JP7215871B2 - AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF - Google Patents
AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF Download PDFInfo
- Publication number
- JP7215871B2 JP7215871B2 JP2018198461A JP2018198461A JP7215871B2 JP 7215871 B2 JP7215871 B2 JP 7215871B2 JP 2018198461 A JP2018198461 A JP 2018198461A JP 2018198461 A JP2018198461 A JP 2018198461A JP 7215871 B2 JP7215871 B2 JP 7215871B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- mass
- binder
- filter medium
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Filtering Materials (AREA)
- Paper (AREA)
Description
本発明は、半導体製造などの各種クリーンルーム、ビル空調等の用途において、気体中の粒子状物質を濾過するために用いられる、ガラス繊維を主成分とするエアフィルタ用濾材に関する。 TECHNICAL FIELD The present invention relates to a filter material for an air filter, which is mainly composed of glass fiber, and is used for filtering particulate matter in gases in various clean rooms such as semiconductor manufacturing and building air conditioning applications.
気体中の粒子状物質を濾過するために用いられるエアフィルタにおいては、ガラス繊維を主成分とするエアフィルタ用濾材が広く用いられている。ガラス繊維濾材が広く用いられている理由としては、非常に細い繊維径とすることが可能なため、目が細かく捕集効率が高い濾材が得られる、繊維が剛直であるため、高い空隙率を維持して圧力損失が低く通気性が高い濾材が得られる、難燃性を有する濾材が得られること等が挙げられる。 2. Description of the Related Art In air filters used for filtering particulate matter in gas, filter media for air filters containing glass fibers as a main component are widely used. The reasons why glass fiber filter media are widely used are that they can be made into very fine fiber diameters, resulting in fine filter media with high collection efficiency, and because the fibers are rigid, they have a high porosity. For example, it is possible to obtain a filter medium with low pressure loss and high air permeability, and to obtain a filter medium having flame retardancy.
エアフィルタ用濾材は、通常、濾過面積を大きくするためにプリーツ加工機でジグザグ状に折られる、いわゆるプリーツ加工され、エアフィルタユニットの形で用いられる。ガラス繊維濾材は、シートが比較的剛直であるため、支持体を別途使用しなくとも、濾材のみでジグザグ状のフィルタユニット形状を維持しやすく、さらに通風時の変形による圧力損失の上昇(構造圧損)を起こしにくい利点がある。しかしながら、その一方で、折り曲げに対しては脆弱であるため、プリーツ加工時に折った折山部分が割れやすく、プリーツ加工における生産速度や製品歩留を低下させるという問題がある。 Filter media for air filters are usually folded in a zigzag shape by a pleating machine in order to increase the filtration area, and are used in the form of so-called pleated air filter units. Since the sheet of the glass fiber filter medium is relatively rigid, it is easy to maintain the zigzag shape of the filter unit without using a separate support. ) is less likely to occur. However, on the other hand, since it is fragile against bending, the folds that are folded during the pleating process are likely to break, and there is a problem that the production speed and product yield in the pleating process are lowered.
一方で、エアフィルタ用濾材に用いられる細径ガラス繊維としては、耐熱性、耐薬品性及び高い強度を有する硼珪酸ガラス繊維が広く用いられているが、半導体製造用のクリーンルームにおいては、この硼珪酸ガラスから空気中に離脱した硼素がp型ドーパントして作用し、シリコンウエハを汚染する問題がある。これを解決する手段として、低硼素含有量のガラス繊維が用いられているが、これは硼珪酸ガラス繊維に比べて脆弱なため、上述したような折山部分が割れる問題がさらに顕著となる。 On the other hand, borosilicate glass fibers, which have heat resistance, chemical resistance, and high strength, are widely used as fine glass fibers used in filter media for air filters. There is a problem that boron detached into the air from the silicate glass acts as a p-type dopant and contaminates the silicon wafer. As a means of solving this problem, glass fibers with a low boron content have been used, but since these are weaker than borosilicate glass fibers, the above-mentioned problem of breakage at the folded portion becomes even more pronounced.
ガラス繊維濾材のプリーツ加工適性を向上させる方法としては、ガラス繊維以外の繊維を用いる方法が提案されており、例えば、繊維形態を保持しながら膨潤したポリビニルアルコール繊維状バインダーを含む濾材(特許文献1)、接着成分が鞘部である芯鞘構造を有するバインダー繊維と、非繊維状のバインダー樹脂からなる全バインダー分の濾材中含有量が3.5~7.5質量%である濾材(特許文献2)、B2O3含有量0.01重量%以下のガラス繊維が80~20重量%、繊維径1~70μmで繊維長が1~15mmの有機繊維が20~80重量%である濾材(特許文献3)等が提案されている。 As a method for improving the suitability for pleating of glass fiber filter media, a method using fibers other than glass fibers has been proposed. ), a binder fiber having a core-sheath structure in which the adhesive component is the sheath portion, and a filter medium having a total binder content of 3.5 to 7.5% by mass in the filter medium consisting of a non-fibrous binder resin (Patent Document 2) A filter medium containing 80 to 20% by weight of glass fibers having a B 2 O 3 content of 0.01% by weight or less and 20 to 80% by weight of organic fibers having a fiber diameter of 1 to 70 μm and a fiber length of 1 to 15 mm ( Patent Document 3) and the like have been proposed.
