JP7215735B2 - Age-hardenable copper alloy - Google Patents

Age-hardenable copper alloy Download PDF

Info

Publication number
JP7215735B2
JP7215735B2 JP2019183113A JP2019183113A JP7215735B2 JP 7215735 B2 JP7215735 B2 JP 7215735B2 JP 2019183113 A JP2019183113 A JP 2019183113A JP 2019183113 A JP2019183113 A JP 2019183113A JP 7215735 B2 JP7215735 B2 JP 7215735B2
Authority
JP
Japan
Prior art keywords
copper alloy
age
mass
electrical conductivity
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019183113A
Other languages
Japanese (ja)
Other versions
JP2020059918A (en
Inventor
真人 新井
勇多 新井
睦己 石島
逸夫 江口
義仁 小笠原
慎太朗 藤井
源次郎 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO CO., LTD.
Original Assignee
MIYOSHI GOKIN KOGYO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO CO., LTD. filed Critical MIYOSHI GOKIN KOGYO CO., LTD.
Priority to JP2019183113A priority Critical patent/JP7215735B2/en
Publication of JP2020059918A publication Critical patent/JP2020059918A/en
Application granted granted Critical
Publication of JP7215735B2 publication Critical patent/JP7215735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、熱処理によりSi系の金属間化合物粒子を分散させて用いられる時効硬化型のコルソン系銅合金に関し、特に、(Ni,Co)-Si系の金属間化合物粒子を分散させて用いられる時効硬化型銅合金に関する。 The present invention relates to an age-hardening Corson copper alloy that is used by dispersing Si-based intermetallic compound particles by heat treatment, and in particular, it is used by dispersing (Ni, Co)-Si-based intermetallic compound particles. It relates to age-hardenable copper alloys.

コルソン系銅合金は、コネクタやスイッチといった電気部品の摺動接点に用いられ、導電性及び機械強度を兼ね備えた銅合金として知られている。基本成分組成は、Cu-Ni-Siであり、NiSiのような金属間化合物を熱処理によって析出させて機械強度の向上を図られ得る。一方、導電性を高める観点から、更に、Coを添加したCu-Ni-Co-Si系の銅合金が提案されている。 Corson copper alloys are used for sliding contacts of electrical parts such as connectors and switches, and are known as copper alloys having both electrical conductivity and mechanical strength. The basic composition is Cu--Ni--Si, and the mechanical strength can be improved by precipitating an intermetallic compound such as Ni.sub.2Si by heat treatment. On the other hand, a Cu--Ni--Co--Si system copper alloy to which Co is further added has been proposed from the viewpoint of enhancing electrical conductivity.

例えば、特許文献1では、Cu-Ni-Co-Si系銅合金において、曲げ加工性を向上させるため、冷間圧延と熱処理とを制御し、所定の内部組織を与えた合金を開示している。ここでは、成分組成として、0.5~3.0質量%のCo及び0.1~1.0質量%のNiを含有し、Niに対するCoの質量比(Ni/Co)を0.1~1.0、(Co+Ni)/Si(質量比)を3~5とした銅合金であるとしている。 For example, Patent Document 1 discloses a Cu—Ni—Co—Si based copper alloy in which cold rolling and heat treatment are controlled to give a predetermined internal structure in order to improve bending workability. . Here, the component composition contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Ni, and the mass ratio of Co to Ni (Ni/Co) is 0.1 to 1.0 and (Co+Ni)/Si (mass ratio) of 3-5.

また、特許文献2でも、Cu-Ni-Co-Si系銅合金において、0.1~1.0質量%のNi、0.5~3.0質量%のCo及び0.1~1.5質量%のSiを含有し、(Co+Ni)/Si(質量比)を3~5、時効処理後に冷間圧延し、機械強度、導電率、曲げ加工性、ばね限界値を高めた合金を開示している。ここで、Niの含有量が1.0質量%を超える場合や、Coの含有量が3.0質量%を超える場合は、高い機械強度を得られるものの、粗大なNi-Si系粒子やCo-Si系粒子を生成して、導電率や曲げ加工性を低下させてしまうことを述べている。さらに、(Ni+Co)/Siが5を超えると、NiやCoが過剰となって、導電率を低下させてしまうことも述べている。 Further, in Patent Document 2, the Cu—Ni—Co—Si-based copper alloy contains 0.1 to 1.0% by mass of Ni, 0.5 to 3.0% by mass of Co, and 0.1 to 1.5% by mass of Co. Disclosed is an alloy that contains Si by mass%, (Co + Ni) / Si (mass ratio) is 3 to 5, and is cold-rolled after aging treatment to increase mechanical strength, electrical conductivity, bending workability, and spring limit value. ing. Here, when the Ni content exceeds 1.0% by mass or the Co content exceeds 3.0% by mass, although high mechanical strength can be obtained, coarse Ni—Si particles and Co - It states that Si-based particles are generated and the conductivity and bending workability are lowered. Furthermore, it also states that when (Ni+Co)/Si exceeds 5, Ni and Co become excessive and the electrical conductivity is lowered.

