JP7186031B2 - honeycomb structure - Google Patents

honeycomb structure Download PDF

Info

Publication number
JP7186031B2
JP7186031B2 JP2018140445A JP2018140445A JP7186031B2 JP 7186031 B2 JP7186031 B2 JP 7186031B2 JP 2018140445 A JP2018140445 A JP 2018140445A JP 2018140445 A JP2018140445 A JP 2018140445A JP 7186031 B2 JP7186031 B2 JP 7186031B2
Authority
JP
Japan
Prior art keywords
fired body
honeycomb
honeycomb fired
porosity
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018140445A
Other languages
Japanese (ja)
Other versions
JP2020015014A (en
Inventor
紘也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2018140445A priority Critical patent/JP7186031B2/en
Publication of JP2020015014A publication Critical patent/JP2020015014A/en
Application granted granted Critical
Publication of JP7186031B2 publication Critical patent/JP7186031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、ハニカム構造体に関する。 The present invention relates to a honeycomb structure.

自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライト等からなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。 Exhaust gases emitted from internal combustion engines such as automobiles contain harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC). Such an exhaust gas purifying catalyst that decomposes harmful gases is also called a three-way catalyst. things are common.

一方、特許文献1には、モノリス基材がセリア-ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、上記モノリス基材に貴金属粒子が担持された排ガス浄化触媒が開示されている。 On the other hand, Patent Document 1 discloses an exhaust gas purifying catalyst in which a monolithic base material contains ceria-zirconia composite oxide particles and θ-phase alumina particles, and precious metal particles are supported on the monolithic base material.

特開2015-85241号公報JP 2015-85241 A

特許文献1に記載の排ガス浄化触媒では、モノリス基材の材料としてコージェライトを用いず、自らが触媒担体機能及び助触媒機能を有する材料を用いることによって、嵩密度が小さくなるため、モノリス基材の温度が上がりやすくなり、触媒の暖機性能を向上させることができるとされている。 In the exhaust gas purifying catalyst described in Patent Document 1, cordierite is not used as the material of the monolith base material, and a material that itself has a catalyst carrier function and a co-catalyst function is used. It is said that the temperature of the catalyst can be easily increased and the warm-up performance of the catalyst can be improved.

しかし、フロースルー型の排ガス浄化触媒では、ハニカム状のモノリス基材であるハニカム構造体の内周側、すなわちハニカム構造体の径方向の内側には排ガスが流れやすく、一方、ハニカム構造体の外周側、すなわちハニカム構造体の径方向の外側には排ガスが流れにくいため、排ガスの流れが不均一になりやすい。したがって、ハニカム構造体の内周側に比べて外周側に担持されている触媒は有効に使用されないことがある。 However, in the flow-through type exhaust gas purifying catalyst, the exhaust gas tends to flow on the inner peripheral side of the honeycomb structure, which is a honeycomb-shaped monolith base material, that is, on the radially inner side of the honeycomb structure, while on the other hand, the outer periphery of the honeycomb structure Since it is difficult for the exhaust gas to flow to the side, that is, the radially outer side of the honeycomb structure, the flow of the exhaust gas tends to be non-uniform. Therefore, the catalyst supported on the outer peripheral side of the honeycomb structure may not be effectively used compared to the inner peripheral side.

そこで、ハニカム構造体の内周側に比べて外周側に担持させる触媒の量を少なくすることが考えられる。しかし、触媒を含むスラリーをハニカム構造体に浸漬(ディップ)する担持方法では、ハニカム構造体の長手方向における触媒の担持量を変化させることは容易であるのに対して、ハニカム構造体の径方向における触媒の担持量を変化させることは容易ではない。 Therefore, it is conceivable to reduce the amount of catalyst supported on the outer peripheral side of the honeycomb structure compared to the inner peripheral side thereof. However, in the loading method of immersing (dipping) the slurry containing the catalyst into the honeycomb structure, it is easy to change the amount of the catalyst loaded in the longitudinal direction of the honeycomb structure, whereas it is It is not easy to change the amount of catalyst supported in

本発明は、上記課題を解決するためになされた発明であり、ハニカム焼成体に担持させる貴金属を有効に使用することができ、排ガス浄化性能に優れたハニカム構造体を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a honeycomb structure that can effectively use precious metals supported on the honeycomb fired body and that has excellent exhaust gas purification performance. .

本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設され、最外周に外周壁が設けられたハニカム焼成体からなるハニカム構造体であって、上記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とからなり、上記ハニカム焼成体の径方向の外側1/5の範囲における気孔率が、上記ハニカム焼成体の径方向の内側4/5の範囲における気孔率よりも高いことを特徴とする。 A honeycomb structure of the present invention is a honeycomb structure comprising a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls interposed therebetween and an outer peripheral wall is provided on the outermost periphery, and the honeycomb fired body is , ceria-zirconia composite oxide particles and alumina particles, and the porosity in the outer 1/5 range in the radial direction of the honeycomb fired body is the porosity in the inner 4/5 range in the radial direction of the honeycomb fired body. characterized by being higher than the rate.

ハニカム構造体を構成するハニカム焼成体に触媒となる貴金属を担持させる場合、気孔率の低い部分には、比表面積の大きい材料が多く配置されていることになるため、貴金属が担持されやすく、気孔率の高い部分には貴金属が担持されにくい。本発明のハニカム構造体においては、ハニカム焼成体の外周側の気孔率が内周側の気孔率よりも高いため、気孔率の高いハニカム焼成体の外周側における貴金属の担持量は少なくなり、一方、排ガス浄化に大きく寄与するハニカム焼成体の内周側における貴金属の担持量は多くなる。したがって、本発明のハニカム構造体においては、ハニカム焼成体全体への貴金属の担持量が同じであっても、全体が同じ気孔率であるハニカム焼成体に貴金属を担持させる場合に比べて、排ガス浄化性能が向上する。 When a noble metal serving as a catalyst is carried on a honeycomb fired body constituting a honeycomb structure, a large amount of material having a large specific surface area is arranged in a portion with a low porosity. Noble metals are less likely to be carried in the high modulus portion. In the honeycomb structure of the present invention, the porosity on the outer peripheral side of the honeycomb fired body is higher than the porosity on the inner peripheral side. , the amount of noble metal supported on the inner peripheral side of the honeycomb fired body, which greatly contributes to exhaust gas purification, increases. Therefore, in the honeycomb structure of the present invention, even if the amount of precious metal supported on the entire honeycomb fired body is the same, the exhaust gas purification is more efficient than when the precious metal is supported on the honeycomb fired body having the same overall porosity. Better performance.

また、本発明のハニカム構造体においては、ハニカム焼成体がセリア-ジルコニア複合酸化物粒子とアルミナ粒子とから構成されるため、熱容量を小さくすることができる。したがって、短時間で温度が上がりやすく、特に、排ガスが流れやすいハニカム焼成体の内周側は外周側よりも温度が上がりやすい。上記のとおり、本発明のハニカム構造体においては、ハニカム焼成体の内周側における貴金属の担持量を多くすることができるため、始動から短時間で高い排ガス浄化性能を発揮することができる。 Further, in the honeycomb structure of the present invention, since the honeycomb fired body is composed of the ceria-zirconia composite oxide particles and the alumina particles, the heat capacity can be reduced. Therefore, the temperature tends to rise in a short time, and in particular, the temperature rises more easily on the inner peripheral side of the honeycomb fired body than on the outer peripheral side, where the exhaust gas tends to flow. As described above, in the honeycomb structure of the present invention, since the amount of noble metal supported on the inner peripheral side of the honeycomb fired body can be increased, high exhaust gas purification performance can be exhibited in a short period of time after starting.

本明細書において、ハニカム焼成体の径方向とは、複数の貫通孔が延びる長手方向に直交する方向である。 In this specification, the radial direction of the honeycomb fired body is a direction perpendicular to the longitudinal direction in which the plurality of through holes extend.

本発明のハニカム構造体においては、上記ハニカム焼成体の全体の気孔率が50~70%であり、上記ハニカム焼成体の径方向の外側1/5の範囲における気孔率と上記ハニカム焼成体の径方向の内側4/5の範囲における気孔率との差が3%以上であることが望ましい。
ハニカム焼成体の気孔率が上記の範囲にあると、始動から短時間でハニカム焼成体の温度が上がりやすくなるため、排ガス浄化性能に優れる。また、ハニカム焼成体の外周側の気孔率と内周側の気孔率との差が3%以上であると、ハニカム焼成体の内周側における貴金属の担持量を多くすることができるため、排ガス浄化性能を向上させることができる。
In the honeycomb structure of the present invention, the porosity of the entire honeycomb fired body is 50 to 70%, and the porosity in the outer ⅕ range in the radial direction of the honeycomb fired body and the diameter of the honeycomb fired body It is desirable that the difference from the porosity in the inner 4/5 of the direction is 3% or more.
When the porosity of the honeycomb fired body is within the above range, the temperature of the honeycomb fired body tends to rise in a short period of time after starting, and thus the exhaust gas purification performance is excellent. In addition, when the difference between the porosity on the outer peripheral side and the inner peripheral side of the honeycomb fired body is 3% or more, the amount of noble metal supported on the inner peripheral side of the honeycomb fired body can be increased, which results in exhaust gas. Purification performance can be improved.

なお、「ハニカム焼成体の径方向の外側1/5の範囲における気孔率とハニカム焼成体の径方向の内側4/5の範囲における気孔率との差が3%以上である」とは、ハニカム焼成体の径方向の外側1/5の範囲における気孔率をP(%)、ハニカム焼成体の径方向の内側4/5の範囲における気孔率をP(%)としたとき、P-P≧3であることを意味する。 It should be noted that "the difference between the porosity in the outer 1/5 range in the radial direction of the honeycomb fired body and the porosity in the inner 4/5 range in the radial direction of the honeycomb fired body is 3% or more" means that the honeycomb fired body When P 1 (%) is the porosity in the radially outer ⅕ range of the fired body, and P 2 (%) is the porosity in the radially inner 4/5 range of the honeycomb fired body, P 1 - means that P 2 ≧3.

本発明のハニカム構造体においては、上記ハニカム焼成体の上記外周壁の気孔率が、上記ハニカム焼成体の径方向の外側1/5の範囲における気孔率よりも高いことが望ましい。
ハニカム焼成体の外周壁の気孔率を高くすることにより、排ガス浄化の寄与が最も小さいハニカム焼成体の外周側への貴金属の担持量を少なくすることができる。
In the honeycomb structure of the present invention, it is desirable that the porosity of the outer peripheral wall of the honeycomb fired body is higher than the porosity of the outer ⅕ range in the radial direction of the honeycomb fired body.
By increasing the porosity of the outer peripheral wall of the honeycomb fired body, it is possible to reduce the amount of noble metal carried on the outer peripheral side of the honeycomb fired body, which contributes the least to exhaust gas purification.

本発明のハニカム構造体では、上記ハニカム焼成体の長手方向に垂直な断面において、上記隔壁に囲まれた上記貫通孔のサイズは同じであることが望ましい。
貫通孔のサイズを変えることで排ガスの流れやすさを変えて、内周と外周の排ガス流量をほぼ均等にさせて排ガスの浄化性能を向上させる手段もあるが、本発明においては、より製造しやすいように貫通孔のサイズを同じとした場合でも、上述したように排ガス浄化性能を向上させることができる。
なお、貫通孔のサイズが同じとは、上記断面において隔壁により囲まれた貫通孔の形状が合同であることを指す。
In the honeycomb structure of the present invention, it is desirable that the through holes surrounded by the partition walls have the same size in a cross section perpendicular to the longitudinal direction of the honeycomb fired body.
There is also a means for improving the exhaust gas purification performance by changing the size of the through-hole to change the flow rate of the exhaust gas to make the flow rate of the exhaust gas approximately equal between the inner and outer circumferences, but in the present invention, the production is more efficient. Even if the sizes of the through-holes are the same for ease of use, the exhaust gas purifying performance can be improved as described above.
The through holes having the same size means that the through holes surrounded by the partition wall have the same shape in the cross section.

本発明のハニカム構造体においては、上記ハニカム焼成体に貴金属が担持されていることが望ましい。
ハニカム焼成体に貴金属を担持させることにより、ハニカム構造体を排ガス浄化用のハニカム触媒として使用することができる。
In the honeycomb structure of the present invention, it is desirable that the honeycomb fired body carries a noble metal.
By supporting a noble metal on the honeycomb fired body, the honeycomb structure can be used as a honeycomb catalyst for exhaust gas purification.

本発明のハニカム構造体においては、上記ハニカム焼成体の径方向の外側1/5の範囲における上記貴金属の担持量が、上記ハニカム焼成体の径方向の内側4/5の範囲における上記貴金属の担持量よりも少ないことが望ましい。
ハニカム焼成体の内周側における貴金属の担持量を多くすることにより、始動から短時間で高い排ガス浄化性能を発揮することができる。
In the honeycomb structure of the present invention, the amount of the noble metal supported in the outer ⅕ range in the radial direction of the honeycomb fired body is equal to the amount of the noble metal supported in the inner 4/5 range in the radial direction of the honeycomb fired body. Less than the amount is desirable.
By increasing the amount of noble metal supported on the inner peripheral side of the honeycomb fired body, it is possible to exhibit high exhaust gas purification performance in a short time after starting.

本明細書において、貴金属の担持量(g/L)とは、ハニカム焼成体の見掛けの体積(L)当たりの貴金属の重量(g)をいう。 In this specification, the supported amount of noble metal (g/L) refers to the weight (g) of noble metal per apparent volume (L) of the honeycomb fired body.

図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention. 図2は、図1におけるA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG.

(発明の詳細な説明)
[ハニカム構造体]
本発明のハニカム構造体について説明する。
(Detailed description of the invention)
[Honeycomb structure]
A honeycomb structure of the present invention will be described.

図1は、本発明のハニカム構造体の一例を模式的に示す斜視図である。
図1に示すように、ハニカム構造体10は、複数の貫通孔12が隔壁13を隔てて長手方向(図1中、両矢印Lで示す方向)に並設され、最外周に外周壁14が設けられたハニカム焼成体11からなる。
ハニカム焼成体11は、セリア-ジルコニア複合酸化物粒子(以下、CZ粒子ともいう)とアルミナ粒子とからなる。
図1に示すように、ハニカム構造体10が単一のハニカム焼成体11からなる場合、ハニカム焼成体11はハニカム構造体そのものでもある。
FIG. 1 is a perspective view schematically showing an example of the honeycomb structure of the present invention.
As shown in FIG. 1, a honeycomb structure 10 has a plurality of through holes 12 arranged side by side in the longitudinal direction (the direction indicated by the double arrow L in FIG. 1) with partition walls 13 interposed therebetween, and an outer peripheral wall 14 on the outermost periphery. It consists of a honeycomb fired body 11 provided.
The honeycomb fired body 11 is composed of ceria-zirconia composite oxide particles (hereinafter also referred to as CZ particles) and alumina particles.
As shown in FIG. 1, when the honeycomb structure 10 is composed of a single honeycomb fired body 11, the honeycomb fired body 11 is also the honeycomb structure itself.

本発明のハニカム構造体では、ハニカム焼成体の径方向の外側1/5の範囲における気孔率が、ハニカム焼成体の径方向の内側4/5の範囲における気孔率よりも高い。
ハニカム焼成体の径方向の外側1/5の範囲及びハニカム焼成体の径方向の内側4/5の範囲について、図2を参照しながら説明する。
図2は、図1におけるA-A線断面図である。
図2に示すハニカム構造体10において、ハニカム焼成体11の長手方向に垂直な断面形状は、点Oを中心とする半径Rの円形である。ハニカム焼成体11の径方向の内側4/5の範囲とは、点Oを中心とし半径Rの4/5の長さである半径4/5Rの円の輪郭Sで囲まれる範囲(Cで示される範囲)であり、ハニカム焼成体11の径方向の外側1/5の範囲とは、半径4/5Rの円の輪郭Sとハニカム焼成体11の輪郭Sとで囲まれる範囲(Cで示される範囲)である。
半径4/5Rの円の輪郭Sとハニカム焼成体11の輪郭Sは重心を共有する相似図形であり、輪郭Sに対する輪郭Sの相似比は4/5である。
In the honeycomb structure of the present invention, the porosity in the outer 1/5 range in the radial direction of the honeycomb fired body is higher than the porosity in the inner 4/5 range in the radial direction of the honeycomb fired body.
The radially outer ⅕ range of the honeycomb fired body and the radially inner 4/5 range of the honeycomb fired body will be described with reference to FIG.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
In the honeycomb structure 10 shown in FIG. 2, the cross-sectional shape of the honeycomb fired body 11 perpendicular to the longitudinal direction is a circle with a radius R centered on the point O. As shown in FIG. The inner 4/5 range in the radial direction of the honeycomb fired body 11 is a range surrounded by an outline S1 of a circle with a radius of 4/5R centered at the point O and having a length of 4/5 of the radius R ( C1 ), and the radial outer ⅕ range of the honeycomb fired body 11 is the range surrounded by the contour S 1 of a circle with a radius of 4/5R and the contour S 2 of the honeycomb fired body 11 ( C2 ).
The outline S1 of the circle with a radius of 4/5R and the outline S2 of the honeycomb fired body 11 are similar figures sharing the center of gravity, and the similarity ratio of the outline S1 to the outline S2 is 4/5.