本発明の課題は、ガラス繊維濾材の特徴である高捕集効率、低圧力損失、難燃性、高剛度の各物性を維持しつつ、プリーツ加工時の折山の割れを防ぐことにより、プリーツ加工適性を向上させた、ガラス繊維を主成分とするエアフィルタ用濾材を提供することである。 An object of the present invention is to prevent cracking of creases during pleat processing while maintaining the physical properties of high collection efficiency, low pressure loss, flame retardancy, and high rigidity, which are the characteristics of glass fiber filter media. An object of the present invention is to provide a filter medium for an air filter, which has improved workability and is mainly composed of glass fiber.
本発明者らは、鋭意検討した結果、ガラス繊維を接着するバインダーとして、接着成分が鞘部である芯鞘構造を有するバインダー繊維と、非繊維状のバインダー樹脂を含有し、かつ、バインダー繊維及び全バインダー分の濾材中含有量を一定の範囲内とすることにより、前記の課題が解決されることを見出した。すなわち、本発明は、ガラス繊維を主成分とするエアフィルタ用濾材に関する発明であり、接着成分が鞘部である芯鞘構造のバインダー繊維と、非繊維状のバインダー樹脂を含有し、バインダー繊維の濾材中含有量が3~25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8~30質量%であることを特徴とする。 As a result of extensive studies, the present inventors have found that a binder for bonding glass fibers contains a binder fiber having a core-sheath structure in which the adhesive component is a sheath portion, and a non-fibrous binder resin, and the binder fiber and It has been found that the above problems can be solved by setting the content of all binders in the filter medium within a certain range. That is, the present invention relates to a filter material for an air filter containing glass fiber as a main component, and the adhesive component contains a binder fiber having a core-sheath structure, which is a sheath portion, and a non-fibrous binder resin, and the binder fiber The content in the filter medium is 3 to 25% by mass, and the content in the filter medium of the total binder portion composed of the binder fiber and the binder resin is 8 to 30% by mass.
さらに、本発明の第2の実施形態は、ガラス繊維のB2O3含有量が0.1質量%以下であることを特徴とする前記エアフィルタ用濾材である。 Furthermore, a second embodiment of the present invention is the filter medium for an air filter, characterized in that the B 2 O 3 content of the glass fiber is 0.1% by mass or less.
さらに、本発明の第3の実施形態は、バインダー繊維の芯部が、ポリエステル又はポリオレフィンであることを特徴とする前記エアフィルタ用濾材である。 Furthermore, a third embodiment of the present invention is the filter medium for an air filter, wherein the core portion of the binder fiber is polyester or polyolefin.
さらに、本発明の第4の実施形態は、ガラス繊維と、接着成分が鞘部である芯鞘構造を有するバインダー繊維を含む水性スラリーを得る分散工程と、得られた水性スラリーを湿式抄紙して湿潤状態のシートを得る抄紙工程と、前記湿潤状態のシートに、バインダー樹脂を含む溶液または分散液を含浸させてシートに付着させる含浸工程と、前記溶液又は分散液を含浸させた湿潤状態のシートを乾燥する乾燥工程を有し、バインダー繊維の濾材中含有量が3~25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8~30質量%であることを特徴とする、ガラス繊維を主成分とするエアフィルタ用濾材の製造方法である。 Furthermore, the fourth embodiment of the present invention includes a dispersing step of obtaining an aqueous slurry containing glass fibers and a binder fiber having a core-sheath structure in which the adhesive component is a sheath, and wet papermaking of the obtained aqueous slurry. A papermaking step of obtaining a wet sheet, an impregnation step of impregnating the wet sheet with a solution or dispersion containing a binder resin and adhering it to the sheet, and a wet sheet impregnated with the solution or dispersion. The content of the binder fiber in the filter medium is 3 to 25% by mass, and the content of the total binder content of the binder fiber and the binder resin in the filter medium is 8 to 30% by mass. A method for producing a filter medium for an air filter containing glass fibers as a main component, characterized by:
本発明によれば、接着成分が鞘部である芯鞘構造のバインダー繊維とバインダー樹脂を使用することにより、プリーツ加工適性に優れ、さらに、ガラス繊維濾材の特徴である高捕集効率、低圧力損失、難燃性、高剛度を有しているガラス繊維を主成分とするエアフィルタ用濾材を得ることができる。 According to the present invention, by using a binder fiber and a binder resin having a core-sheath structure in which the adhesive component is the sheath portion, the suitability for pleating is excellent, and further, high collection efficiency and low pressure, which are characteristics of glass fiber filter media, are obtained. It is possible to obtain an air filter medium mainly composed of glass fibers having loss, flame retardancy and high rigidity.
本発明のエアフィルタ用濾材は主成分であるガラス繊維に加えてバインダー繊維を含有する。当該バインダー繊維は、鞘部がガラス繊維に接着するとともに、芯部が繊維の形態を維持することにより、折山部の加工時においてガラス繊維及びバインダー樹脂をつなぎとめるとともに、折山部にかかる応力を吸収することにより、折山部の割れを防ぐ効果を奏する。また、バインダー樹脂は繊維表面同士を広範囲にわたって接着することにより、実用上必要とされる強度を付与する効果を奏する。 The filter medium for an air filter of the present invention contains binder fibers in addition to glass fibers which are the main component. In the binder fiber, the sheath adheres to the glass fiber, and the core maintains the shape of the fiber, so that the glass fiber and the binder resin are held together during processing of the folded portion, and the stress applied to the folded portion is reduced. By absorbing it, there is an effect of preventing cracks in the folded portion. In addition, the binder resin has the effect of imparting the practically required strength by bonding the fiber surfaces together over a wide range.
