JP7259001B1 - Coating film evaluation method, coated body and coating film - Google Patents

Coating film evaluation method, coated body and coating film Download PDF

Info

Publication number
JP7259001B1
JP7259001B1 JP2021215265A JP2021215265A JP7259001B1 JP 7259001 B1 JP7259001 B1 JP 7259001B1 JP 2021215265 A JP2021215265 A JP 2021215265A JP 2021215265 A JP2021215265 A JP 2021215265A JP 7259001 B1 JP7259001 B1 JP 7259001B1
Authority
JP
Japan
Prior art keywords
coating film
temperature
chemiluminescence
amount
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021215265A
Other languages
Japanese (ja)
Other versions
JP2023098475A (en
Inventor
晴美 末次
祥子 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP2021215265A priority Critical patent/JP7259001B1/en
Priority to JP2023031878A priority patent/JP2023098726A/en
Application granted granted Critical
Publication of JP7259001B1 publication Critical patent/JP7259001B1/en
Publication of JP2023098475A publication Critical patent/JP2023098475A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】塗膜の耐候性を簡便に評価することが可能な塗膜評価方法を提供する。【解決手段】酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定することで塗膜の劣化を予測する、塗膜評価方法である。【選択図】図1Kind Code: A1 A coating film evaluation method capable of easily evaluating the weather resistance of a coating film is provided. A paint film evaluation method predicts deterioration of a paint film by measuring the amount of chemiluminescence of the paint film under conditions of continuous temperature rise in an oxygen or air atmosphere. [Selection drawing] Fig. 1

Description

特許法第30条第2項適用 マテリアルライフ学会「第13回ケミルミネッセンス研究会」、Web開催、開催日:令和3年1月14日 一般社団法人色材協会「2021年度 色材研究発表会」、Web開催、開催日:令和3年9月17日 第13回 ケミルミネッセンス研究会 講演要旨集、55~56頁、ケミルミネッセンス研究会、頒布日:令和3年1月8日 2021年度色材研究発表会 講演要旨集、53頁、一般社団法人 色材協会、発行日:令和3年9月3日(ウェブサイトの掲載日:令和3年9月8日)Article 30, Paragraph 2 of the Patent Act applied Material Life Society "13th Chemiluminescence Study Group", held on the Web, Date: January 14, 2021 General Incorporated Association Color Material Association "2021 Color Material Research Presentation" ”, Web held, Date: September 17, 3rd year of Reiwa 13th Chemiluminescence Research Meeting Lecture Summary, pp. 55-56, Chemiluminescence Research Meeting, Distribution date: January 8, 2021 Color material research presentation collection of lecture abstracts, page 53, Color Material Association, publication date: September 3, 2021 (website publication date: September 8, 2021)

本発明は、塗膜評価方法、塗装体および塗膜に関するものである。 TECHNICAL FIELD The present invention relates to a coating film evaluation method, a coated body, and a coating film.

屋外で使用される塗膜は、屋内に比べて降雨や紫外線、寒暖差の影響を受けやすいことから、塗膜が劣化しやすい。これは、紫外線によって樹脂の高分子鎖が切断されることや、降雨によって切断された低分子量成分や塗膜形成成分が流出されることに起因しており、それらを防ぐために、分子鎖の結合エネルギーの高い樹脂を選定したり、紫外線遮蔽剤を添加して紫外線を遮蔽したり、光安定剤等を添加して紫外線によって発生するラジカルを抑制する手法が検討されている。 Coatings used outdoors are more susceptible to rainfall, ultraviolet rays, and temperature differences than indoors, so they tend to deteriorate. This is due to the fact that the polymer chains of the resin are cut by ultraviolet rays, and that low-molecular-weight components and film-forming components that are cut by rain fall out. Methods of selecting a resin with high energy, adding an ultraviolet shielding agent to block ultraviolet rays, and adding a light stabilizer or the like to suppress radicals generated by ultraviolet rays are being studied.

特開昭61-152771号公報(特許文献1)には、フルオロオレフィンとビニルエーテルを必須構成成分として架橋部位を有する含フッ素共重合体と該フッ素共重合体と共架橋可能なポリフルオロアルキル基含有重合体とを特定の配合比で含む塗料用樹脂組成物が記載され、これによって、防汚性、撥水撥油性あるいは表面光沢など表面特性が改良され且つ耐候性に優れた塗膜を与え得る溶剤可溶型のフッ素樹脂塗料組成物を提供することができると記載されている。 Japanese Patent Application Laid-Open No. 61-152771 (Patent Document 1) describes a fluorine-containing copolymer having a cross-linking site containing fluoroolefin and vinyl ether as essential constituents, and a polyfluoroalkyl group capable of co-crosslinking with the fluorine-containing copolymer. A coating resin composition containing a polymer and a polymer in a specific blending ratio is described, which can provide coating films with improved surface properties such as antifouling properties, water and oil repellency, and surface gloss, and excellent weather resistance. It is described that a solvent-soluble fluororesin coating composition can be provided.

特開2002-256217号公報(特許文献2)には、塗膜形成樹脂(A)、ベンゾトリアゾール系紫外線吸収剤(B)、及びトリアジン系紫外線吸収剤(C)を必須成分として含み、かつ、(A)の100部に対して、(B)の0.1~30部及び(C)の0.1~20部を含むことを特徴とする塗料用組成物が記載されている。特許文献2では、この塗料用組成物は、紫外線遮蔽性に優れた塗膜を形成できる効果を奏するものであり、特に、トップ層として用いた場合に、下層保護性を充分に発揮できる塗膜を形成でき、さらに、この効果が長期にわたって維持できること、そして、高温及び強い紫外線照射の過酷な屋外暴露試験、促進耐候性試験においても、長期にわたって上記効果を持続できると記載されている。また、特許文献2では、紫外線吸収剤はその構造に応じて主に吸収する波長域が決まっており、適宜、選択して用いられることや、紫外線吸収剤の添加量が少なすぎると紫外線遮蔽効果が充分に発揮されず、下層の保護機能が不充分となること、また、多すぎると下層への密着性が損なわれたり、塗膜からブリードアウトしやすくなることが記載されている。 JP-A-2002-256217 (Patent Document 2) contains a coating film-forming resin (A), a benzotriazole-based ultraviolet absorber (B), and a triazine-based ultraviolet absorber (C) as essential components, and A coating composition is described which comprises 0.1 to 30 parts of (B) and 0.1 to 20 parts of (C) with respect to 100 parts of (A). In Patent Document 2, this coating composition has the effect of forming a coating film having excellent ultraviolet shielding properties, and in particular, when used as a top layer, the coating composition can sufficiently exhibit lower layer protection properties. Furthermore, it is described that this effect can be maintained for a long period of time, and that the above effect can be maintained for a long period of time even in severe outdoor exposure tests at high temperatures and strong ultraviolet irradiation and accelerated weather resistance tests. In addition, in Patent Document 2, the wavelength range that the UV absorber mainly absorbs is determined according to its structure, and it is possible to select and use it as appropriate. is not sufficiently exhibited, and the protective function of the lower layer becomes insufficient, and if it is too large, the adhesion to the lower layer is impaired, and bleeding out from the coating film tends to occur.

特開昭53-67743号公報(特許文献3)には、自動車に2コート1ベーク方式でクリヤー仕上げを行うに際し、メタリックカラーを塗装後ウェットオンウェットで着色顔料および(または)体質顔料および紫外線吸収剤を樹脂固形分に対して特定量で含有するクリヤーを塗装することを特徴とするクリヤー塗膜の耐久性方法が記載されている。特許文献3では、ウェットオンウェット塗装と焼付け硬化を組み合わせた「2コート1ベーク方式」によって塗膜を形成することで、長期の耐候性が得られることが記載されている。 Japanese Patent Application Laid-Open No. 53-67743 (Patent Document 3) discloses that when performing a clear finish on an automobile by a 2-coat 1-bake method, a coloring pigment and (or) an extender pigment and an ultraviolet-absorbing pigment are applied wet-on-wet after coating a metallic color. A method for the durability of a clear coating is described which comprises coating a clear containing a specific amount of agent relative to the resin solids content. Patent Document 3 describes that long-term weather resistance can be obtained by forming a coating film by a "two-coat, one-bake method" that combines wet-on-wet coating and bake-hardening.

特開2015-206603号公報(特許文献4)には、検量線作成処理と耐候性予測処理とからなる、有機系塗料からなる塗膜の耐候性を予測する塗膜耐候性予測方法の発明が記載されている。特許文献4では、有機系塗膜の検体について、劣化開始後の化学発光量のデータから、各検体の見かけ上の活性化エネルギーが算出できること、及び、この見かけ上の活性化エネルギーと各有機系塗膜が劣化限界に至るまでの標準的な劣化時間との相関から、有機系塗料からなる塗膜全般の耐候性予測処理に汎用的に用いることができる検量線を得ることができることが記載され、この検量線を用いることによって、従来の試験方法では、長時間の試験を経ないと実際には到達しえなかった塗膜劣化を、短時間で、且つ、定量的に予測することができると記載されている。 Japanese Patent Application Laid-Open No. 2015-206603 (Patent Document 4) discloses an invention of a coating film weather resistance prediction method for predicting the weather resistance of a coating film made of an organic paint, which consists of a calibration curve creation process and a weather resistance prediction process. Are listed. In Patent Document 4, for the specimen of the organic coating film, from the data of the amount of chemiluminescence after the start of deterioration, the apparent activation energy of each specimen can be calculated, and this apparent activation energy and each organic system It is described that a calibration curve that can be used for general weather resistance prediction processing of coating films made of organic paints in general can be obtained from the correlation with the standard deterioration time until the coating film reaches the deterioration limit. , By using this calibration curve, it is possible to quantitatively predict the deterioration of the coating film in a short time, which could not actually be reached without a long-term test in the conventional test method. is described.

特開昭61-152771号公報JP-A-61-152771 特開2002-256217号公報JP-A-2002-256217 特開昭53-67743号公報JP-A-53-67743 特開2015-206603号公報JP 2015-206603 A

特許文献1~3にも示されているように、塗膜を劣化から防ぎ、耐候性を確保する目的で、樹脂、紫外線遮蔽剤、光安定剤等の塗膜形成成分の種類および量、更には塗膜形成条件等の様々な要素が検討されている状況である。このため、各種塗料に対して高耐候性塗膜を得るための共通の指標があるとはいえず、塗料の配合から塗膜の耐候性を予測することが困難である場合も多い。このため、塗膜の耐候性を確認するためには、実際に塗膜を形成し、耐候性試験を実施して塗膜性能を判断する必要があるが、耐候性試験には膨大な時間を要することから、塗膜の耐候性を短期間で予測し塗膜性能を判断可能な方法が求められていた。 As shown in Patent Documents 1 to 3, for the purpose of preventing deterioration of the coating film and ensuring weather resistance, the type and amount of coating film-forming components such as resins, ultraviolet shielding agents, and light stabilizers, and further In this situation, various factors such as coating film formation conditions are being studied. For this reason, it cannot be said that there is a common index for obtaining a highly weather-resistant coating film for various paints, and it is often difficult to predict the weather resistance of a coating film from the formulation of the paint. Therefore, in order to check the weather resistance of the coating film, it is necessary to actually form the coating film and conduct a weather resistance test to determine the coating film performance. Therefore, there has been a demand for a method that can predict the weather resistance of a coating film in a short period of time and determine the coating film performance.

本発明者らは、塗膜劣化に関する検討を行い、特に有機成分を含む塗膜の劣化は、塗膜の酸化による影響が大きく、これは、塗膜内のバインダー成分の結合強度や、金属触媒などの不純物量や、塗膜中の酸素の拡散度合に因る影響が大きいものと考えた。 The present inventors have studied the deterioration of coating films, and in particular, the deterioration of coating films containing organic components is greatly affected by oxidation of the coating film. It was thought that the influence of the amount of impurities such as , and the degree of diffusion of oxygen in the coating film was large.

しかしながら、従来、各原料の高分子の結合安定性は結合解離エネルギーより推測されるが、塗料から得られる塗膜は種々の原料が混合し形成されるため、一概に塗膜の構成成分のみから劣化予測を行うことが困難である。さらに、塗膜は製造と成膜条件によっても顔料分布や樹脂の架橋、融着程度などの膜状態が異なり、塗膜としての結合安定性を推測する事が極めて困難であった。また、酸化され易さを評価する従来手法として熱重量示差熱分析などが有るが、測定時に塗膜を粉状に加工するため、実際の塗膜とは形状が大きく異なり、「塗膜の耐候性」の評価として利用するのに十分であるとはいえない。 However, conventionally, the bond stability of the polymer of each raw material is estimated from the bond dissociation energy, but since the coating film obtained from the paint is formed by mixing various raw materials, It is difficult to predict deterioration. In addition, the state of the coating film, such as pigment distribution, resin cross-linking, and degree of fusion bonding, varies depending on the manufacturing and film-forming conditions, making it extremely difficult to estimate the bonding stability of the coating film. In addition, thermogravimetric differential thermal analysis is a conventional method for evaluating susceptibility to oxidation. It cannot be said that it is sufficient to be used as an evaluation of "sexiness".

そこで、本発明の目的は、塗膜の耐候性を簡便に評価することが可能な塗膜評価方法を提供することにある。また、本発明の他の目的は、かかる塗膜評価方法を用いることで、高耐候性の塗装体および塗膜を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for evaluating a coating film that can easily evaluate the weather resistance of the coating film. Another object of the present invention is to provide a highly weather-resistant coated body and coating film by using such coating film evaluation method.

本発明者らは、塗膜劣化予測手法を検討するにあたり、「塗膜の酸化され易さ」に着目し、これを評価する事で塗膜の耐候性を評価する手法を勘案した。この「酸化され易さ」は、特許文献4でも用いられている塗膜形状で評価可能な化学発光量の測定にて評価した。特許文献4には、任意の温度において測定した化学発光量から評価対象検体の見かけ上の活性化エネルギーを算出し、塗膜の耐候性を予測する発明が記載されるが、測定する温度範囲内で成分の揮発や分解などの塗膜変化が生じる検体では、活性化エネルギーが算出し難く、耐候性の予測が困難であった。 The inventors of the present invention focused on the "easiness of oxidation of the coating film" in examining the coating film deterioration prediction method, and considered a method of evaluating the weather resistance of the coating film by evaluating this. This "easiness to be oxidized" was evaluated by measuring the amount of chemiluminescence that can be evaluated by the coating film shape, which is also used in Patent Document 4. Patent Document 4 describes an invention that calculates the apparent activation energy of the sample to be evaluated from the amount of chemiluminescence measured at an arbitrary temperature and predicts the weather resistance of the coating film, but within the temperature range to be measured It was difficult to calculate the activation energy and predict the weather resistance of specimens that cause coating film changes such as component volatilization and decomposition.

本発明者らは検討を行った結果、連続的な昇温条件下にて塗膜からの化学発光量を測定することで塗膜の耐候性を予測可能であることを見出した。特に、塗膜を連続的に昇温加熱した際に測定される化学発光量から求められる発光開始温度や、短期間劣化させた塗膜と未劣化膜の発光開始温度の差が、塗膜の耐候性と相関関係にあることを見出した。これにより、劣化前の塗膜や短期間劣化させた塗膜についての連続的な昇温条件下での化学発光量の測定から塗膜の耐候性の程度を導き出し、耐候性に優れた塗膜を提供することができる。 As a result of investigation, the present inventors found that the weather resistance of a coating film can be predicted by measuring the amount of chemiluminescence from the coating film under conditions of continuous temperature rise. In particular, the luminescence start temperature obtained from the amount of chemiluminescence measured when the coating film is continuously heated and heated, and the difference in luminescence start temperature between the coating film degraded for a short period of time and the undegraded film It was found that there is a correlation with weather resistance. As a result, the degree of weather resistance of the coating film is derived from the measurement of the amount of chemiluminescence under continuous temperature rising conditions for the coating film before deterioration and the coating film that has been deteriorated for a short period of time, and the coating film with excellent weather resistance can be provided.

本発明者らは、さらに検討を重ねた結果、耐候性に優れる塗膜においては、初期と短期間促進劣化後の発光開始温度の差が少なく、耐候性に劣る塗膜はその差が大きくなることを見出した。 As a result of further studies by the present inventors, the difference between the initial temperature and the luminescence start temperature after short-term accelerated deterioration is small in a coating film with excellent weather resistance, and the difference is large in a coating film with poor weather resistance. I found out.

したがって、本発明の塗膜評価方法は、酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定することで塗膜の劣化を予測する、塗膜評価方法である。 Therefore, the coating film evaluation method of the present invention predicts the deterioration of the coating film by measuring the amount of chemiluminescence of the coating film under conditions of continuous temperature rise in an oxygen or air atmosphere. It is a coating film evaluation method. .

本発明の塗膜評価方法の好適例においては、酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を求めて、塗膜の劣化を予測する。 In a preferred example of the coating film evaluation method of the present invention, the chemiluminescence amount of the coating film is measured under conditions of continuous temperature increase in an oxygen or air atmosphere, and the vertical axis is the chemiluminescence amount and the horizontal axis is the temperature. Plot it on a graph to draw a curve that shows the relationship between the amount of chemiluminescence and temperature, find the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve, and determine the deterioration of the coating film. to predict.

本発明の塗膜評価方法の他の好適例においては、
(i)酸素または空気雰囲気下、連続的な昇温条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)を求め、
(ii)酸素または空気雰囲気下、連続的な昇温条件にて、促進劣化試験を受けた塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T2)を求め、
(iii)温度(T1)と温度(T2)から塗膜の劣化を予測する。
In another preferred example of the coating film evaluation method of the present invention,
(i) In an oxygen or air atmosphere, the chemiluminescence amount of the coating film is measured under conditions of continuous temperature rise, and plotted on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis. Draw a curve showing the relationship between temperatures, find the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve,
(ii) Under an oxygen or air atmosphere, the chemiluminescence amount of the coating film subjected to the accelerated deterioration test is measured under conditions of continuous temperature rise, and plotted in a graph with the vertical axis as the chemiluminescence amount and the horizontal axis as temperature. Draw a curve showing the relationship between the amount of chemiluminescence and temperature, and obtain the temperature (T2) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve,
(iii) Deterioration of the coating film is predicted from temperature (T1) and temperature (T2).

本発明の塗装体は、本発明の塗膜評価方法を用いて評価された高耐候性の塗膜を備える塗装体である。 The coated body of the present invention is a coated body provided with a highly weather-resistant coating film evaluated using the coating film evaluation method of the present invention.

本発明の塗装体の好適例においては、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190~330℃の範囲内である塗膜を備える塗装体である。
ここで、前記化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線である。
In a preferred example of the coated body of the present invention, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is 190 to 330. It is a coated body with a coating film that is within the range of °C.
Here, the curve showing the relationship between the amount of chemiluminescence and temperature is obtained by continuously raising the temperature from 50 ° C. to 350 ° C. at a rate of 15 ° C./min in an oxygen or air atmosphere. It is a curve showing the relationship between the amount of chemiluminescence and temperature obtained by measuring the amount of chemiluminescence and plotting it on a graph with the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis.

本発明の塗装体の他の好適例においては、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T1)とし、促進劣化試験後の化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T2)とした場合、温度(T1)と温度(T2)が、
-3.0 ≦ (T1-T2)/ T1 ×100 ≦ 7.0
の関係式を満たす塗膜を備える塗装体である。
ここで、前記温度(T1)及び温度(T2)を求めるための化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線であり、前記温度(T2)を求めるための塗膜は、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験(キセノンランプ照射時間:200時間)を受けた塗膜である。
In another preferred embodiment of the coated body of the present invention, the temperature (T1) is the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature. If the temperature (T2) is the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature after the accelerated deterioration test, the temperature ( T1) and temperature (T2) are
-3.0 ≤ (T1-T2)/T1 x 100 ≤ 7.0
It is a coated body provided with a coating film that satisfies the relational expression of
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for obtaining the temperature (T1) and temperature (T2) is continuously from 50 ° C. at a heating rate of 15 ° C./min in an oxygen or air atmosphere. A curve showing the relationship between the chemiluminescence amount obtained by measuring the chemiluminescence amount of the coating film under the condition of raising the temperature to 350 ° C. and plotting it on a graph in which the vertical axis is the chemiluminescence amount and the horizontal axis is the temperature. and the coating film for determining the temperature (T2) is a coating film that has undergone an accelerated deterioration test (xenon lamp irradiation time: 200 hours) in accordance with JIS K 5600-7-7:2008 Cycle A. .

本発明の塗膜は、本発明の塗膜評価方法を用いて評価された高耐候性の塗膜である。 The coating film of the present invention is a highly weather-resistant coating film evaluated using the coating film evaluation method of the present invention.

本発明の塗膜の好適例においては、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190~330℃の範囲内である塗膜である。
ここで、前記化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線である。
In a preferred example of the coating film of the present invention, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is 190 to 330. ℃ range.
Here, the curve showing the relationship between the amount of chemiluminescence and temperature is obtained by continuously raising the temperature from 50 ° C. to 350 ° C. at a rate of 15 ° C./min in an oxygen or air atmosphere. It is a curve showing the relationship between the amount of chemiluminescence and temperature obtained by measuring the amount of chemiluminescence and plotting it on a graph with the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis.

本発明の塗膜の他の好適例においては、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T1)とし、促進劣化試験後の化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T2)とした場合、温度(T1)と温度(T2)は、
-3.0 ≦ (T1-T2)/ T1 ×100 ≦ 7.0
の関係式を満たす塗膜である。
ここで、前記温度(T1)及び温度(T2)を求めるための化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線であり、前記温度(T2)を求めるための塗膜は、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験(キセノンランプ照射時間:200時間)を受けた塗膜である。
In another preferred embodiment of the coating film of the present invention, the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is the temperature (T1) If the temperature (T2) is the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature after the accelerated deterioration test, the temperature ( T1) and temperature (T2) are
-3.0 ≤ (T1-T2)/T1 x 100 ≤ 7.0
It is a coating film that satisfies the relational expression of
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for obtaining the temperature (T1) and temperature (T2) is continuously from 50 ° C. at a heating rate of 15 ° C./min in an oxygen or air atmosphere. A curve showing the relationship between the chemiluminescence amount obtained by measuring the chemiluminescence amount of the coating film under the condition of raising the temperature to 350 ° C. and plotting it on a graph in which the vertical axis is the chemiluminescence amount and the horizontal axis is the temperature. and the coating film for determining the temperature (T2) is a coating film that has undergone an accelerated deterioration test (xenon lamp irradiation time: 200 hours) in accordance with JIS K 5600-7-7:2008 Cycle A. .

本発明によれば、塗膜の耐候性を簡便に評価することが可能な塗膜評価方法を提供することができる。また、かかる塗膜評価方法を用いることで、高耐候性の塗装体および塗膜を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the coating film evaluation method which can evaluate the weather resistance of a coating film simply can be provided. Moreover, by using such a coating film evaluation method, it is possible to provide a highly weather-resistant coated body and coating film.

連続的な昇温条件下にて塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして描かれた化学発光量と温度の関係を示す図である。A diagram showing the relationship between the amount of chemiluminescence and temperature plotted on a graph in which the amount of chemiluminescence of the coating film is measured under conditions of continuous temperature rise and the amount of chemiluminescence is plotted on the vertical axis and the temperature on the horizontal axis. is.

以下に、本発明を詳細に説明する。本発明は、塗膜評価方法、塗装体および塗膜に関する。 The present invention will be described in detail below. TECHNICAL FIELD The present invention relates to a coating film evaluation method, a coated body and a coating film.

本発明の1つの態様は、酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定することで塗膜の劣化を予測する塗膜評価方法である。本明細書では、この塗膜評価方法を「本発明の塗膜評価方法」とも称する。 One aspect of the present invention is a coating film evaluation method for predicting deterioration of a coating film by measuring the amount of chemiluminescence of the coating film under conditions of continuous temperature rise in an oxygen or air atmosphere. In this specification, this coating film evaluation method is also referred to as "the coating film evaluation method of the present invention".

化学発光(ケミルミネッセンス)とは、化学反応により生じたエネルギーが光として放出される現象である。化学発光の多くは酸化反応が関わっており、本発明においても、酸化反応由来の発光現象を測定対象とする。このため、塗膜の化学発光量の測定は、酸素または空気雰囲気下で行われる。 Chemiluminescence is a phenomenon in which energy generated by a chemical reaction is emitted as light. Oxidation reaction is involved in most of chemiluminescence, and in the present invention, the luminescence phenomenon derived from oxidation reaction is also the object of measurement. Therefore, the chemiluminescence amount of the coating film is measured in an oxygen or air atmosphere.

昇温時の塗膜の化学発光は、以下に説明される。昇温時、塗膜に熱エネルギーが与えられると、塗膜を構成する物質の分解によりラジカルが生成し、このラジカルに酸素が付加(熱酸化分解)することによって過酸化物が生成する。この熱酸化分解の過程で、ペルオキシラジカルの2分子停止反応によって生成する励起状態のカルボニルが基底状態になる際に、発光すると推察される。ここで、塗膜にエネルギーが与えられた際に解離し易い、不安定な結合が塗膜中に存在すると熱酸化分解が進行し低温から発光する。また、塗膜内で酸素が拡散し易いと多くの箇所で酸化が進行する。 The chemiluminescence of the coating at elevated temperature is described below. When heat energy is applied to the coating film when the temperature is raised, radicals are generated by decomposition of the substances constituting the coating film, and oxygen is added to the radicals (thermal oxidative decomposition) to generate peroxides. In the process of this thermal oxidative decomposition, it is presumed that light is emitted when the excited carbonyl produced by the bimolecular termination reaction of the peroxy radical becomes the ground state. Here, if there is an unstable bond in the coating film that is easily dissociated when energy is applied to the coating film, thermal oxidative decomposition proceeds and light is emitted from a low temperature. In addition, if oxygen easily diffuses in the coating film, oxidation progresses in many places.

化学発光量は、化学発光の際に放出される単位時間あたりの光子の数(cps;counts per second)であり、微弱発光検出装置により測定可能である。微弱発光検出装置としては、例えば、東北電子産業社製ケミルミネッセンスアナライザー等がある。また、化学発光量の検出波長は、塗膜の化学発光が主として励起カルボニル由来であると推察されることから、420~530nmの波長を含む範囲に設定することができるが、一重項酸素等の別の励起物質も存在し得るので、例えば300~850nm等の広い波長範囲に亘って化学発光量を測定することが好ましい。 The amount of chemiluminescence is the number of photons emitted per unit time (cps; counts per second) during chemiluminescence and can be measured by a weak luminescence detector. Examples of the faint luminescence detector include a chemiluminescence analyzer manufactured by Tohoku Denshi Sangyo Co., Ltd., and the like. In addition, the detection wavelength of the amount of chemiluminescence can be set to a range including a wavelength of 420 to 530 nm, since it is presumed that the chemiluminescence of the coating film is mainly derived from excited carbonyl. Since other excitants may also be present, it is preferable to measure chemiluminescence over a wide wavelength range, eg, 300-850 nm.

本発明の塗膜評価方法によって測定される化学発光量は、塗膜の劣化の指標となり、例えば、連続的な昇温条件下での化学発光量の測定において、低温から化学発光が生じると塗膜の劣化が生じやすいことを意味しており、耐候性の低い塗膜であると予測することが可能である。また、化学発光量の測定であれば、塗膜を粉砕する必要もなく、塗膜の形状を保ったまま塗膜の評価を行うことができる。 The amount of chemiluminescence measured by the coating film evaluation method of the present invention is an index of the deterioration of the coating film. It means that deterioration of the film is likely to occur, and it is possible to predict that the coating film has low weather resistance. In addition, if the amount of chemiluminescence is measured, it is not necessary to pulverize the coating film, and the coating film can be evaluated while maintaining the shape of the coating film.

本発明の塗膜評価方法において、化学発光量の測定は、連続的な昇温条件である。ここで、昇温速度は、0.1~25℃/minの範囲内で選択することができ、好ましくは5~20℃/minの範囲内であり、最も好ましくは10~17℃/minである。また、測定温度は、50~350℃の温度範囲であることが好ましい。測定雰囲気には、酸素または空気を用いることができるが、酸素雰囲気下で測定を行うことが好ましい。ガスの流量は50mL/minとすることができる。塗膜を測定する際の被塗物には、厚さ2mm以下の金属板を用いることができる。スレート等の熱伝導率の低い被塗物は測定結果に影響を及ぼす恐れがあり、基材状態が一定でないため、一定の評価が難しい。例えば、熱伝導率の低い被塗物上の塗膜について化学発光量の測定を行うと、発光開始温度が高温側にシフトする傾向がある。塗膜の測定膜厚は、例えば0.01~100μmであり、好ましくは0.1~90μmであり、より好ましくは1~75μmである。塗膜の測定面積が異なると、発光開始温度が変化することから、本明細書の実施例では、塗膜の表面は1cm×1cmの面積に揃えた。化学発光量測定時の露光時間は、1~10秒の範囲で測定可能であるが、化学発光量が多いサンプルでは装置の検出素子の測定上限を超えてしまうことがあるため、本明細書の実施例では、化学発光量測定時間の露光時間を1秒とした。 In the coating film evaluation method of the present invention, the amount of chemiluminescence is measured under conditions of continuous temperature elevation. Here, the heating rate can be selected within the range of 0.1 to 25° C./min, preferably within the range of 5 to 20° C./min, most preferably 10 to 17° C./min. be. Moreover, the measurement temperature is preferably in the temperature range of 50 to 350.degree. Oxygen or air can be used as the measurement atmosphere, but the measurement is preferably performed in an oxygen atmosphere. The gas flow rate can be 50 mL/min. A metal plate having a thickness of 2 mm or less can be used as the object to be coated when measuring the coating film. Objects with low thermal conductivity, such as slate, may affect the measurement results. For example, when the amount of chemiluminescence is measured for a coating film on an object with low thermal conductivity, the luminescence initiation temperature tends to shift to the high temperature side. The measured thickness of the coating film is, for example, 0.01 to 100 μm, preferably 0.1 to 90 μm, more preferably 1 to 75 μm. Since the luminescence initiation temperature changes when the measurement area of the coating film differs, the surface area of the coating film was uniformed to 1 cm×1 cm in the examples of the present specification. The exposure time when measuring the amount of chemiluminescence can be measured in the range of 1 to 10 seconds. In the examples, the exposure time for measuring the amount of chemiluminescence was 1 second.

本発明の塗膜評価方法の好ましい実施形態においては、酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における「微分係数が最小となる接線」と「微分係数が最大となる接線」との交点の温度を求めて、塗膜の劣化を予測する塗膜評価方法である。 In a preferred embodiment of the coating film evaluation method of the present invention, the chemiluminescence amount of the coating film is measured under conditions of continuous temperature increase in an oxygen or air atmosphere, the vertical axis is the chemiluminescence amount, and the horizontal axis is the temperature. Draw a curve that shows the relationship between the amount of chemiluminescence and temperature by plotting it on a graph, and find the temperature at the intersection of the "tangent line with the minimum differential coefficient" and the "tangent line with the maximum differential coefficient" on this curve. , is a paint film evaluation method that predicts deterioration of the paint film.

ここで、「微分係数が最大となる接線」とは、測定温度範囲(好ましくは50~350℃)において温度が1℃変化した際の化学発光量の増加値が最大となる接線である。「微分係数が最小となる接線」とは、測定温度範囲(好ましくは50~350℃)の最低温度(好ましくは50℃)から、温度が1℃変化した際の化学発光量の増加値が最大となる温度までの領域において、温度が1℃変化した際の化学発光量の増加値が正の値で最小となる接線である。 Here, the “tangent line with the maximum differential coefficient” is the tangent line with the maximum increase in the amount of chemiluminescence when the temperature changes by 1° C. in the measurement temperature range (preferably 50 to 350° C.). The "tangential line with the minimum differential coefficient" is the maximum increase in the amount of chemiluminescence when the temperature changes by 1 ° C from the lowest temperature (preferably 50 ° C) in the measurement temperature range (preferably 50 to 350 ° C). In the region up to the temperature where , the increase value of the amount of chemiluminescence when the temperature changes by 1 ° C. is the tangent line with the smallest positive value.

「微分係数が最小となる接線と微分係数が最大となる接線との交点」は、化学発光量の増加が始まる温度を意味し、本明細書では「発光開始温度」とも称する。本発明者は、塗膜が劣化し難く、高耐候性の塗膜に求められる条件として、「微分係数が最小となる接線と微分係数が最大となる接線との交点の温度」が好ましくは190~330℃、より好ましくは200~330℃、更に好ましくは210~330℃の範囲内であることを確認した。不安定な結合を持つ塗膜や酸素の拡散し易い塗膜は、暴露時や促進劣化試験にて短期間で劣化し易い。このような塗膜は、低温から酸化分解が進行し、発光開始温度は低温となる。本発明の塗膜評価方法では、塗膜中の不安定な結合の程度や酸素の拡散し易さの程度を数値化することができる。本発明者は、耐候性(光沢保持率)と発光開始温度の関係を検討した結果、上記のような範囲内の発光開始温度であれば高耐候性の塗膜であると評価できることを見出した。また、「微分係数が最小となる接線と微分係数が最大となる接線との交点の温度」を利用する塗膜評価方法であれば、長期間を必要とした従来の評価方法に比べて、短時間で塗膜の劣化を予測することができる。 The "intersection point of the tangent line with the minimum derivative and the tangent line with the maximum derivative" means the temperature at which the amount of chemiluminescence begins to increase, and is also referred to herein as the "luminescence initiation temperature". The present inventor believes that the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient is preferably 190 It was confirmed to be within the range of ~330°C, more preferably 200 to 330°C, still more preferably 210 to 330°C. Coatings with unstable bonds and coatings in which oxygen easily diffuses tend to deteriorate in a short period of time during exposure and accelerated deterioration tests. In such a coating film, oxidative decomposition progresses from a low temperature, and the light emission start temperature is low. In the coating film evaluation method of the present invention, the degree of unstable bonding in the coating film and the degree of easiness of diffusion of oxygen can be quantified. As a result of examining the relationship between weather resistance (gloss retention rate) and light emission start temperature, the present inventors found that a light emission start temperature within the above range can be evaluated as a coating film with high weather resistance. . In addition, if the paint film evaluation method uses "the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient", it can be used in a short time compared to conventional evaluation methods that require a long period of time. It is possible to predict the deterioration of the coating film over time.

図1は、連続的な昇温条件下にて塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして描かれた化学発光量と温度の関係を示す図である。実施例の曲線では、微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190~330℃の範囲内にあり、このような塗膜は耐候性に優れる塗膜である。比較例の曲線では、微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190℃未満であり、このような塗膜は耐候性が悪い塗膜である。 FIG. 1 shows the amount of chemiluminescence of the coating film measured under conditions of continuous temperature rise, and plotted on a graph with the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis. FIG. 4 is a diagram showing relationships; In the curve of the example, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient is in the range of 190 to 330 ° C., and such a coating film has excellent weather resistance. It is a coating film. In the curve of the comparative example, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient is less than 190°C, and such a coating film has poor weather resistance. .

本発明の塗膜評価方法の好ましい実施形態においては、促進劣化試験前後の塗膜の化学発光量を測定することで塗膜の劣化を予測する塗膜評価方法である。促進劣化試験は、耐候性を評価する様々な試験を用いることができ、好ましくはJIS K 5600-7-7:2008「塗料一般試験方法-第7部:塗膜の長期耐久性-第7節:促進耐候性及び促進耐光性(キセノンランプ法)」のサイクルAの規定に従う試験である。 In a preferred embodiment of the coating film evaluation method of the present invention, the coating film deterioration is predicted by measuring the amount of chemiluminescence of the coating film before and after the accelerated deterioration test. Accelerated deterioration test can use various tests to evaluate weather resistance, preferably JIS K 5600-7-7: 2008 "Paint general test method-Part 7: Long-term durability of coating film-Section 7 : Accelerated Weatherability and Accelerated Lightfastness (Xenon Lamp Method)".

本発明の塗膜評価方法の好ましい実施形態は、以下の工程(i)~(iii)を含む塗膜評価方法である。
(i)酸素または空気雰囲気下、連続的な昇温条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における「微分係数が最小となる接線」と「微分係数が最大となる接線」との交点の温度(T1)を求め、
(ii)酸素または空気雰囲気下、連続的な昇温条件にて、促進劣化試験を受けた塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における「微分係数が最小となる接線」と「微分係数が最大となる接線」との交点の温度(T2)を求め、
(iii)温度(T1)と温度(T2)から塗膜の劣化を予測する。
A preferred embodiment of the coating film evaluation method of the present invention is a coating film evaluation method including the following steps (i) to (iii).
(i) In an oxygen or air atmosphere, the chemiluminescence amount of the coating film is measured under conditions of continuous temperature rise, and plotted on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis. Draw a curve showing the relationship between temperatures, and obtain the temperature (T1) at the intersection of "a tangent line with a minimum differential coefficient" and "a tangent line with a maximum differential coefficient" on this curve,
(ii) Under an oxygen or air atmosphere, the chemiluminescence amount of the coating film subjected to the accelerated deterioration test is measured under conditions of continuous temperature rise, and plotted in a graph with the vertical axis as the chemiluminescence amount and the horizontal axis as temperature. Draw a curve showing the relationship between the amount of chemiluminescence and temperature, and obtain the temperature (T2) at the intersection of the "tangent line with the minimum differential coefficient" and the "tangent line with the maximum differential coefficient" on this curve,
(iii) Deterioration of the coating film is predicted from temperature (T1) and temperature (T2).

本発明の塗膜評価方法において、工程(i)及び工程(ii)での塗膜の化学発光量の測定は、同一の条件下で行われることが望ましい。工程(i)の塗膜は、促進劣化試験を受ける前の塗膜である。工程(ii)の「促進劣化試験を受けた塗膜」は、促進劣化試験としてJIS K 5600-7-7:2008のサイクルAの規定に従う試験を受けた塗膜であることが好ましい。また、キセノンランプの照射時間は、短期間で塗膜劣化の予測を行う観点から、2~1000時間であることが好ましく、100~300時間がより好ましい。 In the coating film evaluation method of the present invention, the measurements of the chemiluminescence amount of the coating film in steps (i) and (ii) are desirably performed under the same conditions. The coating of step (i) is the coating prior to being subjected to the accelerated aging test. The “coating film subjected to accelerated deterioration test” in step (ii) is preferably a coating film subjected to accelerated deterioration test according to Cycle A of JIS K 5600-7-7:2008. Further, the irradiation time of the xenon lamp is preferably 2 to 1000 hours, more preferably 100 to 300 hours, from the viewpoint of predicting coating film deterioration in a short period of time.

本発明者は、耐候性に優れる塗膜であると、温度(T1)と温度(T2)の差が小さく、耐候性に劣る塗膜であると、温度(T1)と温度(T2)の差が大きくなることを見出した。促進劣化試験による塗膜の劣化によって新たに不安定な結合が形成されたり、分子鎖が切断し低分子量化すると、初期の未劣化塗膜に比べて低温から熱酸化分解が進行し発光すると推測される。そして、耐候性の低い塗膜ほど、エネルギーが与えられた際に上記の変化が進行し、温度(T1)から温度(T2)の変化が大きくなると考えられる。 The present inventor found that a coating film with excellent weather resistance has a small difference between temperature (T1) and temperature (T2), and a coating film with poor weather resistance has a difference between temperature (T1) and temperature (T2). was found to increase. It is presumed that when new unstable bonds are formed due to the deterioration of the coating film in the accelerated deterioration test, or when the molecular chain is cut and the molecular weight is reduced, thermal oxidative decomposition proceeds at a lower temperature than the initial undegraded coating film, and light is emitted. be done. It is considered that the lower the weather resistance of the coating film, the more the above change progresses when the energy is applied, and the greater the change from the temperature (T1) to the temperature (T2).

本発明の塗膜評価方法において、塗膜の促進劣化試験がJIS K 5600-7-7:2008のサイクルAの規定に従う試験(キセノンランプ照射時間:200時間)である場合、高耐候性の塗膜に求められる条件として、温度(T1)と温度(T2)は、
-3.0 ≦ (T1-T2)/ T1 ×100 ≦ 7.0
の関係式(1)を満たすことが好ましく、
-2.0 ≦ (T1-T2)/ T1 ×100 ≦ 6.0
の関係式(2)を満たすことがさらに好ましい。
上記関係式において「(T1-T2)/ T1 ×100」の値がマイナスの値になることは、促進劣化試験を受けた塗膜の方が促進劣化試験前の塗膜より発光開始温度が高いことを示す。これは、特に水性塗料に見られる傾向であったが、塗料状態を保つために必要な界面活性剤や水性添加剤等の酸化され易い低分子量成分が溶出し、促進劣化試験を受けた塗膜の発光開始温度の方が高くなったものと考えられる。しかし、耐候性(光沢保持率)と発光開始温度の関係を検討した結果から、「(T1-T2)/ T1 ×100」の値がマイナスの値であっても-3.0までであれば、高耐候性の塗膜であると評価できることを確認している。
In the coating film evaluation method of the present invention, when the accelerated deterioration test of the coating film is a test according to the provisions of Cycle A of JIS K 5600-7-7: 2008 (xenon lamp irradiation time: 200 hours), a highly weather-resistant coating As conditions required for the film, temperature (T1) and temperature (T2) are
-3.0 ≤ (T1-T2)/T1 x 100 ≤ 7.0
It is preferable to satisfy the relational expression (1) of
-2.0 ≤ (T1-T2)/T1 x 100 ≤ 6.0
It is more preferable to satisfy the relational expression (2) of
In the above relational expression, the value of "(T1-T2) / T1 × 100" is a negative value, which means that the coating film subjected to the accelerated deterioration test has a higher light emission start temperature than the coating film before the accelerated deterioration test. indicates that This was a tendency especially seen in water-based paints, but low-molecular-weight components that are easily oxidized, such as surfactants and water-based additives, which are necessary to maintain the state of the paint, leach out, and the paint film undergoes an accelerated deterioration test. It is considered that the temperature at which the light emission starts is higher. However, from the results of examining the relationship between weather resistance (gloss retention rate) and light emission start temperature, even if the value of "(T1-T2) / T1 x 100" is a negative value, if it is up to -3.0 , confirmed that it can be evaluated as a coating film with high weather resistance.

本発明の塗膜評価方法は、有機質成分を含む塗膜全般に使用することができる。塗膜を構成する主な有機質成分は、有機系のバインダー成分であり、アクリル樹脂、ウレタン樹脂、ふっ素樹脂、アクリルシリコーン樹脂、アルキド樹脂、エポキシ樹脂、ポリエステル樹脂などが例示されるが、これらに限定されるものではない。また、有機系のバインダー成分は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、塗膜には、透明塗料、エナメル塗料、光輝塗料等から形成される各種塗膜がある。塗料としては、水性塗料、有機溶剤系塗料、活性エネルギー線硬化系塗料、粉体系塗料、無溶剤系塗料等のあらゆる塗料が使用できる。 The coating film evaluation method of the present invention can be used for all coating films containing organic components. The main organic component that constitutes the coating film is an organic binder component, and examples include acrylic resin, urethane resin, fluorine resin, acrylic silicone resin, alkyd resin, epoxy resin, polyester resin, etc., but are limited to these. not to be Moreover, the organic binder component may be used singly or in combination of two or more. Coating films include various coating films formed from transparent paints, enamel paints, bright paints, and the like. As the paint, any kind of paint such as water-based paint, organic solvent-based paint, active energy ray-curable paint, powder-based paint, and non-solvent-based paint can be used.

本発明の塗膜評価方法において、評価対象である塗膜は、塗装体に形成された塗膜であってもよく、この場合、塗装体から塗膜を剥離せずに塗膜の化学発光量を測定することができる。また、本発明の塗膜評価方法において、塗膜は、複層膜であってもよく、この場合、複層膜の化学発光量を測定することができる。 In the coating film evaluation method of the present invention, the coating film to be evaluated may be a coating film formed on the coated body, in this case, the chemiluminescence amount of the coating film without peeling the coating film from the coated body can be measured. Moreover, in the coating film evaluation method of the present invention, the coating film may be a multilayer film, and in this case, the chemiluminescence amount of the multilayer film can be measured.

本発明の別の態様は、本発明の塗膜評価方法を用いて評価された高耐候性の塗膜である。本明細書では、この塗膜を「本発明の塗膜」とも称する。 Another aspect of the present invention is a highly weather resistant coating evaluated using the coating evaluation method of the present invention. This coating is also referred to herein as the "coating of the present invention".

本発明の塗膜の一実施形態は、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190~330℃の範囲内である塗膜である。
ここで、温度(T1)を求めるための化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線である。
In one embodiment of the coating film of the present invention, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is 190 to 330. ℃ range.
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for determining the temperature (T1) is obtained by continuously raising the temperature from 50 ° C. to 350 ° C. at a heating rate of 15 ° C./min in an oxygen or air atmosphere. It is a curve showing the relationship between the chemiluminescence amount and the temperature obtained by measuring the chemiluminescence amount of the coating film under the conditions and plotting it on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis.

本発明の塗膜において、塗膜の温度(T1)が190~330℃の範囲内であると、耐候性に優れる。例えば、塗膜の温度(T1)を190℃以上にすることで、塗膜の光沢保持時間を長くすることができる。塗膜の温度(T1)は、200~330℃の範囲内であることが好ましく、210~330℃の範囲内であることが更に好ましい。 In the coating film of the present invention, when the temperature (T1) of the coating film is within the range of 190 to 330°C, the weather resistance is excellent. For example, by setting the temperature (T1) of the coating film to 190° C. or higher, the gloss retention time of the coating film can be lengthened. The temperature (T1) of the coating film is preferably within the range of 200 to 330°C, more preferably within the range of 210 to 330°C.

本発明の塗膜の一実施形態は、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T1)とし、促進劣化試験後の化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T2)とした場合、温度(T1)と温度(T2)は、
-3.0 ≦ (T1-T2)/ T1 ×100 ≦ 7.0
の関係式(1)を満たす、塗膜である。
ここで、温度(T2)を求めるための化学発光量と温度の関係を示す曲線は、上述の温度(T1)と同様に、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線であるが、温度(T2)を求めるための塗膜は、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験(キセノンランプ照射時間:200時間)を受けた塗膜である。
In one embodiment of the coating film of the present invention, the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is the temperature (T1), When the temperature (T2) is the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence after the accelerated deterioration test and the temperature, the temperature (T1) and temperature (T2) are
-3.0 ≤ (T1-T2)/T1 x 100 ≤ 7.0
It is a coating film that satisfies the relational expression (1) of
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for determining the temperature (T2) is continuous at a heating rate of 15 ° C./min in an oxygen or air atmosphere, as in the temperature (T1) described above. Measure the amount of chemiluminescence of the coating film under the conditions of raising the temperature from 50 ° C. to 350 ° C., and plot the amount of chemiluminescence obtained by plotting the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis. Although it is a curve showing the relationship, the coating film for determining the temperature (T2) was subjected to an accelerated deterioration test (xenon lamp irradiation time: 200 hours) according to the provisions of cycle A of JIS K 5600-7-7:2008. It is a coating film.

本発明の塗膜において、温度(T1)と温度(T2)が関係式(1)を満たすものであると、耐候性に優れる。例えば、塗膜の温度(T1)と温度(T2)が関係式(1)を満たすことで、塗膜の光沢保持時間を長くすることができる。また、温度(T1)と温度(T2)は、
-2.0 ≦ (T1-T2)/ T1 ×100 ≦ 6.0
の関係式(2)を満たすことが好ましい。
In the coating film of the present invention, when the temperature (T1) and the temperature (T2) satisfy the relational expression (1), the weather resistance is excellent. For example, when the temperature (T1) and the temperature (T2) of the coating film satisfy the relational expression (1), the gloss retention time of the coating film can be lengthened. Also, temperature (T1) and temperature (T2) are
-2.0 ≤ (T1-T2)/T1 x 100 ≤ 6.0
It is preferable to satisfy the relational expression (2).

本発明の塗膜は、艶消し塗膜でもよいことから光沢度は特に制限されるものではないが、例えば、光沢有り塗膜である場合には、60°における光沢度が10以上であることが好ましく、例えば、艶有り塗膜である場合には、60°における光沢度が70~90であることが好ましい。また、塗膜の光沢度は、耐候性の指標として利用することができ、例えば、促進劣化試験の前後で塗膜の光沢度が変化しない、または当該光沢度の変化が小さいと、優れた耐候性であると判断できる。例えば、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験後の塗膜の光沢値が促進劣化試験前の塗膜の光沢値(初期光沢値)に対して50%低下するまでの時間(50%の光沢保持時間)について、キセノンランプ照射時間が2000時間以上となる塗膜が耐候性の観点から好ましく、3000時間以上となることがより好ましい。 Since the coating film of the present invention may be a matte coating film, the glossiness is not particularly limited. For example, in the case of a glossy coating film, it is preferable that the glossiness at 60° is 70 to 90. In addition, the glossiness of the coating film can be used as an index of weather resistance. can be determined to be gender. For example, the gloss value of the coating film after the accelerated deterioration test according to the provisions of JIS K 5600-7-7: 2008 cycle A is 50% lower than the gloss value (initial gloss value) of the coating film before the accelerated deterioration test. From the viewpoint of weather resistance, a coating film that can be irradiated with a xenon lamp for 2000 hours or more is preferable, and 3000 hours or more is more preferable.

本明細書において、60°における光沢度は、JIS K5600-4-7(ISO 2813:1994)で規定される60°における鏡面光沢度(D60)により、例えば、日本電色株式会社製 光沢計VG-2000を用いて測定可能である。 In this specification, the glossiness at 60° is defined by JIS K5600-4-7 (ISO 2813: 1994) according to the specular glossiness (D60) at 60°, for example, gloss meter VG manufactured by Nippon Denshoku Co., Ltd. It can be measured using -2000.

本発明の塗膜は、酸素透過率が7.5cc・μm/cm/day以下であることが好ましい。本明細書において、酸素透過率は、酸素透過率測定装置(例えばイリノイ社製8001)を用いて、等圧法(モコン法)にて測定される。具体的には、塗膜を装置内の拡散チャンバー内に固定し、塗膜を透過する酸素の移動速度(OTR)を検出する。検出器の校正には、透過率既知の標準フィルムを用いる。また、酸素透過率の下限値は、例えば0.005cc・μm/cm/dayである。 The coating film of the present invention preferably has an oxygen permeability of 7.5 cc·μm/cm 2 /day or less. In this specification, the oxygen permeability is measured by the isobaric method (Mocon method) using an oxygen permeability measuring device (for example, 8001 manufactured by Illinois). Specifically, the coating is fixed in a diffusion chamber within the apparatus, and the oxygen transfer rate (OTR) through the coating is detected. A standard film with a known transmittance is used to calibrate the detector. Moreover, the lower limit of the oxygen permeability is, for example, 0.005 cc·μm/cm 2 /day.

本発明の塗膜は、バインダー成分、染料や顔料等の色材、体質顔料等の各種顔料、紫外線吸収剤、ラジカル捕捉剤、酸化防止剤、可塑剤、防錆剤、艶消し剤、充填剤、荷電制御剤、導光材、光輝材、磁性材、蛍光体、ワックス、抗菌剤、抗ウイルス剤、防腐剤、表面調整剤、消泡剤、分散剤等の各種成分を必要に応じて適宜含むことができる。 The coating film of the present invention includes a binder component, coloring materials such as dyes and pigments, various pigments such as extender pigments, ultraviolet absorbers, radical scavengers, antioxidants, plasticizers, rust inhibitors, matting agents, and fillers. , charge control agent, light guide material, luster material, magnetic material, phosphor, wax, antibacterial agent, antiviral agent, antiseptic agent, surface control agent, antifoaming agent, dispersant, etc. can contain.

本発明の塗膜は、有機質成分を含む塗膜である。塗膜を構成する主な有機質成分は、有機系のバインダー成分であり、アクリル樹脂、ウレタン樹脂、ふっ素樹脂、アクリルシリコーン樹脂、アルキド樹脂、エポキシ樹脂、ポリエステル樹脂などが例示されるが、これらに限定されるものではない。有機系のバインダー成分は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の塗膜中において、バインダー成分の量は、例えば30~100質量%である。 The coating film of the present invention is a coating film containing an organic component. The main organic component that constitutes the coating film is an organic binder component, and examples include acrylic resin, urethane resin, fluorine resin, acrylic silicone resin, alkyd resin, epoxy resin, polyester resin, etc., but are limited to these. not to be The organic binder components may be used singly or in combination of two or more. In the coating film of the present invention, the amount of binder component is, for example, 30 to 100% by weight.

本発明の塗膜において、バインダー成分は、架橋構造を有することが好ましい。架橋構造を有するバインダー成分を用いることで、塗膜の耐候性を向上させることができる。例えば、架橋性単量体を用いてバインダー成分を合成したり、バインダー成分を架橋剤と組み合わせたりすることで、バインダー成分に架橋構造を導入することができる。 In the coating film of the present invention, the binder component preferably has a crosslinked structure. By using a binder component having a crosslinked structure, the weather resistance of the coating film can be improved. For example, a crosslinked structure can be introduced into the binder component by synthesizing the binder component using a crosslinkable monomer or by combining the binder component with a crosslinker.

架橋性単量体としては、例えば、2個以上の重合性基を有する化合物、重合性基と、化学反応による架橋性を有する基とを有する化合物等が挙げられる。重合性基としては、例えば、アルケニル基(ビニル基、アリル基等)、アルケニルカルボニル基(例えば、(メタ)アクリロイル基、クロトノイル基等)等の重合性不飽和基等が挙げられる。また、化学反応による架橋性を有する基としては、例えば、エポキシ基、カルボニル基、アジリジニル基、イソシアナト基、シラン基等が挙げられる。架橋性単量体は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The crosslinkable monomer includes, for example, a compound having two or more polymerizable groups, a compound having a polymerizable group and a group having crosslinkability by chemical reaction, and the like. Examples of the polymerizable group include polymerizable unsaturated groups such as alkenyl groups (vinyl group, allyl group, etc.) and alkenylcarbonyl groups (eg, (meth)acryloyl group, crotonoyl group, etc.). Examples of the group having crosslinkability by chemical reaction include an epoxy group, a carbonyl group, an aziridinyl group, an isocyanato group, and a silane group. A crosslinkable monomer may be used individually by 1 type, and may be used in combination of 2 or more types.

架橋剤としては、例えば、メラミン系架橋剤、オキサゾリン系架橋剤、アクリルアミド系架橋剤、ポリアミド系架橋剤、エポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、チタネート系架橋剤、尿素系架橋剤、アルキルアルコール化尿素系架橋剤、ヒドラジド系架橋剤、カルボジイミド系架橋剤、シランカップリング剤、ジルコニウム化合物、亜鉛化合物、チタニウム化合物、アルミニウム化合物等の多価金属化合物等が挙げられる。架橋剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of cross-linking agents include melamine-based cross-linking agents, oxazoline-based cross-linking agents, acrylamide-based cross-linking agents, polyamide-based cross-linking agents, epoxy-based cross-linking agents, isocyanate-based cross-linking agents, aziridine-based cross-linking agents, titanate-based cross-linking agents, and urea-based cross-linking agents. cross-linking agents, alkyl alcoholic urea-based cross-linking agents, hydrazide-based cross-linking agents, carbodiimide-based cross-linking agents, silane coupling agents, zirconium compounds, zinc compounds, titanium compounds, and polyvalent metal compounds such as aluminum compounds. The cross-linking agents may be used singly or in combination of two or more.

バインダー成分は、紫外線吸収剤に由来する構造単位および/またはラジカル捕捉剤に由来する構造単位を含むことが好ましい。例えば、重合性の紫外線吸収剤や重合性のラジカル捕捉剤を用いることでバインダー成分に紫外線吸収剤やラジカル捕捉剤に由来する構造単位を導入することができる。紫外線吸収剤に由来する構造単位および/またはラジカル捕捉剤に由来する構造単位を含むバインダー成分を用いることで、塗膜の耐候性を向上させることができる。 The binder component preferably contains a structural unit derived from an ultraviolet absorber and/or a structural unit derived from a radical scavenger. For example, by using a polymerizable ultraviolet absorber or a polymerizable radical scavenger, structural units derived from the ultraviolet absorber or radical scavenger can be introduced into the binder component. By using a binder component containing a structural unit derived from an ultraviolet absorber and/or a structural unit derived from a radical scavenger, the weather resistance of the coating film can be improved.

重合性の紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収性単量体、ベンゾフェノン系紫外線吸収性単量体等の紫外線吸収性単量体が挙げられる。重合性のラジカル捕捉剤としては、例えば、ヒンダードアミン系重合性光安定性単量体等の重合性光安定性単量体が挙げられる。ヒンダードアミン系重合性光安定性単量体としては、例えば、ピペラジン骨格(特に、2,2,6,6-テトラメチルピペリジン骨格)を有する重合性化合物(ピペラジン骨格及び重合性基を有する化合物)等が挙げられる。 Examples of the polymerizable ultraviolet absorber include ultraviolet absorbing monomers such as benzotriazole ultraviolet absorbing monomers and benzophenone ultraviolet absorbing monomers. Polymerizable radical scavengers include, for example, polymerizable photostable monomers such as hindered amine polymerizable photostable monomers. Examples of hindered amine-based polymerizable photostable monomers include polymerizable compounds (compounds having a piperazine skeleton and a polymerizable group) having a piperazine skeleton (especially a 2,2,6,6-tetramethylpiperidine skeleton), and the like. is mentioned.

本発明の塗膜は、紫外線吸収剤を含むことが好ましい。紫外線吸収剤は、紫外線を吸収し、紫外線による劣化を防止する作用を有する。紫外線吸収剤を用いることで、塗膜の耐候性を向上させることができる。紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤(特にヒドロキシフェニルトリアジン系紫外線吸収剤)、ベンジリデンカンファー系紫外線吸収剤等が挙げられる。紫外線吸収剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよいが、紫外線吸収剤は、吸収ピークの異なる2種以上の紫外線吸収剤を含むことが好ましい。本発明の塗膜中において、紫外線吸収剤の量は、例えば0.2~25質量%である。好ましくは1~20質量%である。 The coating film of the present invention preferably contains an ultraviolet absorber. The ultraviolet absorber has the action of absorbing ultraviolet rays and preventing deterioration due to ultraviolet rays. By using an ultraviolet absorber, the weather resistance of the coating film can be improved. Examples of ultraviolet absorbers include benzophenone-based ultraviolet absorbers, benzoate-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, triazine-based ultraviolet absorbers (especially hydroxyphenyltriazine-based ultraviolet absorbers), benzylidene camphor-based ultraviolet absorbers, and the like. is mentioned. The UV absorbers may be used singly or in combination of two or more, but the UV absorbers preferably contain two or more UV absorbers having different absorption peaks. In the coating film of the present invention, the amount of UV absorber is, for example, 0.2 to 25 mass %. It is preferably 1 to 20% by mass.

本発明の塗膜は、ラジカル捕捉剤を含むことが好ましい。ラジカル捕捉剤は、フリーラジカル等を捕捉し、光安定性を向上させることができる。また、本発明においては、フリーラジカルと反応し、重合反応が起こることを防止する機能を有する物質(いわゆる重合禁止剤)も、ラジカル捕捉剤に含まれる。ラジカル捕捉剤を用いることで、塗膜の耐候性を向上させることができる。ラジカル捕捉剤としては、例えば、ヒンダードアミン系化合物、ハイドロキノン系化合物、フェノール系化合物、フェノチアジン系化合物、ニトロソ系化合物、N-オキシル系化合物等が挙げられ、特にヒンダードアミン系光安定化剤(HALS)が好ましい。ラジカル捕捉剤は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の塗膜中において、ラジカル捕捉剤の量は、例えば0.1~20質量%である。好ましくは1~18質量%である。 The coating film of the present invention preferably contains a radical scavenger. A radical scavenger can scavenge free radicals and the like to improve photostability. In the present invention, radical scavengers also include substances that react with free radicals and have the function of preventing polymerization reactions (so-called polymerization inhibitors). By using a radical scavenger, the weather resistance of the coating film can be improved. Examples of radical scavengers include hindered amine-based compounds, hydroquinone-based compounds, phenol-based compounds, phenothiazine-based compounds, nitroso-based compounds, N-oxyl-based compounds, etc. Hindered amine-based light stabilizers (HALS) are particularly preferred. . A radical scavenger may be used individually by 1 type, and may be used in combination of 2 or more types. The amount of the radical scavenger in the coating film of the present invention is, for example, 0.1 to 20% by weight. It is preferably 1 to 18% by mass.

ヒンダードアミン系光安定化剤(HALS)は、例えば、上述のヒンダードアミン系重合性光安定性単量体のような共重合型HALSの他、低分子量型HALS、中分子量型HALS、高分子量型HALS、樹脂内包型HALS等に分類することができる。本明細書では、分子量が500以下のHALSを低分子量型、分子量が500を超え且つ1000未満のHALSを中分子量型、分子量が1000以上のHALSを高分子量型に分類する。HALSが塗膜に長期間保持される程、耐候性は向上する。そして、HALSの分子量が高い程塗膜に保持され易く、さらに、塗膜中の樹脂と共重合させることによってさらに長期間保持され耐候性が向上する。また、最も劣化が進行しラジカルが発生し易い表層部分にHALSを配置することで耐候性が向上する。以上より、表層に移行しやすい低分子量HALSと、長期保持されやすいHALSを組み合わせることが好ましい。また、樹脂内包型HALSは、樹脂中に内包され水分散させたHALSであり、塗料中に安定に添加し易く塗膜から溶出し難い。 Hindered amine photostabilizers (HALS) include, for example, copolymerized HALS such as the hindered amine polymerizable photostable monomers described above, low molecular weight HALS, medium molecular weight HALS, high molecular weight HALS, It can be classified into resin-encapsulated HALS and the like. In this specification, HALS with a molecular weight of 500 or less are classified as low molecular weight type, HALS with molecular weight of more than 500 and less than 1000 are classified as medium molecular weight type, and HALS with molecular weight of 1000 or more are classified as high molecular weight type. The longer the HALS is retained in the coating film, the better the weatherability. Further, the higher the molecular weight of HALS, the easier it is retained in the coating film, and furthermore, it is retained for a longer period of time by copolymerization with the resin in the coating film, thereby improving the weather resistance. In addition, weather resistance is improved by arranging HALS in the surface layer portion where deterioration progresses most and radicals are likely to be generated. From the above, it is preferable to combine a low-molecular-weight HALS that easily migrates to the surface layer and a HALS that is easily retained for a long period of time. The resin-encapsulated HALS are HALS encapsulated in a resin and dispersed in water, and are easy to add stably to the paint and difficult to dissolve out of the paint film.

本発明の塗膜は、染料や顔料等の色材を含むことができる。色材としては、公知の材料が使用でき、例えば、カーボンブラック、黄色酸化鉄、弁柄、複合酸化物(ニッケル・チタン系、クロム・チタン系、ビスマス・バナジウム系、コバルト・アルミニウム系、コバルト・アルミニウム・クロム系、ウルトラマリンブルー)、酸化チタン等の無機顔料・染料や、キナクリドン系、ジケトプロロピール系、ベンズイミダゾロン系、イソインドリノン系、アンスラピリミジン系、フタロシアニン系、スレン系、ジオキサジン系、アゾ系等の有機顔料・染料が挙げられる。耐候性の観点から、無機顔料を用いることが好ましい。色材は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。本発明の塗膜中において、色材の量は、例えば0~60質量%である。 The coating film of the present invention can contain colorants such as dyes and pigments. As the coloring material, known materials can be used. aluminum/chromium, ultramarine blue), inorganic pigments/dyes such as titanium oxide, quinacridones, diketoprolopyls, benzimidazolones, isoindolinones, anthrapyrimidines, phthalocyanines, threnes, and dioxazines. organic pigments and dyes such as organic pigments and azo pigments. From the viewpoint of weather resistance, it is preferable to use an inorganic pigment. The coloring materials may be used singly or in combination of two or more. In the coating film of the present invention, the amount of coloring material is, for example, 0 to 60% by mass.

本発明の塗膜には、重合開始剤や硬化触媒が残留していないことが好ましい。塗膜中に重合開始剤や硬化触媒が存在すると、塗膜中の有機質成分が酸化されやすく、塗膜の耐候性を低下させる恐れがある。 It is preferable that no polymerization initiator or curing catalyst remains in the coating film of the present invention. If a polymerization initiator or a curing catalyst is present in the coating film, the organic components in the coating film are likely to be oxidized, possibly deteriorating the weather resistance of the coating film.

本発明の塗膜の膜厚は、例えば0.01~100μmであり、好ましくは0.1~90μmであり、より好ましくは1~75μmである。膜厚が薄いと、バインダー成分が十分に融着できず、酸素が透過し易い塗膜となる傾向があり、塗膜の耐候性を低下させる恐れがある。 The film thickness of the coating film of the present invention is, for example, 0.01 to 100 μm, preferably 0.1 to 90 μm, more preferably 1 to 75 μm. If the film thickness is too thin, the binder component cannot be sufficiently fused, and the coating tends to be permeable to oxygen, possibly deteriorating the weather resistance of the coating.

本発明の塗膜は、複層膜であってもよい。 The coating film of the present invention may be a multilayer film.

本発明の塗膜には、透明塗料、エナメル塗料、光輝塗料等から形成される各種塗膜がある。ここで、塗料としては、水性塗料、有機溶剤系塗料、活性エネルギー線硬化系塗料、粉体系塗料、無溶剤系塗料等のあらゆる塗料が使用できる。 The coating film of the present invention includes various coating films formed from transparent paints, enamel paints, bright paints, and the like. Here, as the paint, any kind of paint such as water-based paint, organic solvent-based paint, active energy ray-curable paint, powder-based paint, and non-solvent-based paint can be used.

塗料は、必要に応じて適宜選択される各種成分を混合することによって調製できる。塗料は、各種成分を予め混合されたものを塗装時にそのまま使用する1液型、別々に保管しておいた2つ以上の成分(例えば、主剤と硬化剤)を塗装時に混合して使用される多液型(例えば、2液型)のいずれの形態であってもよい。 The paint can be prepared by mixing various components appropriately selected as necessary. Paint is a one-liquid type in which various components are pre-mixed and used as-is at the time of painting, and two or more components (for example, main agent and curing agent) that are stored separately are mixed at the time of painting. It may be in any form of a multi-liquid type (for example, a two-liquid type).

塗料の最低造膜温度(MFT)は制限されないが、0~70℃であることが好ましい。最低造膜温度が高いと、バインダー成分が十分に融着できず、酸素が透過し易い塗膜となる傾向があり、塗膜の耐候性を低下させる恐れがある。 Although the minimum film-forming temperature (MFT) of the paint is not limited, it is preferably 0 to 70°C. If the minimum film-forming temperature is high, the binder component cannot be sufficiently fused, and the coating tends to be permeable to oxygen, possibly deteriorating the weather resistance of the coating.

本明細書において、最低造膜温度とは、塗料を乾燥させたとき、き裂のない均一な塗膜が形成される最低温度であり、JIS K 6828-2:2003に準拠して測定される。 As used herein, the minimum film-forming temperature is the minimum temperature at which a crack-free uniform coating film is formed when the paint is dried, and is measured in accordance with JIS K 6828-2: 2003. .

塗料は、せん断速度0.1(1/s)における粘度が0.001~1000(Pa・s、23℃)であり、せん断速度1000(1/s)における粘度が0.001~10(Pa・s、23℃)であることが好ましい。本明細書において、粘度は、レオメーター(例えば、TAインスツルメンツ社製レオメーターARES)を用い、液温を23℃に調整した後に測定される。 The paint has a viscosity of 0.001 to 1000 (Pa s, 23 ° C.) at a shear rate of 0.1 (1 / s), and a viscosity of 0.001 to 10 (Pa s) at a shear rate of 1000 (1 / s). · s, 23°C). As used herein, the viscosity is measured using a rheometer (for example, Rheometer ARES manufactured by TA Instruments) after adjusting the liquid temperature to 23°C.

塗料の塗装手段は、特に限定されず、既知の塗装手段、例えば、刷毛塗装、ローラー塗装、コテ塗装、ヘラ塗装、フローコーター塗装、スプレー塗装(例えばエアースプレー塗装、エアレススプレー塗装など)等が利用できる。 The coating means of the paint is not particularly limited, and known coating means such as brush coating, roller coating, trowel coating, spatula coating, flow coater coating, spray coating (e.g. air spray coating, airless spray coating, etc.) are used. can.

塗料の乾燥手段は、特に限定されず、周囲温度での自然乾燥や乾燥機等を用いた強制乾燥、光硬化のいずれであってもよい。 The method of drying the paint is not particularly limited, and may be natural drying at ambient temperature, forced drying using a dryer or the like, or photocuring.

本発明の別の態様は、本発明の塗膜評価方法を用いて評価された高耐候性の塗膜を備える塗装体である。本明細書では、この塗装体を「本発明の塗装体」とも称する。 Another aspect of the present invention is a coated body provided with a highly weather-resistant coating film evaluated using the coating film evaluation method of the present invention. In this specification, this coated body is also referred to as "the coated body of the present invention".

本発明の塗装体の一実施形態は、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)が190~330℃の範囲内である塗膜を備える塗装体である。
ここで、温度(T1)を求めるための化学発光量と温度の関係を示す曲線は、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線である。
In one embodiment of the coated body of the present invention, the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is 190 to 330. It is a coated body with a coating film that is within the range of °C.
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for determining the temperature (T1) is obtained by continuously raising the temperature from 50 ° C. to 350 ° C. at a heating rate of 15 ° C./min in an oxygen or air atmosphere. It is a curve showing the relationship between the chemiluminescence amount and the temperature obtained by measuring the chemiluminescence amount of the coating film under the conditions and plotting it on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis.

温度(T1)が190~330℃の範囲内である塗膜を備える塗装体は、耐候性に優れる。例えば、塗膜の温度(T1)を190℃以上にすることで、塗膜の光沢保持時間を長くすることができる。塗膜の温度(T1)は、200~330℃の範囲内であることが好ましく、210~330℃の範囲内であることが更に好ましい。 A coated body provided with a coating film having a temperature (T1) within the range of 190 to 330° C. has excellent weather resistance. For example, by setting the temperature (T1) of the coating film to 190° C. or higher, the gloss retention time of the coating film can be lengthened. The temperature (T1) of the coating film is preferably within the range of 200 to 330°C, more preferably within the range of 210 to 330°C.

本発明の塗装体の一実施形態は、化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T1)とし、促進劣化試験後の化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を温度(T2)とした場合、温度(T1)と温度(T2)が、
-3.0 ≦ (T1-T2)/ T1 ×100 ≦ 7.0
の関係式(1)を満たす塗膜を備える塗装体である。
ここで、温度(T2)を求めるための化学発光量と温度の関係を示す曲線は、上述の温度(T1)と同様に、酸素または空気雰囲気下、15℃/minの昇温速度で連続的に50℃から350℃まで昇温させる条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして得られる化学発光量と温度の関係を示す曲線であるが、温度(T2)を求めるための塗膜は、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験(キセノンランプ照射時間:200時間)を受けた塗膜である。
In one embodiment of the coated body of the present invention, the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature is the temperature (T1), When the temperature (T2) is the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence after the accelerated deterioration test and the temperature, the temperature (T1) and temperature (T2) are
-3.0 ≤ (T1-T2)/T1 x 100 ≤ 7.0
It is a coated body provided with a coating film that satisfies the relational expression (1).
Here, the curve showing the relationship between the amount of chemiluminescence and the temperature for determining the temperature (T2) is continuous at a heating rate of 15 ° C./min in an oxygen or air atmosphere, as in the temperature (T1) described above. Measure the amount of chemiluminescence of the coating film under the conditions of raising the temperature from 50 ° C. to 350 ° C., and plot the amount of chemiluminescence obtained by plotting the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis. Although it is a curve showing the relationship, the coating film for determining the temperature (T2) was subjected to an accelerated deterioration test (xenon lamp irradiation time: 200 hours) according to the provisions of cycle A of JIS K 5600-7-7:2008. It is a coating film.

温度(T1)と温度(T2)が関係式(1)を満たす塗膜を備える塗装体は、耐候性に優れる。例えば、塗膜の温度(T1)と温度(T2)が関係式(1)を満たすことで、塗膜の光沢保持時間を長くすることができる。また、温度(T1)と温度(T2)は、
-2.0 ≦ (T1-T2)/ T1 ×100 ≦ 6.0
の関係式(2)を満たすことが好ましい。
A coated body having a coating film in which the temperature (T1) and the temperature (T2) satisfy the relational expression (1) has excellent weather resistance. For example, when the temperature (T1) and the temperature (T2) of the coating film satisfy the relational expression (1), the gloss retention time of the coating film can be lengthened. Also, temperature (T1) and temperature (T2) are
-2.0 ≤ (T1-T2)/T1 x 100 ≤ 6.0
It is preferable to satisfy the relational expression (2).

本発明の塗装体において、塗膜は、艶消し塗膜でもよいことから光沢度は特に制限されるものではないが、例えば、光沢有り塗膜である場合には、60°における光沢度が10以上であることが好ましく、例えば、艶有り塗膜である場合には、60°における光沢度が70~90であることが好ましい。また、塗膜の光沢度は、耐候性の指標として利用することができ、例えば、促進劣化試験の前後で塗膜の光沢度が変化しない、または当該光沢度の変化が小さいと、優れた耐候性であると判断できる。例えば、JIS K 5600-7-7:2008のサイクルAの規定に従う促進劣化試験後の塗膜の光沢値が促進劣化試験前の塗膜の光沢値(初期光沢値)に対して50%低下するまでの時間(50%の光沢保持時間)について、キセノンランプ照射時間が2000時間以上となる塗膜が耐候性の観点から好ましく、3000時間以上となることがより好ましい。 In the coated body of the present invention, the coating film may be a matte coating film, so the glossiness is not particularly limited. For example, in the case of a glossy coating film, the glossiness at 60° is preferably 70 to 90. In addition, the glossiness of the coating film can be used as an index of weather resistance. can be determined to be gender. For example, the gloss value of the coating film after the accelerated deterioration test according to the provisions of JIS K 5600-7-7: 2008 cycle A is 50% lower than the gloss value (initial gloss value) of the coating film before the accelerated deterioration test. From the viewpoint of weather resistance, a coating film that can be irradiated with a xenon lamp for 2000 hours or more is preferable, and 3000 hours or more is more preferable.

本発明の塗装体において、塗膜は、酸素透過率が7.5cc・μm/cm/day以下であることが好ましい。また、酸素透過率の下限値は、例えば0.005cc・μm/cm/dayである。 In the coated body of the present invention, the coating film preferably has an oxygen permeability of 7.5 cc·μm/cm 2 /day or less. Moreover, the lower limit of the oxygen permeability is, for example, 0.005 cc·μm/cm 2 /day.

本発明の塗装体において、塗膜は、上述の本発明の塗膜の説明が同様に当てはまる。例えば、本発明の塗装体において、塗膜は有機質成分を含む塗膜であり、塗膜を構成する主な有機質成分は有機系のバインダー成分であり、バインダー成分は架橋構造を有することが好ましく、バインダー成分は紫外線吸収剤に由来する構造単位および/またはラジカル捕捉剤に由来する構造単位を含むことが好ましく、塗膜は紫外線吸収剤を含むことが好ましく、塗膜はラジカル捕捉剤を含むことが好ましく、塗膜は染料や顔料等の色材を含むことができ、色材としては無機顔料を用いることが好ましく、塗膜には重合開始剤や硬化触媒が残留していないことが好ましい。また、本発明の塗装体において、塗膜の膜厚は、例えば例えば0.01~100μmであり、好ましくは0.1~90μmであり、より好ましくは1~75μmであり、塗膜は複層膜であってもよい。 In the coated body of the present invention, the description of the coating film of the present invention is similarly applied to the coating film. For example, in the coated body of the present invention, the coating film is a coating film containing an organic component, the main organic component constituting the coating film is an organic binder component, and the binder component preferably has a crosslinked structure, The binder component preferably contains a structural unit derived from an ultraviolet absorber and/or a structural unit derived from a radical scavenger, the coating film preferably contains an ultraviolet absorber, and the coating film contains a radical scavenger. Preferably, the coating film can contain a coloring material such as a dye or a pigment, and it is preferable to use an inorganic pigment as the coloring material, and it is preferable that no polymerization initiator or curing catalyst remains in the coating film. In the coated body of the present invention, the thickness of the coating film is, for example, 0.01 to 100 μm, preferably 0.1 to 90 μm, more preferably 1 to 75 μm, and the coating film is multi-layered. It may be a membrane.

本発明の塗装体は、上述の塗膜(第1の塗膜)に加えて、第1の塗膜と異なる1層以上の更なる塗膜(第2の塗膜)を備えることができる。この場合、第1の塗膜は、塗装体の表層に位置することが好ましく、表面保護層として使用されることが好ましい。 In addition to the coating film (first coating film) described above, the coated body of the present invention can comprise one or more additional coating films (second coating film) different from the first coating film. In this case, the first coating film is preferably located on the surface layer of the coated body and is preferably used as a surface protective layer.

本発明の塗装体において、塗膜は、基材上に形成されている。 In the coated body of the present invention, the coating film is formed on the substrate.

基材としては、例えば、エポキシ樹脂、ABS樹脂、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、アクリル樹脂、例えばポリメチルメタクリレート(PMMA)、ポリエチレンテレフタラート(PET)、ポリオレフィン、例えばポリプロピレン(PP)等のプラスチック基材、鉄鋼、亜鉛めっき鋼、錫めっき鋼、ステンレス鋼、マグネシウム合金、アルミニウム、アルミニウム合金、チタン、チタン合金等の金属基材、セメント、モルタル、コンクリート、スレート、石膏、ケイ酸カルシウム、ガラス、セラミック、炭酸カルシウム、大理石、人工大理石等の金属以外の無機質基材、木材等の木質基材、これら基材の2種以上の材料を組み合わせたような複合基材等が挙げられる。また、複合基材としては、例えば、木繊維補強セメント板、繊維補強セメント板、繊維補強セメント・珪酸カルシウム板等の複合基材、各種表面処理、例えば酸化処理が施された金属基材、その表面が無機物で被覆されているようなプラスチック基材(例えば、ガラス質で被覆されたプラスチック基材)等が挙げられる。 Examples of base materials include plastic bases such as epoxy resins, ABS resins, polycarbonates, polyvinyl chlorides, polystyrenes, acrylic resins such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyolefins such as polypropylene (PP). Materials, steel, galvanized steel, tinned steel, stainless steel, magnesium alloy, aluminum, aluminum alloy, titanium, titanium alloy and other metal substrates, cement, mortar, concrete, slate, gypsum, calcium silicate, glass, ceramics , inorganic substrates other than metals such as calcium carbonate, marble, artificial marble, etc., woody substrates such as wood, and composite substrates in which two or more of these substrates are combined. Examples of composite base materials include composite base materials such as wood fiber reinforced cement boards, fiber reinforced cement boards, fiber reinforced cement/calcium silicate boards, metal base materials subjected to various surface treatments such as oxidation treatment, and the like. A plastic substrate whose surface is coated with an inorganic substance (for example, a plastic substrate coated with a vitreous substance) and the like can be mentioned.

基材は、様々な形状のものがあり、例えば、板状の基材等がある。基材の表面は、平滑であってもよいし、凹凸を有していてもよい。 The base material has various shapes, such as a plate-like base material. The surface of the substrate may be smooth or may have unevenness.

基材の具体例としては、建築物や構築物等の構造物、車両(自動車等)、家具、建具、電子機器(家電機器等)や、それらの部品が好適に挙げられる。ここで、本発明の塗装物品は、構造物の内外装用(内装用及び/又は外装用)の基材として好適である。本発明において、建築物とは、人間が居住又は滞在する目的で建築された構造物を意味し、例えば住宅(特には戸建や集合住宅)やビル、工場等が挙げられ、構築物とは、人間が居住又は滞在する目的以外のために建設された構造物を意味し、例えば橋梁、タンク、プラント配管、煙突等が挙げられる。また、構造物の部材としては、例えば屋根や壁(内壁や外壁など、特にはカーテンウォール)等が挙げられる。 Specific examples of the substrate preferably include structures such as buildings and constructions, vehicles (automobiles, etc.), furniture, fittings, electronic devices (home appliances, etc.), and parts thereof. Here, the coated article of the present invention is suitable as a base material for the interior and exterior (for interior and/or exterior) of structures. In the present invention, a building means a structure built for the purpose of human residence or stay, for example, a house (especially a detached house or collective housing), a building, a factory, etc. Structures constructed for purposes other than human habitation or residence, such as bridges, tanks, plant piping, chimneys, and the like. Examples of structural members include roofs and walls (inner walls, outer walls, particularly curtain walls).

本発明の塗装体は、建材、特に建築板であることが好ましい。建築基材の具体例としては、例えば、単板、合板、パーティクルボード、中密度繊維板(MDF)等の木質建材;窯業系サイディングボード、フレキシブルボード、珪酸カルシウム板、石膏スラグバーライト板、木片セメント板、石綿セメント板、パルプセメント板、プレキャストコンクリート板、軽量気泡コンクリート(ALC)板またはALCパネル、石膏ボード等の窯業建材;金属サイディングボード、アルミニウム、鉄、ステンレス等の金属建材等の各種建材(特に建築板)が好適に挙げられる。また、基材の具体例として、塩ビシート、ターポリン、プラダン(プラスチック製ダンボール)、アクリル板等のプラスチック基材、タイル、ガラス板等も挙げられる。 The coated body of the present invention is preferably a building material, particularly a building board. Specific examples of building base materials include wooden building materials such as veneers, plywoods, particle boards, and medium density fiberboards (MDF); ceramic siding boards, flexible boards, calcium silicate boards, gypsum slag barlite boards, and wood chips. Ceramic building materials such as cement board, asbestos cement board, pulp cement board, precast concrete board, lightweight aerated concrete (ALC) board or ALC panel, gypsum board; various building materials such as metal siding board, metal building materials such as aluminum, iron, stainless steel, etc. (especially building boards) are preferred. Specific examples of the substrate include plastic substrates such as vinyl chloride sheets, tarpaulins, plastic cardboard (plastic cardboard), acrylic plates, tiles, and glass plates.

基材は、その表面に、脱脂処理、化成処理、研磨等の前処理や、シーラー、プライマー塗装等が施されていてもよい。例えば、基材が、窯業建材等の塗料を過度に吸い込む可能性のある基材(特に多孔性基材)である場合、基材の表面がシーラーで塗装され、基材上にシーラー層が形成されている場合がある。また、基材が、金属建材等である場合には、基材の表面がプライマーで塗装され、基材上にプライマー層が形成されている場合がある。 The surface of the base material may be subjected to pretreatment such as degreasing treatment, chemical conversion treatment, polishing, sealer, primer coating, or the like. For example, if the base material is a base material (especially a porous base material) that may absorb excessive paint such as ceramic building materials, the surface of the base material is coated with a sealer to form a sealer layer on the base material. may have been. Moreover, when the base material is a metal building material or the like, the surface of the base material may be coated with a primer to form a primer layer on the base material.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.

アクリル樹脂エマルジョンの調製
<樹脂A~F>
樹脂A~Fとして、以下の水分散性樹脂を用意した。粒子径は動的光散乱法によって測定される体積平均粒子径D50の値を示した。
・樹脂A:乳化剤としてKH10を使用した[モノマー組成:MMA/CHMA/EHA/MAA/KBM503(質量比30/42/25/2/1)]の乳化重合体、固形分量45質量%、平均粒子径90nm
・樹脂B:乳化剤としてKH10を使用し、重合性ラジカル捕捉剤としてLA-82を配合した[モノマー組成:MMA/CHMA/EHA/MAA/KBM503/LA-82(質量比29/42/24/2/1/2)]の乳化重合体、固形分量45質量%、平均粒子径90nm
・樹脂C:乳化剤としてKH10を使用し、重合性紫外線吸収剤としてRUVA-93を配合した[モノマー組成:MMA/CHMA/EHA/MAA/KBM503/RUVA-93(質量比29/42/24/2/1/2)]の乳化重合体、固形分量45質量%、平均粒子径90nm
・樹脂D:乳化剤としてハイテノールNF08を使用した[モノマー組成:MMA/CHMA/EHA/MAA/KBM503(質量比30/42/25/2/1)]の乳化重合体、固形分量45質量%、平均粒子径90nm
・樹脂E:乳化剤としてKH10を使用した[モノマー組成:MMA/CHMA/BA/BMA/MAA/KBM503(質量比27/30/20/20/2/1)]の乳化重合体、固形分量45質量%、平均粒子径90nm
・樹脂F:乳化剤としてハイテノールNF08を使用した[モノマー組成:MMA/CHMA/BA/MAA(質量比23/25/50/2)]の乳化重合体、固形分量45質量%、平均粒子径90nm
Preparation of acrylic resin emulsion <Resins A to F>
As resins A to F, the following water-dispersible resins were prepared. The particle size indicated the value of volume average particle size D50 measured by the dynamic light scattering method.
Resin A: Emulsion polymer of [monomer composition: MMA/CHMA/EHA/MAA/KBM503 (mass ratio 30/42/25/2/1)] using KH10 as an emulsifier, solid content 45% by mass, average particle diameter 90 nm
・Resin B: KH10 is used as an emulsifier and LA-82 is blended as a polymerizable radical scavenger [monomer composition: MMA/CHMA/EHA/MAA/KBM503/LA-82 (mass ratio 29/42/24/2 /1/2)], solid content 45% by mass, average particle size 90 nm
・Resin C: KH10 is used as an emulsifier and RUVA-93 is blended as a polymerizable ultraviolet absorber [monomer composition: MMA/CHMA/EHA/MAA/KBM503/RUVA-93 (mass ratio 29/42/24/2 /1/2)], solid content 45% by mass, average particle size 90 nm
Resin D: Emulsion polymer of [monomer composition: MMA/CHMA/EHA/MAA/KBM503 (mass ratio 30/42/25/2/1)] using Hitenol NF08 as an emulsifier, solid content 45% by mass, Average particle size 90nm
Resin E: Emulsion polymer of [monomer composition: MMA/CHMA/BA/BMA/MAA/KBM503 (mass ratio 27/30/20/20/2/1)] using KH10 as an emulsifier, solid content 45 mass %, average particle size 90 nm
Resin F: Emulsion polymer of [monomer composition: MMA/CHMA/BA/MAA (mass ratio 23/25/50/2)] using Hitenol NF08 as an emulsifier, solid content 45% by mass, average particle size 90 nm

略号は、以下のことを意味する。
・KH10:反応性乳化剤、第一工業製薬社製
・ハイテノールNF08:非反応性乳化剤、第一工業製薬社製
・MMA:メチルメタクリレート、ホモポリマーのTg105℃、SP値9.53
・CHMA:シクロヘキシルメタクリレート、ホモポリマーのTg60℃、SP値9.48
・EHA:2-エチルヘキシルアクリレート、ホモポリマーのTg-50℃、SP値9.2
・BA:n-ブチルアクリレート、ホモポリマーのTg-55℃、SP値9.67
・BMA:n-ブチルメタクリレート、ホモポリマーのTg20℃、SP値9.27
・MAA:メタクリル酸、ホモポリマーのTg130℃、SP値10.24
・KBM503:γ-メタクリロイルオキシプロピルトリメトキシシラン
・LA-82:1,2,2,6,6-ペンタメチル-4-ピペリジルメタアクリレート、ラジカル捕捉剤、アデカスタブLA-82、ADEKA社製
・RUVA-93:2-〔2'-ヒドロキシ-5'-(β-メタクリロイルオキシエトキシ)-3'-tert-ブチルフェニル〕-4-tert-ブチル-2H-ベンゾトリアゾール、紫外線吸収剤、大塚化学社製
Abbreviations have the following meanings.
・KH10: Reactive emulsifier, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. ・Hitenol NF08: Non-reactive emulsifier, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. ・MMA: Methyl methacrylate, homopolymer Tg 105 ° C., SP value 9.53
・CHMA: cyclohexyl methacrylate, homopolymer Tg 60°C, SP value 9.48
EHA: 2-ethylhexyl acrylate, Tg of homopolymer -50°C, SP value 9.2
・ BA: n-butyl acrylate, homopolymer Tg -55 ° C., SP value 9.67
· BMA: n-butyl methacrylate, homopolymer Tg 20 ° C., SP value 9.27
・MAA: methacrylic acid, homopolymer Tg 130°C, SP value 10.24
・KBM503: γ-methacryloyloxypropyltrimethoxysilane ・LA-82: 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, radical scavenger, Adekastab LA-82, manufactured by ADEKA ・RUVA-93 : 2-[2′-hydroxy-5′-(β-methacryloyloxyethoxy)-3′-tert-butylphenyl]-4-tert-butyl-2H-benzotriazole, UV absorber, manufactured by Otsuka Chemical Co., Ltd.

アルキド樹脂の調製
<樹脂G>
加熱装置、攪拌機、窒素ガス投入機および分水器を備えた反応器に、無水フタル酸12質量部、アジピン酸2質量部、安息香酸1.5質量部、ペンタエリトリトール12質量部、大豆油脂肪酸22質量部、アマニ油脂肪酸9質量部およびキシレン2質量部を還流冷却器つきのフラスコに仕込み、窒素ガス雰囲気中で攪拌しながら230℃で約8時間加熱し、樹脂酸価15になるまで脱水縮合反応を行った。その後130℃まで冷却後にキシレン43質量部を加えてアルキド樹脂を調製した。得られたアルキド樹脂溶液は、固形分量が55質量%、粘度が20ストークス、重量平均分子量が40,000であった。
Preparation of Alkyd Resin <Resin G>
12 parts by mass of phthalic anhydride, 2 parts by mass of adipic acid, 1.5 parts by mass of benzoic acid, 12 parts by mass of pentaerythritol, and soybean oil fatty acid were added to a reactor equipped with a heating device, stirrer, nitrogen gas injector and water separator. 22 parts by mass of linseed oil fatty acid, 9 parts by mass of linseed oil fatty acid, and 2 parts by mass of xylene are charged in a flask equipped with a reflux condenser, heated at 230° C. for about 8 hours while stirring in a nitrogen gas atmosphere, and dehydrated and condensed until the resin acid value reaches 15. reacted. After cooling to 130° C., 43 parts by mass of xylene was added to prepare an alkyd resin. The resulting alkyd resin solution had a solids content of 55% by weight, a viscosity of 20 stokes and a weight average molecular weight of 40,000.

塗料の調製
<塗料1~7の調製>
以下のように、表1に示す樹脂(ただし、使用する場合は硬化剤を併記した)と二酸化チタンを用いてPWC(顔料重量濃度)が45%の塗料1~7を調製した。
塗料1では、主剤として溶剤系フッ素樹脂(旭硝子株式会社製、商品名LF200)と二酸化チタン1(石原産業株式会社製、商品名TIPAQUE PFC105)を用いて溶剤系フッ素樹脂を調製した。硬化剤としてイソシアネート(旭化成株式会社製、商品名デュラネートTPA-100、ヘキサメチレンジイソシアネート、ヌレート型)を用いた。溶剤系フッ素樹脂80質量部と硬化剤20質量部を混合して、PWCが45%の塗料1を調製した。
塗料2では、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)と二酸化チタン1を用いた。
塗料3では、アクリルシリコーン樹脂エマルジョン(旭化成ケミカルズ株式会社製、商品名ポリデュレックスH7650)と二酸化チタン1を用いた。
塗料4では、アクリル樹脂エマルジョン(調製した樹脂A)と二酸化チタン1を用いた。
塗料5では、ウレタンディスパージョン(セイコー化成株式会社製、商品名ラックコートWN-3049)と二酸化チタン1を用いた。
塗料6では、アルキド樹脂(調製した樹脂G)と二酸化チタン1を用いた。
塗料7では、アクリル樹脂エマルジョン(調製した樹脂A)と二酸化チタン2(石原産業株式会社製、商品名TIPAQUE CR-50)を用いた。
さらに、塗料2~5と塗料7では、成膜助剤として溶剤(ジエチレングリコールモノブチルエーテル)を樹脂固形分に対して10質量%添加した。
Preparation of paint <Preparation of paints 1 to 7>
Paints 1 to 7 having a PWC (pigment weight concentration) of 45% were prepared using the resins shown in Table 1 (where the curing agent was also indicated when used) and titanium dioxide as follows.
In Paint 1, a solvent-based fluororesin was prepared using a solvent-based fluororesin (manufactured by Asahi Glass Co., Ltd., trade name LF200) and titanium dioxide 1 (manufactured by Ishihara Sangyo Co., Ltd., trade name TIPAQUE PFC105) as main ingredients. Isocyanate (manufactured by Asahi Kasei Corporation, trade name Duranate TPA-100, hexamethylene diisocyanate, nurate type) was used as a curing agent. A paint 1 having a PWC of 45% was prepared by mixing 80 parts by mass of a solvent-based fluororesin and 20 parts by mass of a curing agent.
As the paint 2, a fluororesin emulsion (manufactured by Asahi Glass Co., Ltd., product name Lumiflon FE4300) and titanium dioxide 1 were used.
As paint 3, an acrylic silicone resin emulsion (trade name Polydurex H7650, manufactured by Asahi Kasei Chemicals Corporation) and titanium dioxide 1 were used.
Paint 4 used an acrylic resin emulsion (prepared resin A) and titanium dioxide 1.
As paint 5, urethane dispersion (manufactured by Seiko Kasei Co., Ltd., product name: Rack Coat WN-3049) and titanium dioxide 1 were used.
Paint 6 used an alkyd resin (prepared resin G) and titanium dioxide 1.
For paint 7, an acrylic resin emulsion (prepared resin A) and titanium dioxide 2 (manufactured by Ishihara Sangyo Co., Ltd., trade name TIPAQUE CR-50) were used.
Furthermore, in paints 2 to 5 and paint 7, a solvent (diethylene glycol monobutyl ether) was added as a film-forming aid in an amount of 10% by mass based on the resin solid content.

使用した二酸化チタンの詳細は以下のとおりである。
二酸化チタン1:TIPAQUE PFC105
TiO量87%、表面処理Al、Si、Zr、有機物、平均粒子径0.28μm
二酸化チタン2:TIPAQUE CR-50
TiO量95%、表面処理Al、平均粒子径0.25μm
Details of the titanium dioxide used are as follows.
Titanium dioxide 1: TIPAQUE PFC105
TiO2 amount 87%, surface treatment Al, Si, Zr, organic matter, average particle size 0.28 μm
Titanium dioxide 2: TIPAQUE CR-50
TiO2 amount 95%, surface treatment Al, average particle size 0.25 μm

<塗料8~19の調製>
表2に示す配合に従って原料を混合し、塗料を得た。
塗料8では、調製した樹脂Aを用いた。
塗料9では、調製した樹脂Aを用い、HALS1(BASFジャパン株式会社製、商品名TINUVIN292、低分子量HALS、分子量509、370)を添加した。
塗料10では、調製した樹脂B(共重合型HALS含有)を用いた。
塗料11では、調製した樹脂Aを用い、HALS2(BASFジャパン株式会社製、商品名TINUVIN123DW、樹脂内包型HALS)を添加した。
塗料12では、調製した樹脂Aを用い、HALS3(BASFジャパン株式会社製、商品名TINUVIN123、中分子量型HALS、分子量737)を添加した。
塗料13では、調製した樹脂Aを用い、UVA1(BASFジャパン株式会社製、商品名TINUVIN1130、非反応性UVA)を添加した。
塗料14では、調製した樹脂C(共重合型UVA含有)を用いた。
塗料15では、調製した樹脂Aを用い、HALS1とUVA1を添加した。
塗料16では、調製した樹脂B(共重合型HALS含有)を用い、さらにUVA1を塗膜当たり2質量%添加した。
塗料17では、調製した樹脂B(共重合型HALS含有)を用い、さらにHALS1を塗膜当たり2質量%とUVA1を塗膜当たり2質量%添加した。
塗料18では、調整した樹脂B(共重合型HALS含有)を用い、さらにHALS1を塗膜当たり7質量%とUVA1を塗膜当たり2質量%添加した。
塗料19では、調製した樹脂B(共重合型HALS含有)を用い、HALS1を塗膜当たり19質量%とUVA1を塗膜当たり10質量%添加した。
さらに、塗料8~19では、成膜助剤として溶剤(ジエチレングリコールモノブチルエーテル)を樹脂固形分に対して10質量%添加した。
<Preparation of paints 8 to 19>
Raw materials were mixed according to the formulation shown in Table 2 to obtain a paint.
For paint 8, prepared resin A was used.
In paint 9, prepared resin A was used, and HALS1 (manufactured by BASF Japan Ltd., trade name TINUVIN292, low molecular weight HALS, molecular weight 509, 370) was added.
In paint 10, prepared resin B (containing copolymerized HALS) was used.
In paint 11, prepared resin A was used, and HALS2 (manufactured by BASF Japan Ltd., trade name TINUVIN123DW, resin-encapsulated HALS) was added.
In paint 12, prepared resin A was used, and HALS3 (manufactured by BASF Japan Ltd., trade name TINUVIN123, middle molecular weight type HALS, molecular weight 737) was added.
In paint 13, prepared resin A was used, and UVA1 (manufactured by BASF Japan Ltd., trade name TINUVIN1130, non-reactive UVA) was added.
For paint 14, prepared resin C (containing copolymerized UVA) was used.
In paint 15, prepared resin A was used, and HALS1 and UVA1 were added.
In paint 16, prepared resin B (containing copolymer type HALS) was used, and 2% by mass of UVA1 was added to the coating film.
In paint 17, prepared resin B (containing copolymer type HALS) was used, and 2% by mass of HALS1 and 2% by mass of UVA1 were added to the coating film.
In paint 18, prepared resin B (containing copolymer type HALS) was used, and HALS1 was added in an amount of 7% by mass per coating film and UVA1 was added in an amount of 2% by mass per coating film.
In paint 19, prepared resin B (containing copolymer type HALS) was used, and 19% by mass of HALS1 and 10% by mass of UVA1 were added per coating film.
Furthermore, in paints 8 to 19, a solvent (diethylene glycol monobutyl ether) was added as a film forming aid in an amount of 10% by mass based on the resin solid content.

使用したHALS及びUVAの詳細は、以下のとおりである。
・TN292:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物、TINUVIN292、BASFジャパン社製
・TN123:ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123、平均分子量737、BASFジャパン社製
・TN1130:メチル-3-[3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネートとポリエチレングリコール(分子量300)との縮合物、TINUVIN1130、BASFジャパン社製
Details of the HALS and UVA used are as follows.
・ TN292: A mixture of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl-sebacate, TINUVIN292, BASF Japan TN123: Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, TINUVIN123, average molecular weight 737, manufactured by BASF Japan TN1130: Methyl-3-[3-tert-butyl -Condensation product of 5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate and polyethylene glycol (molecular weight 300), TINUVIN1130, manufactured by BASF Japan

<塗料20~29の調製>
表3に示す配合に従って原料を混合し、塗料を得た。
塗料20は、フッ素樹脂エマルジョン1(旭硝子株式会社製、商品名ルミフロンFE4300)と調製した樹脂Aを固形分質量にて50対50の比で混合し調製された。
塗料21は、フッ素樹脂エマルジョン1と調製した樹脂Eを固形分質量にて50対50の比で混合し調製された。
塗料22は、フッ素樹脂エマルジョン2(アルケマ株式会社製、商品名Kynor Aquatec ARC)と調製した樹脂Aを固形分質量にて50対50の比で混合し調製された。
塗料23は、フッ素樹脂エマルジョン1と調製した樹脂Dを固形分質量にて50対50の比で混合し調製された。
塗料24では、調製した樹脂Aを用いた。
塗料25は、フッ素樹脂エマルジョン1と調製した樹脂Aを固形分質量にて5対95の比で混合し調製された。
塗料26は、フッ素樹脂エマルジョン1と調製した樹脂Aを固形分質量にて10対90の比で混合し調製された。
塗料27は、フッ素樹脂エマルジョン1と調製した樹脂Aを固形分質量にて30対70の比で混合し調製された。
塗料28は、フッ素樹脂エマルジョン1と調製した樹脂Aを固形分質量にて70対30の比で混合し調製された。
塗料29では、フッ素樹脂エマルジョン1を用いた。
<Preparation of paints 20 to 29>
Raw materials were mixed according to the formulation shown in Table 3 to obtain a paint.
The coating material 20 was prepared by mixing fluororesin emulsion 1 (manufactured by Asahi Glass Co., Ltd., product name Lumiflon FE4300) and the prepared resin A in a solid mass ratio of 50:50.
Paint 21 was prepared by mixing fluororesin emulsion 1 and prepared resin E in a ratio of 50:50 in terms of solid content.
The paint 22 was prepared by mixing fluororesin emulsion 2 (manufactured by Arkema Co., Ltd., trade name: Kynor Aquatec ARC) and the prepared resin A in a solid mass ratio of 50:50.
Paint 23 was prepared by mixing fluororesin emulsion 1 and prepared resin D in a ratio of 50:50 in terms of solid content.
For paint 24, prepared resin A was used.
Paint 25 was prepared by mixing fluororesin emulsion 1 and prepared resin A in a ratio of 5 to 95 in terms of solid content.
Paint 26 was prepared by mixing fluororesin emulsion 1 and prepared resin A in a ratio of 10 to 90 in terms of solid content.
Paint 27 was prepared by mixing fluororesin emulsion 1 and prepared resin A in a ratio of 30:70 in terms of solid content.
Paint 28 was prepared by mixing fluororesin emulsion 1 and prepared resin A in a ratio of 70 to 30 in terms of solid content.
As the paint 29, the fluororesin emulsion 1 was used.

<塗料30~32の調製>
以下のように、表4に示す樹脂および艶消し剤を用いて、塗料を得た。
塗料30は、調製した樹脂Aと、HALS1を塗膜当たり2質量%と、UVA1を塗膜当たり2質量%と、艶消し剤1(ニホンエクスラン工業株式会社製、タフチック750SQ、アクリル微粒子)を塗膜当たり25質量%と、成膜助剤を混合し調製された。
塗料31は、調製した樹脂Aと、HALS1と、UVA1と、艶消し剤2(ダブリュー・アール・グレースジャパン株式会社製、SYLOID W500、二酸化ケイ素)、成膜助剤を混合し調製された。
塗料32は、調製した樹脂Dと、HALS1を塗膜当たり2質量%と、UVA1を塗膜当たり2質量%と、艶消し剤1(ニホンエクスラン工業株式会社製、タフチック750SQ、アクリル微粒子)を塗膜当たり25質量%と、成膜助剤を混合し調製された。
使用されたHALS1およびUVA1は、上記<塗料8~19の調製>に記載のとおりである。また、使用した成膜助剤は、ジエチレングリコールモノブチルエーテルである。
<Preparation of paints 30 to 32>
Paints were obtained using the resins and matting agents shown in Table 4 as follows.
Paint 30 is prepared resin A, 2% by mass of HALS1 per coating film, 2% by mass of UVA1 per coating film, and matting agent 1 (Nihon Exlan Kogyo Co., Ltd., Tuftic 750SQ, acrylic fine particles). It was prepared by mixing 25 mass % per film and a film-forming aid.
Paint 31 was prepared by mixing prepared resin A, HALS 1, UVA 1, delustering agent 2 (SYLOID W500, silicon dioxide, manufactured by W. R. Grace Japan Co., Ltd.), and a film forming aid.
Paint 32 is the prepared resin D, 2% by mass of HALS1 per coating film, 2% by mass of UVA1 per coating film, and matting agent 1 (Nihon Exlan Kogyo Co., Ltd., Tuftic 750SQ, acrylic fine particles). It was prepared by mixing 25 mass % per film and a film-forming aid.
HALS1 and UVA1 used are as described in <Preparation of paints 8-19> above. In addition, the film-forming aid used was diethylene glycol monobutyl ether.

<塗料33~34の調製>
以下のように、表4に示す樹脂と二酸化チタンを用いてPWC45%の塗料33~34を調製した。
塗料33は、調製した樹脂Aと二酸化チタン1、HALS1を用いた。
塗料34は、調製した樹脂Fと二酸化チタン1を用いた。
使用された二酸化チタン1は、上記<塗料1~7の調製>に記載のとおりであり、HALS1は、上記<塗料8~19の調製>に記載のとおりである。
<Preparation of paints 33-34>
Paints 33-34 with 45% PWC were prepared using the resins shown in Table 4 and titanium dioxide as follows.
The paint 33 used prepared resin A, titanium dioxide 1, and HALS1.
As the paint 34, prepared resin F and titanium dioxide 1 were used.
Titanium dioxide 1 used is as described in <Preparation of paints 1-7> above, and HALS 1 is as described in <Preparation of paints 8-19> above.

試験板の作製
<試験板1~7>
試験板1は、基材上に、塗料1をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、30℃で24時間乾燥して作製した。
試験板2~5と試験板7は、基材を60℃に加温して、基材上に、表1に示す番号の塗料をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、60℃で5分加熱して作製した。
試験板6は、基材上に、塗料6をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、30℃で7日間乾燥し作製した。
Preparation of test plate <Test plates 1 to 7>
The test plate 1 was prepared by applying the coating material 1 on the base material by air spraying so that the coating amount was 100 g/m 2 (equivalent to a dry film thickness of 30 μm), and then drying at 30° C. for 24 hours.
For test plates 2 to 5 and test plate 7, the base material was heated to 60° C., and the paints of the numbers shown in Table 1 were applied onto the base material by air spraying in an amount of 100 g/m 2 (the dry film thickness was 30 μm equivalent), and then heated at 60° C. for 5 minutes.
The test plate 6 was prepared by applying the paint 6 onto the base material by air spraying so that the coating amount was 100 g/m 2 (equivalent to a dry film thickness of 30 μm), and then drying at 30° C. for 7 days.

<試験板8~19>
試験板8~19は、基材を60℃に加温して、基材上に、表2に示す番号の塗料をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、80℃で5分加熱し作製した。
<Test plates 8 to 19>
For test plates 8 to 19, the base material was heated to 60° C., and the paints of the numbers shown in Table 2 were applied onto the base material by air spraying to a coating amount of 100 g/m 2 (equivalent to a dry film thickness of 30 μm). After coating so that it becomes uniform, it was prepared by heating at 80° C. for 5 minutes.

<試験板20~29>
試験板20~29は、基材を60℃に加温して、基材上に、表3に示す番号の塗料をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、80℃で5分加熱し作製した。
<Test plates 20 to 29>
For test plates 20 to 29, the base material was heated to 60°C, and the paints of the numbers shown in Table 3 were air-sprayed onto the base material to a coating amount of 100 g/m 2 (equivalent to a dry film thickness of 30 µm). After coating so that it becomes uniform, it was prepared by heating at 80° C. for 5 minutes.

<試験板30~38>
複層膜の作製
試験板30~38は、複層膜を備える基材で構成され、基材を60℃に加温して、表4に示す番号のエナメル塗料を塗布量が130g/m(乾燥膜厚約30μm)になるように塗装した後、100℃×3分乾燥しエナメル板を作製した。エナメル板の表面温度を60℃に調製し、表4に示す番号のクリヤー塗料をエアスプレーにより塗布量が100g/m(乾燥膜厚が30μm相当)になるよう塗装した後、80℃で5分加熱し作製した。
<Test plates 30 to 38>
Preparation of multi-layer film Test plates 30 to 38 were composed of a base material having a multi-layer film. The base material was heated to 60°C, and the enamel paint with the number shown in Table 4 was applied in an amount of 130 g/m 2 . (Dry film thickness: about 30 μm), and dried at 100° C. for 3 minutes to prepare an enamel plate. The surface temperature of the enamel plate was adjusted to 60°C, and the clear paint with the number shown in Table 4 was applied by air spray so that the coating amount was 100 g/m 2 (equivalent to a dry film thickness of 30 µm). It was prepared by heating for minutes.

<基材>
試験板の作製では、基材として、以下のアルミニウム板を用いた。
アルミニウム板(150mm×70mm×0.8mm、TP技研(株)製)
<Base material>
The following aluminum plates were used as substrates in the production of the test plates.
Aluminum plate (150 mm × 70 mm × 0.8 mm, manufactured by TP Giken Co., Ltd.)

化学発光量の測定
作製した試験板について、連続的な昇温条件下にて化学発光量を測定した。
具体的には、基材から塗膜の剥離を行わずに試験板を1cm×1cmに切断し、測定用の試験片(塗膜付き基材)を用意した。微弱発光検出装置(東北電子産業株式会社製CLA-FS4)の試料室に測定用試験片を設置した。試料室に酸素を50mL/minで流し酸素雰囲気とし、15℃/minで連続的に昇温を続けながら、露光時間1秒で化学発光量を測定した。測定温度は50~350℃、検出波長は300~850nmとした。
化学発光量を縦軸に、温度を横軸とするグラフに測定結果をプロットし、化学発光量と温度の関係を示す曲線を得た。50~350℃の温度範囲において化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と、微分係数が最大となる接線との交点の温度を初期膜の発光開始温度(T1)として求めた。初期膜の発光開始温度(T1)を表1~4に示す。
Measurement of Chemiluminescence Amount The chemiluminescence amount of the prepared test plate was measured under conditions of continuous temperature rise.
Specifically, the test plate was cut into a size of 1 cm×1 cm without peeling off the coating film from the substrate to prepare a test piece for measurement (substrate with coating film). A test piece for measurement was placed in the sample chamber of a weak luminescence detector (CLA-FS4 manufactured by Tohoku Denshi Sangyo Co., Ltd.). Oxygen was flowed into the sample chamber at a rate of 50 mL/min to create an oxygen atmosphere, and the chemiluminescence amount was measured with an exposure time of 1 second while continuously raising the temperature at 15°C/min. The measurement temperature was 50 to 350° C., and the detection wavelength was 300 to 850 nm.
The measurement results were plotted on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis to obtain a curve showing the relationship between the chemiluminescence amount and the temperature. The temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature in the temperature range of 50 to 350 ° C. is the luminescence start temperature of the initial film (T1 ). Tables 1-4 show the light emission start temperature (T1) of the initial film.

促進劣化後の化学発光量の測定
作製した試験板について、JIS K5600-7-7:2008のサイクルAの規定に基づき、キセノンウェザーメーターNX75(スガ試験機株式会社製)を用いて、試験板に200時間キセノンランプを照射して促進劣化試験を行い、促進劣化後の試験板を得た。
得られた促進劣化後の試験板について、上記「化学発光量の測定」と同様に試験片を用意し、同一の条件により連続的な昇温条件下での化学発光量を測定した。
化学発光量を縦軸に、温度を横軸とするグラフに測定結果をプロットし、化学発光量と温度の関係を示す曲線を得た。50~350℃の温度範囲において化学発光量と温度の関係を示す曲線上における微分係数が最小となる接線と、微分係数が最大となる接線との交点の温度を促進劣化後の発光開始温度(T2)として求めた。
さらに、上記「化学発光量の測定」で求めた初期膜の発光開始温度(T1)と、促進劣化後の発光開始温度(T2)を用いて、下記関係式の値を求めた。得られた値を表1~4に示す。
関係式: (T1-T2)/T1×100
Measurement of the amount of chemiluminescence after accelerated deterioration For the prepared test plate, a xenon weather meter NX75 (manufactured by Suga Test Instruments Co., Ltd.) was used in accordance with the provisions of JIS K5600-7-7: 2008 cycle A. An accelerated deterioration test was performed by irradiating with a xenon lamp for 200 hours, and a test plate after accelerated deterioration was obtained.
Regarding the obtained test plate after accelerated deterioration, a test piece was prepared in the same manner as in the above "Measurement of chemiluminescence amount", and the chemiluminescence amount was measured under the same conditions as the temperature was continuously raised.
The measurement results were plotted on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis to obtain a curve showing the relationship between the chemiluminescence amount and the temperature. The temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on the curve showing the relationship between the amount of chemiluminescence and temperature in the temperature range of 50 to 350 ° C. is the luminescence start temperature after accelerated deterioration ( T2).
Furthermore, using the luminescence start temperature (T1) of the initial film obtained in the above "measurement of chemiluminescence amount" and the luminescence start temperature (T2) after accelerated deterioration, the value of the following relational expression was obtained. The values obtained are shown in Tables 1-4.
Relational expression: (T1-T2)/T1×100

(耐候性の評価)促進劣化による光沢保持率の評価
作製した試験板について、JIS K5600-7-7:2008のサイクルAの規定に基づき、キセノンウェザーメーターNX75を用いて、試験板にキセノンランプを照射し、促進劣化試験を行った。
ここで、促進劣化試験前の試験板の光沢値を初期光沢値として測定し、また、促進劣化試験中においても試験板の光沢値を測定した。光沢値は、JIS K5600-4-7(ISO 2813:1994)で規定される60°における鏡面光沢度(D60)であり、日本電色株式会社製 光沢計VG-2000を用いて測定された。
初期光沢値と促進劣化試験中の光沢値から下記式より光沢保持率(%)を求め、光沢保持率が50%となる照射時間を表1~4に示す。
光沢保持率=促進劣化試験中での光沢値 / 初期光沢値 ×100
表1~4から分かるように、T1が190~330℃の範囲内にある場合や(T1-T2)/T1×100の値が-3.0~7.0の範囲内である場合では、光沢値が50%低下するまでの時間が長く、高耐候性の塗膜であると判断することができる。
(Evaluation of weather resistance) Evaluation of gloss retention rate due to accelerated deterioration Regarding the prepared test plate, a xenon weather meter NX75 was used to apply a xenon lamp to the test plate in accordance with JIS K5600-7-7:2008 cycle A. It was irradiated and an accelerated aging test was performed.
Here, the gloss value of the test panel before the accelerated deterioration test was measured as the initial gloss value, and the gloss value of the test panel was also measured during the accelerated deterioration test. The gloss value is specular gloss (D60) at 60° defined by JIS K5600-4-7 (ISO 2813:1994), and was measured using a gloss meter VG-2000 manufactured by Nippon Denshoku Co., Ltd.
The gloss retention rate (%) was obtained from the following formula from the initial gloss value and the gloss value during the accelerated deterioration test, and the irradiation time at which the gloss retention rate was 50% is shown in Tables 1 to 4.
Gloss retention rate = gloss value during accelerated deterioration test / initial gloss value x 100
As can be seen from Tables 1 to 4, when T1 is in the range of 190 to 330 ° C. and the value of (T1 - T2) / T1 x 100 is in the range of -3.0 to 7.0, It takes a long time for the gloss value to decrease by 50%, and it can be judged that the coating film has high weather resistance.

酸素透過率測定
試験板20~29と同様の塗膜をPP板上に作製し、酸素透過率測定装置(イリノイ社製8001)を用いて、等圧法にて測定を行ない、以下の基準に基づいて酸素透過率を評価した。評価結果を表3に示す。
○:0.005~7.5cc・μm/cm/day
×:7.5cc・μm/cm/dayより大きい値
A coating similar to the oxygen permeability measurement test plates 20 to 29 was prepared on a PP plate, and an oxygen permeability measurement device (8001 manufactured by Illinois) was used to measure by the isobaric method, based on the following criteria. Oxygen permeability was evaluated using Table 3 shows the evaluation results.
○: 0.005 to 7.5 cc·μm/cm 2 /day
×: a value larger than 7.5 cc·μm/cm 2 /day

融着程度の評価
作製した試験板20~29について、塗膜中での樹脂の融着の程度を観察し、以下の基準で評価を行った。評価結果を表3に示す。
目視による評価
〇:良好な融着、×:ワレを確認
SEMによる評価
〇:良好な融着、×:クラックを確認
Evaluation of Degree of Fusion Adhesion The degree of fusion adhesion of the resin in the coating film was observed for the prepared test panels 20 to 29, and evaluated according to the following criteria. Table 3 shows the evaluation results.
Visual evaluation 〇: Good fusion, ×: Crack confirmed Evaluation by SEM 〇: Good fusion, ×: Crack confirmed

Figure 0007259001000002
Figure 0007259001000002

表1から、光沢保持率が50%となる照射時間が大きい塗膜(耐候性が良好な塗膜)は、発光開始温度(T1)が高いことが確認された。また、光沢保持率が50%となる照射時間が大きい塗膜(耐候性が良好な塗膜)は、(T1-T2)/T1×100の値が小さくなり、-3.0から7.0の範囲であることが確認された。試験板6では、酸化され易い不飽和結合が塗膜中に含まれたため、また、酸化重合の程度が低いため塗膜中に酸素が拡散し易く、より低温から熱酸化分解が進行しT1が低かったと考えられる。
試験板4と試験板7は二酸化チタンの種類を変えた塗膜となる。試験板4に比べて試験板7は、光沢保持率が50%となる照射時間が短く耐候性が低かったが、T1は190℃以上であった。一方、(T1-T2)/T1×100の値は大きかった。試験板7に含まれる二酸化チタンは光活性能が高いために塗膜が劣化し易かったと考えられる。
From Table 1, it was confirmed that a coating film with a long irradiation time (a coating film with good weather resistance) with a gloss retention rate of 50% has a high light emission start temperature (T1). In addition, the coating film with a long irradiation time when the gloss retention rate is 50% (a coating film with good weather resistance) has a smaller value of (T1-T2) / T1 × 100, from -3.0 to 7.0 was confirmed to be in the range of In test plate 6, since the coating film contained unsaturated bonds that are easily oxidized and the degree of oxidative polymerization was low, oxygen easily diffused in the coating film. presumably low.
The test plate 4 and the test plate 7 are coated with different types of titanium dioxide. Compared to test plate 4, test plate 7 had a shorter irradiation time at which the gloss retention rate reached 50% and had lower weather resistance, but T1 was 190° C. or higher. On the other hand, the value of (T1-T2)/T1×100 was large. It is considered that the titanium dioxide contained in the test plate 7 had a high photoactivity, so that the coating film was easily deteriorated.

Figure 0007259001000003
Figure 0007259001000003

試験板8と9より、塗膜にHALSを添加することで、光沢保持率が50%となる照射時間が大きくなり、発光開始温度(T1)も高くなることが確認された。HALSの存在により、熱酸化分解時に生じたラジカルが捕捉され、T1が高くなったためと考えられる。
試験板9~12より、塗膜に添加するHALSの種類によって光沢保持率が50%となる照射時間と発光開始温度(T1)、(T1-T2)/T1×100の値が変化することが確認された。試験板9の低分子量型HALSに比べて、試験板10のHALSを共重合した塗膜はHALSが塗膜から溶出し難く、(T1-T2)/T1×100の値が小さくなり、光沢保持率が50%となる照射時間が大きくなったと考えられる。また、測定時にHALSが塗膜から揮発し難く、T1が高くなったと考えられる。
試験板11と12も同様に、低分子量型HALSに比べて、樹脂内包型HALSと中分子量型HALSは塗膜から溶出し難いため、(T1-T2)/T1×100の値が小さくなり、光沢保持率が50%となる照射時間が大きくなったと考えられる。また、測定時にHALSが塗膜から揮発し難く、T1が高くなったと考えられる。
試験板8と13、14より、塗膜にUVAを添加した際の挙動が確認された。UVAの添加はT1には大きく影響しないが、添加することで光沢保持率が50%となる照射時間は大きくなり、(T1-T2)/T1×100の値が小さくなった。さらに、共重合型UVAを用いることにより、光沢保持率が50%となる照射時間はより大きくなり、(T1-T2)/T1×100の値はより小さくなった。これは、非重合型のUVAに比べて樹脂に共重合したUVAは塗膜から溶出し難いためと考えられる。
試験板15と16は、HALSとUVAを両方添加した塗膜であり、試験板9と10と同様に、低分子量型HALSに比べて共重合型HALSを用いる方が(T1-T2)/T1×100の値はより小さくなることが確認された。
試験板17と試験板18、試験板19は、共重合型HALSと低分子量HALSを併用し、さらに非重合型のUVAを添加した塗膜であり、低分子量HALSの添加量を変化している。試験板17と18は試験板10に比べて、T1は高くなった。塗膜中のHALS添加量が増加することで、捕捉できるラジカル量が増えたためと考えられる。また、試験板17と18は試験板10に比べて、光沢保持率が50%となる照射時間は大きくなり、(T1-T2)/T1×100の値が小さくなった。塗膜中に共重合HALSが有ることで、類似構造の低分子量型HALSが塗膜へ保持されやすくなり、促進時のHALS溶出程度が減ったためと考えられる。
一方、試験板19は、低分子量型HALSを最も多く添加したが、光沢保持率が50%となる照射時間は大きくなり、(T1-T2)/T1×100の値が大きくなった。低分子量型HALSが過剰に添加されたため塗膜中樹脂が可塑化され、また密度が小さくなり、HALSが溶出しやすく、初期の塗膜状態を保てなかったためと考えられる。
From test plates 8 and 9, it was confirmed that the addition of HALS to the coating film increased the irradiation time at which the gloss retention rate reached 50%, and also increased the light emission start temperature (T1). Presumably, the presence of HALS scavenged radicals generated during thermal oxidative decomposition, resulting in an increase in T1.
From test plates 9 to 12, it can be seen that the irradiation time at which the gloss retention is 50% and the luminescence start temperature (T1), (T1-T2)/T1×100 values change depending on the type of HALS added to the coating film. confirmed. Compared to the low-molecular-weight HALS of test plate 9, the HALS copolymerized coating film of test plate 10 is less likely to elute HALS from the coating film, the value of (T1-T2)/T1×100 is smaller, and the gloss is maintained. It is considered that the irradiation time at which the rate reaches 50% was increased. In addition, HALS was less likely to volatilize from the coating film during measurement, and T1 was considered to be high.
Similarly, for test plates 11 and 12, resin-encapsulated HALS and medium-molecular-weight HALS are less likely to elute from the coating film than low-molecular-weight HALS, so the value of (T1−T2)/T1×100 becomes smaller. It is considered that the irradiation time at which the gloss retention becomes 50% was increased. In addition, HALS was less likely to volatilize from the coating film during measurement, and T1 was considered to be high.
From test plates 8, 13, and 14, the behavior when UVA was added to the coating film was confirmed. The addition of UVA does not greatly affect T1, but the addition increases the irradiation time at which the gloss retention rate reaches 50%, and decreases the value of (T1-T2)/T1×100. Furthermore, by using the copolymer type UVA, the irradiation time at which the gloss retention rate becomes 50% became longer, and the value of (T1−T2)/T1×100 became smaller. This is probably because the UVA copolymerized with the resin is less likely to elute from the coating film than the non-polymerized UVA.
Test plates 15 and 16 are coating films to which both HALS and UVA have been added. The x100 value was confirmed to be smaller.
Test plate 17, test plate 18, and test plate 19 are coating films in which copolymer type HALS and low-molecular-weight HALS are used in combination, and non-polymerization-type UVA is added, and the addition amount of low-molecular-weight HALS is varied. . Compared to test plate 10, test plates 17 and 18 had higher T1. This is probably because the amount of radicals that can be captured increased as the amount of HALS added to the coating film increased. Further, test plates 17 and 18 had a longer irradiation time for a gloss retention of 50% than test plate 10, and the value of (T1-T2)/T1×100 was smaller. Presumably, the presence of copolymerized HALS in the coating film facilitates retention of low-molecular-weight HALS with a similar structure to the coating film, thereby reducing the degree of HALS elution during acceleration.
On the other hand, in Test Plate 19, although the largest amount of low-molecular-weight HALS was added, the irradiation time at which the gloss retention reached 50% was increased, and the value of (T1-T2)/T1×100 increased. This is probably because the excessive addition of low-molecular-weight HALS plasticized the resin in the coating film and reduced the density, making it easier for the HALS to elute and failing to maintain the initial state of the coating film.

Figure 0007259001000004
Figure 0007259001000004

表3は、種々のフッ素樹脂エマルジョンと種々のアクリル樹脂エマルジョンの混合割合を変え、評価を行った。
試験板20と、試験板21と、試験板22と、試験板23より、フッ素樹脂エマルジョンとアクリル樹脂エマルジョンの種類によって、光沢保持率が50%となる照射時間と、発光開始温度(T1)、(T1-T2)/T1×100の値に差が見られた。試験板22と試験板23では、T1が低くなり、(T1-T2)/T1×100が大きくなった。試験板22では目視でも融着不良によるワレが確認され、酸素も透過し易かったことから劣化し易かったと考えられる。試験板23では、目視ではワレは確認されず、SEM観察でもクラックは確認されなかった。一方、酸素は透過し易かったことから、僅かに融着不良であったため、劣化し易かったと考えられる。
試験板20と試験板24~29より、同じフッ素樹脂エマルジョンと同じアクリル樹脂エマルジョンを用いても、その混合比が変わると、光沢保持率が50%となる照射時間と、発光開始温度(T1)、(T1-T2)/T1×100の値に差が見られた。試験板27では、他試験板に比べて、光沢保持率が50%となる照射時間が小さくなり、発光開始温度(T1)は低く、(T1-T2)/T1×100の値は大きくなった。試験板27は目視ではワレは確認されなかったが、SEM観察にて僅かに微細なクラックが確認され、エマルジョンが融着不良となり、酸素が透過し易かったために劣化し易かったと考えられる。
これより、目視では分からない融着不良などの塗膜欠陥による耐候性低下も、本手法を用いて評価することが出来ることが確認された。
In Table 3, the evaluation was performed by changing the mixing ratio of various fluororesin emulsions and various acrylic resin emulsions.
From the test plate 20, the test plate 21, the test plate 22, and the test plate 23, depending on the type of fluorine resin emulsion and acrylic resin emulsion, the irradiation time at which the gloss retention rate becomes 50%, the light emission start temperature (T1), A difference was found in the value of (T1-T2)/T1×100. In the test plates 22 and 23, T1 decreased and (T1-T2)/T1×100 increased. In the test plate 22, cracks due to poor fusion bonding were visually confirmed, and it is considered that the test plate 22 was easily deteriorated because oxygen also easily permeated therethrough. In the test plate 23, no cracks were visually observed, and no cracks were observed by SEM observation. On the other hand, since oxygen easily permeated the film, it is considered that the fusion was slightly defective and the film easily deteriorated.
From the test plate 20 and test plates 24 to 29, even if the same fluororesin emulsion and the same acrylic resin emulsion are used, if the mixing ratio is changed, the irradiation time and the light emission start temperature (T1) at which the gloss retention rate becomes 50%. , (T1−T2)/T1×100. Compared to the other test plates, test plate 27 had a shorter irradiation time at which the gloss retention rate reached 50%, a lower emission start temperature (T1), and a larger value of (T1−T2)/T1×100. . Although no cracks were visually observed in the test plate 27, slight fine cracks were confirmed by SEM observation, and it is considered that the emulsion was poorly fused and oxygen easily permeated, resulting in easy deterioration.
From this, it was confirmed that deterioration in weather resistance due to defects in the coating film such as poor adhesion, which cannot be visually detected, can also be evaluated using this method.

Figure 0007259001000005
Figure 0007259001000005

表4は、複層膜について評価を行った。
試験板30に比べて試験板31では、光沢保持率が50%となる照射時間が大きく、発光開始温度(T1)は高くなった。試験板31はクリヤーに低分子量型HALSを含むため、劣化し難かったと考えられる。さらに、試験板32では、より光沢保持率が50%となる照射時間が大きく、発光開始温度(T1)は高くなった。また(T1-T2)/T1×100の値は小さくなった。試験板32は、HALSが共重合された樹脂と、低分子量型HALSを併用しており、塗膜中のHALS添加量の増加によって捕捉できるラジカル量が増えたため、また、塗膜中に共重合HALSが有ることで、類似構造の低分子量型HALSが塗膜へ保持されやすくなり、促進時のHALS溶出程度が減ったためと考えられる。
試験板30と試験板33より、エナメル塗膜に二酸化チタン2を用いると光沢保持率が50%となる照射時間が短く、(T1-T2)/T1×100の値は大きくなることが確認された。二酸化チタン2の光活性能が高く、促進時にクリヤー塗膜を僅かに透過した光線により、クリヤーとエナメル塗膜の層間で劣化が進行したためと考えられる。
試験板30と試験板34より、エナメル塗膜に樹脂Fを用いると光沢保持率が50%となる照射時間が短く、(T1-T2)/T1×100の値は大きくなった。樹脂Fはクリヤー塗膜に使われる樹脂AとTgが離れているため、促進時にクリヤーとエナメル塗膜の層間で部分的に剥離が生じ、より酸素が透過し易くなったためと考えられる。
試験板30に比べて試験板35では、光沢保持率が50%となる照射時間が短く、T1は低く、(T1-T2)/T1×100の値は大きくなることが確認された。試験板35では、クリヤー膜の成膜助剤量が不足し融着不良であったためと考えられる。
試験板36~38では、クリヤー膜に艶消し剤を含む。試験板36~37に比べて試験板38は、光沢保持率が50%となる照射時間が短く、T1は低く、(T1-T2)/T1×100の値は大きくなることが確認された。試験板38ではPMMAビーズ(PMMAはポリメチルメタクリレートの略)が不均一に存在し、クリヤー膜が連続膜となっていなかったためと考えられる。
PMMAビーズやシリカなどの艶消し剤を塗膜に多く含む場合は、赤外吸収スペクトルや硬度など他手法による劣化評価が困難となることがあるが、本発明の塗膜評価方法では艶消し剤を多く含む塗膜においても耐候性を評価できることが確認された。
Table 4 evaluates multilayer films.
Compared to test plate 30, test plate 31 had a longer irradiation time at which the gloss retention rate reached 50%, and a higher light emission start temperature (T1). Since the test plate 31 contained low-molecular-weight HALS in the clear, it is considered that it was difficult to deteriorate. Furthermore, with the test plate 32, the irradiation time was longer at which the gloss retention was 50%, and the light emission start temperature (T1) was higher. Also, the value of (T1-T2)/T1×100 became smaller. The test plate 32 used a combination of a HALS-copolymerized resin and a low-molecular-weight HALS. Presumably, the presence of HALS facilitates the retention of low-molecular-weight HALS with a similar structure to the coating film, thereby reducing the degree of HALS elution during acceleration.
From test plate 30 and test plate 33, it was confirmed that when titanium dioxide 2 is used for the enamel coating film, the irradiation time at which the gloss retention rate becomes 50% is shortened, and the value of (T1−T2)/T1×100 is increased. rice field. This is probably because the titanium dioxide 2 has a high photoactivation ability, and the deterioration progressed between the clear and enamel coating layers due to light rays slightly transmitted through the clear coating during acceleration.
From Test Plates 30 and 34, when Resin F was used for the enamel coating, the irradiation time at which the gloss retention rate reached 50% was shorter, and the value of (T1-T2)/T1×100 was larger. It is considered that the Tg of resin F is different from that of resin A used for the clear coating film, so partial separation occurs between the clear and enamel coating layers during acceleration, making it easier for oxygen to permeate.
Compared to test plate 30, test plate 35 was confirmed to have a shorter irradiation time at which the gloss retention rate reached 50%, a lower T1, and a larger value of (T1−T2)/T1×100. It is considered that the test plate 35 had insufficient fusion adhesion due to insufficient amount of film-forming aid for the clear film.
Test plates 36 to 38 contain a matting agent in the clear film. Compared to test plates 36 and 37, test plate 38 had a shorter irradiation time at which the gloss retention rate reached 50%, a lower T1, and a larger value of (T1−T2)/T1×100. It is considered that the PMMA beads (PMMA is an abbreviation of polymethyl methacrylate) existed unevenly on the test plate 38, and the clear film was not a continuous film.
If the coating film contains a large amount of matting agents such as PMMA beads and silica, it may be difficult to evaluate deterioration by other methods such as infrared absorption spectrum and hardness. It was confirmed that the weather resistance can be evaluated even in a coating film containing a large amount of.

本発明の塗膜評価方法によれば、耐候性の予測が難しい塗膜や塗装体について、長期の耐候性試験をせずとも、簡便な方法によって塗膜の耐候性を評価出来、高耐候性の塗膜を提供することができる。 According to the coating film evaluation method of the present invention, it is possible to evaluate the weather resistance of a coating film or a coated body whose weather resistance is difficult to predict by a simple method without conducting a long-term weather resistance test. of coating can be provided.

Claims (3)

酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定することで塗膜の劣化を予測する、塗膜評価方法。 A coating film evaluation method that predicts deterioration of a coating film by measuring the amount of chemiluminescence of the coating film under conditions of continuous temperature rise in an oxygen or air atmosphere. 酸素または空気雰囲気下、連続的な昇温条件にて塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度を求めて、塗膜の劣化を予測する、請求項1に記載の塗膜評価方法。 Measure the amount of chemiluminescence of the coating film under conditions of continuous temperature rise in an oxygen or air atmosphere, and plot it on a graph with the amount of chemiluminescence on the vertical axis and the temperature on the horizontal axis to see the relationship between the amount of chemiluminescence and temperature. 2. The coating film evaluation according to claim 1, wherein a curve is drawn and the temperature at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve is obtained to predict deterioration of the coating film. Method. (i)酸素または空気雰囲気下、連続的な昇温条件にて、塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T1)を求め、
(ii)酸素または空気雰囲気下、連続的な昇温条件にて、促進劣化試験を受けた塗膜の化学発光量を測定し、縦軸を化学発光量、横軸を温度とするグラフにプロットして化学発光量と温度の関係を示す曲線を描き、この曲線上における微分係数が最小となる接線と微分係数が最大となる接線との交点の温度(T2)を求め、
(iii)温度(T1)と温度(T2)から塗膜の劣化を予測する、請求項1に記載の塗膜評価方法。
(i) In an oxygen or air atmosphere, the chemiluminescence amount of the coating film is measured under conditions of continuous temperature rise, and plotted on a graph with the chemiluminescence amount on the vertical axis and the temperature on the horizontal axis. Draw a curve showing the relationship between temperatures, find the temperature (T1) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve,
(ii) Under an oxygen or air atmosphere, the chemiluminescence amount of the coating film subjected to the accelerated deterioration test is measured under conditions of continuous temperature rise, and plotted in a graph with the vertical axis as the chemiluminescence amount and the horizontal axis as temperature. Draw a curve showing the relationship between the amount of chemiluminescence and temperature, and obtain the temperature (T2) at the intersection of the tangent line with the minimum differential coefficient and the tangent line with the maximum differential coefficient on this curve,
(iii) The coating film evaluation method according to claim 1, wherein deterioration of the coating film is predicted from the temperature (T1) and the temperature (T2).
JP2021215265A 2021-12-28 2021-12-28 Coating film evaluation method, coated body and coating film Active JP7259001B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021215265A JP7259001B1 (en) 2021-12-28 2021-12-28 Coating film evaluation method, coated body and coating film
JP2023031878A JP2023098726A (en) 2021-12-28 2023-03-02 Coating film evaluation method, coated body and coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021215265A JP7259001B1 (en) 2021-12-28 2021-12-28 Coating film evaluation method, coated body and coating film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023031878A Division JP2023098726A (en) 2021-12-28 2023-03-02 Coating film evaluation method, coated body and coating film

Publications (2)

Publication Number Publication Date
JP7259001B1 true JP7259001B1 (en) 2023-04-17
JP2023098475A JP2023098475A (en) 2023-07-10

Family

ID=85986376

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021215265A Active JP7259001B1 (en) 2021-12-28 2021-12-28 Coating film evaluation method, coated body and coating film
JP2023031878A Pending JP2023098726A (en) 2021-12-28 2023-03-02 Coating film evaluation method, coated body and coating film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023031878A Pending JP2023098726A (en) 2021-12-28 2023-03-02 Coating film evaluation method, coated body and coating film

Country Status (1)

Country Link
JP (2) JP7259001B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256217A (en) 2001-02-28 2002-09-11 Asahi Glass Co Ltd Composition for coating
US20020148288A1 (en) 2001-02-06 2002-10-17 Clark Patrick Albert Method for predicting outdoor durability of coatings
JP2011074251A (en) 2009-09-30 2011-04-14 Dainippon Toryo Co Ltd Rust prevention primer for aluminum member and aluminum member
JP2015206603A (en) 2014-04-17 2015-11-19 鹿島建設株式会社 Coated film weather-resistance prediction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592542B2 (en) * 1976-11-30 1984-01-19 関西ペイント株式会社 How to improve the durability of clear paint film
JPS61152771A (en) * 1984-12-27 1986-07-11 Asahi Glass Co Ltd Resin composition for coating compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020148288A1 (en) 2001-02-06 2002-10-17 Clark Patrick Albert Method for predicting outdoor durability of coatings
JP2002256217A (en) 2001-02-28 2002-09-11 Asahi Glass Co Ltd Composition for coating
JP2011074251A (en) 2009-09-30 2011-04-14 Dainippon Toryo Co Ltd Rust prevention primer for aluminum member and aluminum member
JP2015206603A (en) 2014-04-17 2015-11-19 鹿島建設株式会社 Coated film weather-resistance prediction method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田中丈之,化学発光法による塗膜耐候劣化評価方法,色材,日本,1997年,70(12),pp.784-787

Also Published As

Publication number Publication date
JP2023098726A (en) 2023-07-10
JP2023098475A (en) 2023-07-10

Similar Documents

Publication Publication Date Title
JP6026938B2 (en) Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method
JP6026933B2 (en) Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method
JP5635766B2 (en) Emulsion resin paint
WO2005019358A1 (en) Coating composition for heat-insulating film formation and method of coating with the same
JP2008056751A (en) Aqueous resin dispersion
WO2012014761A1 (en) Hydrophilizing treatment agent
CN113652134A (en) Stain-resistant matte aqueous coating composition and method for forming stain-resistant matte coating film
JP2015074769A (en) Heat-shielding water-based coating composition and heat-shielding coating film formation method
US11820165B2 (en) Printed object
JP2009270034A (en) Water-based resin composition
JP7259001B1 (en) Coating film evaluation method, coated body and coating film
JP2016065130A (en) Acrylic resin dispersion
JP7180991B2 (en) resin emulsion
JP2009057391A (en) Fluorine-containing copolymer solution for coating and coating
JP2009270035A (en) Water base resin composition for clear paint
JP2002302638A (en) Aqueous coating material
JP5258141B2 (en) Aqueous resin dispersion and production method
JP3354906B2 (en) Aqueous coating composition
JP5828216B2 (en) Water-based coating material
JP2024146381A (en) Coating composition for forming surface protective layer and coated body
JP4001473B2 (en) Clear painted metal plate
JPH0543831A (en) Coating resin and coating composition
JP2008012373A (en) Coating finishing method
JP2004339470A (en) Emulsion coating composition
JP2010172852A (en) Heat ray highly reflecting coated article and method of coating the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7259001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150