本発明のハニカム構造体においては、ハニカム焼成体の長手方向に垂直な断面形状が円形である場合に限らず、ハニカム焼成体の輪郭と重心を共有し、ハニカム焼成体の輪郭との相似比が4/5となる相似図形(すなわち、面積が64%の相似図形)を仮定し、この相似図形の輪郭で囲まれる範囲を「ハニカム焼成体の径方向の内側4/5の範囲」とし、この相似図形の輪郭とハニカム焼成体の輪郭とで囲まれる範囲を「ハニカム焼成体の径方向の外側1/5の範囲」とする。 In the honeycomb structure of the present invention, the cross-sectional shape perpendicular to the longitudinal direction of the honeycomb fired body is not limited to a circular shape. A similar figure of 4/5 (that is, a similar figure with an area of 64%) is assumed, and the range surrounded by the outline of this similar figure is defined as "the inner 4/5 range in the radial direction of the honeycomb fired body". The range surrounded by the outline of the similar figure and the outline of the honeycomb fired body is defined as "the radially outer ⅕ range of the honeycomb fired body".

本発明のハニカム構造体においては、ハニカム焼成体の全体の気孔率が50~70%であり、ハニカム焼成体の径方向の外側1/5の範囲における気孔率とハニカム焼成体の径方向の内側4/5の範囲における気孔率との差が3%以上であることが望ましい。
ハニカム焼成体の気孔率が上記の範囲にあると、始動から短時間でハニカム焼成体の温度が上がりやすくなるため、排ガス浄化性能に優れる。また、ハニカム焼成体の外周側の気孔率と内周側の気孔率との差が3%以上であると、ハニカム焼成体の内周側における貴金属の担持量を多くすることができるため、排ガス浄化性能を向上させることができる。
In the honeycomb structure of the present invention, the porosity of the entire honeycomb fired body is 50 to 70%, and the porosity in the range of the outer ⅕ in the radial direction of the honeycomb fired body and the inner side in the radial direction of the honeycomb fired body It is desirable that the difference from the porosity in the range of 4/5 is 3% or more.
When the porosity of the honeycomb fired body is within the above range, the temperature of the honeycomb fired body tends to rise in a short period of time after starting, and thus the exhaust gas purification performance is excellent. In addition, when the difference between the porosity on the outer peripheral side and the inner peripheral side of the honeycomb fired body is 3% or more, the amount of noble metal supported on the inner peripheral side of the honeycomb fired body can be increased, which results in exhaust gas. Purification performance can be improved.

本発明のハニカム構造体においては、ハニカム焼成体の外周壁の気孔率が、ハニカム焼成体の径方向の外側1/5の範囲における気孔率よりも高いことが望ましい。
ハニカム焼成体の外周壁の気孔率を高くすることにより、排ガス浄化の寄与が最も小さいハニカム焼成体の外周側への貴金属の担持量を少なくすることができる。
ハニカム焼成体の外周壁の気孔率は、外周壁のみを切り出して後述する重量法により測定することができる。ただし、切り出す外周壁のサイズは約100mm程度とする。
In the honeycomb structure of the present invention, it is desirable that the porosity of the outer peripheral wall of the honeycomb fired body is higher than the porosity of the outer ⅕ range in the radial direction of the honeycomb fired body.
By increasing the porosity of the outer peripheral wall of the honeycomb fired body, it is possible to reduce the amount of noble metal carried on the outer peripheral side of the honeycomb fired body, which contributes the least to exhaust gas purification.
The porosity of the outer peripheral wall of the honeycomb fired body can be measured by cutting out only the outer peripheral wall and using the gravimetric method described below. However, the size of the outer peripheral wall to be cut out is about 100 mm 3 .

ハニカム焼成体の気孔率は、重量法(重量気孔率測定法ともいう)により測定される。
例えば、気孔率を測定する範囲に位置するハニカム焼成体を10セル×10セル×10mmの大きさに切り出し、その部分の気孔率を重量法により測定する。ハニカム焼成体の径方向の外側1/5の範囲における気孔率を測定する場合には、ハニカム焼成体の外周壁が含まれるようにハニカム焼成体を切り出し、その部分の気孔率を重量法により測定する。また、ハニカム焼成体の径方向の内側4/5の範囲における気孔率を測定する場合には、その部分のハニカム焼成体を切り出し、その部分の気孔率を重量法により測定する。
なお、ハニカム焼成体全体の気孔率は、ハニカム焼成体の径方向の外側1/5の範囲における気孔率を9倍した値と、ハニカム焼成体の径方向の内側4/5の範囲における気孔率を16倍した値の合計値を、25で割ることで算出する。
なお、ここで測定されるハニカム焼成体の気孔率とは、ハニカム焼成体の貫通孔の体積を含まない気孔率であって、具体的には隔壁及び/又は外周壁の気孔率を指す。
The porosity of the honeycomb fired body is measured by a gravimetric method (also referred to as a gravimetric porosity measuring method).
For example, a honeycomb fired body located in a range where the porosity is to be measured is cut into a size of 10 cells×10 cells×10 mm, and the porosity of that portion is measured by the gravimetric method. When measuring the porosity in the outer ⅕ range in the radial direction of the honeycomb fired body, the honeycomb fired body is cut so as to include the outer peripheral wall, and the porosity of that portion is measured by the gravimetric method. do. When measuring the porosity in the radially inner 4/5 range of the honeycomb fired body, the honeycomb fired body in that portion is cut out and the porosity in that portion is measured by the gravimetric method.
The porosity of the entire honeycomb fired body is obtained by multiplying the porosity of the outer 1/5 range in the radial direction of the honeycomb fired body by 9 and the porosity of the inner 4/5 range of the honeycomb fired body in the radial direction. is multiplied by 16 and divided by 25.
The porosity of the honeycomb fired body measured here is the porosity that does not include the volume of the through holes of the honeycomb fired body, and specifically refers to the porosity of the partition walls and/or the outer peripheral wall.

重量法とは、以下に示す方法である。
(1)ハニカム焼成体を10セル×10セル×10mmの大きさに切断して、測定試料とする。この測定試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンを用いて100℃で乾燥する。
なお、10セル×10セル×10mmの測定試料とは、貫通孔が縦方向に10個、横方向に10個並んだ状態で、最も外側の貫通孔のその貫通孔を構成する隔壁を含み、長手方向の長さが100となるように切り出した試料を指す。
(2)測定顕微鏡(ニコン製Measuring Microscope MM-40 倍率:100倍)を用いて、測定試料の断面形状の寸法を測定し、幾何学的な計算から体積を求める(なお、幾何学的な計算から体積を求めることができない場合は、飽水重量と水中重量とを実測して体積を測定する)。
(3)計算から求められた体積及びピクノメータで測定した測定試料の真密度から、測定試料が完全な緻密体であると仮定した場合の重量を計算する。なお、ピクノメータでの測定手順は(4)に示す通りとする。
(4)ハニカム焼成体を粉砕し、23.6ccの粉末を準備する。得られた粉末を200℃で8時間乾燥させる。その後、Micromeritics社製 Auto Pycnometer1320を用いて、JIS R 1620(1995)に準拠して真密度を測定する。排気時間は40分とする。
(5)測定試料の実際の重量を電子天秤(A&D製 HR202i)で測定する。
(6)以下の式から、ハニカム焼成体の気孔率を求める。
(ハニカム焼成体の気孔率)=100-(測定試料の実際の重量/測定試料が完全な緻密体であると仮定した場合の重量)×100[%]
なお、本発明のハニカム構造体に貴金属を担持させた場合であっても、貴金属担持によるハニカム焼成体の気孔率の変化は無視できるほど小さい。
The gravimetric method is the method shown below.
(1) Cut the honeycomb fired body into a size of 10 cells×10 cells×10 mm to obtain a measurement sample. After ultrasonically cleaning this measurement sample using ion-exchanged water and acetone, it is dried at 100° C. using an oven.
In addition, the measurement sample of 10 cells × 10 cells × 10 mm is a state in which 10 through-holes are arranged in the vertical direction and 10 in the horizontal direction, and the partition walls constituting the through-holes of the outermost through-holes are included, It refers to a sample cut out so that the length in the longitudinal direction is 100.
(2) Using a measuring microscope (Measuring Microscope MM-40 manufactured by Nikon, magnification: 100 times), measure the dimensions of the cross-sectional shape of the measurement sample, and determine the volume from geometric calculations (geometric calculations If the volume cannot be obtained from the above, measure the weight in saturated water and the weight in water to measure the volume).
(3) From the calculated volume and the true density of the measurement sample measured by the pycnometer, the weight of the measurement sample is calculated assuming that it is a completely dense body. The measurement procedure with the pycnometer is as shown in (4).
(4) Pulverize the honeycomb fired body to prepare 23.6 cc of powder. The powder obtained is dried at 200° C. for 8 hours. After that, the true density is measured according to JIS R 1620 (1995) using an Auto Pycnometer 1320 manufactured by Micromeritics. The evacuation time is 40 minutes.
(5) Measure the actual weight of the measurement sample with an electronic balance (HR202i manufactured by A&D).
(6) Obtain the porosity of the honeycomb fired body from the following equation.
(Porosity of honeycomb fired body) = 100 - (actual weight of measurement sample/weight assuming that measurement sample is a complete dense body) x 100 [%]
Even when the honeycomb structure of the present invention supports a noble metal, the change in the porosity of the honeycomb fired body due to the supporting of the noble metal is so small that it can be ignored.

本発明のハニカム構造体において、ハニカム焼成体は、CZ粒子及びアルミナ粒子を含む押出成形体からなる。すなわち、本発明のハニカム構造体は、CZ粒子及びアルミナ粒子を含む原料ペーストを押出成形して得られたハニカム成形体を焼成することにより作製されたハニカム焼成体により構成される。
ハニカム構造体が上記した成分を有していることは、X線回折(XRD)にて確認することができる。
In the honeycomb structure of the present invention, the honeycomb fired body is an extruded body containing CZ particles and alumina particles. That is, the honeycomb structure of the present invention is composed of a fired honeycomb body produced by firing a formed honeycomb body obtained by extruding a raw material paste containing CZ particles and alumina particles.
It can be confirmed by X-ray diffraction (XRD) that the honeycomb structure has the above components.

本発明のハニカム構造体は、単一のハニカム焼成体を備えていてもよいし、複数個のハニカム焼成体を備えていてもよい。本発明のハニカム構造体が複数のハニカム焼成体を備える場合、複数個のハニカム焼成体が接着剤層により結合されていることが望ましい。 The honeycomb structure of the present invention may have a single honeycomb fired body, or may have a plurality of honeycomb fired bodies. When the honeycomb structure of the present invention includes a plurality of honeycomb fired bodies, it is desirable that the plurality of honeycomb fired bodies are bonded with an adhesive layer.

本発明のハニカム構造体において、ハニカム焼成体を構成するCZ粒子の含有割合は、25~75重量%であることが望ましい。
ハニカム焼成体を構成するCZ粒子の含有割合が25~75重量%であると、セリウムの酸素吸蔵能(OSC)を高めることができる。
In the honeycomb structure of the present invention, the content of CZ particles constituting the honeycomb fired body is preferably 25 to 75% by weight.
When the content of CZ particles constituting the honeycomb fired body is 25 to 75% by weight, the oxygen storage capacity (OSC) of cerium can be increased.

本発明のハニカム構造体において、ハニカム焼成体を構成するアルミナ粒子は、θ相のアルミナ粒子であることが望ましい。
アルミナ粒子がθ相のアルミナ粒子であると耐熱性が高いため、貴金属を担持させ、長時間使用した後であっても高い排ガス浄化性能を発揮することができる。
In the honeycomb structure of the present invention, the alumina particles forming the honeycomb fired body are desirably θ-phase alumina particles.
If the alumina particles are θ-phase alumina particles, they have high heat resistance, so that noble metals can be supported and high exhaust gas purifying performance can be exhibited even after long-term use.

本発明のハニカム構造体において、ハニカム焼成体を構成するアルミナ粒子の含有割合は、15~35重量%であることが望ましい。 In the honeycomb structure of the present invention, the content of alumina particles constituting the honeycomb fired body is desirably 15 to 35% by weight.

本発明のハニカム構造体の形状としては、円柱状、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 Examples of the shape of the honeycomb structure of the present invention include cylindrical, prismatic, cylindric, long cylindrical, and chamfered prismatic shapes (for example, chamfered triangular prism shapes).

本発明のハニカム構造体において、ハニカム焼成体の隔壁の厚さは、均一であることが望ましい。具体的には、ハニカム焼成体の隔壁の厚さは、0.05~0.50mmであることが望ましく、0.05~0.30mmであることがより望ましい。 In the honeycomb structure of the present invention, it is desirable that the partition walls of the honeycomb fired body have a uniform thickness. Specifically, the thickness of the partition walls of the honeycomb fired body is desirably 0.05 to 0.50 mm, and more desirably 0.05 to 0.30 mm.

本発明のハニカム構造体において、ハニカム焼成体の貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。
貫通孔の形状はそれぞれ異なっていてもよいが、全て同じであることが望ましい。すなわち、ハニカム焼成体の長手方向に垂直な断面において、隔壁に囲まれた貫通孔のサイズが同じであることが望ましい。
貫通孔のサイズを変えることで排ガスの流れやすさを変えて、内周と外周の排ガス流量をほぼ均等にさせて排ガスの浄化性能を向上させる手段もあるが、本発明においては、より製造しやすいように貫通孔のサイズを同じとした場合でも、上述したように排ガス浄化性能を向上させることができる。
In the honeycomb structure of the present invention, the shape of the through-holes of the honeycomb fired body is not limited to a square pillar shape, and may be a triangular pillar shape, a hexagonal pillar shape, or the like.
Although the through-holes may have different shapes, it is desirable that all the through-holes have the same shape. That is, it is desirable that the sizes of the through holes surrounded by the partition walls are the same in the cross section perpendicular to the longitudinal direction of the honeycomb fired body.
There is also a means for improving the exhaust gas purification performance by changing the size of the through-hole to change the flow rate of the exhaust gas to make the flow rate of the exhaust gas approximately equal between the inner and outer circumferences, but in the present invention, the production is more efficient. Even if the sizes of the through-holes are the same for ease of use, the exhaust gas purifying performance can be improved as described above.

本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。 In the honeycomb structure of the present invention, it is desirable that the density of the through-holes in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is 31 to 155/cm 2 .

本発明のハニカム構造体において、ハニカム焼成体にはさらに無機繊維や無機バインダが含まれていてもよい。 In the honeycomb structure of the present invention, the fired honeycomb body may further contain inorganic fibers and an inorganic binder.

無機繊維としては、アルミナ繊維が望ましい。
無機繊維としてアルミナ繊維を用いると、ハニカム構造体の機械的特性を改善することができる。
Alumina fibers are desirable as the inorganic fibers.
Using alumina fibers as the inorganic fibers can improve the mechanical properties of the honeycomb structure.

無機バインダとしては、ベーマイトが望ましい。
焼成工程によって、ベーマイトの大部分がγアルミナとなるからである。
Boehmite is desirable as the inorganic binder.
This is because most of the boehmite becomes γ-alumina through the firing process.

本発明のハニカム構造体においては、ハニカム焼成体に貴金属が担持されていることが望ましい。
貴金属としては、例えば、白金、パラジウム、ロジウムなどの白金族金属が挙げられる。
ハニカム焼成体全体への貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。
本明細書において、貴金属の担持量とは、ハニカム構造体の見掛けの体積当たりの貴金属の重量をいう。なお、ハニカム構造体の見掛けの体積は、空隙の体積を含む体積であり、接着層を含む場合は接着層の体積を含むこととする。
In the honeycomb structure of the present invention, it is desirable that the honeycomb fired body supports a noble metal.
Examples of noble metals include platinum group metals such as platinum, palladium and rhodium.
The amount of noble metal supported on the entire honeycomb fired body is desirably 0.1 to 15 g/L, and more desirably 0.5 to 10 g/L.
In the present specification, the supported amount of noble metal refers to the weight of the noble metal per apparent volume of the honeycomb structure. The apparent volume of the honeycomb structure is the volume including the volume of the voids, and when the adhesive layer is included, the volume of the adhesive layer is included.

本発明のハニカム構造体においては、ハニカム焼成体の径方向の外側1/5の範囲における貴金属の担持量が、ハニカム焼成体の径方向の内側4/5の範囲における貴金属の担持量よりも少ないことが望ましい。
ハニカム焼成体の内周側における貴金属の担持量を多くすることにより、始動から短時間で高い排ガス浄化性能を発揮することができる。
In the honeycomb structure of the present invention, the amount of noble metal supported in the outer ⅕ range in the radial direction of the honeycomb fired body is smaller than the amount of noble metal supported in the inner 4/5 range in the radial direction of the honeycomb fired body. is desirable.
By increasing the amount of noble metal supported on the inner peripheral side of the honeycomb fired body, it is possible to exhibit high exhaust gas purification performance in a short time after starting.

本発明のハニカム構造体において、ハニカム焼成体の外周面には、外周コート層が形成されていてもよい。
外周コート層の厚さは、0.1~2.0mmであることが望ましい。
In the honeycomb structure of the present invention, an outer peripheral coat layer may be formed on the outer peripheral surface of the honeycomb fired body.
The thickness of the peripheral coat layer is preferably 0.1 to 2.0 mm.

[ハニカム構造体の製造方法]
次に、本発明のハニカム構造体を製造する方法について説明する。
本発明のハニカム構造体は、例えば、CZ粒子、アルミナ粒子、無機繊維及び無機バインダを含む原料ペーストを成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を作製する成形工程と、上記成形工程により成形されたハニカム成形体を乾燥する乾燥工程と、上記乾燥工程により乾燥されたハニカム成形体を焼成することにより、ハニカム焼成体を作製する焼成工程と、により作製することができる。
[Manufacturing method of honeycomb structure]
Next, a method for manufacturing the honeycomb structure of the present invention will be described.
The honeycomb structure of the present invention is a honeycomb formed body in which a plurality of through-holes are arranged in parallel in the longitudinal direction with partition walls interposed therebetween by molding a raw material paste containing, for example, CZ particles, alumina particles, inorganic fibers, and an inorganic binder. a drying step of drying the honeycomb formed body formed in the forming step; and a firing step of producing a honeycomb fired body by firing the honeycomb formed body dried in the drying step; It can be produced by

(成形工程)
成形工程では、まず、CZ粒子及びアルミナ粒子を混合して原料ペーストを調製する。
原料ペーストには、さらに無機繊維、無機バインダ、有機バインダ、造孔剤、成形助剤、分散媒等が含まれていてもよい。
(Molding process)
In the molding step, first, CZ particles and alumina particles are mixed to prepare a raw material paste.
The raw material paste may further contain inorganic fibers, inorganic binders, organic binders, pore-forming agents, molding aids, dispersion media, and the like.

CZ粒子は、排ガス浄化触媒の助触媒(酸素貯蔵材)として用いられている材料である。CZ粒子としては、セリアとジルコニアとが固溶体を形成したものが望ましい。 CZ particles are a material used as a co-catalyst (oxygen storage material) for an exhaust gas purification catalyst. As the CZ particles, those in which ceria and zirconia form a solid solution are desirable.

CZ粒子は、セリウム以外の希土類元素をさらに含んでいてもよい。希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテニウム(Lu)等が挙げられる。 The CZ particles may further contain rare earth elements other than cerium. Rare earth elements include scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Ytterbium (Yb), ruthenium (Lu) and the like can be mentioned.

CZ粒子は、セリアを30重量%以上含むことが望ましく、40重量%以上含むことがより望ましく、一方、セリアを90重量%以下含むことが望ましく、80重量%以下含むことがより望ましい。また、CZ粒子は、ジルコニアを60重量%以下含むことが望ましく、50重量%以下含むことがより望ましい。このようなCZ粒子は熱容量が小さいため、ハニカム構造体の温度が上昇しやすくなり、暖機性能を高めることができる。 The CZ particles preferably contain 30% by weight or more of ceria, more preferably 40% by weight or more, and preferably contain 90% by weight or less of ceria, more preferably 80% by weight or less. Also, the CZ particles desirably contain zirconia in an amount of 60% by weight or less, more preferably 50% by weight or less. Since such CZ particles have a small heat capacity, the temperature of the honeycomb structure can be easily increased, and the warm-up performance can be improved.

CZ粒子の平均粒子径は耐熱衝撃性を向上させる観点から、1~50μmであることが望ましい。また、CZ粒子の平均粒子径は1~30μmであることがより望ましい。CZ粒子の平均粒子径が1~50μmであると、ハニカム構造体とした際に、表面積が大きくなるため、酸素吸蔵能を高くすることができる。 From the viewpoint of improving the thermal shock resistance, the average particle size of the CZ particles is preferably 1 to 50 μm. Further, it is more desirable that the CZ particles have an average particle size of 1 to 30 μm. When the average particle diameter of the CZ particles is 1 to 50 μm, the honeycomb structure has a large surface area, so that the oxygen storage capacity can be increased.

アルミナ粒子の種類は特に限定されないが、θ相のアルミナ粒子(以下、θ-アルミナ粒子ともいう)であることが望ましい。
θ相のアルミナ粒子をCZ粒子の仕切り材として用いることにより、アルミナ粒子が使用中に熱によって互いに焼結することを抑制できるため、触媒機能を維持することが可能となる。さらに、アルミナ粒子をθ相とすることにより、耐熱性を高くすることができる。
Although the type of alumina particles is not particularly limited, θ-phase alumina particles (hereinafter also referred to as θ-alumina particles) are desirable.
By using the θ-phase alumina particles as a partition material for the CZ particles, it is possible to suppress the alumina particles from sintering each other due to heat during use, so that the catalytic function can be maintained. Furthermore, the heat resistance can be enhanced by making the alumina particles the θ phase.

アルミナ粒子の平均粒子径は特に限定されないが、ガス浄化性能及び暖機性能を向上させる観点から、1~10μmであることが望ましく、1~5μmであることがより望ましい。 Although the average particle size of the alumina particles is not particularly limited, it is preferably 1 to 10 μm, more preferably 1 to 5 μm, from the viewpoint of improving gas purification performance and warming up performance.

CZ粒子及びアルミナ粒子の平均粒子径は、レーザー回折式粒度分布測定装置(MALVERN社製 MASTERSIZER2000)により求めることができる。 The average particle size of CZ particles and alumina particles can be determined by a laser diffraction particle size distribution analyzer (MASTERSIZER 2000 manufactured by MALVERN).

無機繊維を構成する材料としては、特に限定されないが、例えば、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等が挙げられ、二種以上併用してもよい。これらの中では、アルミナ繊維が望ましい。 Materials constituting the inorganic fibers are not particularly limited, but examples thereof include alumina, silica, silicon carbide, silica-alumina, glass, potassium titanate, and aluminum borate, and two or more of them may be used in combination. Among these, alumina fibers are desirable.

無機繊維のアスペクト比は、5~300であることが望ましく、10~200であることがより望ましく、10~100であることがさらに望ましい。
なお、無機繊維とは、アスペクト比が5以上のものをいう。
The aspect ratio of the inorganic fibers is desirably 5-300, more desirably 10-200, even more desirably 10-100.
Inorganic fibers refer to those having an aspect ratio of 5 or more.

無機バインダとしては、ベーマイトが望ましい。
ベーマイトは、AlOOHの組成で示されるアルミナ1水和物であり、水等の媒体に良好に分散するので、ベーマイトをアルミナバインダとして用いることが望ましい。
また、ベーマイトを用いることで原料ペースト中の水分率を低くし、成形性を高めることができる。
Boehmite is desirable as the inorganic binder.
Boehmite is an alumina monohydrate having a composition of AlOOH, and is well dispersed in a medium such as water. Therefore, it is desirable to use boehmite as an alumina binder.
Moreover, by using boehmite, the moisture content in the raw material paste can be lowered, and the moldability can be improved.

有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。 Examples of organic binders include, but are not limited to, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethylene glycol, phenolic resins, epoxy resins, and the like, and two or more of them may be used in combination.

造孔剤としては、特に限定されないが、例えば、アクリル樹脂、コークス、デンプン等が挙げられる。
造孔剤とは、ハニカム焼成体を製造する際、ハニカム焼成体の内部に気孔を導入するために用いられるものをいう。
Examples of the pore-forming agent include, but are not particularly limited to, acrylic resin, coke, starch, and the like.
A pore-forming agent is used to introduce pores into the interior of a honeycomb fired body when manufacturing the honeycomb fired body.

成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。 Examples of molding aids include, but are not limited to, ethylene glycol, dextrin, fatty acids, fatty acid soaps, polyalcohols, and the like, and two or more of them may be used in combination.

分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。 Examples of the dispersion medium include, but are not limited to, water, organic solvents such as benzene, and alcohols such as methanol, and two or more of them may be used in combination.

上記した原料としてCZ粒子、アルミナ粒子、アルミナ繊維及びアルミナバインダを使用した際、これらの配合割合は、原料中の焼成工程後に残存する全固形分に対し、CZ粒子:25~75重量%、アルミナ粒子:15~35重量%、アルミナ繊維:5~15重量%、アルミナバインダ:5~20重量%が望ましい。 When CZ particles, alumina particles, alumina fibers and alumina binder are used as the raw materials described above, the mixing ratio of these is, relative to the total solid content remaining after the firing process in the raw materials, CZ particles: 25 to 75% by weight, alumina Desirably, particles: 15 to 35% by weight, alumina fibers: 5 to 15% by weight, and alumina binder: 5 to 20% by weight.

原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。 When preparing the raw material paste, it is desirable to mix and knead, and the mixture may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.

成形工程では、CZ粒子とアルミナ粒子とを含む上記原料ペーストを押出成形することにより、複数の貫通孔が隔壁を隔てて長手方向に並設されたハニカム成形体を得る。
このとき、焼成工程後のハニカム焼成体の径方向の外側1/5の範囲における気孔率をハニカム焼成体の径方向の内側4/5の範囲における気孔率よりも高くする方法としては、例えば、成形工程において、外周壁付近における原料ペーストの押出速度がそれ以外の場所における原料ペーストの押出速度よりも速くなるように成形条件及び/又は金型の形状を調整する方法が挙げられる。
原料ペーストが金型から供給される重量は、金型の外周付近とそれ以外とで変わらないため、外周壁付近における原料ペーストの押出速度をそれ以外の場所における原料ペーストの押出速度よりも速くすることで、外周壁付近におけるハニカム成形体の密度を低くすることができるため、焼成工程後のハニカム焼成体において外周壁付近の気孔率を高めることができる。
In the forming step, the raw material paste containing the CZ particles and the alumina particles is extruded to obtain a formed honeycomb body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls interposed therebetween.
At this time, as a method for increasing the porosity in the outer ⅕ range in the radial direction of the honeycomb fired body after the firing process to the porosity in the inner 4/5 range in the radial direction of the honeycomb fired body, for example, In the molding process, there is a method of adjusting the molding conditions and/or the shape of the mold so that the extrusion speed of the raw material paste near the outer peripheral wall is faster than the extrusion speed of the raw material paste at other locations.
Since the weight of the raw material paste supplied from the mold does not change between the vicinity of the outer circumference of the mold and the rest of the mold, the extrusion speed of the raw material paste near the outer peripheral wall is made faster than the extrusion speed of the raw material paste at other locations. As a result, the density of the honeycomb molded body in the vicinity of the outer peripheral wall can be lowered, so that the porosity in the vicinity of the outer peripheral wall can be increased in the honeycomb fired body after the firing step.

ハニカム成形体の形状は特に限定されるものではないが、円柱形状が望ましい。また、円柱形状の場合の直径が150mm以下であることが望ましい。
また、ハニカム成形体の形状は角柱形状であってもよく、角柱形状である場合は、四角柱形状であることが望ましい。
The shape of the formed honeycomb body is not particularly limited, but a columnar shape is desirable. Moreover, it is desirable that the diameter is 150 mm or less in the case of a cylindrical shape.
Moreover, the honeycomb formed body may have a prismatic shape, and in the case of a prismatic shape, it is preferably a square prismatic shape.

(乾燥工程)
続いて、ハニカム成形体を乾燥してハニカム乾燥体を得る乾燥工程を行う。
乾燥工程では、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製する。
(Drying process)
Subsequently, a drying step of drying the formed honeycomb body to obtain a dried honeycomb body is performed.
In the drying step, the formed honeycomb body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, or a freeze dryer to produce a dried honeycomb body.

(焼成工程)
焼成工程では、乾燥工程により乾燥されたハニカム乾燥体を焼成することにより、ハニカム焼成体を作製する。なお、この工程は、ハニカム乾燥体の脱脂及び焼成が行われるため、「脱脂・焼成工程」ということもできるが、便宜上「焼成工程」という。
(Baking process)
In the firing step, a fired honeycomb body is produced by firing the dried honeycomb body dried in the drying step. Note that this step can be called a “degreasing/firing step” because the dried honeycomb body is degreased and fired, but for the sake of convenience, it will be referred to as a “firing step”.

焼成工程の温度は、800~1300℃であることが望ましく、900~1200℃であることがより望ましい。また、焼成工程の時間は、1~24時間であることが望ましく、
3~18時間であることがより望ましい。焼成工程の雰囲気は特に限定されないが、酸素濃度が1~20%であることが望ましい。
The temperature of the firing step is desirably 800-1300.degree. C., more desirably 900-1200.degree. In addition, the time of the firing process is preferably 1 to 24 hours,
More preferably 3 to 18 hours. Although the atmosphere of the firing process is not particularly limited, it is desirable that the oxygen concentration is 1 to 20%.

以上の工程により、本発明のハニカム構造体を製造することができる。 Through the above steps, the honeycomb structure of the present invention can be manufactured.

(その他の工程)
本発明のハニカム構造体を製造する方法では、必要に応じて、上記ハニカム焼成体に貴金属を担持させる担持工程をさらに含んでいてもよい。
ハニカム焼成体に貴金属を担持する方法としては、例えば、貴金属粒子もしくは錯体を含む溶液にハニカム焼成体又はハニカム構造体を浸漬した後、引き上げて加熱する方法等が挙げられる。
ハニカム構造体が外周コート層を備える場合、外周コート層を形成する前のハニカム焼成体に貴金属を担持してもよいし、外周コート層を形成した後のハニカム焼成体又はハニカム構造体に貴金属を担持してもよい。
(Other processes)
The method for manufacturing the honeycomb structure of the present invention may further include a supporting step of supporting a noble metal on the honeycomb fired body, if necessary.
As a method for supporting a noble metal on a honeycomb fired body, for example, a method of immersing a honeycomb fired body or a honeycomb structure in a solution containing noble metal particles or a complex, then pulling out and heating the body, or the like can be mentioned.
When the honeycomb structure has a peripheral coat layer, the noble metal may be carried on the honeycomb fired body before forming the peripheral coat layer, or the noble metal may be loaded on the honeycomb fired body or the honeycomb structure after forming the peripheral coat layer. You can carry it.

本発明のハニカム構造体の製造方法において、上記担持工程で担持した貴金属の担持量は、0.1~15g/Lであることが望ましく、0.5~10g/Lであることがより望ましい。 In the method for manufacturing a honeycomb structure of the present invention, the amount of the noble metal supported in the supporting step is desirably 0.1 to 15 g/L, more desirably 0.5 to 10 g/L.

本発明のハニカム構造体を製造する方法において、ハニカム焼成体の外周面に外周コート層を形成する場合、外周コート層は、ハニカム焼成体の両端面を除く外周面に外周コート層用ペーストを塗布した後、乾燥固化することにより形成することができる。外周コート層用ペーストとしては、原料ペーストと同じ組成のものが挙げられる。 In the method of manufacturing the honeycomb structure of the present invention, when forming the outer peripheral coat layer on the outer peripheral surface of the honeycomb fired body, the outer peripheral coat layer is applied to the outer peripheral surface excluding both end surfaces of the honeycomb fired body by applying a paste for the outer peripheral coat layer. After that, it can be formed by drying and solidifying. As the outer peripheral coat layer paste, one having the same composition as the raw material paste can be used.

(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、以下の実施例のみに限定されるものではない。
(Example)
Examples that more specifically disclose the present invention are shown below. In addition, the present invention is not limited only to the following examples.

[ハニカム構造体の作製]
(実施例1)
CZ粒子(平均粒子径:2μm)を26.4重量%、θ-アルミナ粒子(平均粒子径:2μm)を13.2重量%、アルミナ繊維(平均繊維径:3μm、平均繊維長:60μm)を5.3重量%、アルミナバインダとしてベーマイトを11.3重量%、有機バインダとしてメチルセルロースを5.3重量%、造孔剤としてアクリル樹脂を2.1重量%、同じく造孔剤としてコークスを2.6重量%、成形助剤として界面活性剤であるポリオキシエチレンオレイルエーテルを4.2重量%、及び、イオン交換水を29.6重量%混合混練して、原料ペーストを調製した。
[Fabrication of honeycomb structure]
(Example 1)
26.4% by weight of CZ particles (average particle diameter: 2 μm), 13.2% by weight of θ-alumina particles (average particle diameter: 2 μm), alumina fibers (average fiber diameter: 3 μm, average fiber length: 60 μm) 5.3% by weight of boehmite as an alumina binder, 5.3% by weight of methyl cellulose as an organic binder, 2.1% by weight of acrylic resin as a pore-forming agent, and 2.1% by weight of coke as a pore-forming agent. 6% by weight, 4.2% by weight of polyoxyethylene oleyl ether, which is a surface active agent as a forming aid, and 29.6% by weight of deionized water were mixed and kneaded to prepare a raw material paste.

押出成形機を用いて、原料ペーストを押出成形して、円柱状のハニカム成形体を作製した。
このとき、外周壁付近における原料ペーストの押出速度がそれ以外の場所における原料ペーストの押出速度よりも速くなるよう、押出成形の条件を調整した。
そして、減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力1.74kW、減圧6.7kPaで12分間乾燥させた。
Using an extruder, the raw material paste was extruded to produce a cylindrical honeycomb molded body.
At this time, the extrusion conditions were adjusted so that the extrusion speed of the raw material paste in the vicinity of the outer peripheral wall was higher than the extrusion speed of the raw material paste in other locations.
Then, using a vacuum microwave dryer, the honeycomb formed body was dried for 12 minutes at an output of 1.74 kW and a reduced pressure of 6.7 kPa.

[焼成工程]
得られたハニカム成形体の乾燥体を1100℃で10時間脱脂・焼成することにより実施例1に係るハニカム焼成体を作製した。ハニカム焼成体は直径が103mm、長さが105mmの円柱状であり、貫通孔の密度が77.5個/cm(500cpsi)、隔壁の厚さが0.127mm(5mil)であった。
[Baking process]
The honeycomb fired body according to Example 1 was produced by degreasing and firing the obtained dried honeycomb body at 1100° C. for 10 hours. The honeycomb fired body had a cylindrical shape with a diameter of 103 mm and a length of 105 mm.

[気孔率の測定]
実施例1に係るハニカム焼成体から、径方向の内側4/5の範囲及び径方向の外側1/5の範囲から気孔率測定用サンプル(10セル×10セル×10mm)を切り出し、さらに外周壁のみを約100mmの寸法に切り出し、それぞれのサンプルの気孔率を測定し、外側1/5の範囲における気孔率、内側4/5の範囲における気孔率及び外周壁の気孔率を測定し、外側1/5の範囲における気孔率及び内側4/5の範囲における気孔率から全体の気孔率を算出した。結果を表1に示す。
[Measurement of porosity]
From the honeycomb fired body according to Example 1, a sample for porosity measurement (10 cells×10 cells×10 mm) was cut out from the radially inner 4/5 range and the radially outer 1/5 range, and the outer peripheral wall Cut the chisel into a size of about 100 mm 3 , measure the porosity of each sample, measure the porosity in the range of the outer 1/5, the porosity in the range of the inner 4/5, and the porosity of the outer peripheral wall. The total porosity was calculated from the porosity in the 1/5 range and the porosity in the inner 4/5 range. Table 1 shows the results.

[担持工程]
ジニトロジアンミンパラジウム硝酸溶液([Pd(NH(NO]HNO、パラジウム濃度100g/L)と硝酸ロジウム溶液([Rh(NO]、ロジウム濃度50g/L)を3:1の体積割合で混合し、混合溶液を調製した。この混合溶液中に、上記工程により製造されたハニカム焼成体を浸漬し、24時間保持した。その後、ハニカム焼成体を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって、ハニカム焼成体にパラジウムとロジウム触媒を担持させたハニカム構造体を得た。
貴金属の担持量は、パラジウムとロジウムの合計でハニカム焼成体の見掛けの体積当たり3.0g/Lとした。
[Supporting step]
Dinitrodiammine palladium nitrate solution ([Pd( NH3 ) 2 ( NO2 ) 2 ] HNO3 , palladium concentration 100 g/L) and rhodium nitrate solution ([Rh( NO3 ) 3 ], rhodium concentration 50 g/L) : 1 volume ratio to prepare a mixed solution. The honeycomb fired body manufactured by the above steps was immersed in this mixed solution and held for 24 hours. Thereafter, the honeycomb fired body was dried at 110° C. for 2 hours and fired in a nitrogen atmosphere at 500° C. for 1 hour to obtain a honeycomb structure in which palladium and rhodium catalysts were supported on the honeycomb fired body.
The amount of noble metals supported was set to 3.0 g/L per apparent volume of the honeycomb fired body in total of palladium and rhodium.

[貴金属濃度の測定]
ハニカム構造体を長手方向に垂直な方向に切断し、切断面の径方向の内側4/5の範囲に露出した隔壁と、径方向の外側1/5の範囲に露出した隔壁をそれぞれEPMAで観察し、隔壁の表面における貴金属(Pd及びRhの合計)濃度を測定した。結果を表1に示す。
具体的には、ハニカム構造体を3セル×3セル×10mmに加工し、エポキシ樹脂で固めた後鏡面研磨し、観察面にプラチナを蒸着させて観察試料とした。使用した装置は、JEOL製JXA8500F。加速電圧は25kV、照射電流は4×10-8A、ビーム径は10μm、照射時間は40msとした。
なお、3セル×3セル×10mmの観察試料とは、貫通孔が縦方向に3個、横方向に3個並んだ状態で、最も外側の貫通孔とその貫通孔を構成する隔壁を含み、長手方向の長さが10mmとなるように切り出した試料を指す。
[Measurement of noble metal concentration]
The honeycomb structure was cut in a direction perpendicular to the longitudinal direction, and the partition walls exposed in the radial inner 4/5 range and the partition walls exposed in the radial outer 1/5 range of the cut surface were observed by EPMA. Then, the noble metal (total of Pd and Rh) concentration on the surface of the partition wall was measured. Table 1 shows the results.
Specifically, a honeycomb structure was processed into a size of 3 cells×3 cells×10 mm, hardened with an epoxy resin, mirror-polished, and platinum was vapor-deposited on the observation surface to obtain an observation sample. The device used was JXA8500F manufactured by JEOL. The acceleration voltage was 25 kV, the irradiation current was 4×10 −8 A, the beam diameter was 10 μm, and the irradiation time was 40 ms.
The observation sample of 3 cells x 3 cells x 10 mm includes the outermost through-hole and the partition wall that constitutes the through-hole in a state in which three through-holes are arranged in the vertical direction and three in the horizontal direction, It refers to a sample cut out so that the length in the longitudinal direction is 10 mm.

[暖機性能の評価]
V型6気筒3.5Lエンジンに、実施例1に係るハニカム触媒をセットし、ストイキエンジン始動からHC濃度((HCの流入量-HCの流出量)/(HCの流入量)×100)が50%以下となるまでの時間(HCライトオフ時間)を測定し、ハニカム触媒の暖機性能を評価した。結果を表1に示す。
HCライトオフ時間が短いほど、暖機性能に優れていることを意味する。
[Evaluation of warm-up performance]
The honeycomb catalyst according to Example 1 was set in a V-type 6-cylinder 3.5L engine, and the HC concentration ((HC inflow - HC outflow)/(HC inflow) x 100) was observed from the start of the stoichiometric engine. The time until 50% or less (HC light-off time) was measured to evaluate the warm-up performance of the honeycomb catalyst. Table 1 shows the results.
A shorter HC light-off time means better warm-up performance.

(実施例2及び比較例1)
外周壁付近の原料ペーストの押出速度が実施例1よりも速くなるように押出成形の条件を変更したほかは実施例1と同様の手順で、実施例2に係るハニカム構造体を作製した。
また、外周壁付近の原料ペーストの押出速度がそれ以外の場所と同じとなるように押出成形の条件を変更したほかは、実施例1と同様の手順で比較例1に係るハニカム構造体を作製した。
実施例2及び比較例1に係るハニカム構造体についても、実施例1と同様に気孔率、貴金属濃度を測定し、暖機性能を評価した。結果を表1に示す。
(Example 2 and Comparative Example 1)
A honeycomb structure according to Example 2 was produced in the same procedure as in Example 1, except that the conditions for extrusion molding were changed so that the extrusion speed of the raw material paste near the outer peripheral wall was higher than in Example 1.
In addition, a honeycomb structure according to Comparative Example 1 was produced in the same manner as in Example 1, except that the conditions for extrusion molding were changed so that the extrusion rate of the raw material paste near the outer peripheral wall was the same as in other locations. did.
As for the honeycomb structures according to Example 2 and Comparative Example 1, the porosity and noble metal concentration were measured in the same manner as in Example 1, and the warm-up performance was evaluated. Table 1 shows the results.

Figure 0007186031000001
Figure 0007186031000001

表1に示すように、本発明のハニカム構造体は同量の貴金属が担持されている場合に、より高い暖機性能を示すことがわかった。 As shown in Table 1, it was found that the honeycomb structure of the present invention exhibits higher warm-up performance when the same amount of noble metal is supported.

10 ハニカム構造体
11 ハニカム焼成体
12 貫通孔
13 隔壁
14 外周壁
ハニカム焼成体の径方向の内側4/5の範囲
ハニカム焼成体の径方向の外側1/5の範囲
L 長手方向
O ハニカム焼成体の中心
R ハニカム焼成体の半径
半径4/5Rの円の輪郭
ハニカム焼成体の輪郭
10 Honeycomb structure 11 Honeycomb fired body 12 Through hole 13 Partition wall 14 Peripheral wall C 1 Range of inner 4/5 in radial direction of honeycomb fired body C 2 Range of outer 1/5 in radial direction of honeycomb fired body L Longitudinal direction O Center of honeycomb fired body R Radius of honeycomb fired body S 1 Outline of circle with radius 4/5R S 2 Outline of honeycomb fired body

Claims (5)

複数の貫通孔が隔壁を隔てて長手方向に並設され、最外周に外周壁が設けられたハニカム焼成体からなるハニカム構造体であって、
前記ハニカム焼成体は、セリア-ジルコニア複合酸化物粒子とアルミナ粒子とからなり、
前記ハニカム焼成体の全体の気孔率が50~70%であり、
前記ハニカム焼成体の径方向の外側1/5の範囲における気孔率が、前記ハニカム焼成体の径方向の内側4/5の範囲における気孔率よりも高く、かつ、前記ハニカム焼成体の径方向の外側1/5の範囲における気孔率と前記ハニカム焼成体の径方向の内側4/5の範囲における気孔率との差が3%以上であることを特徴とするハニカム構造体。
A honeycomb structure made of a honeycomb fired body in which a plurality of through holes are arranged in parallel in the longitudinal direction with partition walls interposed therebetween, and an outer peripheral wall is provided on the outermost periphery,
The honeycomb fired body comprises ceria-zirconia composite oxide particles and alumina particles,
The porosity of the entire honeycomb fired body is 50 to 70%,
The porosity in the outer 1/5 range in the radial direction of the honeycomb fired body is higher than the porosity in the inner 4/5 range in the radial direction of the honeycomb fired body, and the honeycomb fired body has a porosity in the radial direction. A honeycomb structure, wherein the difference between the porosity in the outer ⅕ range of the honeycomb fired body and the porosity in the inner ⅕ range in the radial direction of the honeycomb fired body is 3% or more.
前記ハニカム焼成体の前記外周壁の気孔率が、前記ハニカム焼成体の径方向の外側1/5の範囲における気孔率よりも高い請求項1に記載のハニカム構造体。 2. The honeycomb structure according to claim 1 , wherein the porosity of the outer peripheral wall of the honeycomb fired body is higher than the porosity of the outer ⅕ range in the radial direction of the honeycomb fired body. 前記ハニカム焼成体の長手方向に垂直な断面において、前記隔壁に囲まれた前記貫通孔のサイズは同じである請求項1又は2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2 , wherein the through holes surrounded by the partition walls have the same size in a cross section perpendicular to the longitudinal direction of the honeycomb fired body. 前記ハニカム焼成体に貴金属が担持されている請求項1~のいずれか1項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3 , wherein the honeycomb fired body supports a noble metal. 前記ハニカム焼成体の径方向の外側1/5の範囲における前記貴金属の担持量が、前記ハニカム焼成体の径方向の内側4/5の範囲における前記貴金属の担持量よりも少ない請求項に記載のハニカム構造体。 5. The method according to claim 4 , wherein the amount of the noble metal supported in the outer ⅕ range in the radial direction of the honeycomb fired body is smaller than the amount of the noble metal supported in the inner 4/5 range in the radial direction of the honeycomb fired body. honeycomb structure.
JP2018140445A 2018-07-26 2018-07-26 honeycomb structure Active JP7186031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140445A JP7186031B2 (en) 2018-07-26 2018-07-26 honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140445A JP7186031B2 (en) 2018-07-26 2018-07-26 honeycomb structure

Publications (2)

Publication Number Publication Date
JP2020015014A JP2020015014A (en) 2020-01-30
JP7186031B2 true JP7186031B2 (en) 2022-12-08

Family

ID=69581084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140445A Active JP7186031B2 (en) 2018-07-26 2018-07-26 honeycomb structure

Country Status (1)

Country Link
JP (1) JP7186031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992790B2 (en) * 2019-08-20 2022-02-03 株式会社デンソー Exhaust gas purification filter
JP7153039B2 (en) 2020-03-11 2022-10-13 本田技研工業株式会社 Exhaust gas purification system for internal combustion engine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025316A (en) 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
JP2003277162A (en) 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor
JP2004270569A (en) 2003-03-10 2004-09-30 Ngk Insulators Ltd Honeycomb structure
JP2005052750A (en) 2003-08-05 2005-03-03 Hitachi Metals Ltd Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP2005199179A (en) 2004-01-15 2005-07-28 Ngk Insulators Ltd Cell structure and manufacturing method therefor
JP2007296514A (en) 2006-04-07 2007-11-15 Ngk Insulators Ltd Catalytic body and manufacturing method of the same
JP2008200605A (en) 2007-02-20 2008-09-04 Denso Corp Honeycomb structure
JP2009255047A (en) 2008-03-24 2009-11-05 Ibiden Co Ltd Honeycomb structure
WO2012086817A1 (en) 2010-12-24 2012-06-28 日本碍子株式会社 Honeycomb structure
JP2017221870A (en) 2016-06-13 2017-12-21 日本碍子株式会社 Honeycomb structure
WO2018012566A1 (en) 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025316A (en) 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
JP2003277162A (en) 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor
JP2004270569A (en) 2003-03-10 2004-09-30 Ngk Insulators Ltd Honeycomb structure
JP2005052750A (en) 2003-08-05 2005-03-03 Hitachi Metals Ltd Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP2005199179A (en) 2004-01-15 2005-07-28 Ngk Insulators Ltd Cell structure and manufacturing method therefor
JP2007296514A (en) 2006-04-07 2007-11-15 Ngk Insulators Ltd Catalytic body and manufacturing method of the same
JP2008200605A (en) 2007-02-20 2008-09-04 Denso Corp Honeycomb structure
JP2009255047A (en) 2008-03-24 2009-11-05 Ibiden Co Ltd Honeycomb structure
WO2012086817A1 (en) 2010-12-24 2012-06-28 日本碍子株式会社 Honeycomb structure
JP2017221870A (en) 2016-06-13 2017-12-21 日本碍子株式会社 Honeycomb structure
WO2018012566A1 (en) 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure

Also Published As

Publication number Publication date
JP2020015014A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JPWO2018012565A1 (en) Honeycomb structure and method for manufacturing the honeycomb structure
CN111107932B (en) Honeycomb catalyst
WO2018012562A1 (en) Honeycomb structure and production method for said honeycomb structure
CN111132758B (en) Honeycomb catalyst
JP6698601B2 (en) Honeycomb catalyst for exhaust gas purification
JP2019058875A (en) Honeycomb catalyst
JP6726148B2 (en) Honeycomb catalyst for exhaust gas purification
WO2019065806A1 (en) Honeycomb catalyst
JP6965289B2 (en) Honeycomb structure and manufacturing method of honeycomb structure
JP2019058870A (en) Honeycomb catalyst
JP7186031B2 (en) honeycomb structure
JP6949019B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP2020115001A (en) Honeycomb structure
JP6782571B2 (en) Honeycomb structure
JP6845777B2 (en) Honeycomb catalyst manufacturing method
JP7011951B2 (en) Exhaust gas purification system
JP6944834B2 (en) Honeycomb catalyst
WO2019026645A1 (en) Method for producing honeycomb structure, and honeycomb structure
WO2020105665A1 (en) Honeycomb structure
JP2019026547A (en) Method for manufacturing honeycomb structure
JP7304147B2 (en) honeycomb structure
JP7112212B2 (en) Manufacturing method of honeycomb structure
WO2020105666A1 (en) Honeycomb structured body
WO2019026646A1 (en) Honeycomb catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7186031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150