ところで、銅合金においてCrを添加することで機械強度の向上を図ることができるとともに、導電率を確保できることが知られている。 By the way, it is known that adding Cr to a copper alloy can improve the mechanical strength and ensure the electrical conductivity.

例えば、特許文献3では、Cu-Ni-Co-Si系銅合金において、Crを添加した合金が開示されている。ここでは、Co及びNiのSi系化合物に加えて、Cr-Si系化合物も析出させることで機械強度を高めるとしている。このような析出硬化型銅合金とすることで、固溶強化型銅合金に比べて母相中の固溶元素を減少させて導電率を向上させ得るとしている。このとき、Co及びNiとの化合物を形成させてさらに余剰のあるようにSiを添加することでCr-Si系化合物を得ることも述べている。 For example, Patent Document 3 discloses a Cu--Ni--Co--Si based copper alloy to which Cr is added. Here, in addition to Si-based compounds of Co and Ni, Cr—Si-based compounds are also precipitated to increase the mechanical strength. It is stated that by using such a precipitation hardening copper alloy, it is possible to reduce the solid solution elements in the matrix and improve the electrical conductivity as compared with the solid solution strengthening copper alloy. At this time, it also states that a Cr--Si-based compound is obtained by forming a compound with Co and Ni and then adding Si so as to have a surplus.

特開2017-210674号公報JP 2017-210674 A 特開2017-179392号公報JP 2017-179392 A 特開2009-242921号公報JP 2009-242921 A

このようなCrを添加したCu-Co-Ni-Si系銅合金においても、Ni、Co、Crの含有量を増加させることで機械強度を高め得るが、その量が過剰となると導電率を低下させてしまう。また、造塊時に粒界に粗大な金属間化合物の析出物が形成されやすく、これは一般的な溶体化熱処理では完全に固溶させることが難しく、割れなどの原因となり得る。 Even in such a Cu-Co-Ni-Si-based copper alloy to which Cr is added, the mechanical strength can be increased by increasing the content of Ni, Co, and Cr, but if the amount is excessive, the electrical conductivity is reduced. Let me. In addition, coarse precipitates of intermetallic compounds are likely to be formed at grain boundaries during ingot formation, and these precipitates are difficult to dissolve completely in a general solution heat treatment, and may cause cracks and the like.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、機械強度及び導電性に優れた時効硬化型銅合金及びその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to provide an age-hardening copper alloy having excellent mechanical strength and electrical conductivity, and a method for producing the same.

本願発明者は、Ni量に対してCo量を多くすることで、造塊時における粗大な粒界析出物を抑制できる傾向にあること、Crを多くしてこれを最終製品の固溶強化に用いても導電率を低下させることなく機械強度を向上できる傾向にあることを見いだし、一方で、機械強度を上げる観点から、かかる粒界析出物を固溶させるべく、溶体化処理温度をより高くすることを考慮した。 The inventors of the present application have found that by increasing the amount of Co relative to the amount of Ni, there is a tendency to suppress coarse grain boundary precipitates during ingot-making, and that increasing the amount of Cr is effective for solid-solution strengthening of the final product. It was found that the mechanical strength tends to be improved without lowering the electrical conductivity even when used, and on the other hand, from the viewpoint of increasing the mechanical strength, the solution treatment temperature is set higher in order to dissolve such grain boundary precipitates. considered doing.

すなわち、本発明による時効硬化型銅合金は、質量%で、Co:1.0~3.5%、Cr:0.2%~1.3%で含み、元素Mの含有量を[M]質量%とするとき、[Ni]+[Co]=5.0~9.0となるようにNiを含有するとともに、([Ni]+[Co])/[Si]=3.3~4.4となるようにSiを含有し、残部をCu及び不可避的不純物とする合金組成を有し、熱処理されて(Ni,Co)-Siからなる金属間化合物粒子を分散させて20HRC以上の硬さ且つ25.0%IACS以上の導電率に調製されて用いられ得る時効硬化型銅合金であって、導電率を15.0%IACS以下とすることを特徴とする。 That is, the age-hardenable copper alloy according to the present invention contains Co: 1.0 to 3.5%, Cr: 0.2% to 1.3%, and the content of the element M is [M] When expressed as mass%, Ni is contained so that [Ni] + [Co] = 5.0 to 9.0, and ([Ni] + [Co]) / [Si] = 3.3 to 4 .4, having an alloy composition in which the balance is Cu and unavoidable impurities, and is heat-treated to disperse intermetallic compound particles composed of (Ni, Co)-Si to obtain a hardness of 20 HRC or more. Furthermore, it is an age-hardening copper alloy that can be prepared to have a conductivity of 25.0%IACS or more and can be used, and is characterized by having a conductivity of 15.0%IACS or less.

かかる発明によれば、Crの含有量及びNi、Coの含有量をそれぞれ多くしても、造塊時における粗大な粒界析出物を抑制でき、さらに溶体化処理温度をより高くし得て粒界析出物などの固溶を促進させて、溶体化熱処理後の導電率を15.0%IACS以下とし得る。このような溶体化熱処理後の時効硬化型銅合金であれば、金属間化合物粒子を分散させる時効処理によって機械強度及び導電性に優れる銅合金とすることができる。 According to this invention, even if the content of Cr and the content of Ni and Co are increased, coarse grain boundary precipitates can be suppressed during agglomeration, and the temperature of the solution treatment can be increased to increase the grain size. By promoting the solid solution of boundary precipitates and the like, the electrical conductivity after the solution heat treatment can be reduced to 15.0% IACS or less. Such an age-hardening copper alloy after solution heat treatment can be made into a copper alloy having excellent mechanical strength and electrical conductivity by aging treatment to disperse intermetallic compound particles.

上記した発明において、切断面において1μm以上の粒界金属間化合物が1個/cm未満であることを特徴としてもよい。さらに、前記切断面において55HRB以上の硬さであることを特徴としてもよい。かかる発明によれば、粗大な粒界析出物の量をより確実に抑制でき、時効処理をした後において機械強度及び導電性に優れる銅合金を容易に得ることができる。 In the above invention, the number of grain boundary intermetallic compounds having a size of 1 μm or more is less than 1/cm 2 in a cut surface. Furthermore, it may be characterized by having a hardness of 55 HRB or more at the cut surface. According to this invention, the amount of coarse grain boundary precipitates can be more reliably suppressed, and a copper alloy having excellent mechanical strength and electrical conductivity after aging treatment can be easily obtained.

上記した発明において、前記成分組成は、更にAl、Fe、Mn、Ag、Sn、Ti、Zr、P、Mg、B、S、Nb及びZnからなる群から選ばれる少なくとも1種を、総計1.0質量%以下で含むことを特徴としてもよい。かかる発明によれば、上記した優れた機械強度と導電性とを維持しつつさらなる合金特性の改善を得られる。 In the above-described invention, the component composition further includes at least one selected from the group consisting of Al, Fe, Mn, Ag, Sn, Ti, Zr, P, Mg, B, S, Nb and Zn, and a total of 1. It may be characterized by containing 0% by mass or less. According to this invention, it is possible to further improve the alloy properties while maintaining the excellent mechanical strength and electrical conductivity described above.

また、本発明による時効硬化型銅合金の製造方法は、質量%で、Co:1.0%~3.5%、Cr:0.2%~1.3%で含み、元素Mの含有量を[M]質量%とするとき、[Ni]+[Co]=5.0~9.0となるようにNiを含有するとともに、([Ni]+[Co])/[Si]=3.3~4.4となるようにSiを含有し、残部をCu及び不可避的不純物とする合金組成を有し、熱処理されて(Ni,Co)-Siからなる金属間化合物粒子を分散させて20HRC以上の硬さ且つ25.0%IACS以上の導電率に調製されて用いられ得る時効硬化型銅合金の製造方法であって、導電率を15.0%IACS以下とするような920℃以上の温度での溶体化熱処理を含むことを特徴とする。 In addition, the method for producing an age-hardening copper alloy according to the present invention contains, in mass%, Co: 1.0% to 3.5%, Cr: 0.2% to 1.3%, and the content of the element M When [M] mass%, Ni is contained so that [Ni] + [Co] = 5.0 to 9.0, and ([Ni] + [Co]) / [Si] = 3 .3 to 4.4, having an alloy composition in which the balance is Cu and unavoidable impurities, and is heat-treated to disperse intermetallic compound particles composed of (Ni, Co)-Si A method for producing an age-hardening copper alloy that can be prepared and used to have a hardness of 20 HRC or higher and a conductivity of 25.0% IACS or higher, wherein the temperature is 920° C. or higher such that the conductivity is 15.0% IACS or lower. and a solution heat treatment at a temperature of

かかる発明によれば、Crの含有量及びNi、Coの含有量をそれぞれ多くした上で、造塊時における粗大な粒界析出物を抑制でき、さらに溶体化処理温度を920℃と高くし得て粒界析出物などの固溶を促進させて、溶体化熱処理後の導電率を15.0%IACS以下とし得る。このような溶体化熱処理後の時効硬化型銅合金であれば、金属間化合物粒子を分散させる時効処理によって機械強度及び導電性に優れる銅合金とすることができる。 According to this invention, the content of Cr and the content of Ni and Co can be increased, and coarse grain boundary precipitates can be suppressed during ingot-making, and the solution treatment temperature can be increased to 920°C. This promotes the solid solution of grain boundary precipitates and the like, so that the electrical conductivity after the solution heat treatment can be 15.0% IACS or less. Such an age-hardening copper alloy after solution heat treatment can be made into a copper alloy having excellent mechanical strength and electrical conductivity by aging treatment to disperse intermetallic compound particles.

上記した発明において、前記溶体化熱処理は、切断面において、1μm以上の粒界金属間化合物を1個/cm未満とする熱処理であることを特徴としてもよい。さらに、前記切断面において、55HRB以上の硬さであることを特徴としてもよい。かかる発明によれば、粗大な粒界析出物の量をより確実に抑制でき、時効処理をした後において機械強度及び導電性に優れる銅合金を容易に得ることができる。 In the invention described above, the solution heat treatment may be a heat treatment that reduces the number of grain boundary intermetallic compounds of 1 μm or more to less than 1/cm 2 on a cut surface. Further, the cut surface may be characterized by having a hardness of 55 HRB or more. According to this invention, the amount of coarse grain boundary precipitates can be more reliably suppressed, and a copper alloy having excellent mechanical strength and electrical conductivity after aging treatment can be easily obtained.

本発明による実施例及び比較例の成分組成を示す表である。1 is a table showing component compositions of examples and comparative examples according to the present invention. 実施例及び比較例の導電率及び硬さの測定結果を示す表である。4 is a table showing measurement results of conductivity and hardness of Examples and Comparative Examples. 実施例1及び比較例1の鋳造後の断面組織写真である。4 is a photograph of cross-sectional structure after casting of Example 1 and Comparative Example 1. FIG. 実施例1及び比較例1の溶体化熱処理後の断面組織写真である。4 is a photograph of cross-sectional structure after solution heat treatment of Example 1 and Comparative Example 1. FIG. 実施例1及び比較例1の時効処理後の断面組織写真である1 is a photograph of the cross-sectional structure after aging treatment of Example 1 and Comparative Example 1.

以下に、本発明による時効硬化型銅合金の1つの実施例について、図1を用いて説明する。 One embodiment of the age-hardenable copper alloy according to the present invention will be described below with reference to FIG.

図1の実施例1及び2に、本実施例における時効硬化型銅合金の代表的な成分組成を示すように、本実施例における時効硬化型銅合金は、質量%で、Coを1.0%以上3.5%以下、Crを0.2%以上1.3%以下で含み、さらに、元素Mの含有量を[M]質量%とするとき、[Ni]+[Co]を5.0~9.0とするようにNiを含むとともに、([Ni]+[Co])/[Si]を3.3~4.4とするようにSiを含有し、残部をCu及び不可避的不純物とする合金組成を有する。 As shown in Examples 1 and 2 of FIG. 1, representative chemical compositions of the age-hardening copper alloys in the present examples, the age-hardening copper alloys in the present examples contain 1.0% Co by mass %. % or more and 3.5% or less, Cr of 0.2% or more and 1.3% or less, and further, when the content of the element M is [M] mass%, [Ni] + [Co] is 5.5%. Contains Ni so as to be 0 to 9.0, contains Si such that ([Ni] + [Co]) / [Si] is 3.3 to 4.4, and the balance is Cu and unavoidable It has an alloy composition as an impurity.

すなわち、CoはNiとともにSiに対する含有量を規定されて、時効処理によって分散析出させるべき金属間化合物であるNiSiやCoSiなどを生成する元素の含有量の比率を調整して、時効処理後の機械強度と導電率とを共に高くするようになされる。このように、時効処理で析出させるSiとの金属間化合物を形成するNi及びCoの含有量を調整することで、溶体化熱処理により金属間化合物の固溶状態を比較的容易に制御できる。他方、時効処理時において、SiをNiやCoとの金属間化合物の生成で消費することで、CrのSi化合物の生成を抑制して時効処理後のCrの母相への固溶を維持させる。 That is, the content of Co, together with Ni, relative to Si is specified, and the ratio of the content of the elements that generate intermetallic compounds such as Ni 2 Si and Co 2 Si, which are to be dispersed and precipitated by the aging treatment, is adjusted. It is designed to increase both mechanical strength and electrical conductivity after treatment. Thus, by adjusting the contents of Ni and Co that form intermetallic compounds with Si precipitated during aging treatment, the solid solution state of the intermetallic compounds can be relatively easily controlled by solution heat treatment. On the other hand, during the aging treatment, Si is consumed by the formation of intermetallic compounds with Ni and Co, thereby suppressing the formation of Si compounds of Cr and maintaining the solid solution of Cr in the matrix after the aging treatment. .

また、造塊時に生成された金属間化合物による粗大な粒界析出物を溶体化熱処理によって十分に固溶させると導電率は低下する。そこで、鋳造で生成された粗大な粒界析出物が十分に固溶されたことの指標として、固溶熱処理後の導電率を15.0%IACS以下とする。換言すれば、上記した成分組成の銅合金によって得た合金塊の溶体化熱処理後の導電率を15.0%IACS以下とできれば、粗大な粒界析出物は十分に固溶されており、その後に時効処理することでCoやNiの金属間化合物による微細な分散析出物を得るとともに、Crの固溶を維持して、機械強度及び導電性の双方において優れる銅合金とし得るのである。 Further, if coarse grain boundary precipitates due to intermetallic compounds generated during ingot making are fully dissolved by solution heat treatment, the electrical conductivity is lowered. Therefore, as an index of sufficient solid solution of coarse grain boundary precipitates generated by casting, the electrical conductivity after solid solution heat treatment is set to 15.0% IACS or less. In other words, if the electrical conductivity of the alloy ingot obtained from the copper alloy having the above composition after the solution heat treatment can be 15.0% IACS or less, the coarse grain boundary precipitates are sufficiently dissolved, and then By aging treatment to 1000 rpm, fine dispersed precipitates of intermetallic compounds of Co and Ni can be obtained, and the solid solution of Cr can be maintained, so that a copper alloy having excellent mechanical strength and conductivity can be obtained.

以上のような、時効硬化型銅合金であれば、NiやCoの含有量を多くしたにも関わらず溶体化熱処理後に粗大な粒界析出物を十分固溶させることができる。そして、その後に時効処理することによって、機械強度及び導電性に優れる銅合金を得ることができる。 With the age-hardening copper alloy as described above, coarse grain boundary precipitates can be fully dissolved after the solution heat treatment despite the fact that the Ni and Co contents are increased. A copper alloy having excellent mechanical strength and electrical conductivity can be obtained by performing an aging treatment thereafter.

次に、上記した時効硬化型銅合金を試作した結果について説明する。 Next, the results of trial production of the age-hardening copper alloy described above will be described.

図1の実施例1、実施例2、比較例1及び比較例2のそれぞれに示す成分組成の銅合金を鋳造し、920℃で1時間保持後し水冷する溶体化熱処理をして、470℃で2.75時間保持し炉冷する時効処理をした。造塊後(鋳造後)、溶体化熱処理後(溶体化後)、時効処理後(時効後)のそれぞれにおいて組織観察、硬さ測定、導電率の測定を行った。なお、実施例1、実施例2、比較例1、比較例2の順に、Coの含有量が多くなり、逆にNiの含有量が少なくなっている。 Copper alloys having the chemical compositions shown in Examples 1, 2, Comparative Examples 1 and 2 in FIG. was held for 2.75 hours and then cooled in a furnace for aging treatment. After ingot making (after casting), after solution heat treatment (after solution treatment), and after aging treatment (after aging), structure observation, hardness measurement, and conductivity measurement were performed. In addition, the content of Co increases in the order of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, and the content of Ni decreases.

図2に硬さと導電率の測定結果を示した。なお、硬さはHRBで測定したが、実施例1及び実施例2の時効処理後の硬さについてはHRCで測定した。時効処理後の硬さについてHRB又はHRCのうち、測定していない単位については換算値を括弧書きで示した。 FIG. 2 shows the measurement results of hardness and conductivity. The hardness was measured by HRB, but the hardness after aging treatment in Examples 1 and 2 was measured by HRC. Regarding the hardness after aging treatment, conversion values are shown in parentheses for units of HRB or HRC that are not measured.

硬さについては、いずれの実施例、比較例でも、鋳造後から溶体化熱処理後にかけて同等か又はやや低くなるが、時効処理後に高くなっていることが判る。しかし、比較例1及び2は実施例1及び2に比べて硬さの値が小さい。時効処理後の硬さの値は、最小の比較例2から、比較例1、実施例2、実施例1の順に大きくなっており、これはCoの含有量の少なくなる順に沿っている。つまり、Coの含有は、導電率の向上に有効であるが、Niに対する含有量を多くし過ぎると硬さを低下させてしまうと言える。 It can be seen that the hardness is the same or slightly lower after casting and after solution heat treatment in any of the examples and comparative examples, but increases after aging treatment. However, Comparative Examples 1 and 2 have lower hardness values than Examples 1 and 2. The hardness value after the aging treatment increases in the order of comparative example 2, comparative example 1, example 2, and example 1, and this is along the order of decreasing Co content. In other words, it can be said that the content of Co is effective for improving electrical conductivity, but if the content is too large relative to Ni, the hardness is lowered.

導電率については、いずれの実施例、比較例でも、鋳造後から溶体化熱処理後にかけて低くなっており、その後時効処理によって鋳造後よりも高くなっていることが判る。さらに詳細には、比較例1や比較例2に比べて、実施例1や実施例2のように溶体化熱処理後の導電率をより低くするほうが、時効処理後(時効後)の導電率を高くしている。つまり、NiやCoを多く含有することで鋳造後に金属間化合物の粗大な粒界析出物を生成してしまうが、溶体化熱処理によってこれを十分固溶できると溶体化熱処理後の導電率をより低くでき、十分に固溶された金属間化合物を時効処理によって微細に析出させることで導電率をより高くできるのである。 It can be seen that the electrical conductivity decreases after casting and after solution heat treatment in all of the examples and comparative examples, and then increases due to the aging treatment after casting. More specifically, compared to Comparative Examples 1 and 2, lowering the conductivity after the solution heat treatment as in Example 1 and Example 2 increases the conductivity after the aging treatment (after aging). Raise. In other words, when Ni and Co are contained in a large amount, coarse grain boundary precipitates of intermetallic compounds are generated after casting, but if this can be sufficiently dissolved by solution heat treatment, the conductivity after solution heat treatment can be improved. The electrical conductivity can be made higher by finely precipitating the intermetallic compound that has been dissolved sufficiently by the aging treatment.

図3において、実施例1及び比較例1の鋳造後の断面組織写真を例示する。同図に示すように、鋳造後においては、いずれの実施例及び比較例においても粗大な析出物が観察される。 In FIG. 3, photographs of cross-sectional structures after casting of Example 1 and Comparative Example 1 are illustrated. As shown in the figure, after casting, coarse precipitates are observed in all the examples and comparative examples.

図4に示すように、固溶化熱処理後において、実施例1では粗大な粒界析出物がほとんど消失しているのに対し、比較例1では粗大な粒界析出物が残存している。図示を省略した実施例2でも粗大な粒界析出物はほとんど消失しており、比較例2では粗大な粒界析出物が残存していた。 As shown in FIG. 4, in Example 1, the coarse grain boundary precipitates almost disappeared after the solution heat treatment, whereas in Comparative Example 1, coarse grain boundary precipitates remained. In Example 2 (not shown), most of the coarse grain boundary precipitates disappeared, and in Comparative Example 2, coarse grain boundary precipitates remained.

さらに、図5に示すように、時効処理後において、実施例1では微細な析出物が分散して析出したのに対し、比較例1においては微細な析出物は観察されるものの、その分布に偏りがある。図示を省略した実施例2でも析出物は分散して析出し、比較例2では析出物の分布に偏りがあった。 Furthermore, as shown in FIG. 5, after the aging treatment, fine precipitates were dispersed and precipitated in Example 1, whereas fine precipitates were observed in Comparative Example 1. biased. In Example 2 (not shown), precipitates were dispersed and precipitated, and in Comparative Example 2, the distribution of precipitates was uneven.

以上のように、本実施例及び比較程のうち、実施例1及び実施例2において、時効処理によって(Ni,Co)-Siからなる金属間化合物粒子を分散させて20HRC以上の硬さ且つ25.0%IACS以上の導電率に調製できた。すなわち、機械強度及び導電性に優れる銅合金を得ることができた。 As described above, among the present examples and comparative examples, in Examples 1 and 2, intermetallic compound particles composed of (Ni, Co)-Si were dispersed by aging treatment to obtain a hardness of 20 HRC or more and a hardness of 25 HRC. A conductivity of 0% IACS or higher could be prepared. That is, a copper alloy having excellent mechanical strength and electrical conductivity could be obtained.

なお、実施例1、2、及び、比較例1、2、その他いくつかの製造例より、Niの含有量に対して融点の高いCoの含有量を多くすることで、造塊時における粗大な粒界析出物を抑制できる傾向にあることが判った。他方、Niに対してCoの含有量が多いと、溶体化熱処理によって粗大な粒界析出物を十分に固溶できない傾向にあることが判った。このような観点から、上記した機械強度及び導電性に優れる銅合金を得るために、Co及びNiの含有量は、それぞれ3.5%以下及び3.0%以上とする。 In addition, from Examples 1 and 2, Comparative Examples 1 and 2, and some other production examples, by increasing the content of Co, which has a high melting point, relative to the content of Ni, coarse grains during ingot making It was found that grain boundary precipitates tend to be suppressed. On the other hand, it was found that when the content of Co is large relative to Ni, there is a tendency that coarse grain boundary precipitates cannot be dissolved sufficiently by solution heat treatment. From this point of view, the contents of Co and Ni are set to 3.5% or less and 3.0% or more, respectively, in order to obtain a copper alloy having excellent mechanical strength and electrical conductivity.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the embodiments according to the present invention and modifications based thereon have been described above, the present invention is not necessarily limited to these, and a person skilled in the art can deviate from the gist of the present invention or the scope of the appended claims. Various alternatives and modifications may be found without further ado.

Claims (3)

質量%で、
Co:1.0%~3.5%、
Cr:0.2%~1.3%で含み、
元素Mの含有量を[M]質量%とするとき、
[Ni]+[Co]=5.0~9.0となるようにNiを含有するとともに、
([Ni]+[Co])/[Si]=3.3~4.4となるようにSiを含有し、残部をCu及び不可避的不純物とする合金組成を有し、(Ni,Co)-Siからなる金属間化合物粒子を分散させるように時効熱処理して20HRC以上の硬さ且つ25.0%IACS以上の導電率に調製されて用いられ得る時効硬化型銅合金であって、
導電率を15.0%IACS以下とするとともに切断面の硬さを55HRB以上とすることを特徴とする時効硬化型銅合金。
in % by mass,
Co: 1.0% to 3.5%,
Cr: 0.2% to 1.3%,
When the content of element M is [M] mass%,
Contains Ni such that [Ni] + [Co] = 5.0 to 9.0,
An alloy composition containing Si such that ([Ni] + [Co]) / [Si] = 3.3 to 4.4, and the balance being Cu and inevitable impurities, (Ni, Co) - An age-hardening copper alloy that can be used by being prepared to have a hardness of 20 HRC or more and a conductivity of 25.0% IACS or more by aging heat treatment so as to disperse intermetallic compound particles made of Si,
An age-hardening copper alloy characterized by having an electrical conductivity of 15.0% IACS or less and a cut surface hardness of 55 HRB or more.
前記切断面において1μm以上の粒界金属間化合物が1個/cm未満であることを特徴とする請求項1記載の時効硬化型銅合金。 2. The age-hardening copper alloy according to claim 1, wherein the number of grain boundary intermetallic compounds having a size of 1 μm or more is less than 1/cm 2 in the cut surface. 前記合金組成は、更にAl、Fe、Mn、Ag、Sn、Ti、Zr、P、Mg、B、S、Nb及びZnからなる群から選ばれる少なくとも1種を、総計1.0質量%以下で含むことを特徴とする請求項1又は2に記載の時効硬化型銅合金。
The alloy composition further contains at least one selected from the group consisting of Al, Fe, Mn, Ag, Sn, Ti, Zr, P, Mg, B, S, Nb and Zn in a total amount of 1.0% by mass or less. 3. The age-hardenable copper alloy of claim 1 or 2, comprising:
JP2019183113A 2019-10-03 2019-10-03 Age-hardenable copper alloy Active JP7215735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183113A JP7215735B2 (en) 2019-10-03 2019-10-03 Age-hardenable copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183113A JP7215735B2 (en) 2019-10-03 2019-10-03 Age-hardenable copper alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018192839A Division JP6600401B1 (en) 2018-10-11 2018-10-11 Method for producing age-hardening type copper alloy

Publications (2)

Publication Number Publication Date
JP2020059918A JP2020059918A (en) 2020-04-16
JP7215735B2 true JP7215735B2 (en) 2023-01-31

Family

ID=70219397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183113A Active JP7215735B2 (en) 2019-10-03 2019-10-03 Age-hardenable copper alloy

Country Status (1)

Country Link
JP (1) JP7215735B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219733A (en) 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2008088512A (en) 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material
WO2009082695A1 (en) 2007-12-21 2009-07-02 Gbc Metals Llc Copper-nickel-silicon alloys
JP2011214088A (en) 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2011219860A (en) 2011-02-09 2011-11-04 Jx Nippon Mining & Metals Corp Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2016186107A (en) 2015-03-27 2016-10-27 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238653B2 (en) * 1986-01-27 1990-08-31 Kobe Steel Ltd PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO
US5028391A (en) * 1989-04-28 1991-07-02 Amoco Metal Manufacturing Inc. Copper-nickel-silicon-chromium alloy
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219733A (en) 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2008088512A (en) 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material
WO2009082695A1 (en) 2007-12-21 2009-07-02 Gbc Metals Llc Copper-nickel-silicon alloys
JP2011508081A (en) 2007-12-21 2011-03-10 ジービーシー メタルズ、エルエルシー Copper-nickel-silicon alloy
JP2011214088A (en) 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2011219860A (en) 2011-02-09 2011-11-04 Jx Nippon Mining & Metals Corp Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2016186107A (en) 2015-03-27 2016-10-27 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component

Also Published As

Publication number Publication date
JP2020059918A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
US8430979B2 (en) Copper alloy containing cobalt, nickel and silicon
JP5743165B2 (en) Copper alloy and method for producing copper alloy
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4596490B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
WO2010113553A1 (en) Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
US11591682B2 (en) Cu—Co—Si—Fe—P-based alloy with excellent bending formability and production method thereof
TWI432586B (en) Cu-Co-Si alloy material
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
WO2012043170A9 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
WO2013161351A1 (en) Cu-Ni-Si TYPE COPPER ALLOY
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP3729454B2 (en) Copper alloy and manufacturing method thereof
JP7215735B2 (en) Age-hardenable copper alloy
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
TWI693291B (en) Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
JP3445432B2 (en) Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling
JP6600401B1 (en) Method for producing age-hardening type copper alloy
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP4133688B2 (en) Copper alloy with high strength and high bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7215735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150