本発明で使用されるバインダー繊維は、複合型のポリマー繊維であり芯部と鞘部が異なる物性を有する芯鞘構造の繊維である。その中でも、本発明においては、接着成分が鞘部である芯鞘構造を有する繊維を使用する。芯部の成分は、水分散、湿式抄紙、乾燥等からなる濾材の製造工程を経て製造された濾材中においてほとんど溶解又は溶融せずに繊維の形態を維持しうる不溶性、強度及び耐熱性を有し、かつ、プリーツ加工時に割れを生じにくくする可撓性を有するポリマーから選択される。芯部の成分の例としては、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタン、ポリアクリロニトリル、セルロース系ポリマー等がある。その中でも、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィンが好ましい。鞘部の成分は、濾材の製造工程において、加熱されることにより、溶解又は溶融してガラス繊維に接着するポリマーから選択される。鞘部の成分の例としては、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ(エチレン-酢酸ビニル)、ポリビニルアルコール、ポリ(エチレン-ビニルアルコール)等がある。より好ましくは、鞘部の成分として、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリ(エチレン-酢酸ビニル)、ポリエチレンを使用することが好ましい。 The binder fiber used in the present invention is a composite polymer fiber having a core-sheath structure in which the core portion and the sheath portion have different physical properties. Among them, in the present invention, a fiber having a core-sheath structure in which the adhesive component is the sheath is used. The component of the core has insolubility, strength and heat resistance that can maintain the form of the fiber with little dissolution or melting in the filter medium manufactured through the filter medium manufacturing process consisting of water dispersion, wet paper making, drying, etc. and flexible to resist cracking during pleating. Examples of core components include polyesters, polyolefins, polyamides, polyurethanes, polyacrylonitrile, cellulosic polymers, and the like. Among them, polyesters such as polyethylene terephthalate and polyolefins such as polyethylene and polypropylene are preferable. The component of the sheath is selected from a polymer that melts or melts and adheres to the glass fiber when heated in the manufacturing process of the filter medium. Examples of sheath components include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, poly(ethylene-vinyl acetate), polyvinyl alcohol, and poly(ethylene-vinyl alcohol). More preferably, polyethylene terephthalate, modified polyethylene terephthalate, poly(ethylene-vinyl acetate), and polyethylene are used as components of the sheath.
本発明で使用されるバインダー繊維の形状は、ガラス繊維とともに水中で混合分散され、湿式抄紙法によりシート化させることのできる短繊維であることが好ましい。バインダー繊維の繊維径は、好ましくは3~30μm、より好ましくは6~20μmである。繊維径が細すぎると、水中での分散性が悪くなることがあり、さらに、濾材の圧力損失を不必要に上昇させる。繊維径が太すぎると、濾材中に存在する繊維本数が少なくなり、折山部の割れ防止効果が十分に得られない。バインダー繊維の繊維長は、好ましくは3~20mm、より好ましくは3~10mmである。繊維長が短すぎると、折山部の割れ防止効果が十分に得られない。繊維長が長すぎると、水中での分散性が悪くなる。さらに、バインダー繊維の繊度を0.5 ~4.0dtx、好ましくは、1.0~2.5dtxの範囲とすることが好ましい。 The shape of the binder fibers used in the present invention is preferably short fibers that can be mixed and dispersed in water with glass fibers and formed into a sheet by a wet papermaking method. The fiber diameter of the binder fiber is preferably 3-30 μm, more preferably 6-20 μm. If the fiber diameter is too small, the dispersibility in water may deteriorate, and the pressure loss of the filter medium may be increased unnecessarily. If the fiber diameter is too large, the number of fibers present in the filter medium will be reduced, and the effect of preventing cracks at the folds will not be sufficiently obtained. The fiber length of the binder fibers is preferably 3-20 mm, more preferably 3-10 mm. If the fiber length is too short, the effect of preventing cracking at the folded portion cannot be sufficiently obtained. If the fiber length is too long, the dispersibility in water will be poor. Furthermore, the fineness of the binder fibers is preferably in the range of 0.5 to 4.0 dtx, preferably 1.0 to 2.5 dtx.
本発明のエアフィルタ用濾材は、ガラス繊維およびバインダー繊維に加えて、非繊維状のバインダー樹脂を含有する。本発明で使用される非繊維状のバインダー樹脂は、ガラス繊維同士を接着し、強度を付与することのできるポリマーから選択されればよく、水又は有機溶媒に溶解又は分散された状態で、ガラス繊維に付与されるものである。バインダー樹脂の成分の例としては、ポリアクリル酸エステル樹脂、ポリ(スチレン-ブタジエン)樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、エポキシ樹脂等がある。バインダー樹脂の溶液又は分散液は、任意の濃度となるように希釈して、ガラス繊維に付与することができる。また、必要に応じて、十分な強度が得られる範囲で、撥水剤、耐水化剤、界面活性剤、消泡剤、pH調整剤等の薬剤を適宜添加することができる。 The filter medium for an air filter of the present invention contains a non-fibrous binder resin in addition to glass fibers and binder fibers. The non-fibrous binder resin used in the present invention may be selected from polymers capable of bonding glass fibers together and imparting strength. It is given to fibers. Examples of binder resin components include polyacrylate resins, poly(styrene-butadiene) resins, polyolefin resins, polyurethane resins, epoxy resins, and the like. The binder resin solution or dispersion can be diluted to an arbitrary concentration and applied to the glass fibers. Further, if necessary, chemicals such as a water repellent agent, a water resistant agent, a surfactant, an antifoaming agent, and a pH adjuster can be appropriately added within the range that sufficient strength can be obtained.
本発明で使用されるバインダー繊維の濾材中含有量は、3~25質量%である。好ましくは4~19質量%であり、より好ましくは5~15質量%であり、さらに好ましくは6~11質量%である。バインダー繊維が3質量%未満であると、実用上必要とされる強度が得られない。バインダー繊維が25質量%を超えると、捕集効率が低下し、難燃性が低下する。 The content of binder fibers used in the present invention in the filter medium is 3 to 25% by mass. It is preferably 4 to 19% by mass, more preferably 5 to 15% by mass, still more preferably 6 to 11% by mass. If the binder fiber content is less than 3% by mass, the practically required strength cannot be obtained. When the binder fiber content exceeds 25% by mass, the collection efficiency is lowered and the flame retardancy is lowered.
本発明で使用される、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量は、8~30質量%であり、好ましくは9~24質量%であり、より好ましくは10~20質量%であり、さらに好ましくは11~16質量%である。全バインダー分が8質量未満であると、実用上必要とされる強度が得られない。全バインダー分が30質量%を超えると、捕集効率が低下し、難燃性が低下する。また、バインダー樹脂の含有量としては、例えば、バインダー繊維の含有量が3~25質量%であり、全バインダー分の濾材中含有量が8~30質量%となるように調製されれば良いが、例えば、4.0~7.5質量%であり、さらに5.0~6.5質量%であってよい。 The content of the total binder content in the filter medium consisting of the binder fiber and the binder resin used in the present invention is 8 to 30% by mass, preferably 9 to 24% by mass, more preferably 10 to 20% by mass. and more preferably 11 to 16% by mass. If the total binder content is less than 8 mass, the practically required strength cannot be obtained. If the total binder content exceeds 30% by mass, the collection efficiency is lowered and the flame retardancy is lowered. As for the content of the binder resin, for example, the binder fiber content is 3 to 25% by mass, and the content of the total binder in the filter medium may be 8 to 30% by mass. , for example, 4.0 to 7.5% by mass, and may be 5.0 to 6.5% by mass.
本発明で主体繊維、主成分として、ガラス繊維が使用される。捕集効率が高く、低圧力損失であり、難燃性に優れ、高剛度のエアフィルタ濾材が得られるからである。ガラス繊維(主体繊維)の含有量としては、エアフィルタ濾材中において、60~92 質量%であり、好ましくは、65~90質量%、例えば、68~88質量%である。使用されるガラス繊維の形態としては、火炎延伸法やロータリー法により製造されるウール状の極細ガラス繊維や、所定の繊維径となるように紡糸されたガラス繊維の束を所定の繊維長に切断して製造されるチョップドストランドガラス繊維等があるこれらの中から、必要とされる物性に応じて、種々の繊維径や繊維長を有するものが選択され、単独または混合して使用される。例えば、本発明では、平均繊維径が1μm未満のサブミクロンガラス繊維と、平均繊維径が1μm以上のミクロンガラス繊維を併用することができる。ミクロンガラス繊維の平均繊維径は、好ましくは1~20μmであり、より好ましくは1~10μmである。例えば、本発明においては、主体繊維中、すなわち、全ガラス繊維中において、サブミクロンガラス繊維を40~97質量%、さらには45~95質量%、または50~95 質量%の割合で使用することができる。 In the present invention, glass fibers are used as the main fiber, the main component. This is because an air filter medium with high collection efficiency, low pressure loss, excellent flame retardancy, and high rigidity can be obtained. The content of glass fibers (main fibers) in the air filter medium is 60 to 92% by mass, preferably 65 to 90% by mass, for example 68 to 88% by mass. The form of the glass fiber used is wool-like ultrafine glass fiber produced by the flame drawing method or the rotary method, or a bundle of glass fibers spun to a predetermined fiber diameter and cut into a predetermined fiber length. Among them, there are chopped strand glass fibers and the like produced by the method, and those having various fiber diameters and fiber lengths are selected according to the required physical properties, and used singly or in combination. For example, in the present invention, submicron glass fibers having an average fiber diameter of less than 1 μm and micron glass fibers having an average fiber diameter of 1 μm or more can be used together. The average fiber diameter of the micron glass fibers is preferably 1-20 μm, more preferably 1-10 μm. For example, in the present invention, submicron glass fibers are used at a ratio of 40 to 97% by mass, further 45 to 95% by mass, or 50 to 95% by mass in the main fibers, that is, in all glass fibers. can be done.
ガラス繊維の組成としては、従来広く用いられている硼珪酸ガラスを始めとする種々の組成のガラス繊維を使用できる。半導体製造用のクリーンルームにおける硼素によるシリコンウエハ汚染を防止する目的で、低硼素ガラス繊維またはシリカガラス繊維を使用することができ、例えば、B2O3含有量が0.1質量%以下である低硼素ガラス繊維を使用することができる。 As for the composition of the glass fiber, glass fibers of various compositions including borosilicate glass, which has been widely used in the past, can be used. For the purpose of preventing contamination of silicon wafers by boron in clean rooms for semiconductor manufacturing, low-boron glass fibers or silica glass fibers can be used, for example, low-boron glass fibers with a B 2 O 3 content of 0.1% by mass or less. Boron glass fibers can be used.
本発明のエアフィルタ用濾材は、湿式抄紙法によって製造される。まず、ガラス繊維とバインダー繊維を水中で均一に混合分散し、得られた繊維スラリーをワイヤー上に積層し、脱水することにより抄紙(シート化)する。ここで、分散及び抄紙に用いられる水は、ガラス繊維の分散を均一にするために、酸を添加してpHが約2~4に調整することが好ましい。次に、バインダー樹脂の溶液又は分散液を、湿式抄紙されたシートに付与する。バインダー液の付与方法としては、含浸、スプレー、ロール転写等の方法が用いられる。余分に付与されたバインダー液は、負圧吸引等により除去することが好ましい。その後、湿潤状態のシートを、熱風乾燥機、ロータリー乾燥機等を用いて乾燥し、最終的なエアフィルタ用濾材を得る。この時の乾燥温度は、シートを乾燥状態にするとともに、バインダー繊維の鞘部は溶解又は溶融するが、バインダー繊維の芯部は溶解又は溶融しない温度となるように調整される。 The filter medium for air filters of the present invention is manufactured by a wet papermaking method. First, glass fibers and binder fibers are uniformly mixed and dispersed in water, and the obtained fiber slurry is laminated on a wire and dewatered to make paper (sheet). Here, the water used for dispersion and papermaking is preferably adjusted to a pH of about 2 to 4 by adding an acid in order to uniformly disperse the glass fibers. A solution or dispersion of binder resin is then applied to the wet-laid sheet. Methods such as impregnation, spraying, and roll transfer are used as methods for applying the binder liquid. Excess binder liquid is preferably removed by negative pressure suction or the like. Thereafter, the wet sheet is dried using a hot air dryer, a rotary dryer, or the like to obtain the final filter medium for an air filter. The drying temperature at this time is adjusted so that the sheet is dried and the sheath portion of the binder fiber is dissolved or melted, but the core portion of the binder fiber is not dissolved or melted.
以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
<実施例1>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)26質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)4質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙に、アクリル樹脂バインダー(ボンコートAC-501、DIC(株)製)を湿紙の固形分100質量部に対する固形分付着量が6質量部となるように含浸により付与した後、ロータリードライヤーを用いて乾燥し、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 1>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 26 parts by mass of low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath 4 parts by mass of core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) in acidic water of pH 3.0 using a pulper It was disaggregated to obtain a raw material slurry. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. An acrylic resin binder (Boncoat AC-501, manufactured by DIC Corporation) was added to the obtained wet paper by impregnation so that the amount of solid content adhered to 100 parts by mass of the solid content of the wet paper was 6 parts by mass. It was dried using a rotary dryer to obtain a filter medium for an air filter with a basis weight of 70 g/m 2 .
<実施例2>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 2>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 22 parts by mass of low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath Core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) 8 parts by mass was used as the raw material slurry. Thus, an air filter material having a basis weight of 70 g/m 2 was obtained.
<実施例3>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)11質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)19質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 3>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 11 parts by mass of low-boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath Core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) 19 parts by mass was used as the raw material slurry. Thus, an air filter material having a basis weight of 70 g/m 2 was obtained.
<実施例4>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)5質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)25質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 4>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 5 parts by mass of low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath Core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) 25 parts by mass was used as the raw material slurry. Thus, an air filter material having a basis weight of 70 g/m 2 was obtained.
<実施例5>
バインダー繊維を、芯がポリプロピレン、鞘がポリ(エチレン-酢酸ビニル)の芯鞘構造バインダー繊維(NBF(E)、繊度2.2dtx、繊維長5mm、繊維径17μm、ダイワボウポリテック(株)製)8質量部とした以外は、実施例2と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 5>
The binder fiber is a core-sheath structure binder fiber having a polypropylene core and a poly(ethylene-vinyl acetate) sheath (NBF (E), fineness 2.2 dtx, fiber length 5 mm, fiber diameter 17 μm, manufactured by Daiwabo Polytech Co., Ltd.) 8 A filter medium for an air filter having a basis weight of 70 g/m 2 was obtained in the same manner as in Example 2, except that parts by mass were used.
<実施例6>
平均繊維径0.65μmの硼珪酸ガラス繊維(B-06-F、Lauscha Fiber International Co.製)70質量部と、平均繊維径2.44μmの硼珪酸ガラス繊維(B-26-R、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙に、アクリル樹脂バインダー(ボンコートAC-501、DIC(株)製)を湿紙の固形分100質量部に対する固形分付着量が6質量部となるように含浸により付与した後、ロータリードライヤーを用いて乾燥し、坪量70g/m2のエアフィルタ用濾材を得た。
<Example 6>
70 parts by mass of borosilicate glass fiber with an average fiber diameter of 0.65 μm (B-06-F, manufactured by Lauscha Fiber International Co.) and borosilicate glass fiber with an average fiber diameter of 2.44 μm (B-26-R, Lauscha Fiber International Co.) 22 parts by mass, core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin Limited ) product) was disintegrated in acidic water of pH 3.0 using a pulper to obtain a raw material slurry. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. An acrylic resin binder (Boncoat AC-501, manufactured by DIC Corporation) was added to the obtained wet paper by impregnation so that the amount of solid content adhered to 100 parts by mass of the solid content of the wet paper was 6 parts by mass. It was dried using a rotary dryer to obtain a filter medium for an air filter with a basis weight of 70 g/m 2 .
<比較例1>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)30質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Comparative Example 1>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 Example 1, except that 30 parts by mass of low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and having an amount of 0.1% by mass or less was used in the raw material slurry. In the same manner as above, an air filter medium having a basis weight of 70 g/m 2 was obtained.
<比較例2>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)28質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)2質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Comparative Example 2>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 28 parts by mass of low-boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath Core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) 2 parts by mass was used as the raw material slurry. Thus, an air filter material having a basis weight of 70 g/m 2 was obtained.
<比較例3>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)30質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/m2のエアフィルタ用濾材を得た。
<Comparative Example 3>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less; Except for using 30 parts by mass of a core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) whose sheath is modified polyethylene terephthalate, as the raw material slurry, In the same manner as in Example 1, an air filter medium having a basis weight of 70 g/m 2 was obtained.
<比較例4>
B2O3含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A-06-F、Lauscha Fiber International Co.製)70質量部と、B2O3含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A-26-F、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙を、ロータリードライヤーを用いて乾燥し、坪量70g/m2のエアフィルタ用濾材を得た。
<Comparative Example 4>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and containing B 2 O 3 22 parts by mass of low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) with an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, polyethylene terephthalate for the core, and modified polyethylene terephthalate for the sheath 8 parts by mass of core-sheath structure binder fiber (Tepilus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) in acidic water of pH 3.0 using a pulper It was disaggregated to obtain a raw material slurry. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. The obtained wet paper was dried using a rotary drier to obtain an air filter medium having a basis weight of 70 g/m 2 .
実施例及び比較例において得られた濾材の評価は、次に示す方法で行った。 The filter media obtained in Examples and Comparative Examples were evaluated by the following methods.
圧力損失は、有効面積100cm2の濾材に、空気を面風速5.3cm/秒で通過させた時の差圧を、マノメーターを用いて測定した。 The pressure loss was measured by using a manometer to measure the differential pressure when air passed through a filter medium with an effective area of 100 cm 2 at a surface wind speed of 5.3 cm/sec.
PAO透過率は、有効面積100cm2の濾材に、ラスキンノズルを用いた発生させたPAO(ポリアルファオレフィン Durasyn 164、BP Amoco Chemical Co.製)を含む空気を面風速5.3cm/秒で通過させた時の上流及び下流の個数比からのPAO透過率を、レーザーパーティクルカウンター(Lasair Model 1001、Particle Measuring Systems,Inc.製)を用いて測定した。なお、対象粒子径は0.10~0.15μmとした。 The PAO permeability was measured by passing air containing PAO (polyalphaolefin Durasyn 164, manufactured by BP Amoco Chemical Co.) generated using a Ruskin nozzle through a filter medium with an effective area of 100 cm 2 at a surface wind speed of 5.3 cm/sec. The PAO transmittance from the upstream and downstream number ratios at the time of measurement was measured using a laser particle counter (Lasair Model 1001, Particle Measuring Systems, Inc.). The target particle size was 0.10 to 0.15 μm.
PF値は、圧力損失とDOP透過率の測定値から、数1に示す式を用いて算出した。なお、対象粒子径は0.10~0.15μmとした。このPF値が高いほど、エアフィルタ用濾材が、高捕集効率かつ低圧力損失であると言える。本発明においては、9.0以上のPF値であることが好ましい。
引張強度は、MD方向を長さ方向として幅25mm、長さ150mmで切り出したサンプルについて、つかみ間隔(試験長さ)100mm、伸長速度15mm/分の条件で、卓上型精密万能試験機(オートグラフAGS-X、(株)島津製作所製)を用いて測定した最大応力を、試験幅(25mm)で除して、kN/mの単位で求めた。 Tensile strength was measured using a tabletop precision universal testing machine (Autograph The maximum stress measured using AGS-X (manufactured by Shimadzu Corporation) was divided by the test width (25 mm) to obtain the unit of kN/m.
折目付引張強度は、MD方向を長さ方向として、幅25mm、長さ150mmで切り出したサンプルについて、CD方向に縁を合わせた厚さ1mmの板の縁に沿わせて長さ方向の半分の位置で180°折り曲げて2つ折りにし、次いで、2つ折り状態のサンプルの上に98Paの圧力となるように面積100mm×100mm、質量100gの板を載せて5分間加圧して折目を付けたサンプルについて、前記の引張強度と同様に測定した。 The tensile strength with crease was measured by cutting a sample with a width of 25 mm and a length of 150 mm with the MD direction as the length direction, along the edge of a plate with a thickness of 1 mm with the edges aligned in the CD direction. Folded 180 ° at the position and folded in two, then put a plate with an area of 100 mm × 100 mm and a mass of 100 g so that the pressure is 98 Pa on the sample in the folded state and pressurized for 5 minutes to make a crease. was measured in the same manner as the tensile strength described above.
剛度は、JIS L 1085:1998「不織布しん地試験方法」に準拠して、ガーレーステフネステスター(熊谷理機工業(株)製)を用いて測定した。 The stiffness was measured using a Gurley Stiffness Tester (manufactured by Kumagai Riki Kogyo Co., Ltd.) in accordance with JIS L 1085:1998 "Nonwoven fabric stiffness test method".
難燃性は、JACA No.11A-2003「空気清浄装置用ろ材燃焼性試験方法」に準拠して、燃焼性試験器(UL-94HBF、スガ試験機(株)製)を用いて測定した。燃焼性の区分は、クラス1、クラス2、クラス3の順に燃焼し難くなり、すなわち、難燃性が高くなる。 JACA No. flame retardancy. 11A-2003 "Test method for combustibility of filter media for air purifiers" was measured using a combustibility tester (UL-94HBF, manufactured by Suga Test Instruments Co., Ltd.). Combustibility classification becomes difficult to burn in order of class 1, class 2, and class 3, that is, flame retardance becomes high.
実施例及び比較例の評価結果を、表1に示した。 Table 1 shows the evaluation results of Examples and Comparative Examples.
表1の結果より、接着成分が鞘部である芯鞘構造のバインダー繊維と非繊維状のバインダー樹脂をバインダーとして用い、バインダー繊維の濾材中含有量を3~25質量%とし、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量を8~30質量%とすることにより、高いPF値、高剛度、優れた難燃性を維持しつつ、プリーツ加工に耐えるために十分な折目付引張強度(例えば、0.45kN/m以上)を有するエアフィルタ用濾材が得られることがわかる。 From the results in Table 1, it was found that a core-sheath structure binder fiber and a non-fibrous binder resin were used as the binder, and the content of the binder fiber in the filter medium was 3 to 25% by mass, and the binder fiber By setting the content of the total binder content in the filter medium to 8 to 30% by mass, which is composed of the binder resin and the binder resin, it is possible to maintain a high PF value, high rigidity, and excellent flame retardancy while maintaining sufficient folds to withstand pleating. It can be seen that an air filter medium having a tensile strength per unit area (for example, 0.45 kN/m or more) can be obtained.
それに対して、バインダー繊維の量が少ないエアフィルタ用濾材は、十分な折目付引張強度が得られずプリーツ加工に耐えることができないことが判明し(比較例1および2)、また、バインダー繊維が多量に含まれているエアフィルタ用濾材は、捕集効率が低下し、難燃性が低下することが判明した(比較例3)。さらに、非繊維状のバインダー樹脂を含まないエアフィルタ用濾材は、十分な折目付引張強度が得られず、強度、剛度が不足していることが判明した(比較例4)。 On the other hand, it was found that air filter media with a small amount of binder fibers did not have sufficient tensile strength with folds and could not withstand pleating (Comparative Examples 1 and 2). It was found that the filter medium for an air filter containing a large amount of air filter material had a lower collection efficiency and a lower flame retardancy (Comparative Example 3). Furthermore, it was found that the filter medium for an air filter that does not contain a non-fibrous binder resin does not have sufficient tensile strength with creases, and is insufficient in strength and rigidity (Comparative Example 4).
Claims (4)
バインダー樹脂として、ポリアクリル酸エステル樹脂、ポリ(スチレン-ブタジエン)樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、エポキシ樹脂から成る群から選択され、かつ、バインダー樹脂の濾材中含有量が4.0~7.5質量%であり、
ガラス繊維中のB2O3含有量が0.1質量%以下であり、
ガラス繊維として、平均繊維径が1μm未満のサブミクロンガラス繊維と、平均繊維径が1μm以上のミクロンガラス繊維が併用され、全ガラス繊維中において、サブミクロンガラス繊維を40~97質量%含むことを特徴とするエアフィルタ用濾材。 It contains glass fiber as a main component, and further contains a binder fiber having a core-sheath structure in which the adhesive component is a sheath, and a non-fibrous binder resin, and the content of the binder fiber in the filter medium is 3 to 25% by mass. and the content of the total binder content in the filter medium consisting of the binder fiber and the binder resin is 8 to 30% by mass,
The binder resin is selected from the group consisting of polyacrylic acid ester resin, poly(styrene-butadiene) resin, polyolefin resin, polyurethane resin, and epoxy resin, and the binder resin content in the filter medium is 4.0 to 7.5. % by mass,
The B 2 O 3 content in the glass fiber is 0.1% by mass or less,
As glass fibers, submicron glass fibers having an average fiber diameter of less than 1 μm and micron glass fibers having an average fiber diameter of 1 μm or more are used in combination, and the total glass fibers contain 40 to 97% by mass of submicron glass fibers. A filter medium for an air filter characterized by:
バインダー樹脂として、ポリアクリル酸エステル樹脂、ポリ(スチレン-ブタジエン)樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、エポキシ樹脂から成る群から選択され、かつ、バインダー樹脂の濾材中含有量が4.0~7.5質量%であり、
ガラス繊維中のB2O3含有量が0.1質量%以下であり、
ガラス繊維として、平均繊維径が1μm未満のサブミクロンガラス繊維と、平均繊維径が1μm以上のミクロンガラス繊維が併用され、全ガラス繊維中において、サブミクロンガラス繊維を40~97質量%含むことを特徴とする、ガラス繊維を主成分として含有するエアフィルタ用濾材の製造方法。 A dispersing step of obtaining an aqueous slurry containing glass fibers and a binder fiber having a core-sheath structure in which the adhesive component is a sheath portion, a papermaking step of wet papermaking the obtained aqueous slurry to obtain a wet sheet, and the wet papermaking step. An impregnation step of impregnating a sheet in a state with a solution or dispersion containing a binder resin and attaching it to the sheet, and a drying step of drying the sheet in a wet state impregnated with the solution or dispersion. The content in the filter medium is 3 to 25% by mass, and the content in the filter medium of the total binder portion composed of the binder fiber and the binder resin is 8 to 30% by mass,
The binder resin is selected from the group consisting of polyacrylic acid ester resin, poly(styrene-butadiene) resin, polyolefin resin, polyurethane resin, and epoxy resin, and the binder resin content in the filter medium is 4.0 to 7.5. % by mass,
The B 2 O 3 content in the glass fiber is 0.1% by mass or less,
As glass fibers, submicron glass fibers having an average fiber diameter of less than 1 μm and micron glass fibers having an average fiber diameter of 1 μm or more are used in combination, and the total glass fibers contain 40 to 97% by mass of submicron glass fibers. A method for producing a filter medium for an air filter containing glass fiber as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198461A JP7215871B2 (en) | 2018-10-22 | 2018-10-22 | AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198461A JP7215871B2 (en) | 2018-10-22 | 2018-10-22 | AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020065956A JP2020065956A (en) | 2020-04-30 |
JP7215871B2 true JP7215871B2 (en) | 2023-01-31 |
Family
ID=70389122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018198461A Active JP7215871B2 (en) | 2018-10-22 | 2018-10-22 | AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7215871B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102652678B1 (en) * | 2023-05-22 | 2024-04-01 | 주식회사 엔바이오니아 | Insulator For Road Pavement and Method Of Manufacturing The Same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171165A1 (en) | 2013-04-15 | 2014-10-23 | 北越紀州製紙株式会社 | Filter material for air filter, method for manufacturing same, and air filter provided with same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0970512A (en) * | 1995-09-05 | 1997-03-18 | Hokuetsu Paper Mills Ltd | Filter material for air filter and air filter |
JP4754269B2 (en) * | 2004-05-28 | 2011-08-24 | 日本無機株式会社 | Filter material for air filter, method for producing the same, and air filter |
JP5797175B2 (en) * | 2012-09-12 | 2015-10-21 | 北越紀州製紙株式会社 | Air filter media |
-
2018
- 2018-10-22 JP JP2018198461A patent/JP7215871B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171165A1 (en) | 2013-04-15 | 2014-10-23 | 北越紀州製紙株式会社 | Filter material for air filter, method for manufacturing same, and air filter provided with same |
Also Published As
Publication number | Publication date |
---|---|
JP2020065956A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5319380B2 (en) | Low basis weight air filter media | |
EP2401146B1 (en) | Filter media suitable for ashrae applications | |
KR101795201B1 (en) | Filter material for air filter, method for manufacturing same, and air filter provided with same | |
JP6951482B2 (en) | Filter media for air filters, their manufacturing methods, and air filters | |
JP2008246321A (en) | Filter medium for dust removing air filter and its manufacturing method | |
JP2007144415A (en) | Composite filter medium and its manufacturing method | |
JP6527800B2 (en) | Filter paper for filter and manufacturing method thereof | |
EP1894609B1 (en) | Filtration medium | |
JP2018038983A (en) | Production method of filtering medium for air filter | |
JP6691497B2 (en) | Method for manufacturing filter material for air filter and method for manufacturing air filter | |
JP2008049333A (en) | Composite filter medium and its manufacturing method | |
JP7215871B2 (en) | AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF | |
JP5797175B2 (en) | Air filter media | |
JP3669798B2 (en) | Flame retardant volume reducing high performance air filter medium and method for producing the same | |
JPH1080612A (en) | Filter material and air filter | |
JP5290507B2 (en) | Air filter medium and air filter including the same | |
JP6964033B2 (en) | Filter material for air filter | |
JP7453375B2 (en) | Filter medium for air filter and its manufacturing method | |
JP7349414B2 (en) | Filter medium for air filter and its manufacturing method | |
WO2023062964A1 (en) | Filter medium for high-performance air filter, and method for manufacturing same | |
JP7281419B2 (en) | Filter material for filter and manufacturing method thereof | |
JP2019188377A (en) | Method for manufacturing filtering material for filter | |
JP2003159507A (en) | Filter medium for air filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211102 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220315 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220315 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220323 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220330 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20220415 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20220420 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220810 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221116 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20221207 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20230111 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20230111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7215871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |