): 水溶性ポリアミド(東レ(株)社製、“A-90”)を用いた。
・サイジング剤(3): 水溶性ポリアミド(東レ(株)社製、“P-70”)を用いた。
・サイジング剤(4): 水溶性ポリアミド(東レ(株)社製、“P-95”)を用いた。(1) Raw material used/reinforced fiber bundle (1): Carbon fiber bundle (“PX35” manufactured by ZOLTEK, number of single yarns: 50,000, “13” (epoxy) sizing agent, amount of sizing agent adhered: 1.5% by weight) was used.
- Reinforcing fiber bundle (2): A carbon fiber bundle (“PX35” manufactured by ZOLTEK, 50,000 single yarns, no sizing agent) was used.
- Reinforcing fiber bundle (3): A glass fiber bundle (240TEX manufactured by Nitto Boseki, number of single yarns: 1,600) was used.
· Reinforcing fiber bundle (4): A carbon fiber bundle ("PX35" manufactured by ZOLTEK, 50,000 single yarns, no sizing agent) was used.
Resin sheet (1): A sheet having a basis weight of 150 g/m 2 was produced using a polyamide masterbatch made of
・ Resin sheet (2): 90% by mass of unmodified polypropylene resin (“Prime Polypro” (registered trademark) J106MG, manufactured by Prime Polymer Co., Ltd.) and acid-modified polypropylene resin (“ADMER”, manufactured by Mitsui Chemicals, Inc.) (Registered Trademark) QE800) A sheet was produced using a polypropylene masterbatch consisting of 10% by mass.
- Sizing agent (1): A water-soluble polyamide ("T-70" manufactured by Toray Industries, Inc.) was used.
- Sizing agent (2): A water-soluble polyamide (“A-90” manufactured by Toray Industries, Inc.) was used.
- Sizing agent (3): A water-soluble polyamide ("P-70" manufactured by Toray Industries, Inc.) was used.
- Sizing agent (4): A water-soluble polyamide ("P-95" manufactured by Toray Industries, Inc.) was used.
(2)サイジング剤または水溶性ポリアミドの付着量の測定方法
サイジング剤または水溶性ポリアミドが付着している炭素繊維束を5gほど採取し、耐熱製の容器に投入した。次にこの容器を80℃、真空条件下で24時間乾燥し、吸湿しないように注意しながら室温まで冷却後、秤量した炭素繊維の重量をm1(g)とし、続いて容器ごと、窒素雰囲気中、450℃で灰化処理を行った。吸湿しないように注意しながら室温まで冷却し、秤量した炭素繊維の重量をm2(g)とした。以上の処理を経て、炭素繊維へのサイジング剤または水溶性ポリアミドの付着量を次式により求めた。測定は10本の繊維束について行い、その平均値を算出した。
付着量(重量%)=100×{(m1-m2)/m1}(2) Method for measuring adhesion amount of sizing agent or water-soluble polyamide About 5 g of carbon fiber bundles to which the sizing agent or water-soluble polyamide was adhered were sampled and put into a heat-resistant container. Next, this container is dried at 80° C. under vacuum conditions for 24 hours, cooled to room temperature while being careful not to absorb moisture, and the weight of the weighed carbon fiber is set to m1 (g), and then the container is placed in a nitrogen atmosphere. , and 450°C. The carbon fiber was cooled to room temperature while taking care not to absorb moisture, and the weight of the weighed carbon fiber was taken as m2 (g). After the above treatment, the adhesion amount of the sizing agent or water-soluble polyamide to the carbon fiber was determined by the following formula. Ten fiber bundles were measured, and the average value was calculated.
Adhesion amount (% by weight) = 100 × {(m1-m2) / m1}
(3)ドレープ値の測定
30cmに切断した強化繊維束をまっすぐ伸ばして平らな台に載せ、湾曲したり撚れたりしないことを確認する。湾曲あるいは撚れが発生した場合、100℃以下の加熱、あるいは、0.1MPa以下の加圧によって除くことが好ましい。図12に示すように、23±5℃の雰囲気下、直方体の台の端に、30cmに切断した強化繊維束を固定し、この時、強化繊維束は台の端から25cm突き出るように固定した。すなわち、強化繊維束の端から5cmの部分が、台の端に来るようにした。この状態で5分間静置した後、台に固定していない方の強化繊維束の先端と、台の側面との最短距離を測定し、ドレープ値D1とした。測定した前記強化繊維束を25℃の水に、5分間浸漬した後、取り出し、水を切った。次に強化繊維束を80℃、真空条件下で24時間乾燥し、絶乾した後、前記方法と同様の方法で浸漬処理後ドレープ値D2とした。測定本数はn=5とし、平均値を採用した。(3) Measurement of drape value A reinforcing fiber bundle cut to 30 cm is stretched straight and placed on a flat table to confirm that it is neither curved nor twisted. If bending or twisting occurs, it is preferably removed by heating at 100° C. or less or applying pressure at 0.1 MPa or less. As shown in FIG. 12, in an atmosphere of 23±5° C., a reinforcing fiber bundle cut to 30 cm was fixed to the end of a rectangular parallelepiped stand, and at this time, the reinforcing fiber bundle was fixed so as to protrude from the end of the stand by 25 cm. . That is, a portion of 5 cm from the edge of the reinforcing fiber bundle was positioned at the edge of the table. After standing in this state for 5 minutes, the shortest distance between the end of the reinforcing fiber bundle that was not fixed to the table and the side surface of the table was measured and taken as the drape value D1. After the measured reinforcing fiber bundle was immersed in water at 25° C. for 5 minutes, it was taken out and the water was drained. Next, the reinforcing fiber bundle was dried at 80° C. under vacuum conditions for 24 hours, and after being completely dried, the drape value after dipping treatment was determined as D2 by the same method as described above. The number of measurements was set to n=5, and the average value was adopted.
(4)硬度の測定
強化繊維束の硬度は、JIS L-1096 E法(ハンドルオメータ法)に準じ、HANDLE-O-Meter(大栄科学精機製作所製「CAN-1MCB」)を用いて測定した。硬度測定に用いる試験片の長さは10cm、幅はフィラメント数1,700本~550本で1mmとなるように強化繊維束を開繊調整した。また、スリット幅は20mmに設定した。このスリット溝が設けられた試験台に試験片となる強化繊維束を1本乗せ、ブレードにて溝の所定深さ(8mm)まで試験片を押し込むときに発生する抵抗力(g)を測定した。強化繊維束の硬度は3回の測定の平均値から得た。(4) Measurement of hardness The hardness of the reinforcing fiber bundle was measured using a HANDLE-O-Meter (manufactured by Daiei Kagaku Seiki Seisakusho "CAN-1MCB") according to the JIS L-1096 E method (handle ometer method). . The reinforcing fiber bundle was opened and adjusted so that the length of the test piece used for hardness measurement was 10 cm, the number of filaments was 1,700 to 550, and the width was 1 mm. Moreover, the slit width was set to 20 mm. A reinforcing fiber bundle as a test piece was placed on the test table provided with the slit groove, and the resistance force (g) generated when the test piece was pushed into the groove to a predetermined depth (8 mm) with a blade was measured. . The hardness of the reinforcing fiber bundle was obtained from the average value of three measurements.
(5)サイジング剤が塗布された強化繊維束の幅変化率測定
強化繊維束の分繊処理を施す前の幅30mmから85mmに拡幅され、サイジング剤が塗布された強化繊維束を長さ230mmにカットし、その一端の端から30mmの位置をクリップで挟み、逆端から100mmの間で幅を5点測定し、その平均値を浸漬前におけるW1とした。その後、25℃の水に、5分間浸漬した後、取り出し、クリップで挟んだ側が上に来るように吊るした状態で1分間水を切った後、クリップで挟んだ逆端から100mmの間における幅を5点測定し、その平均値を浸漬後におけるW2とした。以上の処理を経て、樹脂含有強化繊維束の幅変化率を次式により求めた。
幅変化率=W2/W1(5) Measurement of width change rate of reinforcing fiber bundle coated with sizing agent It was cut and clipped at a position of 30 mm from one end, and the width was measured at 5 points between 100 mm from the opposite end, and the average value was taken as W1 before immersion. Then, after immersing it in water at 25°C for 5 minutes, take it out, hang it with the clipped side facing up, drain the water for 1 minute, and then the width between the opposite end of the clip and 100 mm was measured at 5 points, and the average value was taken as W2 after immersion. Through the above processing, the width change rate of the resin-containing reinforcing fiber bundle was determined by the following equation.
Width change rate = W2/W1
(6)チョップド繊維束の幅変化率測定
強化繊維束をカットし得られた、チョップド繊維束の幅を顕微鏡を用いて測定し、浸漬前におけるW3とした。その後、25℃の水に、5分間浸漬した後、ピンセットを用いて取り出し、形態がずれないように慎重にキムワイプ上に配置し、1分間水を切った後、幅を測定し、浸漬後におけるW4とした。以上の処理を経て、チョップド繊維束の幅変化率を次式により求めた。
幅変化率=W4/W3(6) Measurement of width change rate of chopped fiber bundle The width of the chopped fiber bundle obtained by cutting the reinforcing fiber bundle was measured using a microscope, and was defined as W3 before immersion. After that, after immersing in water at 25 ° C. for 5 minutes, take it out with tweezers, carefully place it on Kimwipe so that the shape does not shift, drain the water for 1 minute, measure the width, and measure the width after immersion. W4. After the above processing, the width change rate of the chopped fiber bundle was determined by the following equation.
Width change rate = W4/W3
(7)Wf(繊維強化樹脂成形材料中の強化繊維の重量含有率)
繊維強化樹脂成形材料から約2gのサンプルを切り出し、その質量を測定した。その後、サンプルを500℃に加熱した電気炉の中で1時間加熱してマトリックス樹脂等の有機物を焼き飛ばした。室温まで冷却してから、残った強化繊維の質量を測定した。強化繊維の質量に対する、マトリックス樹脂等の有機物を焼き飛ばす前のサンプルの質量に対する比率を測定し、強化繊維の重量含有率Wf(重量%)を算出した。(7) Wf (weight content of reinforcing fiber in fiber-reinforced resin molding material)
About 2 g of a sample was cut out from the fiber-reinforced resin molding material, and its mass was measured. After that, the sample was heated in an electric furnace heated to 500° C. for 1 hour to burn off the organic matter such as the matrix resin. After cooling to room temperature, the mass of the remaining reinforcing fibers was measured. The weight ratio Wf (% by weight) of the reinforcing fiber was calculated by measuring the ratio of the mass of the sample before burning off the organic matter such as the matrix resin to the mass of the reinforcing fiber.
(8)力学特性の評価方法
繊維強化樹脂成形材料を後記する方法により成形し、500×400mmの平板成形品を得た。平板長手方向を0°とし、得られた平板より0°と90°方向から、それぞれ100×25×2mmの試験片を16片(合計32片)を切り出し、JIS K7074(1988年)に準拠し、曲げ強度を求めた。曲げ強度が350MPa以上をA、350MPa未満をBと判定した。(8) Method for evaluating mechanical properties A fiber-reinforced resin molding material was molded by the method described below to obtain a flat plate molding of 500 x 400 mm. The longitudinal direction of the flat plate is set at 0°, and 16 test pieces of 100 × 25 × 2 mm are cut from the obtained flat plate from the 0° and 90° directions (total of 32 pieces). , the bending strength was determined. A bending strength of 350 MPa or more was evaluated as A, and a bending strength of less than 350 MPa was evaluated as B.
(9)流動性試験(スタンピング成形)
寸法150mm×150mm×2mmの繊維強化樹脂成形材料を2枚重ねた状態で、基材中心温度(二枚重ねた間の温度)が260℃となるように予熱後、150℃に昇温したプレス盤に配し、10MPaで30秒間加圧した。この圧縮後の面積A2(mm2)と、プレス前の繊維強化樹脂成形材料の面積A1(mm2)を測定し、A2/A1×100を流動率(%)とした。流動率が250%以上をA、250%未満をBと判定した。
・樹脂シート2の場合
寸法150mm×150mm×2mmの繊維強化樹脂成形材料を2枚重ねた状態で、基材中心温度(二枚重ねた間の温度)が220℃となるように予熱後、120℃に昇温したプレス盤に配し、10MPaで30秒間加圧した。この圧縮後の面積A2(mm2)と、プレス前の基材の面積A1(mm2)を測定し、A2/A1×100を流動率(%)とした。流動率が200%未満をC、200%以上300%未満をB、300%以上をAと判定した。(9) Fluidity test (stamping molding)
Two sheets of fiber reinforced resin molding material with dimensions of 150 mm × 150 mm × 2 mm are stacked, and after preheating so that the temperature at the center of the base material (the temperature between the two sheets) is 260 ° C., the press platen heated to 150 ° C. and pressurized at 10 MPa for 30 seconds. The area A2 (mm 2 ) after compression and the area A1 (mm 2 ) of the fiber-reinforced resin molding material before pressing were measured, and A2/A1×100 was taken as the flow rate (%). A flow rate of 250% or more was rated as A, and a flow rate of less than 250% was rated as B.
・In the case of
(10)工程通過性
強化繊維束を分繊する工程、および、分繊した強化繊維束を連続でカットし散布する工程通過性について下記の通り判定した。
A:強化繊維束を分繊できる。分繊した強化繊維束をボビンから巻き出し、問題なくカット、散布できる。
B:強化繊維束を分繊できる。しかし、分繊した強化繊維束がボビンやカッター部で10回に1~7回、巻き付く。
C:強化繊維束を分繊できない。あるいは、分繊繊維できるが、分繊した強化繊維束がボビンやカッター部で10回に8回以上巻き付く。(10) Process passability The process passability of separating the reinforcing fiber bundle and continuously cutting and scattering the separated reinforcing fiber bundle was evaluated as follows.
A: The reinforcing fiber bundle can be separated. The separated reinforcing fiber bundle can be unwound from the bobbin, cut and scattered without problems.
B: The reinforcing fiber bundle can be separated. However, the separated reinforcing fiber bundle winds around the bobbin or
C: The reinforcing fiber bundle cannot be separated. Alternatively, split fibers can be formed, but the split reinforcing fiber bundle is wound around the bobbin or the cutter part eight times or more out of ten times.
(実施例1)
強化繊維束(1)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、50mm幅の幅規制ロールを通すことで50mmへ拡幅した強化繊維束を得た。(Example 1)
The reinforcing fiber bundle (1) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll with a width of 50 mm. A reinforcing fiber bundle widened to 50 mm was obtained.
次に2次サイジング剤(サイジング剤(1))を精製水で希釈した樹脂処理液に、拡幅した強化繊維束を連続で浸漬させて、次いで250℃のホットローラと250℃の乾燥炉(大気雰囲気下)を通させ、1.5分間の熱処理を施した。強化繊維束のサイジング剤付着量は0.1重量%であった。なお、これは1次サイジング剤を含まない総付着量である。 Next, the widened reinforcing fiber bundle is continuously immersed in a resin treatment liquid obtained by diluting a secondary sizing agent (sizing agent (1)) with purified water, and then hot rollers at 250°C and a drying oven at 250°C (atmospheric atmosphere) and heat-treated for 1.5 minutes. The sizing agent adhesion amount of the reinforcing fiber bundle was 0.1% by weight. It should be noted that this is the total deposition amount not including the primary sizing agent.
得られた強化繊維束に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を強化繊維束に対して、間欠的に抜き挿しした。この時、一定速度10m/分で走行する強化繊維束に対して、3秒間分繊処理手段を突き刺し、0.2秒間で分繊処理手段を抜き、再度突き刺す工程を繰り返し行なった。表1に示す通り、得られたれ繊維束幅W3は1mm程度となった。 An iron plate for fiber separation treatment having a projecting shape of 0.2 mm in thickness, 3 mm in width, and 20 mm in height was placed on the obtained reinforcing fiber bundle at equal intervals of 1 mm in the width direction of the reinforcing fiber bundle. A set fiber separation treatment means was prepared. This fiber separating means was intermittently inserted into and removed from the reinforcing fiber bundle. At this time, the step of piercing the reinforcing fiber bundle traveling at a constant speed of 10 m/min with the separating means for 3 seconds, pulling out the separating means for 0.2 seconds, and piercing again was repeated. As shown in Table 1, the obtained fiber bundle width W3 was about 1 mm.
続いて、得られた強化繊維束を、ロータリーカッターへ連続で投入して繊維長25mm、切断角度20°に切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は250g/m2であった。Subsequently, the obtained reinforcing fiber bundles are continuously put into a rotary cutter, cut at a fiber length of 25 mm and at a cutting angle of 20°, and scattered so as to be uniformly dispersed, resulting in a discontinuous fiber having an isotropic fiber orientation. A fibrous nonwoven fabric was obtained. The basis weight of the obtained discontinuous fiber nonwoven fabric was 250 g/m 2 .
次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように、不連続繊維不織布5枚と樹脂シート(1)10枚(樹脂シートを不織布最表層に1枚、不織布の層間に2枚配置。)を積層した後に、全体をステンレス板で挟み、240℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mm、強化繊維重量含有率46重量%の繊維強化樹脂成形材料を得た。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。 Next, 5 non-continuous fiber non-woven fabrics and 10 resin sheets (1) were prepared so that the weight ratio of the discontinuous-fiber non-woven fabric and the resin sheet (1) was 45:55. After laminating two sheets of nonwoven fabric between layers, the whole was sandwiched between stainless steel plates, preheated at 240° C. for 90 seconds, and hot-pressed at 240° C. for 180 seconds while applying a pressure of 2.0 MPa. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm and a reinforcing fiber weight content of 46% by weight. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例2)
サイジング剤(1)の付着量を2重量%とした以外は実施例1と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 2)
Evaluation was performed in the same manner as in Example 1, except that the amount of sizing agent (1) applied was 2% by weight. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例3)
強化繊維束(1)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、30mm幅の幅規制ロールを通すことで30mmへ拡幅した拡幅繊維束を得た。(Example 3)
The reinforcing fiber bundle (1) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll of 30 mm width. A widened fiber bundle having a width of 30 mm was obtained.
拡幅幅を30mmとする以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。 Evaluation was performed in the same manner as in Example 2, except that the widening width was 30 mm. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例4)
強化繊維束(1)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、90mm幅の幅規制ロールを通すことで85mmへ拡幅した拡幅繊維束を得た。(Example 4)
A reinforcing fiber bundle (1) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll of 90 mm width. A widened fiber bundle having a width of 85 mm was obtained.
拡幅幅を85mmとする以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。 Evaluation was performed in the same manner as in Example 2, except that the widened width was 85 mm. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例5)
2次サイジング剤の熱処理温度、時間を350℃、16分とすること以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 5)
Evaluation was performed in the same manner as in Example 2, except that the secondary sizing agent was heat treated at a temperature of 350° C. for 16 minutes. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例6)
2次サイジング剤のサイジング剤(1)をサイジング剤(2)とした以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 6)
Evaluation was performed in the same manner as in Example 2 except that the sizing agent (1) of the secondary sizing agent was changed to the sizing agent (2). Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例7)
2次サイジング剤のサイジング剤(1)をサイジング剤(3)とした以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 7)
Evaluation was performed in the same manner as in Example 2 except that the sizing agent (1) of the secondary sizing agent was changed to the sizing agent (3). Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例8)
2次サイジング剤のサイジング剤(1)をサイジング剤(4)とした以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 8)
Evaluation was performed in the same manner as in Example 2 except that the sizing agent (1) of the secondary sizing agent was changed to the sizing agent (4). Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(比較例1)
2次サイジング剤を付与しない以外は実施例1と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Comparative example 1)
Evaluation was performed in the same manner as in Example 1 except that the secondary sizing agent was not applied. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例9)
2次サイジング剤の熱処理温度、時間を100℃、0.3分とすること以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Example 9)
Evaluation was performed in the same manner as in Example 2 except that the heat treatment temperature and time of the secondary sizing agent were set to 100° C. and 0.3 minutes. Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(比較例2)
強化繊維束(1)を強化繊維束(2)にすること以外は実施例2と同様にして評価を行った。強化繊維束の特性、プロセス通過性や力学特性、流動性の結果を表1に示す。(Comparative example 2)
Evaluation was performed in the same manner as in Example 2 except that the reinforcing fiber bundle (1) was changed to the reinforcing fiber bundle (2). Table 1 shows the results of the properties of the reinforcing fiber bundle, process passability, mechanical properties, and fluidity.
(実施例10)
強化繊維束(1)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで39mm幅へ拡幅した繊維束を得た。(Example 10)
The reinforcing fiber bundle (1) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 39 mm. A widened fiber bundle was obtained.
サイジング剤(1)を水に溶解させた母液を調整し、4.1重量%の付着量になるよう、浸漬法により架橋剤であるエポキシサイジング剤を含む強化繊維束(1)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(1)の単位幅あたりの繊維数1,290本/mm、束厚み0.07mm、ドレープ値135mm、束硬度78gであった。 A mother liquor in which the sizing agent (1) is dissolved in water is prepared, and applied to the reinforcing fiber bundle (1) containing the epoxy sizing agent, which is a cross-linking agent, by an immersion method so as to have an adhesion amount of 4.1% by weight, Drying was performed with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (1) was 1,290/mm, the bundle thickness was 0.07 mm, the drape value was 135 mm, and the bundle hardness was 78 g.
得られたサイジング剤付与済み拡幅強化繊維束(1)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、束内平均繊維数が1,120本、平均束幅が0.6mmの強化繊維束(1)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm, and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (1) to which the sizing agent was applied, in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the piercing operation was repeated to obtain a reinforcing fiber bundle (1) having an average number of fibers in the bundle of 1,120 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(1)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (1) is continuously inserted into a rotary cutter to cut the fiber bundle into 15 mm long fiber bundles, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例11[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで32mm幅へ拡幅した繊維束を得た。
(Example 11 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 32 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(1)の比0.22となるように水に溶解させた母液を調整し、3.2重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,540本/mm、束厚み0.08mm、ドレープ値138mm、束硬度81gであった。 A mother liquor dissolved in water was adjusted so that the ratio of melamine, which is a cross-linking agent, to the additional sizing agent (1) was 0.22, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,540/mm, the bundle thickness was 0.08 mm, the drape value was 138 mm, and the bundle hardness was 81 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が990本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 990 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(2)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、240℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、210℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (2) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 240° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 210° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例12[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで34mm幅へ拡幅した繊維束を得た。
(Example 12 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 34 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(2)の比0.04となるように水に溶解させた母液を調整し、4.0重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,480本/mm、束厚み0.08mm、ドレープ値142mm、束硬度89gであった。 A mother liquor dissolved in water is adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (2) is 0.04, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,480/mm, the bundle thickness was 0.08 mm, the drape value was 142 mm, and the bundle hardness was 89 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,030本、平均束幅が0.7mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,030 and an average bundle width of 0.7 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例13[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで41mm幅へ拡幅した繊維束を得た。
(Example 13 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 41 mm. A widened fiber bundle was obtained.
架橋剤であるフェノールと追サイジング剤(2)の比0.38となるように水に溶解させた母液を調整し、3.1重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,220本/mm、束厚み0.07mm、ドレープ値233mm、束硬度195gであった。 A mother liquor dissolved in water was adjusted so that the ratio of phenol, which is a cross-linking agent, to the additional sizing agent (2) was 0.38, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,220/mm, the bundle thickness was 0.07 mm, the drape value was 233 mm, and the bundle hardness was 195 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,880本、平均束幅が0.4mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to split the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,880 and an average bundle width of 0.4 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例14[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで37mm幅へ拡幅した繊維束を得た。
(Example 14 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 37 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(2)の比0.04となるように水に溶解させた母液を調整し、2.8重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,350本/mm、束厚み0.07mm、ドレープ値133mm、束硬度78gであった。 A mother liquor dissolved in water is adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (2) is 0.04, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,350/mm, the bundle thickness was 0.07 mm, the drape value was 133 mm, and the bundle hardness was 78 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が5,230本、平均束幅が3.4mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 5,230 and an average bundle width of 3.4 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例15[参考実施例])
強化繊維束(3)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで3mm幅へ拡幅した繊維束を得た。
(Example 15 [Reference Example] )
The reinforcing fiber bundle (3) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 3 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(2)の比0.22となるように水に溶解させた母液を調整し、3.3重量%の付着量になるよう、浸漬法により強化繊維束(3)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(3)の単位幅あたりの繊維数550本/mm、束厚み0.07mm、ドレープ値127mm、束硬度76gであった。 A mother liquor dissolved in water was adjusted so that the ratio of the cross-linking agent melamine and the additional sizing agent (2) was 0.22, and the reinforcing fiber bundle ( 3) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (3) was 550/mm, the bundle thickness was 0.07 mm, the drape value was 127 mm, and the bundle hardness was 76 g.
得られたサイジング剤付与済み拡幅強化繊維束(3)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(3)を分繊し、束内平均繊維数が410本、平均束幅が0.7mmの強化繊維束(3)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (3) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (3) to obtain a reinforcing fiber bundle (3) having an average number of fibers in the bundle of 410 and an average bundle width of 0.7 mm.
続いて、得られた強化繊維束(3)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(2)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、240℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、210℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (3) is continuously inserted into a rotary cutter to cut the fiber bundle into 15 mm fiber lengths, and the fiber bundle is dispersed so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (2) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 240° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 210° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例16[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで34mm幅へ拡幅した繊維束を得た。
(Example 16 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 34 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(3)の比0.22となるように水に溶解させた母液を調整し、5.5重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,480本/mm、束厚み0.08mm、ドレープ値180mm、束硬度123gであった。 A mother liquor dissolved in water is adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (3) is 0.22, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,480/mm, the bundle thickness was 0.08 mm, the drape value was 180 mm, and the bundle hardness was 123 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が930本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 930 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例17[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで28mm幅へ拡幅した繊維束を得た。
(Example 17 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 28 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(3)の比0.22となるように水に溶解させた母液を調整し、3.3重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,780本/mm、束厚み0.1mm、ドレープ値204mm、束硬度163gであった。 A mother liquor dissolved in water was adjusted so that the ratio of melamine, which is a cross-linking agent, to the additional sizing agent (3) was 0.22, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,780/mm, the bundle thickness was 0.1 mm, the drape value was 204 mm, and the bundle hardness was 163 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,540本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to split the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,540 and an average bundle width of 0.6 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例18[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで13mm幅へ拡幅した繊維束を得た。
(Example 18 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 13 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(4)の比0.22となるように水に溶解させた母液を調整し、4.7重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数3,940本/mm、束厚み0.21mm、ドレープ値243mm、束硬度220gであった。 A mother liquor dissolved in water was adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (4) was 0.22, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 3,940/mm, the bundle thickness was 0.21 mm, the drape value was 243 mm, and the bundle hardness was 220 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,120本、平均束幅が0.3mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,120 and an average bundle width of 0.3 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(2)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、240℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、210℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (2) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 240° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 210° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例19[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで11mm幅へ拡幅した繊維束を得た。
(Example 19 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 11 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(4)の比0.22となるように水に溶解させた母液を調整し、3.1重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数4,380本/mm、束厚み0.24mm、ドレープ値145mm、束硬度84gであった。 A mother liquor dissolved in water was adjusted so that the ratio of the cross-linking agent melamine and the additional sizing agent (4) was 0.22, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 4,380/mm, the bundle thickness was 0.24 mm, the drape value was 145 mm, and the bundle hardness was 84 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が930本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 930 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例20[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで36mm幅へ拡幅した繊維束を得た。
(Example 20 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 36 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(4)の比0.22となるように水に溶解させた母液を調整し、3.4重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、350℃のホットローラで11分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,380本/mm、束厚み0.07mm、ドレープ値136mm、束硬度80gであった。 A mother liquor dissolved in water is adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (4) is 0.22, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 350° C. for 11 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,380/mm, the bundle thickness was 0.07 mm, the drape value was 136 mm, and the bundle hardness was 80 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が2,330本、平均束幅が0.7mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to split the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 2,330 and an average bundle width of 0.7 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例21[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで33mm幅へ拡幅した繊維束を得た。
(Example 21 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 33 mm. A widened fiber bundle was obtained.
架橋剤であるユリアと追サイジング剤(4)の比0.22となるように水に溶解させた母液を調整し、2.9重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.2分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,520本/mm、束厚み0.08mm、ドレープ値54mm、束硬度28gであった。 A mother liquor dissolved in water is adjusted so that the ratio of urea, which is a cross-linking agent, to the additional sizing agent (4) is 0.22, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.2 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,520/mm, the bundle thickness was 0.08 mm, the drape value was 54 mm, and the bundle hardness was 28 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が2,110本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 2,110 and an average bundle width of 0.6 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例22[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで33mm幅へ拡幅した繊維束を得た。
(Example 22 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 33 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(2)の比0.01となるように水に溶解させた母液を調整し、3.6重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.2分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,510本/mm、束厚み0.08mm、ドレープ値46mm、束硬度21gであった。 A mother liquor dissolved in water was adjusted so that the ratio of melamine, which is a cross-linking agent, to the additional sizing agent (2) was 0.01, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.2 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,510/mm, the bundle thickness was 0.08 mm, the drape value was 46 mm, and the bundle hardness was 21 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,140本、平均束幅が0.7mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,140 and an average bundle width of 0.7 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例23[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで15mm幅へ拡幅した繊維束を得た。
(Example 23 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 15 mm. A widened fiber bundle was obtained.
架橋剤であるメラミンと追サイジング剤(2)の比0.04となるように水に溶解させた母液を調整し、3.8重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.2分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,440本/mm、束厚み0.08mm、ドレープ値35mm、束硬度24gであった。 A mother liquor dissolved in water was adjusted so that the ratio of the cross-linking agent melamine and the additional sizing agent (2) was 0.04, and the reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.2 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,440/mm, the bundle thickness was 0.08 mm, the drape value was 35 mm, and the bundle hardness was 24 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,280本、平均束幅が0.7mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,280 and an average bundle width of 0.7 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例24[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで34mm幅へ拡幅した繊維束を得た。
(Example 24 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 34 mm. A widened fiber bundle was obtained.
架橋剤であるフェノールと追サイジング剤(2)の比0.04となるように水に溶解させた母液を調整し、3.7重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.2分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,450本/mm、束厚み0.08mm、ドレープ値131mm、束硬度73gであった。 A mother liquor dissolved in water was adjusted so that the ratio of phenol, which is a cross-linking agent, to the additional sizing agent (2) was 0.04, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.2 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,450/mm, the bundle thickness was 0.08 mm, the drape value was 131 mm, and the bundle hardness was 73 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,180本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,180 and an average bundle width of 0.6 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(実施例25[参考実施例])
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで34mm幅へ拡幅した繊維束を得た。
(Example 25 [Reference Example] )
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 34 mm. A widened fiber bundle was obtained.
架橋剤であるフェノールと追サイジング剤(2)の比0.04となるように水に溶解させた母液を調整し、3.6重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.2分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,480本/mm、束厚み0.08mm、ドレープ値142mm、束硬度89gであった。 A mother liquor dissolved in water was adjusted so that the ratio of phenol, which is a cross-linking agent, to the additional sizing agent (2) was 0.04, and a reinforcing fiber bundle ( 4) and dried with a hot roller at 250° C. for 0.2 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,480/mm, the bundle thickness was 0.08 mm, the drape value was 142 mm, and the bundle hardness was 89 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が1,320本、平均束幅が0.02mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 1,320 and an average bundle width of 0.02 mm. .
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を繊維長15mmに切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維不織布を得た。得られた不連続繊維不織布の目付は0.25kg/m2であった。次に、不連続繊維不織布と樹脂シート(1)の重量比が45:55となるように積層した後に、全体をステンレス板で挟み、270℃で90秒間予熱後、2.0MPaの圧力をかけながら180秒間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの繊維強化樹脂成形材料を得た。この時、繊維強化樹脂成形材料の強化繊維重量含有率が46重量%になるように、樹脂シート作製の段階で樹脂の塗布量を調整した。得られた繊維強化樹脂成形材料の力学特性、流動性試験の評価を行った。結果を表2に示す。Subsequently, the obtained reinforcing fiber bundle (4) is continuously inserted into a rotary cutter to cut the fiber bundle into fiber lengths of 15 mm, and the fibers are scattered so as to be uniformly dispersed, so that the fiber orientation is isotropic. A discontinuous fiber nonwoven was obtained. The fabric weight of the obtained discontinuous fiber nonwoven fabric was 0.25 kg/m 2 . Next, after laminating so that the weight ratio of the discontinuous fiber nonwoven fabric and the resin sheet (1) is 45:55, the whole is sandwiched between stainless steel plates, preheated at 270° C. for 90 seconds, and then a pressure of 2.0 MPa is applied. It was hot-pressed at 240° C. for 180 seconds. Then, it was cooled to 50° C. under pressure to obtain a fiber-reinforced resin molding material having a thickness of 2 mm. At this time, the coating amount of the resin was adjusted at the stage of producing the resin sheet so that the weight content of the reinforcing fiber in the fiber-reinforced resin molding material was 46% by weight. The obtained fiber-reinforced resin molding material was evaluated for mechanical properties and fluidity test. Table 2 shows the results.
(比較例4)
強化繊維束(4)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで39mm幅へ拡幅した繊維束を得た。(Comparative Example 4)
The reinforcing fiber bundle (4) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 39 mm. A widened fiber bundle was obtained.
追サイジング剤(4)を水に溶解させた母液を調整し、2.7重量%の付着量になるよう、浸漬法により強化繊維束(4)に付与し、250℃のホットローラで0.5分間、乾燥を行った。表1に示す通り、強化繊維束(4)の単位幅あたりの繊維数1,270本/mm、束厚み0.07mm、ドレープ値112mm、束硬度38gであった。 A mother liquor is prepared by dissolving the additional sizing agent (4) in water, and is applied to the reinforcing fiber bundle (4) by an immersion method so as to have an adhesion amount of 2.7% by weight. Drying was carried out for 5 minutes. As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (4) was 1,270/mm, the bundle thickness was 0.07 mm, the drape value was 112 mm, and the bundle hardness was 38 g.
得られたサイジング剤付与済み拡幅強化繊維束(4)に対して、厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(4)を分繊し、束内平均繊維数が970本、平均束幅が0.6mmの強化繊維束(4)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.2 mm, a width of 3 mm and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (4) to which the sizing agent was applied in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (4) to obtain a reinforcing fiber bundle (4) having an average number of fibers in the bundle of 970 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(4)を、ロータリーカッターへ連続的に挿入して繊維束を切断しようとしたが、ボビンやカッター部への巻き付きが生じ成形材料を作製できなかった。 Subsequently, an attempt was made to continuously insert the obtained reinforcing fiber bundle (4) into a rotary cutter to cut the fiber bundle, but the fiber bundle was wound around the bobbin and the cutter, and a molding material could not be produced.
(比較例5)
強化繊維束(1)を、ワインダーを用いて一定速度10m/分で巻き出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで41mm幅へ拡幅した繊維束を得た。(Comparative Example 5)
The reinforcing fiber bundle (1) is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to a width of 41 mm. A widened fiber bundle was obtained.
表1に示す通り、強化繊維束(1)の単位幅あたりの繊維数1,230本/mm、束厚み0.07mm、ドレープ値54mm、束硬度27gであった。 As shown in Table 1, the number of fibers per unit width of the reinforcing fiber bundle (1) was 1,230/mm, the bundle thickness was 0.07 mm, the drape value was 54 mm, and the bundle hardness was 27 g.
得られたサイジング剤付与済み拡幅強化繊維束(1)に対して、厚み0.07mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して1mm等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を拡幅繊維束に対して、間欠的に抜き挿しし、分繊繊維束を得た。この時、分繊処理手段は一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段を突き刺し分繊処理区間を生成し、0.2秒間で分繊処理手段を抜き、再度突き刺す動作を繰り返し行い、拡幅された強化繊維束(1)を分繊し、束内平均繊維数が930本、平均束幅が0.6mmの強化繊維束(1)を得た。 An iron plate for fiber separation treatment having a protruding shape with a thickness of 0.07 mm, a width of 3 mm, and a height of 20 mm was placed on the obtained wide reinforcing fiber bundle (1) to which the sizing agent was applied, in the width direction of the reinforcing fiber bundle. A fiber separating means was set in parallel at regular intervals of 1 mm. This separating means was intermittently inserted into and removed from the widened fiber bundle to obtain a separated fiber bundle. At this time, the fiber separation processing means pierces the widened fiber bundle traveling at a constant speed of 10 m/min for 3 seconds to generate a fiber separation processing section, and pulls out the fiber separation processing means in 0.2 seconds. , and the operation of stabbing again was repeated to separate the widened reinforcing fiber bundle (1) to obtain a reinforcing fiber bundle (1) having an average number of fibers in the bundle of 930 and an average bundle width of 0.6 mm.
続いて、得られた強化繊維束(1)をロータリーカッターへ連続的に挿入して繊維束を切断しようとしたが、ボビンやカッター部への巻き付きが生じ成形材料を作製できなかった。 Subsequently, an attempt was made to continuously insert the obtained reinforcing fiber bundle (1) into a rotary cutter to cut the fiber bundle, but the fiber bundle was wound around the bobbin and the cutter, and a molding material could not be produced.
本発明は、生産性や成形の際の流動性、成形品の力学特性に優れる強化繊維束とそのチョップド繊維束、およびその製造方法、ならびにそれを用いた繊維強化樹脂成形材料を提供できる。本発明の製造方法で得られる強化繊維束は不連続強化繊維コンポジットの材料であり、主に自動車内外装、電気・電子機器筐体、自転車、航空機内装材、輸送用箱体など等に好適に用いられる。 INDUSTRIAL APPLICABILITY The present invention can provide reinforcing fiber bundles and chopped fiber bundles that are excellent in productivity, fluidity during molding, and mechanical properties of molded products, a method for producing the same, and a fiber-reinforced resin molding material using the same. The reinforcing fiber bundle obtained by the production method of the present invention is a material for a discontinuous reinforcing fiber composite, and is suitable mainly for automobile interiors and exteriors, electrical and electronic device housings, bicycles, aircraft interior materials, transportation boxes, and the like. Used.
100 繊維束
110 分繊処理区間
120 絡合蓄積部
130 未分繊処理区間
140 毛羽溜まり
150 分繊処理部
160 絡合部
170 分繊距離
180 分繊繊維束
200 分繊手段
210 突出部
211 接触部
220 回転分繊手段
240 回転軸
300 分繊処理工程
301 繊維束拡幅工程
400 サイジング剤付与工程
401 サイジング剤塗布工程
402 乾燥工程
501 切断面
(1)~(4) 分繊手段移動方向
A~J パターン
a、b 繊維束走行方向100
Claims (13)
少なくとも1つの前記分繊処理部における前記突出部と前記強化繊維束との接触部に単糸が交絡する絡合部を形成する絡合工程(IV)と、
前記分繊手段を前記強化繊維束から抜き取り、前記絡合部を含む絡合蓄積部を通過させた後、前記分繊手段を前記強化繊維束に再度突き入れる再突き入れ工程(V)と、
複数の束に分割された分繊処理区間と未分繊処理区間とを交互に形成する分繊処理工程(VI)とをさらに含むことを特徴とする、請求項1~11のいずれかに記載の強化繊維束の製造方法。 A separating step (III) of inserting a separating means having a plurality of projecting portions into the reinforcing fiber bundle while running the reinforcing fiber bundle along the longitudinal direction to generate a separating portion;
an entangling step (IV) of forming an entangled portion in which single yarns are entangled at a contact portion between the projecting portion and the reinforcing fiber bundle in at least one of the fiber separating units;
a re-inserting step (V) of extracting the separating means from the reinforcing fiber bundle, passing the separating means through an entangled accumulation portion including the entangled portion, and then thrusting the separating means into the reinforcing fiber bundle again;
12. The method according to any one of claims 1 to 11 , further comprising a splitting treatment step (VI) for alternately forming splitting treatment sections divided into a plurality of bundles and unsplitting treatment sections. A method for producing a reinforcing fiber bundle.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018011448 | 2018-01-26 | ||
JP2018011448 | 2018-01-26 | ||
JP2018011451 | 2018-01-26 | ||
JP2018011451 | 2018-01-26 | ||
PCT/JP2019/001221 WO2019146486A1 (en) | 2018-01-26 | 2019-01-17 | Reinforcing fiber bundle and method for manufacturing same, and chopped fiber bundle and fiber-reinforced resin molding material using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019146486A1 JPWO2019146486A1 (en) | 2020-12-03 |
JP7259740B2 true JP7259740B2 (en) | 2023-04-18 |
Family
ID=67394569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019512692A Active JP7259740B2 (en) | 2018-01-26 | 2019-01-17 | Reinforcing fiber bundle, method for producing same, and chopped fiber bundle and fiber-reinforced resin molding material using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7259740B2 (en) |
WO (1) | WO2019146486A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002138370A (en) | 2000-10-27 | 2002-05-14 | Toray Ind Inc | Chopped carbon fiber strand and fiber-reinforced thermoplastic resin composition |
JP2003105676A (en) | 2001-09-28 | 2003-04-09 | Toray Ind Inc | Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product |
JP2005526163A (en) | 2002-05-14 | 2005-09-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Crosslinkable polyamide compositions for paint applications, methods of using such compositions and articles made from such compositions |
WO2012081407A1 (en) | 2010-12-13 | 2012-06-21 | 東レ株式会社 | Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material |
JP2016194175A (en) | 2015-04-01 | 2016-11-17 | トヨタ自動車株式会社 | Resin-coated carbon fiber and carbon fiber reinforced composite material of the same |
WO2017221657A1 (en) | 2016-06-21 | 2017-12-28 | 東レ株式会社 | Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle |
WO2018143067A1 (en) | 2017-02-02 | 2018-08-09 | 東レ株式会社 | Partially separated fiber bundle and method for manufacturing same, chopped-fiber bundle using same, and fiber-reinforced resin molding material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01292038A (en) * | 1988-05-19 | 1989-11-24 | Toray Ind Inc | Non-twisted carbon fiber bundle having excellent openability, production of said bundle and apparatus therefor |
-
2019
- 2019-01-17 JP JP2019512692A patent/JP7259740B2/en active Active
- 2019-01-17 WO PCT/JP2019/001221 patent/WO2019146486A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002138370A (en) | 2000-10-27 | 2002-05-14 | Toray Ind Inc | Chopped carbon fiber strand and fiber-reinforced thermoplastic resin composition |
JP2003105676A (en) | 2001-09-28 | 2003-04-09 | Toray Ind Inc | Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product |
JP2005526163A (en) | 2002-05-14 | 2005-09-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Crosslinkable polyamide compositions for paint applications, methods of using such compositions and articles made from such compositions |
WO2012081407A1 (en) | 2010-12-13 | 2012-06-21 | 東レ株式会社 | Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material |
JP2016194175A (en) | 2015-04-01 | 2016-11-17 | トヨタ自動車株式会社 | Resin-coated carbon fiber and carbon fiber reinforced composite material of the same |
WO2017221657A1 (en) | 2016-06-21 | 2017-12-28 | 東レ株式会社 | Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle |
WO2018143067A1 (en) | 2017-02-02 | 2018-08-09 | 東レ株式会社 | Partially separated fiber bundle and method for manufacturing same, chopped-fiber bundle using same, and fiber-reinforced resin molding material |
Also Published As
Publication number | Publication date |
---|---|
WO2019146486A1 (en) | 2019-08-01 |
JPWO2019146486A1 (en) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11230630B2 (en) | Partially separated fiber bundle and method of manufacturing same, chopped fiber bundle using same, and fiber-reinforced resin forming material | |
KR102595469B1 (en) | Reinforced fiber bundle base material and manufacturing method thereof, and fiber-reinforced thermoplastic resin material using the same and manufacturing method thereof | |
EP3473758B1 (en) | Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle | |
CN111587269A (en) | Reinforced fiber mat, fiber-reinforced resin molding material, and method for producing same | |
JP7001998B2 (en) | Manufacturing method of partial fiber bundle, fiber reinforced resin molding material using partial fiber bundle, and manufacturing method thereof | |
JP7329193B2 (en) | Fiber-reinforced resin material and manufacturing method thereof | |
JP7396046B2 (en) | Method for manufacturing partially split fiber bundles | |
JP7259740B2 (en) | Reinforcing fiber bundle, method for producing same, and chopped fiber bundle and fiber-reinforced resin molding material using the same | |
JP7236057B2 (en) | Reinforcing fiber bundle | |
JP7363482B2 (en) | Fiber-reinforced resin molding material and method for producing molded products | |
JPWO2020085079A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230320 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7259740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |