JP7179552B2 - Processing equipment and processing method - Google Patents

Processing equipment and processing method Download PDF

Info

Publication number
JP7179552B2
JP7179552B2 JP2018179690A JP2018179690A JP7179552B2 JP 7179552 B2 JP7179552 B2 JP 7179552B2 JP 2018179690 A JP2018179690 A JP 2018179690A JP 2018179690 A JP2018179690 A JP 2018179690A JP 7179552 B2 JP7179552 B2 JP 7179552B2
Authority
JP
Japan
Prior art keywords
electrodes
regions
electrode
voltage detection
current supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018179690A
Other languages
Japanese (ja)
Other versions
JP2020051821A (en
Inventor
崇史 野島
章弘 塩入
佑貴 河室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2018179690A priority Critical patent/JP7179552B2/en
Publication of JP2020051821A publication Critical patent/JP2020051821A/en
Application granted granted Critical
Publication of JP7179552B2 publication Critical patent/JP7179552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、電気的特性が互いに異なる複数種類の混合対象の混ざり具合を特定する処理を実行する処理装置および処理方法に関するものである。 TECHNICAL FIELD The present invention relates to a processing apparatus and a processing method for executing a process of identifying a mixture state of a plurality of types of mixture objects having different electrical characteristics.

2種類の混合対象の混ざり具合を示す指標として、「混合度」が知られている。この場合、この混合度を測定する方法として、下記非特許文献1に開示されている方法が知られている。この方法では、混合対象を収容する円筒状の容器、容器の側面に形成された孔に挿入された状態で容器に取り付けられた光センサ(例えば、反射型の光センサ)、および容器に取り付けられて容器に収容された混合対象を攪拌して混合する攪拌機(例えば、スクリュー式の攪拌機)等を備えた装置が用いられる。この方法に従い、混合対象としての例えば白色の粉体と黒色の粉体とを混合し、その混合物の混合度を測定する際には、白色の粉体と黒色の粉体とを容器に収容する。次いで、攪拌機を作動させる。この際に、攪拌機のスクリューの回転に伴って白色の粉体および黒色の粉体が容器内を回転するように流動しつつ徐々に混合される。 A “mixing degree” is known as an index indicating the degree of mixing of two types of mixture objects. In this case, the method disclosed in Non-Patent Document 1 below is known as a method for measuring the degree of mixing. This method includes a cylindrical container containing the object to be mixed, an optical sensor (for example, a reflective optical sensor) attached to the container while being inserted into a hole formed in the side surface of the container, and an optical sensor attached to the container. An apparatus equipped with a stirrer (for example, a screw type stirrer) or the like is used for stirring and mixing the object to be mixed contained in the container. According to this method, for example, white powder and black powder to be mixed are mixed, and when measuring the degree of mixing of the mixture, the white powder and black powder are placed in a container. . The agitator is then activated. At this time, as the screw of the stirrer rotates, the white powder and the black powder are gradually mixed while fluidizing so as to rotate in the container.

一方、容器に取り付けられている光センサは、検出光を出力し、その検出光が混合物(白色の粉体および黒色の粉体)によって反射された反射光を受光して、反射光の光量に応じたレベルの検出信号を出力する。この場合、白色の粉体は光の反射率が高く、黒色の粉体は光の反射率が低い(つまり、互いの反射率が大きく異なる)ため、混合物の混合度(均一性)が低い状態では、容器内を回転するように流動する混合物における白色の粉体の割合が多い部分が光センサの近傍を通過するときには、検出信号のレベルが高く、黒色の粉体の割合が多い部分が光センサの近傍を通過するときには、検出信号のレベルが低くなる。また、この検出信号のレベルの高低差は、混合度(均一性)が高くなるに従って小さくなる。つまり、検出信号のレベルの経時変化をグラフ化すると、減衰曲線が描かれ、この減衰曲線の振幅(検出信号のレベルの高低差)によって混合度が表される。 On the other hand, the optical sensor attached to the container outputs detection light, receives the light reflected by the mixture (white powder and black powder), and determines the amount of reflected light. Outputs a detection signal with a corresponding level. In this case, the white powder has a high light reflectance, and the black powder has a low light reflectance (that is, the reflectances are greatly different from each other), so the mixing degree (uniformity) of the mixture is low. In this case, when the part of the mixture that is rotating in the container and contains a large proportion of white powder passes near the optical sensor, the level of the detection signal is high and the part containing a large proportion of black powder is illuminated. When passing near the sensor, the level of the detection signal becomes low. Further, the level difference of the detection signal becomes smaller as the degree of mixing (uniformity) becomes higher. That is, when the change in the level of the detection signal over time is graphed, an attenuation curve is drawn, and the amplitude of the attenuation curve (difference in level of the detection signal) represents the degree of mixing.

「フォトメーターによる混合度測定の原理」、MSE株式会社粉体事業部ホームページ、https://www.mse.jp/j_powder/j_kongo/genri.html"Principle of mixing degree measurement by photometer", MSE Co., Ltd. Powder Division homepage, https://www.mse.jp/j_powder/j_kongo/genri.html

ところが、上記の方法には、解決すべき以下の課題が存在する。具体的には、上記の方法では、光センサの近傍における混合物によって反射された反射光の光量に応じた検出信号のレベルに基づいて混合度を測定している。つまり、上記の方法では、光センサによって容器内の一箇所において検出した検出信号のレベルに基づいて混合物の一部分の混合度だけを測定している。このため、上記の方法には、混合物の全体の混合度を正確に評価することが困難であるという課題が存在する。また、上記の方法では、光センサを用いているため、光の反射率が大きく異なる混合対象だけが測定対象となっている。したがって、この方法には、光の反射率が同等の(または、互いの反射率の差が小さい)混合対象についての混合度を測定することが困難であるという課題も存在する。 However, the above method has the following problems to be solved. Specifically, in the above method, the degree of mixture is measured based on the level of the detection signal corresponding to the amount of light reflected by the mixture in the vicinity of the optical sensor. In other words, the above method measures the mixing degree of only a portion of the mixture based on the level of the detection signal detected at one location in the container by the optical sensor. Therefore, the above method has a problem that it is difficult to accurately evaluate the mixing degree of the mixture as a whole. In addition, in the above method, since the optical sensor is used, only mixed objects with greatly different light reflectances are the measurement objects. Therefore, this method also has the problem that it is difficult to measure the degree of mixing of mixed objects having the same light reflectance (or a small difference in reflectance between them).

本発明は、かかる課題に鑑みてなされたものであり、反射率が同等の複数種類の混合対象の全体の混ざり具合を正確に特定し得る処理装置および処理方法を提供することを主目的とする。 The present invention has been made in view of this problem, and the main object of the present invention is to provide a processing apparatus and a processing method that can accurately specify the overall mixing condition of a plurality of types of mixed objects having the same reflectance. .

上記目的を達成すべく、請求項記載の処理装置は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、前記各電極は、前記各領域における前記収容容器の底面からの高さが互いに等しい高位置側の各位置および当該高位置側の各位置から当該収容容器の高さ方向に沿って当該底面側に離間して当該底面からの高さが互いに等しい低位置側の各位置にそれぞれ配置された複数の第1電極と、前記各領域の前記各第1電極の間における底面からの高さが互いに等しい各位置にそれぞれ配置された複数の第2電極とを備え、前記接続切替部は、前記第1接続処理において、一対の前記領域の一方に配置されている前記各第1電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記各第1電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、一対の前記領域の一方に配置されている前記第2電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該一対の領域の他方に配置されている前記第2電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する。 In order to achieve the above object, a processing apparatus according to claim 1 comprises a cylindrical storage container for storing a plurality of types of mixing targets having mutually different electrical characteristics, and a plurality of electrodes disposed in the storage container. a current supply unit for supplying current between the electrodes for current supply, a voltage detection unit for detecting voltage between the electrodes for voltage detection, each electrode for current supply and the current supply unit a connection switching unit that connects and connects each electrode for voltage detection and the voltage detection unit; each of the electrodes is arranged in three or more regions that are equally spaced apart from each other along the circumferential direction of the inner peripheral surface of the container, and the connection switching unit includes a plurality of a first connection process of connecting the electrodes respectively arranged in the areas of to the current supply unit as the current supply electrodes once or a plurality of times while sequentially changing the combination of the areas. In addition, a process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit as the electrodes for voltage detection is executed a plurality of times while sequentially changing the combination of the pair of regions. processing is executed each time the first connection processing is executed, and the voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each of the second connection processing. and the processing unit divides a virtual plane defined to be orthogonal to the center axis of the container into a plurality of divided regions having a predetermined planar shape in each of the mixing objects contained in the container. Then, the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and the conductivity of all the divided regions in the virtual plane is used as a population. Calculate the standard deviation of and subtract the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1 The processing device for specifying the degree of mixing based on the subtracted value, wherein each of the electrodes is positioned on the high position side where heights from the bottom surface of the container in each of the regions are equal to each other, and on the high position side a plurality of first electrodes spaced from each position along the height direction of the container toward the bottom surface side and arranged at each position on the low position side having the same height from the bottom surface; of the area a plurality of second electrodes arranged at respective positions between the first electrodes having equal heights from the bottom surface; Each of the first electrodes arranged on one side is connected to one output terminal of the current supply section as one of the electrodes for current supply, and each of the first electrodes arranged on the other of the pair of regions. is connected to the other output terminal of the current supply unit as the other electrode for current supply, and in the second connection process, the second electrode arranged in one of the pair of regions is connected to the voltage detection electrode The second electrode, which is connected to one input terminal of the voltage detection section as one electrode of the voltage detection section and is arranged in the other of the pair of regions, is used as the other electrode for voltage detection of the voltage detection section. The process of connecting to the input terminal is executed a plurality of times while sequentially changing all combinations of the pair of regions.

また、請求項記載の処理装置は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、前記各電極は、前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、前記接続切替部は、前記第1接続処理において、一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極が配置されている前記一対の領域を除く他の前記領域のうちの他の一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該他の一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該他の一対の領域のすべての組み合わせを順次変更しつつ複数回実行する。 In addition, the processing apparatus according to claim 2 includes a cylindrical storage container that stores a plurality of types of mixing objects having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current supply a current supply unit for supplying a current between the electrodes of the voltage detection unit for detecting a voltage between the electrodes for voltage detection; A connection switching unit that connects each electrode for detection and the voltage detection unit, and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit. wherein each of the electrodes is arranged in three or more regions that are equally spaced from each other along the circumferential direction of the inner peripheral surface of the container, and the connection switching unit is provided in each of the plurality of regions A first connection process for connecting each of the arranged electrodes to the current supply unit as the current supply electrode is performed once or a plurality of times while sequentially changing the combination of the regions, and the pair of the A second connection process of executing a process of connecting the electrodes arranged in the respective areas to the voltage detection unit as the voltage detection electrodes a plurality of times while sequentially changing the combination of the pair of areas is performed by the second connection process. Each time one connection process is executed, the voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process, and the processing unit divides a virtual plane defined to be orthogonal to the center axis of the container in each of the mixing objects contained in the container into a plurality of divided regions having a predetermined planar shape, and the detection Calculate the conductivity based on the impedance calculated from the voltage value calculated for each of the divided regions, and calculate the standard deviation of the population with each conductivity as a population for all the divided regions in the virtual plane. and based on the subtraction value obtained by subtracting from the value 1 the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets In the processing apparatus for specifying the degree of mixing by means of a In the treatment, the electrode arranged in one of the pair of regions is connected as one of the electrodes for current supply to one output terminal of the current supply unit, and the pair of regions is connected The electrode arranged on the other side is connected to the other output terminal of the current supply section as the other electrode for current supply, and in the second connection process, the electrode where the electrode for current supply is arranged is connected to the other output terminal of the current supply section. connecting the electrode arranged in one of the other pair of the regions other than the pair of regions as the one electrode for voltage detection to one input terminal of the voltage detection unit; The process of connecting the electrode arranged in the other of the other pair of regions to the other input terminal of the voltage detection unit as the other electrode for voltage detection is performed for all combinations of the other pair of regions. is executed multiple times while changing sequentially.

また、請求項記載の処理装置は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、前記各電極は、4つ以上の偶数の前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、前記接続切替部は、前記第1接続処理において、前記収容容器の中心軸を挟んで対向する一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該対向する一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極が配置されている前記対向する一対の領域を除く他の前記領域のうちの一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する。 In addition, the processing apparatus according to claim 3 includes a cylindrical storage container that stores a plurality of types of mixing objects having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current supply a current supply unit for supplying a current between the electrodes of the voltage detection unit for detecting a voltage between the electrodes for voltage detection; A connection switching unit that connects each electrode for detection and the voltage detection unit, and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit. wherein each of the electrodes is arranged in three or more regions that are equally spaced from each other along the circumferential direction of the inner peripheral surface of the container, and the connection switching unit is provided in each of the plurality of regions A first connection process of connecting each of the arranged electrodes to the current supply unit as the current supply electrode is executed once or a plurality of times while sequentially changing the combination of the regions, and the pair of the A second connection process of executing a process of connecting the electrodes arranged in the respective areas to the voltage detection unit as the voltage detection electrodes a plurality of times while sequentially changing the combination of the pair of areas is performed by the second connection process. Each time one connection process is executed, the voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process, and the processing unit divides a virtual plane defined to be orthogonal to the center axis of the container in each of the mixing objects contained in the container into a plurality of divided regions having a predetermined planar shape, and the detection Calculate the conductivity based on the impedance calculated from the voltage value calculated for each of the divided regions, and calculate the standard deviation of the population with each conductivity as a population for all the divided regions in the virtual plane. and based on the subtraction value obtained by subtracting from the value 1 the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets wherein the electrodes are arranged at equal heights from the bottom surface of the container in four or more even-numbered regions, and the connection switching unit In the first connection process, the electrode arranged in one of the pair of regions facing each other across the central axis of the container is used as one electrode for current supply. and connecting the electrode arranged in the other of the pair of opposing regions to the other output terminal of the current supply unit as the other electrode for current supply, In the 2-connection process, the electrodes arranged in one of the pair of regions other than the pair of opposing regions where the electrodes for current supply are arranged are connected to the electrodes for voltage detection. One electrode is connected to one input terminal of the voltage detection section and the electrode arranged in the other of the pair of regions is connected to the other input terminal of the voltage detection section as the other electrode for voltage detection. The connecting process is executed a plurality of times while sequentially changing all combinations of the pair of areas.

また、請求項記載の処理装置は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、前記各電極は、前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、前記接続切替部は、前記第1接続処理において、1または複数の前記領域にそれぞれ配置されている各前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該複数の領域を除く他の複数の前記領域にそれぞれ配置されている各前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極のうちのいずれか1つの電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該電圧検出用の一方の電極が配置されている前記領域を除く他の前記領域のうちのいずれか1つの領域に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該いずれか1つの領域を順次変更しつつ複数回実行する。 Further, the processing apparatus according to claim 4 comprises a cylindrical storage container that stores a plurality of types of mixing objects having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current supply a current supply unit for supplying a current between the electrodes of the voltage detection unit for detecting a voltage between the electrodes for voltage detection; A connection switching unit that connects each electrode for detection and the voltage detection unit, and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit. wherein each of the electrodes is arranged in three or more regions that are equally spaced from each other along the circumferential direction of the inner peripheral surface of the container, and the connection switching unit is provided in each of the plurality of regions A first connection process for connecting each of the arranged electrodes to the current supply unit as the current supply electrode is performed once or a plurality of times while sequentially changing the combination of the regions, and the pair of the A second connection process of executing a process of connecting the electrodes arranged in the respective areas to the voltage detection unit as the voltage detection electrodes a plurality of times while sequentially changing the combination of the pair of areas is performed by the second connection process. Each time one connection process is executed, the voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process, and the processing unit divides a virtual plane defined to be orthogonal to the center axis of the container in each of the mixing objects contained in the container into a plurality of divided regions having a predetermined planar shape, and the detection Calculate the conductivity based on the impedance calculated from the voltage value calculated for each of the divided regions, and calculate the standard deviation of the population with each conductivity as a population for all the divided regions in the virtual plane. and based on the subtraction value obtained by subtracting from the value 1 the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets In the processing apparatus for specifying the degree of mixing by means of a In the process, each of the electrodes arranged in one or more of the regions is connected to one output terminal of the current supply unit as one of the electrodes for current supply, and the each of the electrodes arranged in the plurality of regions other than the plurality of regions is connected to the other output terminal of the current supply unit as the other electrode for current supply, and in the second connection process, Any one of the electrodes for current supply is connected to one input terminal of the voltage detection section as one electrode for voltage detection, and the one electrode for voltage detection is arranged. a process of connecting the electrode arranged in any one of the other regions excluding the region to the other input terminal of the voltage detection unit as the other electrode for voltage detection; Execute multiple times while sequentially changing one area.

また、請求項記載の処理方法は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、前記各電極として複数の第1電極および複数の第2電極を用いて、前記各領域における前記収容容器の底面からの高さが互いに等しい高位置側の各位置および当該高位置側の各位置から当該収容容器の高さ方向に沿って当該底面側に離間して当該底面からの高さが互いに等しい低位置側の各位置に前記複数の第1電極をそれぞれ配置すると共に前記各領域の前記各第1電極の間における底面からの高さが互いに等しい各位置に前記複数の第2電極をそれぞれ配置し、前記第1接続処理において、一対の前記領域の一方に配置されている前記各第1電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記各第1電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、前記第2接続処理において、一対の前記領域の一方に配置されている前記第2電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該一対の領域の他方に配置されている前記第2電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する
また、請求項6記載の処理方法は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、前記第1接続処理において、一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、前記第2接続処理において、前記電流供給用の電極が配置されている前記一対の領域を除く他の前記領域のうちの他の一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該他の一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該他の一対の領域のすべての組み合わせを順次変更しつつ複数回実行する
また、請求項7記載の処理方法は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、4つ以上の偶数の前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、前記第1接続処理において、前記収容容器の中心軸を挟んで対向する一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続すると共に当該対向する一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、前記第2接続処理において、前記電流供給用の電極が配置されている前記対向する一対の領域を除く他の前記領域のうちの一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する
また、請求項8記載の処理方法は、電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、前記第1接続処理において、1または複数の前記領域にそれぞれ配置されている各前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続すると共に当該複数の領域を除く他の複数の前記領域にそれぞれ配置されている各前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、前記第2接続処理において、前記電流供給用の電極のうちのいずれか1つの電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該電圧検出用の一方の電極が配置されている前記領域を除く他の前記領域のうちのいずれか1つの領域に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該いずれか1つの領域を順次変更しつつ複数回実行する。
In addition, in the processing method according to claim 5 , three or more equidistantly spaced apart along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is housed in the container in which a plurality of electrodes are respectively arranged in the regions, each of the electrodes arranged in the plurality of regions is connected to a current supply unit as an electrode for current supply. the first connection process to be performed once or a plurality of times while sequentially changing the combination of the regions, and the electrodes respectively arranged in the pair of regions are connected to the voltage detection unit as electrodes for voltage detection. A second connection process is executed each time the first connection process is executed, and a connection is made to the voltage detection unit in each of the second connection processes. Each time the electrodes are changed, the voltage value between the electrodes is detected by the voltage detection unit, and the mixing object contained in the container is defined to be orthogonal to the central axis of the container. The virtual plane is divided into a plurality of divided regions having a predetermined planar shape, and the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and all the regions in the virtual plane Calculate the standard deviation of the population with each conductivity as the population for the divided areas, and calculate the standard deviation in the state after starting the mixing of each mixing target Start mixing of each mixing target A processing method for identifying the degree of mixing of the plurality of types of mixture objects based on a subtraction value obtained by subtracting a division value obtained by dividing by the standard deviation in the previous state from the value 1, wherein the plurality of first electrodes as the electrodes and using a plurality of second electrodes, along the height direction of the container from each position on the high position side where the height from the bottom surface of the container in each region is equal to each other and from each position on the high position side and disposing the plurality of first electrodes at respective positions on the low position side that are spaced apart from the bottom surface side and are equal in height from the bottom surface, and the distance from the bottom surface between the first electrodes in each of the regions is The plurality of second electrodes are arranged at respective positions having the same height, and in the first connection process, each of the first electrodes arranged in one of the pair of regions is connected to one of the regions for current supply. Each of the first electrodes connected as an electrode to one output terminal of the current supply section and arranged in the other of the pair of regions is used as the other electrode for current supply. The second electrode connected to the other output terminal of the current supply unit and arranged in one of the pair of regions in the second connection process is used as one electrode for voltage detection and used as one of the voltage detection units. and connecting the second electrode arranged in the other of the pair of regions to the other input terminal of the voltage detection unit as the other electrode for voltage detection. It is executed multiple times while sequentially changing all combinations of .
In addition, in the processing method according to claim 6, three or more equidistantly spaced apart along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is housed in the container in which a plurality of electrodes are respectively arranged in the regions, each of the electrodes arranged in the plurality of regions is connected to a current supply unit as an electrode for current supply. the first connection process to be performed once or a plurality of times while sequentially changing the combination of the regions, and the electrodes respectively arranged in the pair of regions are connected to the voltage detection unit as electrodes for voltage detection. A second connection process is executed each time the first connection process is executed, and a connection is made to the voltage detection unit in each of the second connection processes. Each time the electrodes are changed, the voltage value between the electrodes is detected by the voltage detection unit, and the mixing object contained in the container is defined to be orthogonal to the central axis of the container. The virtual plane is divided into a plurality of divided regions having a predetermined planar shape, and the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and all the regions in the virtual plane Calculate the standard deviation of the population with each conductivity as the population for the divided areas, and calculate the standard deviation in the state after starting the mixing of each mixing target Start mixing of each mixing target A processing method for identifying the degree of mixing of the plurality of types of mixture objects based on a subtraction value obtained by subtracting a value obtained by subtracting a value obtained by dividing the standard deviation in the previous state from 1, wherein from the bottom surface of the container in the region and the electrodes arranged in one of the pair of regions are used as one of the electrodes for current supply in the first connection process. The electrode arranged in the other of the pair of regions is connected to the other output terminal of the current supply unit as the other electrode for current supply, and the second connection In the processing, the electrodes arranged in one of the other pair of regions out of the pair of regions other than the pair of regions where the electrodes for current supply are arranged are treated as one of the electrodes for voltage detection. The electrode connected to one input terminal of the voltage detection section as an electrode and arranged in the other of the other pair of regions is used as the other voltage detection unit. The process of connecting the electrode to the other input terminal of the voltage detection unit is executed a plurality of times while sequentially changing all combinations of the other pair of regions.
Further, in the processing method according to claim 7, three or more equidistantly spaced apart along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing targets having mutually different electrical characteristics are stored. In a state in which each of the objects to be mixed is housed in the container in which a plurality of electrodes are respectively arranged in the regions, each of the electrodes arranged in the plurality of regions is connected to a current supply unit as an electrode for current supply. the first connection process to be performed once or a plurality of times while sequentially changing the combination of the regions, and the electrodes respectively arranged in the pair of regions are connected to the voltage detection unit as electrodes for voltage detection. A second connection process is executed each time the first connection process is executed, and a connection is made to the voltage detection unit in each of the second connection processes. Each time the electrodes are changed, the voltage value between the electrodes is detected by the voltage detection unit, and the mixing object contained in the container is defined to be orthogonal to the central axis of the container. The virtual plane is divided into a plurality of divided regions having a predetermined planar shape, and the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and all the regions in the virtual plane Calculate the standard deviation of the population with each conductivity as the population for the divided areas, and calculate the standard deviation in the state after starting the mixing of each mixing target Start mixing of each mixing target A processing method for identifying the degree of mixing of the plurality of types of mixture targets based on a subtraction value obtained by subtracting the value obtained by dividing the standard deviation in the previous state from the value 1, wherein the even number of four or more regions The electrodes are arranged at respective positions having equal heights from the bottom surface of the container, and in the first connection process, the electrodes are arranged in one of the pair of regions facing each other across the central axis of the container. one of the electrodes for current supply is connected to one output terminal of the current supply unit, and the electrode arranged in the other of the pair of opposing regions is connected to the other electrode for current supply. connected to the other output terminal of the current supply unit as an electrode, and in the second connection process, a pair of the regions other than the pair of opposing regions where the electrodes for current supply are arranged; The electrode arranged in one of the regions is connected to one input terminal of the voltage detection unit as one electrode for voltage detection, and the pair of A process of connecting the electrode arranged in the other region as the other electrode for voltage detection to the other input terminal of the voltage detection unit is executed a plurality of times while sequentially changing all combinations of the pair of regions. do .
In addition, in the processing method according to claim 8, three or more equidistantly spaced apart along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing targets having different electrical characteristics are stored. In a state in which each of the objects to be mixed is housed in the container in which a plurality of electrodes are respectively arranged in the regions, each of the electrodes arranged in the plurality of regions is connected to a current supply unit as an electrode for current supply. the first connection process to be performed once or a plurality of times while sequentially changing the combination of the regions, and the electrodes respectively arranged in the pair of regions are connected to the voltage detection unit as electrodes for voltage detection. A second connection process is executed each time the first connection process is executed, and a connection is made to the voltage detection unit in each of the second connection processes. Each time the electrodes are changed, the voltage value between the electrodes is detected by the voltage detection unit, and the mixing object contained in the container is defined to be orthogonal to the central axis of the container. The virtual plane is divided into a plurality of divided regions having a predetermined planar shape, and the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and all the regions in the virtual plane Calculate the standard deviation of the population with each conductivity as the population for the divided areas, and calculate the standard deviation in the state after starting the mixing of each mixing target Start mixing of each mixing target A processing method for specifying the mixing state of the plurality of types of mixture objects based on a subtraction value obtained by subtracting a value obtained by subtracting a division value obtained by dividing by the standard deviation in the previous state from a value of 1, wherein from the bottom surface of the container in the region each of the electrodes is arranged at each position of the same height, and in the first connection process, each of the electrodes arranged in one or more of the regions is used as one of the electrodes for current supply. Each of the electrodes connected to one output terminal of the current supply unit and arranged in the plurality of regions other than the plurality of regions is used as the other electrode for supplying current, and the other electrode of the current supply unit is used. and connecting one of the current supply electrodes to one input terminal of the voltage detection unit as one of the voltage detection electrodes in the second connection process. The front electrode is arranged in any one of the regions other than the region where the one electrode for voltage detection is arranged. A process of connecting the electrode as the other electrode for voltage detection to the other input terminal of the voltage detection unit is performed a plurality of times while sequentially changing any one region.

請求項1~4記載の処理装置、および請求項5~8記載の処理方法では、収容容器の内周面における複数の各領域にそれぞれ配置されている各電極を電流供給部に接続させる第1接続処理を、各領域の組み合わせを順次変更しつつ複数回実行し、一対の領域にそれぞれ配置されている電極を電圧検出部に接続させる処理を一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行し、各第2接続処理において電圧検出部に接続する一対の電極を変更する毎に電圧検出部に検出させた各電極間の電圧値に基づいて電気的特性が互いに異なる複数種類の混合対象の混ざり具合を特定する処理を実行する。このため、この処理装置および処理方法によれば、光センサによって容器内の一箇所において検出した検出信号のレベルに基づいて混合対象の一部分の混ざり具合だけを測定する従来の構成および方法とは異なり、収容容器内の複数箇所において検出した電圧値に基づいて混合対象の全体の混ざり具合を正確に特定することができる。また、この処理装置および処理方法では、電流供給用の各電極に電流を供給したときの電圧検出用の各電極間の電圧値に基づいて混ざり具合を特定する。このため、この処理装置および処理方法によれば、複数の混合対象の光の反射率の相違を利用して光センサによって混合対象の混ざり具合を測定する構成および方法とは異なり、各混合対象の反射率が同等であったとしても、各混合対象の電気的特性が互いに異なるときには、混合対象の混ざり具合を正確に特定することができる。 In the processing apparatus according to claims 1 to 4 and the processing method according to claims 5 to 8 , the first electrode for connecting each electrode arranged in each of the plurality of regions on the inner peripheral surface of the container to the current supply unit The connection process is executed a plurality of times while sequentially changing the combination of the regions, and the process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit is executed a plurality of times while sequentially changing the combination of the pair of regions. every time the first connection process is executed, and each time the pair of electrodes connected to the voltage detection unit is changed in each second connection process, the voltage between the electrodes detected by the voltage detection unit Based on the value, a process of specifying the degree of mixture of a plurality of types of mixture objects having different electrical characteristics is executed. Therefore, according to this processing apparatus and processing method, unlike the conventional configuration and method of measuring the mixing degree of only a part of the object to be mixed based on the level of the detection signal detected at one point in the container by the optical sensor. , it is possible to accurately specify the degree of mixing of the entire object to be mixed based on the voltage values detected at a plurality of locations in the container. Further, in this processing apparatus and processing method, the degree of mixing is specified based on the voltage value between the electrodes for voltage detection when current is supplied to each electrode for current supply. For this reason, according to this processing apparatus and processing method, unlike the configuration and method of measuring the degree of mixing of a plurality of objects to be mixed using an optical sensor using the difference in the reflectance of the light of a plurality of objects to be mixed, Even if the reflectances are the same, when the electrical characteristics of each mixed object are different, the mixing degree of the mixed objects can be specified accurately.

また、請求項記載の処理装置および請求項5記載の処理方法では、各領域における高位置側の各位置および高位置側の各位置から底面側に離間する低位置側の各位置にそれぞれ配置された複数の第1電極極と、各領域における各第1電極極の間の位置にそれぞれ配置された複数の第2電極とを備え、第1接続処理において、一対の領域に配置されている各第1電極極を電流供給部に接続させ、第2接続処理において、一対の領域に配置されている各第2電極を電圧検出部に接続させる処理を、一対の領域のすべての組み合わせを順次変更しつつ複数回実行する。この場合、例えば、底面からの高さが互いに同じ位置に電流供給用の各電極および電圧検出用の各電極が配置されている構成では、各電極の配置位置から混合対象の上面までの距離、すなわち収容容器に収容されている混合対象の体積の大小によって混合対象内を流れる電流の分布が変化することとなるため、電圧検出部によって検出される電圧値および電圧値に基づいて特定される混ざり具合も混合対象の体積の大小の影響を受けることとなる。これに対して、この処理装置および処理方法では、混合対象内における高位置側の第1電極極と低位置側の第1電極極との間の領域に電流を供給することができるため、高位置側の第1電極極の配置位置から混合対象の上面までの距離、すなわち収容容器に収容されている混合対象の体積の大小に拘わらず、混合対象内における高位置側の第1電極極の配置位置と低位置側の第1電極極の配置位置との間を流れる電流の分布を一定(または、ほぼ一定)に維持することができる。また、この処理装置および処理方法では、高位置側の第1電極極と低位置側の第1電極極との間の位置に配置された第2電極を介して電圧値を検出する。したがって、この処理装置および処理方法によれば、電圧検出部が電圧値を検出する際の、混合対象の体積の大小による混合対象内を流れる電流の分布の変化の影響を十分に低減することができる結果、混ざり具合をより正確に特定することができる。 Further, in the processing apparatus according to claim 1 and the processing method according to claim 5 , each position on the high position side in each area and each position on the low position side separated from each position on the high position side to the bottom side are arranged, respectively. and a plurality of second electrodes arranged at positions between the first electrode electrodes in each region, and arranged in the pair of regions in the first connection process Each first electrode is connected to the current supply unit, and in the second connection process, each second electrode arranged in the pair of regions is connected to the voltage detection unit, and all combinations of the pair of regions are sequentially connected. Run multiple times with changes. In this case, for example, in a configuration in which each electrode for current supply and each electrode for voltage detection are arranged at positions with the same height from the bottom surface, the distance from the arrangement position of each electrode to the top surface of the mixing target, That is, the distribution of the current flowing through the object to be mixed changes depending on the size of the volume of the object to be mixed contained in the container. The condition is also affected by the volume of the object to be mixed. On the other hand, in this processing apparatus and processing method , since the current can be supplied to the region between the high position side first electrode pole and the low position side first electrode pole in the object to be mixed, Regardless of the distance from the arrangement position of the first electrode on the position side to the upper surface of the object to be mixed, that is, regardless of the size of the volume of the object to be mixed contained in the container, the first electrode on the high position in the object to be mixed The distribution of current flowing between the arrangement position and the arrangement position of the first electrode on the low position side can be maintained constant (or substantially constant). Further, in this processing apparatus and processing method , the voltage value is detected via the second electrode arranged between the first electrode on the high position side and the first electrode on the low position side. Therefore, according to this processing device and processing method , it is possible to sufficiently reduce the influence of the change in the distribution of the current flowing through the object to be mixed due to the size of the volume of the object to be mixed when the voltage detection unit detects the voltage value. As a result, the degree of mixing can be specified more accurately.

また、請求項記載の処理装置および請求項6記載の処理方法では、一対の領域にそれぞれ配置されている各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を一対の領域の組み合わせを順次変更しつつ複数回実行し、電流供給用の電極が配置されている一対の領域を除く他の領域のうちの他の一対の領域にそれぞれ配置されている電極を電圧検出用の電極として電圧検出部に接続させる処理を他の一対の領域のすべての組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置および処理方法によれば、収容容器の内周面における周方向に沿って互いに等間隔に規定したすべての位置において電圧値を検出することができる。したがって、この処理装置および処理方法によれば、電圧値を検出する位置の偏りを低減することができる結果、混ざり具合をより正確に特定することができる。 Further, in the processing apparatus according to claim 2 and the processing method according to claim 6 , the first connection processing for connecting the electrodes respectively arranged in the pair of regions to the current supply unit as electrodes for current supply is performed on the pair of regions. A plurality of times while sequentially changing the combination of the regions, and the electrodes arranged in the other pair of regions out of the pair of regions where the electrodes for current supply are arranged are used for voltage detection. Each time the first connection process is executed, the second connection process is executed for a plurality of times while sequentially changing all the combinations of the other pair of areas. Therefore, according to this processing apparatus and processing method , voltage values can be detected at all positions defined at equal intervals along the circumferential direction on the inner peripheral surface of the container. Therefore, according to this processing apparatus and processing method , it is possible to reduce the bias in the position where the voltage value is detected, and as a result, it is possible to more accurately identify the degree of mixture.

また、請求項記載の処理装置および請求項7記載の処理方法では、収容容器の中心軸を挟んで対向する一対の領域にそれぞれ配置されている各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を対向する一対の領域の組み合わせを順次変更しつつ複数回実行し、電流供給用の電極が配置されている対向する一対の領域を除く他の領域のうちの一対の領域にそれぞれ配置されている電極を電圧検出用の電極として電圧検出部に接続させる処理を一対の領域のすべての組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置および処理方法によれば、中心軸を挟んで対向する一対の領域にそれぞれ配置されている各電極を介して収容容器に収容されている混合対象に電流を供給することで、収容容器の中央部に電流を流すことができる結果、収容容器に収容されている混合対象の中央部分の混合状態が正確に反映された混ざり具合を特定することができる。また、この処理装置および処理方法によれば、第1接続処理において中心軸を挟んで対向する一対の領域にそれぞれ配置されている各電極を電流供給部に接続させるため、例えば、第1接続処理において隣接する一対の領域にそれぞれ配置されている各電極を電流供給用の電極として電流供給部に接続させる構成と比較して、収容容器の内周面の一周に亘って供給位置を変更しつつ電流を供給する際の第1接続処理の実行回数を少なく(半分に)抑えることができるため、電圧値を検出する検出処理の効率を十分に向上させることができる。 Further, in the processing apparatus according to claim 3 and the processing method according to claim 7 , each electrode arranged in a pair of regions facing each other across the center axis of the container is used as an electrode for current supply. a plurality of times while sequentially changing the combination of the pair of regions that face each other, and the pair of regions other than the pair of regions where the electrodes for current supply are arranged. The first connection process is executed as the second connection process in which the process of connecting the electrodes arranged in the respective areas to the voltage detection unit as electrodes for voltage detection is executed a plurality of times while sequentially changing all the combinations of the pair of areas. Execute each time. Therefore, according to this processing apparatus and processing method , current is supplied to the object to be mixed contained in the container through the respective electrodes arranged in a pair of regions facing each other across the central axis. As a result of being able to pass an electric current through the central portion of the container, it is possible to specify the mixing state that accurately reflects the mixing state of the central portion of the object to be mixed contained in the container. Further, according to this processing apparatus and processing method , in order to connect the electrodes arranged in the pair of regions facing each other across the central axis in the first connection processing to the current supply unit, for example, the first connection processing While changing the supply position over the circumference of the inner peripheral surface of the container, compared to the configuration in which each electrode arranged in a pair of adjacent regions is connected to the current supply unit as an electrode for current supply in Since the number of executions of the first connection process when supplying the current can be reduced (halved), the efficiency of the detection process for detecting the voltage value can be sufficiently improved.

また、請求項記載の処理装置および請求項8記載の処理方法では、複数の領域にそれぞれ配置されている各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を各領域の組み合わせを順次変更しつつ複数回実行し、電流供給用の電極のうちのいずれか1つの電極とその電極が配置されている領域を除く他の領域のうちのいずれか1つの領域に配置されている電極とを電圧検出部に接続させる処理をいずれか1つの領域を順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置および処理方法によれば、一対の電極間に電流を供給する構成と比較して、収容容器に収容されている混合対象内に電流を均一に流すことができる。したがって、この処理装置および処理方法によれば、混合対象内を流れる電流が不均一なことによって電圧検出部によって検出される電圧値が不正確となる事態を確実に回避して、混ざり具合をより正確に特定することができる。 Further, in the processing apparatus according to claim 4 and the processing method according to claim 8 , the first connection processing for connecting each electrode arranged in each of the plurality of regions as an electrode for current supply to the current supply unit is performed in each region. is executed a plurality of times while sequentially changing the combination of the current supply electrodes, and any one of the electrodes for current supply is arranged in one of the other regions excluding the region in which the electrode is arranged. Each time the first connection process is executed, the second connection process is executed for a plurality of times while sequentially changing one of the regions to connect the electrodes to the voltage detection unit. Therefore, according to this processing apparatus and processing method , compared to a configuration in which a current is supplied between a pair of electrodes, a current can be uniformly passed through the object to be mixed contained in the container. Therefore, according to this processing apparatus and processing method , it is possible to reliably avoid a situation in which the voltage value detected by the voltage detection unit is inaccurate due to the non-uniformity of the current flowing through the object to be mixed, and the degree of mixture can be further improved. can be precisely identified.

処理装置1,1A,1B,1Cの構成を示す構成図である。1 is a configuration diagram showing configurations of processing apparatuses 1, 1A, 1B, and 1C; FIG. 収容容器2、電極Eおよび撹拌器7の構成を示す斜視図である。2 is a perspective view showing the configuration of a container 2, electrodes E, and a stirrer 7. FIG. 電極Eの配置位置を説明する第1の説明図である。FIG. 10 is a first explanatory diagram for explaining arrangement positions of electrodes E; 電極Eの配置位置を説明する第2の説明図である。FIG. 11 is a second explanatory diagram for explaining the arrangement position of the electrode E; 混合対象100a,100bが分離している状態を模式的に示す状態図である。FIG. 4 is a state diagram schematically showing a state in which objects to be mixed 100a and 100b are separated; 混合対象100a,100bが混合した状態を示す状態図である。FIG. 4 is a state diagram showing a state in which objects to be mixed 100a and 100b are mixed; 接続切替部6によって実行される接続処理を説明する第1の説明図である。4 is a first explanatory diagram for explaining connection processing executed by a connection switching unit 6; FIG. 接続切替部6によって実行される接続処理を説明する第2の説明図である。FIG. 10 is a second explanatory diagram for explaining connection processing executed by the connection switching unit 6; 処理部9によって実行される分割処理を説明する説明図である。FIG. 10 is an explanatory diagram for explaining division processing executed by the processing unit 9; 処理装置1Aにおける電極Eの配置位置を説明する説明図である。It is an explanatory view explaining the arrangement position of electrode E in processing equipment 1A. 接続切替部6Aによって実行される接続処理を説明する第1の説明図である。FIG. 11 is a first explanatory diagram for explaining connection processing executed by the connection switching unit 6A; 接続切替部6Aによって実行される接続処理を説明する第2の説明図である。FIG. 11 is a second explanatory diagram for explaining connection processing executed by the connection switching unit 6A; 接続切替部6Bによって実行される接続処理を説明する第1の説明図である。FIG. 4 is a first explanatory diagram for explaining connection processing executed by a connection switching unit 6B; 接続切替部6Bによって実行される接続処理を説明する第2の説明図である。FIG. 11 is a second explanatory diagram for explaining connection processing executed by the connection switching unit 6B; 接続切替部6Cによって実行される接続処理を説明する第1の説明図である。FIG. 11 is a first explanatory diagram for explaining connection processing executed by the connection switching unit 6C; 接続切替部6Cによって実行される接続処理を説明する第2の説明図である。FIG. 11 is a second explanatory diagram illustrating connection processing executed by the connection switching unit 6C;

以下、処理装置および処理方法の実施の形態について、添付図面を参照して説明する。 Embodiments of a processing apparatus and a processing method will be described below with reference to the accompanying drawings.

最初に、図1に示す処理装置1の構成について説明する。処理装置1は、「処理装置」の一例であって、電気的特性が互いに異なる複数種類の混合対象の混ざり具合を示す指標としての「混合度M」を特定する処理を、後述する処理方法に従って実行可能に構成されている。 First, the configuration of the processing apparatus 1 shown in FIG. 1 will be described. The processing device 1 is an example of a “processing device”, and performs a process of specifying a “mixing degree M” as an index indicating the degree of mixing of a plurality of types of mixing objects having different electrical characteristics according to a processing method described later. configured to run.

ここで、この処理装置1および処理方法における「混合度M」は、複数種類の混合対象を混合するときの混合の度合いを示す指標であって、各混合対象が完全に分離している状態(以下、「完全分離状態」ともいう)のときの値と、各混合対象が完全に混合している状態(以下、「完全混合状態」ともいう)のときの値との比較値で混合の度合いを示している。一例として、完全分離状態のときの混合度Mの値を「0」と規定すると共に、完全混合状態のときの混合度Mの値を「1」と規定して、0~1の間の値によって混合の度合いを示す。この例では、混合度Mが0に近いほど混合の度合いが低い(混合していない)ことを示し、混合度Mが1に近いほど混合の度合いが高い(混合している)ことを示している。 Here, the "mixing degree M" in the processing apparatus 1 and the processing method is an index indicating the degree of mixing when mixing a plurality of types of mixed objects, and is a state in which each mixed object is completely separated ( hereinafter also referred to as "completely separated state") and the value when each mixing target is completely mixed (hereinafter also referred to as "completely mixed state"), the degree of mixing is shown. As an example, the value of the degree of mixing M in the completely separated state is defined as "0", and the value of the degree of mixing M in the completely mixed state is defined as "1", a value between 0 and 1 indicates the degree of mixing. In this example, the closer the mixing degree M is to 0, the lower the mixing degree (not mixed), and the closer the mixing degree M is to 1, the higher the mixing degree (mixed). there is

一方、処理装置1は、図1に示すように、収容容器2、複数の電極E、電流供給部4、検出部5、接続切替部6、撹拌器7、記憶部8、処理部9を備えて構成されている。 On the other hand, the processing apparatus 1 includes a container 2, a plurality of electrodes E, a current supply section 4, a detection section 5, a connection switching section 6, a stirrer 7, a storage section 8, and a processing section 9, as shown in FIG. configured as follows.

収容容器2は、図2に示すように、本体部2aおよび図外の蓋を備えて円筒状に形成され、例えば、図5に示す2種類の混合対象100a,100b(以下、区別しないときには「混合対象100」ともいう)を収容可能に構成されている。 As shown in FIG. 2, the storage container 2 is formed in a cylindrical shape including a main body 2a and a lid (not shown). (also referred to as "mixed object 100") can be accommodated.

各電極Eは、図2~4に示すように、収容容器2の内周面22における周方向に沿って互いに等間隔に離間する16個(3つ以上の一例:後述する各例についても同様)の領域A1~A16(例えば、収容容器2の高さ方向に細長い形状の領域:以下、領域A1~A16を区別しないときには「領域A」ともいう)における収容容器2の高さ方向に離間した一対の位置にそれぞれ配置された32個の電極Ef(第1電極に相当する)と、各領域Aにおける各電極Efの間の位置(一例として、各領域Aにおける各電極Ef同士を結ぶ線分の中心位置)にそれぞれ配置された16個の電極Es(第2電極に相当する)とで構成されている。この場合、収容容器2の高さ方向の高位置側に配置されている各電極Ef(以下、高位置側の電極Efを「電極Efh」ともいう)は、収容容器2の底面23からの高さが互いに等しい位置(高位置側の位置)にそれぞれ配置され、収容容器2の高さ方向の低位置側に配置されている各電極Ef(以下、低位置側の電極Efを「電極Efl」ともいう)は、収容容器2の底面23からの高さが互いに等しい位置(低位置側の位置)にそれぞれ配置されている。また、各電極Esは、収容容器2の底面23からの高さが互いに等しい位置にそれぞれ配置されている。なお、底面23から各電極Efhまでの高さが互いに多少異なったり、底面23から各電極Eflまでの高さが互いに多少異なったり、底面23から各電極Esまでの高さが互いに多少異なったりする構成を採用することもできる。 As shown in FIGS. 2 to 4, the electrodes E are 16 (an example of three or more; the same applies to each example described later) that are spaced apart from each other at equal intervals along the circumferential direction of the inner peripheral surface 22 of the container 2. ) in the areas A1 to A16 (for example, areas elongated in the height direction of the container 2: hereinafter also referred to as "area A" when the areas A1 to A16 are not distinguished) are separated in the height direction of the container 2 Positions between 32 electrodes Ef (corresponding to first electrodes) respectively arranged at a pair of positions and positions between the electrodes Ef in each region A (for example, a line segment connecting the electrodes Ef in each region A) 16 electrodes Es (corresponding to the second electrodes) respectively arranged at the center positions of the . In this case, each electrode Ef arranged on the high position side in the height direction of the container 2 (hereinafter, the electrode Ef on the high position side is also referred to as “electrode Efh”) is positioned above the bottom surface 23 of the container 2 . are arranged at the same position (position on the high position side), and each electrode Ef arranged on the low position side in the height direction of the container 2 (hereinafter, the electrode Ef on the low position side is referred to as "electrode Efl"). ) are arranged at positions (positions on the low position side) at equal heights from the bottom surface 23 of the container 2 . Moreover, each electrode Es is arranged at a position where the height from the bottom surface 23 of the container 2 is equal to each other. The heights from the bottom surface 23 to each electrode Efh are slightly different from each other, the heights from the bottom surface 23 to each electrode Efl are slightly different from each other, and the heights from the bottom surface 23 to each electrode Es are slightly different from each other. Configurations can also be employed.

この場合、隣接する一対の領域Aに配置されている各電極Efが、接続切替部6によって電流供給部4に接続切り替え(以下、単に「接続」ともいう)されて、電流供給部4から出力される電流Iを収容容器2に収容される混合対象100a,100bに供給するための電極E(電流供給用の一対の電極E)として機能する。 In this case, each electrode Ef arranged in a pair of adjacent regions A is connected to the current supply unit 4 by the connection switching unit 6 (hereinafter also simply referred to as “connection”), and is output from the current supply unit 4. It functions as an electrode E (a pair of electrodes E for current supply) for supplying the current I to the mixing objects 100 a and 100 b housed in the housing container 2 .

また、隣接する一対の領域Aに配置されている各電極Esが、接続切替部6によって検出部5に接続切り替え(以下、単に「接続」ともいう)されて、各電極Es間(電極Esが配置されている配置位置間)の電圧を検出するための電極E(電圧検出用の一対の電極E)として機能する。 Further, each electrode Es arranged in a pair of adjacent regions A is connected to the detection unit 5 by the connection switching unit 6 (hereinafter also simply referred to as “connection”), and the connection between the electrodes Es (the electrodes Es are It functions as an electrode E (a pair of electrodes E for voltage detection) for detecting the voltage between the arranged positions).

電流供給部4は、処理部9の指示に従って電流I(例えば、交流定電流)を出力して、接続切替部6によって接続される各電極Ef間(電流供給用の一対の電極E間)に電流Iを供給する。 The current supply unit 4 outputs a current I (e.g., constant alternating current) according to an instruction from the processing unit 9, and supplies the current I between the electrodes Ef connected by the connection switching unit 6 (between the pair of electrodes E for current supply). supplies a current I.

検出部5は、電圧検出部として機能して、接続切替部6によって接続された一対の電極Es間(電圧検出用の一対の電極E間)の電圧(交流電圧)の電圧値Vを検出すると共に、各電極Es間の電圧と電流Iとの位相差θを検出する。この場合、後述する第2接続処理において、検出部5に接続される一対の電極Esの組み合わせが複数回変更され、検出部5は、接続される一対の電極Esの組み合わせが変更される毎に電圧値Vおよび位相差θを検出する。 The detection unit 5 functions as a voltage detection unit, and detects the voltage value V of the voltage (AC voltage) between the pair of electrodes Es connected by the connection switching unit 6 (between the pair of electrodes E for voltage detection). At the same time, the phase difference θ between the voltage and the current I between the electrodes Es is detected. In this case, in the second connection process described later, the combination of the pair of electrodes Es connected to the detection unit 5 is changed multiple times, and each time the combination of the pair of electrodes Es to be connected is changed, the detection unit 5 A voltage value V and a phase difference θ are detected.

接続切替部6は、図外の複数のスイッチを備えて構成され、処理部9の指示に従って電流供給用の各電極Eと電流供給部4とを接続すると共に、処理部9の指示に従って電圧検出用の各電極Eと検出部5とを接続する。 The connection switching unit 6 includes a plurality of switches (not shown), connects each electrode E for current supply to the current supply unit 4 according to instructions from the processing unit 9, and detects voltage according to instructions from the processing unit 9. Each electrode E and the detection unit 5 are connected.

この場合、接続切替部6は、隣接する一対の領域Aの一方に配置されている各電極Efを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子(例えば、図7に示す出力端子41a)に接続させると共に、隣接する一対の領域Aの他方に配置されている各電極Efを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子(例えば、同図に示す出力端子41b)に接続させる第1接続処理を隣接する一対の領域Aの組み合わせを変更しつつ複数回(この例では、16回)実行する。 In this case, the connection switching unit 6 uses each electrode Ef arranged in one of the pair of adjacent regions A as one electrode E for current supply, and one output terminal of the current supply unit 4 (for example, in FIG. 41a), and each electrode Ef arranged in the other of a pair of adjacent regions A is used as the other electrode E for current supply, and is connected to the other output terminal of the current supply unit 4 (for example, in the same figure). 2) is executed a plurality of times (16 times in this example) while changing the combination of a pair of adjacent regions A. FIG.

また、接続切替部6は、隣接する一対の領域Aの一方に配置されている電極Esを電圧検出用の一方の電極Eとして検出部5の一方の入力端子(例えば、図7に示す入力端子51a)に接続させると共に、隣接する一対の領域Aの他方に配置されている電極Esを電圧検出用の他方の電極Eとして検出部5の他方の入力端子(例えば、同図に示す入力端子51b)に接続させる処理を隣接する一対の領域Aの組み合わせを順次変更しつつ複数回(この例では、16回)実行する第2接続処理を、第1接続処理を実行する毎に実行する。なお、以下の説明において第1接続処理および第2接続処理を合わせて「接続処理」ともいう。 In addition, the connection switching unit 6 uses the electrode Es arranged in one of the pair of adjacent regions A as one electrode E for voltage detection, and switches one input terminal of the detection unit 5 (for example, the input terminal shown in FIG. 7). 51a), and the electrode Es arranged in the other of a pair of adjacent regions A is used as the other electrode E for voltage detection, and the other input terminal of the detection unit 5 (for example, the input terminal 51b shown in the same figure). ) is executed a plurality of times (16 times in this example) while sequentially changing the combination of a pair of adjacent areas A, each time the first connection process is executed. In the following description, the first connection process and the second connection process are collectively referred to as "connection process".

撹拌器7は、図2に示すように、収容容器2における本体部2aの底面23側に配置されて、収容容器2に収容されている混合対象100a,100bを撹拌する。 As shown in FIG. 2 , the stirrer 7 is arranged on the bottom surface 23 side of the main body 2 a of the container 2 and stirs the mixing objects 100 a and 100 b contained in the container 2 .

記憶部8は、処理部9の制御に従い、検出部5によって検出された電圧値Vおよび位相差θを記憶する。また、記憶部8は、処理部9によって実行される後述する検出処理、標準偏差算出処理および混合度算出処理において算出される各種の値を記憶する。 The storage unit 8 stores the voltage value V and the phase difference θ detected by the detection unit 5 under the control of the processing unit 9 . The storage unit 8 also stores various values calculated in detection processing, standard deviation calculation processing, and mixture degree calculation processing executed by the processing unit 9, which will be described later.

処理部9は、処理装置1を構成する各部を制御する。また、処理部9は、後述する検出処理、分割処理、標準偏差算出処理および混合度算出処理を実行して、検出部5によって検出された電圧値Vおよび位相差θに基づいて混合対象100の混合度Mを特定する。 The processing unit 9 controls each unit that configures the processing device 1 . Further, the processing unit 9 executes a detection process, a division process, a standard deviation calculation process, and a mixture degree calculation process, which will be described later, and the mixture target 100 based on the voltage value V and phase difference θ detected by the detection unit 5 Identify the degree of mixing M.

次に、処理装置1を用いて混合対象100の混合度Mを特定する処理の処理方法について図面を参照して説明する。 Next, a processing method for identifying the degree of mixture M of the object to be mixed 100 using the processing apparatus 1 will be described with reference to the drawings.

まず、図5に示すように、電気的特性が互いに異なる2種類の混合対象100a,100bを収容容器2に収容する。なお、同図および図6では、電極Eおよび撹拌器7の図示を省略している。この場合、例えば、電気的特性の一例としての導電率が低い有機溶媒を混合対象100aとし、導電率が高い導電性粒子(カーボンブラック等)を混合対象100bとする。また、収容容器2に収容した混合対象100a,100bの上面が各電極E(電極Efh)の配置位置よりも上方に位置するように、(各電極Eが混合対象100a,100bに浸されるように)混合対象100a,100bの量を調整する。 First, as shown in FIG. 5, two types of objects to be mixed 100a and 100b having different electrical characteristics are accommodated in the container 2. As shown in FIG. It should be noted that the illustration of the electrode E and the stirrer 7 is omitted in the figure and FIG. 6 . In this case, for example, an organic solvent with low electrical conductivity as an example of electrical properties is mixed 100a, and conductive particles with high electrical conductivity (such as carbon black) are mixed 100b. In addition, the upper surfaces of the objects to be mixed 100a and 100b housed in the container 2 are positioned above the arrangement positions of the electrodes E (electrodes Efh) (so that the electrodes E are immersed in the objects to be mixed 100a and 100b). d) Adjust the amount of the mixed object 100a, 100b.

続いて、混合対象100a,100bの混合を開始する以前の状態(図5に示すように、混合対象100a,100bが分離している完全分離状態において、図外の操作部を操作して、検出処理の実行を指示する。この検出処理では、処理部9は、まず、接続切替部6に対して接続処理を実行させる。 Subsequently, in the state before the mixing of the objects to be mixed 100a and 100b is started (as shown in FIG. 5, in the completely separated state in which the objects to be mixed 100a and 100b are separated, the operation unit (not shown) is operated to detect In this detection process, the processing unit 9 first causes the connection switching unit 6 to perform connection processing.

接続処理では、接続切替部6は、電流供給用の一対の電極Eを電流供給部4に接続させる1回目の第1接続処理を実行する。具体的には、接続切替部6は、図7,8に示すように、隣接する一対の領域A(例えば、領域A1,A2)の一方(例えば、領域A1)に配置されている各電極Ef(電極Efh,Efl)を電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、領域A1,A2の他方(領域A2)に配置されている各電極Efを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる。 In the connection process, the connection switching unit 6 executes the first connection process for connecting the pair of electrodes E for current supply to the current supply unit 4 for the first time. Specifically, as shown in FIGS. 7 and 8, the connection switching unit 6 connects each electrode Ef arranged in one (for example, region A1) of a pair of adjacent regions A (for example, regions A1 and A2). (electrodes Efh, Efl) are connected to one output terminal 41a of the current supply unit 4 as one electrode E for current supply, and each electrode Ef arranged in the other of the areas A1, A2 (area A2) is connected to The other electrode E for current supply is connected to the other output terminal 41b of the current supply unit 4 .

次いで、接続切替部6は、1回目の第2接続処理を実行する。この1回目の第2接続処理では、接続切替部6は、図7,8に示すように、隣接する一対の領域Aの各組み合わせのうちの1組目(例えば、領域A1,A2)の一方(例えば、領域A1)に配置されている電極Esを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、領域A1,A2の他方(領域A2)に配置されている電極Esを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる。 Next, the connection switching unit 6 executes the second connection process for the first time. In this first second connection process, the connection switching unit 6, as shown in FIGS. The electrode Es arranged in (for example, area A1) is connected to one input terminal 51a of the detection unit 5 as one electrode E for voltage detection, and is arranged in the other of areas A1 and A2 (area A2). The other electrode Es for voltage detection is connected to the other input terminal 51b of the detector 5 as the other electrode E for voltage detection.

続いて、処理部9は、電流供給部4に対して電流Iの出力を指示し、電流供給部4が電流Iを出力する。この際に、各領域A1,A2にそれぞれ配置されている電流供給用の各電極Eとしての各電極Ef間に電流Iが供給される。次いで、検出部5が、各領域A1,A2にそれぞれ配置されている電圧検出用の各電極Eとしての各電極Ef間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出する。続いて、処理部9は、検出部5によって検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Subsequently, the processing unit 9 instructs the current supply unit 4 to output the current I, and the current supply unit 4 outputs the current I. At this time, the current I is supplied between the electrodes Ef as the current supply electrodes E arranged in the regions A1 and A2. Next, the detection unit 5 detects the voltage value V of the voltage between the electrodes Ef as the electrodes E for voltage detection arranged in the respective regions A1 and A2, and the phase difference θ between the voltage and the current I. To detect. Subsequently, the processing unit 9 causes the storage unit 8 to store the voltage value V and the phase difference θ detected by the detection unit 5 .

次いで、接続切替部6は、図8に示すように、隣接する一対の領域Aの各組み合わせのうちの2組目(例えば、領域A2,A3)の一方(例えば、領域A2)に配置されている電極Es、および領域A2,A3の他方(領域A3)に配置されている電極Esを、電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる。続いて、検出部5が、各領域A2,A3の各電極Ef間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9が、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, as shown in FIG. 8, the connection switching unit 6 is arranged in one (eg, region A2) of the second set (eg, regions A2 and A3) of each combination of a pair of adjacent regions A. and the electrode Es arranged in the other of the areas A2 and A3 (area A3) are connected to the input terminals 51a and 51b of the detection section 5 as electrodes E for voltage detection. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes Ef of the regions A2 and A3 and the phase difference θ between the voltage and the current I, and the processing unit 9 detects the detected voltage value V and the phase difference θ are stored in the storage unit 8 .

以下、同様にして、接続切替部6は、図8に示す3組目~16組目の一対の領域Aにそれぞれ配置されている各電極Esを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6は、この処理を隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で16回実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Esの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9は、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、1回目の第2接続処理が終了する。 Thereafter, in the same way, the connection switching unit 6 sets the electrodes Es arranged in the pair of regions A of the 3rd to 16th pairs shown in FIG. The process of connecting to each of the input terminals 51a and 51b is executed while sequentially changing the combination of a pair of adjacent areas A. FIG. That is, in this example, the connection switching unit 6 performs this process 16 times in total while sequentially changing all combinations of the pairs of adjacent areas A. FIG. Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes Es connected to the detection unit 5 is changed in the second connection process, and the processing unit 9 detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the first second connection process.

次いで、接続切替部6は、2回目の第1接続処理を実行する。この場合、接続切替部6は、図8に示すように、1回目の第1接続処理において電流供給部4に接続した各電極Efが配置されている領域A1,A2とは異なる組み合わせの隣接する一対の領域A(例えば、領域A2,A3)にそれぞれ配置されている各電極Efを電流供給用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させる。 Next, the connection switching unit 6 executes the first connection process for the second time. In this case, as shown in FIG. 8, the connection switching unit 6 selects adjacent electrodes of a combination different from the regions A1 and A2 in which the electrodes Ef connected to the current supply unit 4 are arranged in the first connection process of the first time. The electrodes Ef arranged in a pair of regions A (for example, regions A2 and A3) are connected to the output terminals 41a and 41b of the current supply section 4 as the electrodes E for current supply.

続いて、接続切替部6は、2回目の第2接続処理を実行する。この場合、接続切替部6は、この2回目の第2接続処理において、上記した1回目の第2接続処理と同様にして、図8に示す1組目~16組目の一対の領域Aにそれぞれ配置されている各電極Esを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせ(この例では、合計で16の組み合わせ)を順次変更しつつ複数回(この例では、合計で16回)実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Esの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9は、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、2回目の第2接続処理が終了する。 Subsequently, the connection switching unit 6 executes the second connection process for the second time. In this case, in the second connection processing of the second time, the connection switching unit 6 switches the pair of regions A of the first to sixteenth pairs shown in FIG. The process of connecting each electrode Es arranged respectively to each input terminal 51a, 51b of the detection unit 5 as each electrode E for voltage detection is performed for all combinations of a pair of adjacent regions A (in this example, the total 16 combinations) are sequentially changed and executed a plurality of times (16 times in total in this example). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes Es connected to the detection unit 5 is changed in the second connection process, and the processing unit 9 detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the second connection process for the second time.

次いで、接続切替部6は、図8に示す3回目~16回目の第1接続処理を、一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6は、第1接続処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で16回実行する。また、接続切替部6は、上記した第2接続処理を第1接続処理を実行する毎に(つまり、16回)実行し、各第2接続処理において、1組目~16組目の隣接する一対の領域Aにそれぞれ配置されている各電極Esを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で16回実行する。つまり、この例では、接続切替部6は、一対の電極Esを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を合計で256回(16回の第2接続処理×1回の第2接続処理毎に16回)実行する。また、検出部5は、各第2接続処理において検出部5に接続される一対の電極Esが変更される毎に電圧値Vおよび位相差θを検出し、処理部9は、検出された各電圧値Vおよび各位相差θ(256種類の電圧値Vおよび位相差θ)を記憶部8に記憶させる。以上により、完全分離状態における検出処理が終了する。 Next, the connection switching unit 6 executes the third to sixteenth first connection processes shown in FIG. 8 while sequentially changing the combination of the pair of regions A. As shown in FIG. That is, in this example, the connection switching unit 6 executes the first connection process 16 times in total while sequentially changing all combinations of the pair of adjacent regions A. FIG. In addition, the connection switching unit 6 executes the above-described second connection processing every time the first connection processing is executed (that is, 16 times), and in each second connection processing, the first to sixteenth adjacent pairs of The process of connecting the electrodes Es arranged in the pair of regions A respectively to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection is performed by connecting all the combinations of the pair of adjacent regions A. It is executed 16 times in total while being changed sequentially. That is, in this example, the connection switching unit 6 performs the process of connecting the pair of electrodes Es to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection a total of 256 times (16 times). 2 connection processing×1 second connection processing (16 times for each second connection processing). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the pair of electrodes Es connected to the detection unit 5 is changed in each second connection process, and the processing unit 9 detects each detected The voltage value V and each phase difference θ (256 types of voltage values V and phase differences θ) are stored in the storage unit 8 . Thus, the detection processing in the completely separated state is completed.

続いて、操作部を操作して撹拌器7を作動させ、撹拌を開始させる。これにより、混合対象100a,100bの混合が開始される。次いで、処理部9は、撹拌器7を制御して、予め決められた時間だけ撹拌(混合)を継続させた後に、撹拌を停止させる。 Subsequently, the operation part is operated to operate the stirrer 7 to start stirring. Thereby, mixing of the mixing objects 100a and 100b is started. Next, the processing unit 9 controls the stirrer 7 to continue the stirring (mixing) for a predetermined time, and then stops the stirring.

続いて、混合対象100a,100bを混合した状態(図6に示す状態:以下、「混合状態」ともいう)において、操作部を操作して、検出処理の実行を指示し、これに応じて、処理部9が上記した検出処理を実行して、各電極E間の電圧値Vおよび位相差θを検出部5に検出させると共に、その電圧値Vおよび位相差θを記憶部8に記憶させる。 Subsequently, in a state in which the objects to be mixed 100a and 100b are mixed (the state shown in FIG. 6: hereinafter also referred to as a “mixed state”), the operation unit is operated to instruct execution of the detection process. The processing unit 9 executes the above-described detection processing, causes the detection unit 5 to detect the voltage value V and the phase difference θ between the electrodes E, and causes the storage unit 8 to store the voltage value V and the phase difference θ.

次いで、操作部を操作して、混合度Mの算出の実行を指示する。これに応じて、処理部9は、分割処理を実行する。この分割処理では、処理部9は、図6に示すように、収容容器2に収容されている混合対象100内において、収容容器2の中心軸21に直交する仮想平面Bを規定する。続いて、処理部9は、図9に示すように、予め決められたアルゴリズムに従い、予め決められた平面形状(一例として、三角形)の複数のメッシュD(分割領域)で上記した仮想平面Bを分割する。 Next, the operation unit is operated to instruct the execution of the calculation of the mixture degree M. In response to this, the processing unit 9 executes division processing. In this division process, the processing unit 9 defines a virtual plane B orthogonal to the central axis 21 of the container 2 in the object to be mixed 100 contained in the container 2, as shown in FIG. Subsequently, as shown in FIG. 9, the processing unit 9 divides the above-described virtual plane B with a plurality of meshes D (divided regions) having a predetermined plane shape (for example, triangles) according to a predetermined algorithm. To divide.

次いで、処理部9は、標準偏差算出処理を実行する。この標準偏差算出処理では、処理部9は、まず、上記した完全分離状態における検出処理で検出した各電圧値Vおよび各位相差θを記憶部8から読み出す。続いて、処理部9は、読み出した各電圧値V、各位相差θおよび電流Iの電流値に基づき、予め決められたアルゴリズムで、仮想平面B内におけるインピーダンスの分布状態を特定し、その分布状態から各メッシュDのインピーダンスを算出する。次いで、処理部9は、算出したインピーダンスに基づき、各メッシュDの導電率σを算出する。 Next, the processing unit 9 executes standard deviation calculation processing. In this standard deviation calculation process, the processing unit 9 first reads from the storage unit 8 each voltage value V and each phase difference θ detected in the above-described detection process in the completely separated state. Subsequently, the processing unit 9 identifies the impedance distribution state in the virtual plane B by a predetermined algorithm based on the read voltage values V, the phase differences θ, and the current values of the current I. , the impedance of each mesh D is calculated. Next, the processing unit 9 calculates the electrical conductivity σ of each mesh D based on the calculated impedance.

続いて、処理部9は、各メッシュDの導電率σに基づき、次に示す数式(1)からパラメータ値ζを算出し、次に示す数式(2)からパラメータ値ζを算出する。
ζ=(S・σ)/S)・・・数式(1)
ζ=(Σ[i=1,N](S・σ))/S・・・数式(2)
なお、数式(1),(2)において、Sは、各メッシュDの面積を意味し、σは、各メッシュDの導電率を意味し、Sは、仮想平面Bの全体の面積を意味し、Nは、仮想平面B内のメッシュDの総数を意味する。この場合、パラメータ値ζは、数式(1)から明らかなように、仮想平面Bの全体の面積に対する各メッシュDの面積の比率を反映させた導電率σを表している。また、パラメータ値ζは、数式(2)から明らかなように、仮想平面Bの全体の面積に対する各メッシュDの面積の比率を反映させた各メッシュDの導電率σの平均値を表している。
Subsequently, based on the conductivity σ of each mesh D, the processing unit 9 calculates the parameter value ζ i from the following equation (1), and calculates the parameter value ζ 0 from the following equation (2).
ζ i =( Si ·σ i )/S) Equation (1)
ζ 0 = (Σ[i=1, N]( Si ·σ i ))/S Equation (2)
In formulas (1) and (2), Si means the area of each mesh D, σ i means the conductivity of each mesh D, and S means the total area of the virtual plane B. and N means the total number of meshes D in the virtual plane B. In this case, the parameter value .zeta.i represents the electrical conductivity .sigma. that reflects the ratio of the area of each mesh D to the entire area of the virtual plane B, as is apparent from Equation (1). Further, as is clear from the formula (2), the parameter value ζ 0 represents the average value of the conductivity σ of each mesh D reflecting the ratio of the area of each mesh D to the entire area of the virtual plane B. there is

次いで、処理部9は、算出したパラメータ値ζ,ζに基づき、次に示す数式(3)から、仮想平面B内のすべてのメッシュDについての各パラメータ値ζを母集団とする標準偏差ηを算出する。
η=√(Σ[i=1,N](ζ-ζ/N)・・・数式(3)
続いて、処理部9は、算出した標準偏差ηを、完全分離状態における標準偏差ηとして記憶部8に記憶させる。これにより、完全分離状態における標準偏差ηの算出が終了する。
Next, based on the calculated parameter values ζ i and ζ 0 , the processing unit 9 uses the following formula (3) to calculate the standard Calculate the deviation η.
η=√(Σ[i=1, N](ζ i −ζ 0 ) 2 /N) Equation (3)
Subsequently, the processing unit 9 causes the storage unit 8 to store the calculated standard deviation η as the standard deviation η 0 in the completely separated state. This completes the calculation of the standard deviation η 0 in the completely separated state.

次いで、処理部9は、上記した混合状態における検出処理で検出した電圧値Vおよび位相差θを記憶部8から読み出す。続いて、処理部9は、完全分離状態における標準偏差ηの算出と同様にして、上記の数式(1),(2),(3)から混合状態における標準偏差ηを算出する。次いで、処理部9は、算出した標準偏差ηを記憶部8に記憶させる。これにより、混合状態における標準偏差ηの算出が終了する。 Next, the processing unit 9 reads out from the storage unit 8 the voltage value V and the phase difference θ detected in the mixed state detection process described above. Subsequently, the processing unit 9 calculates the standard deviation η in the mixed state from the above formulas (1), (2), and (3) in the same manner as in the calculation of the standard deviation η in the completely separated state. Next, the processing unit 9 causes the storage unit 8 to store the calculated standard deviation η. This completes the calculation of the standard deviation η in the mixed state.

続いて、処理部9は、混合度算出処理を実行する。この混合度算出処理では、処理部9は、標準偏差算出処理で算出した標準偏差η,ηに基づき、次に示す数式(4)(混合度を表す数式)から混合度Mを算出する。
M=1-η/η・・・数式(4)
次いで、処理部9は、算出した混合度Mを記憶部8に記憶させる。これにより、混合度算出処理が終了する。続いて、処理部9は、算出した混合度Mを図外の表示部に表示させる。
Subsequently, the processing unit 9 executes a mixture degree calculation process. In this mixture degree calculation process, the processing unit 9 calculates the mixture degree M from the following formula (4) (formula expressing the mixture degree) based on the standard deviations η and η 0 calculated in the standard deviation calculation process.
M = 1-η/η 0 Expression (4)
Next, the processing unit 9 stores the calculated mixture degree M in the storage unit 8 . This completes the mixture degree calculation process. Subsequently, the processing unit 9 displays the calculated mixture degree M on a display unit (not shown).

ここで、完全分離状態では、標準偏差η=標準偏差ηとなるため、η/η=1となり、数式(4)から、混合度M=1-1=0となる。一方、混合対象100a,100bが完全に混合している完全混合状態では、理論上、標準偏差η=0となるため、数式(4)から、混合度M=1-0/η=1となる。つまり、混合度Mは、混合対象100a,100bの混合の度合いに応じて0~1の間で変化する。具体的には、混合の度合いが低い(混合していない)ほど、混合度Mは0に近い値となり、混合の度合いが高い(混合している)ほど、混合度Mは1に近い値となる。したがって、混合度Mから混合の度合いを把握することができる。 Here, since the standard deviation η=standard deviation η 0 in the completely separated state, η/η 0 =1, and the degree of mixture M=1−1=0 from the equation (4). On the other hand, in a completely mixed state in which the objects to be mixed 100a and 100b are completely mixed, theoretically, the standard deviation η= 0 . Become. That is, the degree of mixing M varies between 0 and 1 according to the degree of mixing of the objects to be mixed 100a and 100b. Specifically, when the degree of mixing is low (not mixed), the degree of mixing M is close to 0, and when the degree of mixing is high (mixed), the degree of mixing M is close to 1. Become. Therefore, the degree of mixing can be grasped from the degree of mixing M.

なお、表示部に表示された混合度Mから、混合対象100a,100bの混合度Mが目標の値よりも小さい、つまり、混合の度合いが目標のよりも低いと判断したときには、撹拌器7を作動させて混合対象100a,100bをさらに撹拌(混合)した後に、各処理(検出処理、分割処理、標準偏差算出処理および混合度算出処理)を処理部9に実行させて混合度Mを表示させる工程を繰り返すことで、混合度Mが目標の値となるように混合対象100a,100bを混合することができる。 Note that when it is determined from the mixing degree M displayed on the display that the mixing degree M of the mixing objects 100a and 100b is smaller than the target value, that is, the degree of mixing is lower than the target value , the agitator 7 is operated to further stir (mix) the mixing objects 100a and 100b, each process (detection process, division process, standard deviation calculation process and mixture degree calculation process) is executed by the processing unit 9, and the mixture degree M is displayed. The mixing objects 100a and 100b can be mixed so that the degree of mixing M becomes the target value by repeating the step of making the mixture.

このように、この処理装置1および処理方法では、収容容器2の内周面22における複数の各領域Aにそれぞれ配置されている各電極Eを電流供給部4に接続させる第1接続処理を、各領域Aの組み合わせを順次変更しつつ複数回実行し、一対の領域Aにそれぞれ配置されている電極Eを検出部5に接続させる処理を一対の領域Aの組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行し、各第2接続処理において検出部5に接続する一対の電極Eを変更する毎に検出部5に検出させた各電極E間の電圧値Vに基づいて電気的特性が互いに異なる複数種類の混合対象100の混ざり具合を特定する処理を実行する。このため、この処理装置1および処理方法によれば、光センサによって容器内の一箇所において検出した検出信号のレベルに基づいて混合対象100の一部分の混合度だけを測定する従来の構成および方法とは異なり、収容容器2内の複数箇所において検出した電圧値Vに基づいて混合対象100の全体の混合度M(混ざり具合を示す指標)を正確に特定することができる。また、この処理装置1および処理方法では、電流供給用の各電極Eに電流を供給したときの電圧検出用の各電極E間の電圧値Vに基づいて混合度Mを特定する。このため、この処理装置1および処理方法によれば、複数の混合対象100の光の反射率の相違を利用して光センサによって混合対象100の混合度を測定する構成および方法とは異なり、各混合対象100の反射率が同等であったとしても、各混合対象100の電気的特性が互いに異なるときには、混合対象100の混合度Mを正確に特定することができる。 As described above, in the processing apparatus 1 and the processing method, the first connection processing for connecting each electrode E arranged in each of the plurality of regions A on the inner peripheral surface 22 of the container 2 to the current supply section 4 is performed by: A plurality of times while sequentially changing the combination of the regions A, and a process of connecting the electrodes E respectively arranged in the pair of regions A to the detection unit 5 is executed a plurality of times while sequentially changing the combination of the pair of regions A. Each time the first connection processing is executed, the second connection processing is executed, and each time the pair of electrodes E connected to the detection unit 5 is changed in each second connection processing, the detection unit 5 detects the connection between the electrodes E. Based on the voltage value V of , a process of specifying the mixing state of a plurality of types of mixture objects 100 having different electrical characteristics is executed. For this reason, according to this processing apparatus 1 and processing method, it is different from the conventional configuration and method for measuring the degree of mixing of only a portion of the object to be mixed 100 based on the level of the detection signal detected at one location in the container by the optical sensor. Unlike , it is possible to accurately identify the overall mixing degree M (indicator indicating the degree of mixing) of the mixed object 100 based on the voltage values V detected at a plurality of locations in the container 2 . Further, in the processing apparatus 1 and the processing method, the mixing degree M is specified based on the voltage value V between the electrodes E for voltage detection when current is supplied to each electrode E for current supply. Therefore, according to the processing apparatus 1 and the processing method, unlike the configuration and method of measuring the mixing degree of the mixing target 100 by the optical sensor using the difference in light reflectance of the plurality of mixing targets 100, each Even if the mixed objects 100 have the same reflectance, when the electrical characteristics of the mixed objects 100 are different from each other, the mixing degree M of the mixed objects 100 can be specified accurately.

また、この処理装置1および処理方法では、各領域Aにおける高位置側の各位置および高位置側の各位置から底面側に離間する低位置側の各位置にそれぞれ配置された複数の電極Efと、各領域Aにおける各電極Efの間の位置にそれぞれ配置された複数の電極Esとを備え、第1接続処理において、一対の領域Aに配置されている各電極Efを電流供給部4に接続させ、第2接続処理において、一対の領域Aに配置されている各電極Esを検出部5に接続させる処理を、一対の領域Aのすべての組み合わせを順次変更しつつ複数回実行する。この場合、例えば、底面23からの高さが互いに同じ位置に電流供給用の各電極Eおよび電圧検出用の各電極Eが配置されている構成では、各電極Eの配置位置から混合対象100の上面までの距離、すなわち収容容器2に収容されている混合対象100の体積の大小によって混合対象100内を流れる電流Iの分布が変化することとなるため、検出部5によって検出される電圧値Vおよび電圧値Vに基づいて特定される混合度Mも混合対象100の体積の大小の影響を受けることとなる。これに対して、この処理装置1および処理方法では、混合対象100内における高位置側の電極Efと低位置側の電極Efとの間の領域に電流Iを供給することができるため、高位置側の電極Efの配置位置から混合対象100の上面までの距離、すなわち収容容器2に収容されている混合対象100の体積の大小に拘わらず、混合対象100内における高位置側の電極Efの配置位置と低位置側の電極Efの配置位置との間を流れる電流Iの分布を一定(または、ほぼ一定)に維持することができる。また、この処理装置1および処理方法では、高位置側の電極Efと低位置側の電極Efとの間の位置に配置された電極Esを介して電圧値Vを検出する。したがって、この処理装置1および処理方法によれば、検出部5が電圧値Vを検出する際の、混合対象100の体積の大小による混合対象100内を流れる電流Iの分布の変化の影響を十分に低減することができる結果、混合度Mをより正確に特定することができる。 In addition, in the processing apparatus 1 and the processing method, the plurality of electrodes Ef arranged at the respective positions on the high position side in each region A and the respective positions on the low position side separated from the respective positions on the high position side toward the bottom surface side; , and a plurality of electrodes Es arranged at positions between the electrodes Ef in the regions A, and connecting the electrodes Ef arranged in the pair of regions A to the current supply unit 4 in the first connection process. In the second connection process, the process of connecting each electrode Es arranged in the pair of regions A to the detection unit 5 is executed a plurality of times while sequentially changing all combinations of the pair of regions A. In this case, for example, in a configuration in which each electrode E for current supply and each electrode E for voltage detection are arranged at positions with the same height from the bottom surface 23, the mixing target 100 is separated from the arrangement position of each electrode E. Since the distribution of the current I flowing through the object to be mixed 100 changes depending on the distance to the upper surface, that is, the size of the volume of the object to be mixed 100 contained in the container 2, the voltage value V detected by the detection unit 5 and the degree of mixing M specified based on the voltage value V is also affected by the volume of the object 100 to be mixed. On the other hand, in the processing apparatus 1 and the processing method, since the current I can be supplied to the region between the high position side electrode Ef and the low position side electrode Ef in the mixed object 100, Arrangement of the electrode Ef on the high side in the mixing object 100 regardless of the distance from the arrangement position of the side electrode Ef to the upper surface of the mixing object 100, that is, the volume of the mixing object 100 housed in the container 2 The distribution of the current I flowing between the position and the arrangement position of the electrode Ef on the low position side can be maintained constant (or substantially constant). Further, in the processing apparatus 1 and the processing method, the voltage value V is detected via the electrode Es arranged between the high position side electrode Ef and the low position side electrode Ef. Therefore, according to the processing device 1 and the processing method, when the detection unit 5 detects the voltage value V, the effect of the change in the distribution of the current I flowing through the object to be mixed 100 due to the size of the volume of the object to be mixed 100 can be sufficiently suppressed. As a result, the degree of mixing M can be specified more accurately.

次に、「処理装置」他の一例としての図1に示す処理装置1Aおよび処理装置1Aを用いる処理方法について説明する。なお、以下の説明において、上記した処理装置1および処理方法と同様の構成要素および動作等については、同じ符号を付して、重複する説明を省略する。 Next, the processing apparatus 1A shown in FIG. 1 as another example of the "processing apparatus" and the processing method using the processing apparatus 1A will be described. In the following description, the same components and operations as those of the processing apparatus 1 and the processing method described above are denoted by the same reference numerals, and overlapping descriptions are omitted.

この処理装置1Aでは、図10に示すように、各領域Aにおける底面23からの高さが互いに同じ位置に、電極Eが1つずつ配置されている。なお、底面23から各電極Eまでの高さが互いに多少異なる構成を採用することもできる。また、処理装置1Aは、図1に示すように、上記した接続切替部6に代えて接続切替部6Aを備えると共に、上記した処理部9に代えて処理部9Aを備えて構成されている。また、この処理装置1Aでは、接続切替部6Aが、処理部9Aの指示に従って電流供給用の各電極Eと電流供給部4とを接続すると共に、処理部9Aの指示に従って電圧検出用の各電極Eと検出部5とを接続する。 In the processing apparatus 1A, as shown in FIG. 10, one electrode E is arranged in each area A at the same height from the bottom surface 23. As shown in FIG. A configuration in which the heights from the bottom surface 23 to each electrode E are slightly different from each other can also be adopted. Further, as shown in FIG. 1, the processing device 1A includes a connection switching section 6A in place of the connection switching section 6 and a processing section 9A in place of the processing section 9 described above. In the processing device 1A, the connection switching unit 6A connects each electrode E for current supply to the current supply unit 4 according to an instruction from the processing unit 9A, and connects each electrode for voltage detection according to an instruction from the processing unit 9A. E and the detector 5 are connected.

また、接続切替部6Aは、図11,12に示すように、隣接する一対の領域Aの一方に配置されている電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、隣接する一対の領域Aの他方に配置されている電極Eを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる第1接続処理を、隣接する一対の領域Aの組み合わせを変更しつつ複数回(この例では、16回)実行する。 As shown in FIGS. 11 and 12, the connection switching unit 6A uses the electrode E arranged in one of the pair of adjacent regions A as one electrode E for current supply, and switches one output of the current supply unit 4. A first connection process is performed to connect to the terminal 41a and to connect the electrode E arranged in the other of the pair of adjacent regions A as the other electrode E for current supply to the other output terminal 41b of the current supply section 4. , is executed a plurality of times (16 times in this example) while changing the combination of a pair of adjacent regions A.

また、接続切替部6Aは、図11,12に示すように、電流供給用の電極Eが配置されている一対の領域Aを除く他の領域Aのうちの隣接する他の一対の領域Aの一方に配置されている電極Eを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、隣接する他の一対の領域Aの他方に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる処理を隣接する一対の領域Aのすべての組み合わせを順次変更しつつ複数回(この例では、13回)実行する第2接続処理を、第1接続処理を実行する毎に実行する。 11 and 12, the connection switching unit 6A is connected to the pair of adjacent regions A other than the pair of regions A in which the electrodes E for current supply are arranged. The electrode E arranged on one side is connected to one input terminal 51a of the detection section 5 as one electrode E for voltage detection, and the electrode E arranged on the other side of the other pair of adjacent regions A is connected to The process of connecting the other electrode E for voltage detection to the other input terminal 51b of the detection unit 5 is executed a plurality of times (13 times in this example) while sequentially changing all combinations of the pair of adjacent regions A. The second connection process is executed each time the first connection process is executed.

また、この処理装置1Aでは、検出部5が各第2接続処理において接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出する。 Further, in the processing device 1A, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected in each second connection process is changed.

この処理装置1Aを用いて、上記した混合対象100a,100bの混合度Mを特定する際には、混合対象100a,100bを収容容器2の本体部2aに収容し(図5参照)、次いで、混合対象100a,100bの混合を開始する以前の完全分離状態において、図外の操作部を操作して、検出処理の実行を指示する。検出処理では、処理部9Aは、まず、接続切替部6Aに対して接続処理を実行させる。 When using this processing apparatus 1A to specify the mixing degree M of the mixing objects 100a and 100b, the mixing objects 100a and 100b are stored in the main body 2a of the storage container 2 (see FIG. 5), and then In the completely separated state before starting the mixing of the objects to be mixed 100a and 100b, an operation unit (not shown) is operated to instruct execution of detection processing. In the detection process, the processing unit 9A first causes the connection switching unit 6A to perform connection processing.

接続処理では、接続切替部6Aは、電流供給用の一対の電極Eを電流供給部4に接続させる1回目の第1接続処理を実行する。具体的には、接続切替部6Aは、図11,12に示すように、隣接する一対の領域A(例えば、領域A1,A2)の一方(例えば、領域A1)に配置されている電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、隣接する一対の領域Aの他方(領域A2)に配置されている電極Eを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる。 In the connection process, the connection switching unit 6A executes the first connection process for connecting the pair of electrodes E for current supply to the current supply unit 4 for the first time. Specifically, the connection switching unit 6A, as shown in FIGS. One electrode E for current supply is connected to one output terminal 41a of the current supply unit 4, and the electrode E arranged in the other (area A2) of the pair of adjacent areas A is used as the other electrode for current supply. The electrode E is connected to the other output terminal 41 b of the current supply section 4 .

続いて、接続切替部6Aは、1回目の第2接続処理を実行する。この1回目の第2接続処理では、接続切替部6Aは、図11,12に示すように、電流供給用の電極Eが配置されている一対の領域Aを除く他の領域A(この例では、領域A3~A16)のうちの隣接する一対の領域Aの各組み合わせのうちの1組目(例えば、領域A3,A4)の一方(例えば、領域A3)に配置されている電極Eを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、領域A3,A4の他方(領域A4)に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる。 Subsequently, the connection switching unit 6A executes the second connection process for the first time. In this first second connection process, the connection switching unit 6A, as shown in FIGS. , regions A3 to A16), the voltage of the electrode E arranged in one (eg, region A3) of the first pair (eg, regions A3 and A4) of each combination of a pair of adjacent regions A is detected. is connected to one input terminal 51a of the detection unit 5 as one electrode E for voltage detection, and the electrode E arranged in the other of the regions A3 and A4 (region A4) is used as the other electrode E for voltage detection in the detection unit 5 is connected to the other input terminal 51b.

次いで、処理部9Aは、電流供給部4に対して電流Iの出力を指示し、電流供給部4が電流Iを出力する。この際に、各領域A1,A2にそれぞれ配置されている各電極E間に電流Iが供給される。続いて、検出部5が、領域A3,A4にそれぞれ配置されている各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Aが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, the processing unit 9A instructs the current supply unit 4 to output the current I, and the current supply unit 4 outputs the current I. At this time, a current I is supplied between the electrodes E arranged in the regions A1 and A2. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E arranged in the regions A3 and A4 and the phase difference θ between the voltage and the current I, and the processing unit 9A detects The storage unit 8 stores the voltage value V and the phase difference .theta.

次いで、接続切替部6Aは、図12に示すように、隣接する一対の領域Aの各組み合わせのうちの2組目(例えば、領域A4,A5)の一方(例えば、領域A4)に配置されている電極E、および領域A4,A5の他方(領域A5)に配置されている電極Eを、電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる。続いて、検出部5が、各領域A4,A5の各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Aが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, as shown in FIG. 12, the connection switching unit 6A is arranged in one (eg, region A4) of the second set (eg, regions A4 and A5) of each combination of a pair of adjacent regions A. and the electrode E arranged in the other of the regions A4 and A5 (region A5) are connected to the input terminals 51a and 51b of the detection section 5 as the electrodes E for voltage detection. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E in the regions A4 and A5 and the phase difference θ between the voltage and the current I, and the processing unit 9A detects the detected voltage value V and the phase difference θ are stored in the storage unit 8 .

以下、同様にして、接続切替部6Aは、図12に示す3組目~13組目の隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6Aは、1回の第2接続処理において、この処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で13回実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Aは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、1回目の第2接続処理が終了する。 Thereafter, in the same way, the connection switching unit 6A uses the electrodes E arranged in the pairs of adjacent regions A of the third to thirteenth pairs shown in FIG. 5 are connected to the respective input terminals 51a and 51b of No. 5 while changing the combination of a pair of adjacent areas A sequentially. That is, in this example, the connection switching unit 6A performs this process 13 times in total while sequentially changing all combinations of the pair of adjacent regions A in one second connection process. Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9A detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the first second connection process.

次いで、接続切替部6Aは、2回目の第1接続処理を実行する。この場合、接続切替部6Aは、図12に示すように、1回目の第1接続処理において電流供給部4に接続した各電極Eが配置されている領域A1,A2とは異なる組み合わせの隣接する一対の領域A(例えば、領域A2,A3)にそれぞれ配置されている各電極Eを電流供給用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させる。 Next, the connection switching unit 6A executes the first connection process for the second time. In this case, as shown in FIG. 12, the connection switching unit 6A uses adjacent electrodes of a combination different from the regions A1 and A2 in which the electrodes E connected to the current supply unit 4 are arranged in the first connection process of the first time. The electrodes E respectively arranged in the pair of regions A (for example, regions A2 and A3) are connected to the output terminals 41a and 41b of the current supply section 4 as the electrodes E for current supply.

続いて、接続切替部6Aは、2回目の第2接続処理を実行する。この場合、接続切替部6Aは、この2回目の第2接続処理において、上記した1回目の第2接続処理と同様にして、図12に示す1組目~13組目の隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせ(この例では、合計で13の組み合わせ)を順次変更しつつ複数回(この例では、合計で13回)実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Aは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、2回目の第2接続処理が終了する。 Subsequently, the connection switching unit 6A executes the second connection process for the second time. In this case, in the second connection processing of the second time, the connection switching unit 6A performs the pair of adjacent regions of the first to thirteenth pairs shown in FIG. 12 in the same manner as the first second connection processing. The process of connecting the electrodes E arranged in A respectively to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection is applied to all combinations of a pair of adjacent areas A (in this example, , 13 combinations in total) are sequentially changed and executed a plurality of times (13 times in total in this example). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9A detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the second connection process for the second time.

次いで、接続切替部6Aは、図12に示す3回目~16回目の第1接続処理を、隣接する一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6Aは、第1接続処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で16回実行する。また、接続切替部6Aは、上記した第2接続処理を第1接続処理を実行する毎に(つまり、16回)実行し、各第2接続処理において、1組目~13組目の隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で13回実行する。つまり、この例では、接続切替部6Aは、一対の電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を合計で208回(16回の第2接続処理×1回の第2接続処理毎に13回)実行する。また、検出部5は、各第2接続処理において検出部5に接続される一対の電極Eが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Aは、検出された各電圧値Vおよび各位相差θ(208種類の電圧値Vおよび位相差θ)を記憶部8に記憶させる。以上により、完全分離状態における検出処理が終了する。 Next, the connection switching unit 6A executes the third to sixteenth first connection processes shown in FIG. 12 while sequentially changing the combination of the pair of adjacent regions A. As shown in FIG. In other words, in this example, the connection switching unit 6A executes the first connection process 16 times in total while sequentially changing all combinations of the pairs of adjacent regions A. FIG. Further, the connection switching unit 6A executes the above-described second connection processing each time the first connection processing is executed (that is, 16 times), and in each second connection processing, the first to thirteenth adjacent pairs of The process of connecting the electrodes E arranged in the pair of regions A respectively to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection is performed by connecting all combinations of the pair of adjacent regions A. It is executed 13 times in total while being changed sequentially. That is, in this example, the connection switching unit 6A performs the process of connecting the pair of electrodes E to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection a total of 208 times (16 times). 2 connection processing×1 second connection processing (13 times for each second connection processing). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the pair of electrodes E connected to the detection unit 5 is changed in each second connection process, and the processing unit 9A detects each detected The voltage value V and each phase difference θ (208 types of voltage values V and phase differences θ) are stored in the storage unit 8 . Thus, the detection processing in the completely separated state is completed.

次いで、操作部を操作して撹拌器7を作動させ、撹拌を開始させる。次いで、処理部9Aが、撹拌器7を制御して、予め決められた時間だけ撹拌(混合)を継続させた後に、撹拌を停止させる。 Next, the operation part is operated to operate the stirrer 7 to start stirring. Next, the processing section 9A controls the stirrer 7 to continue the stirring (mixing) for a predetermined time, and then stops the stirring.

続いて、混合対象100a,100bを混合した混合状態(図6参照)において、操作部を操作して、検出処理の実行を指示し、これに応じて、処理部9Aが上記した検出処理を実行して、各電極E間の電圧値Vおよび位相差θを検出部5に検出させると共に、その電圧値Vおよび位相差θを記憶部8に記憶させる。 Subsequently, in the mixed state (see FIG. 6) in which the objects to be mixed 100a and 100b are mixed, the operation unit is operated to instruct the execution of detection processing, and in response to this, the processing unit 9A executes the detection processing described above. Then, the detection unit 5 detects the voltage value V and the phase difference θ between the electrodes E, and stores the voltage value V and the phase difference θ in the storage unit 8 .

次いで、操作部を操作して、混合度Mの算出の実行を指示する。これに応じて、処理部9は、上記した分割処理を実行し、続いて、上記した標準偏差算出処理を実行して、標準偏差η,ηを算出する。次いで、処理部9は、上記した混合度算出処理を実行して、混合度Mを算出し、算出した混合度Mを記憶部8に記憶させる。続いて、処理部9は、算出した混合度Mを図外の表示部に表示させる。 Next, the operation unit is operated to instruct the execution of the calculation of the mixture degree M. In response to this, the processing unit 9 executes the division processing described above, and then executes the standard deviation calculation processing described above to calculate the standard deviations η and η0 . Next, the processing unit 9 executes the mixing degree calculation process described above, calculates the mixing degree M, and stores the calculated mixing degree M in the storage unit 8 . Subsequently, the processing unit 9 displays the calculated mixture degree M on a display unit (not shown).

このように、この処理装置1Aおよび処理方法では、一対の領域Aにそれぞれ配置されている各電極Eを電流供給用の電極Eとして電流供給部4に接続させる第1接続処理を一対の領域Aの組み合わせを順次変更しつつ複数回実行し、電流供給用の電極Eが配置されている一対の領域Aを除く他の領域Aのうちの他の一対の領域Aにそれぞれ配置されている電極Eを電圧検出用の電極Eとして検出部5に接続させる処理を他の一対の領域Aのすべての組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置1Aおよび処理方法によれば、収容容器2の内周面22における周方向に沿って互いに等間隔に規定したすべての位置において電圧値Vを検出することができる。したがって、この処理装置1Aおよび処理方法によれば、電圧値Vを検出する位置の偏りを低減することができる結果、混合度Mをより正確に特定することができる。 As described above, in the processing apparatus 1A and the processing method, the first connection processing is performed to connect the electrodes E arranged in the pair of regions A to the current supply section 4 as the electrodes E for current supply. are executed a plurality of times while sequentially changing the combination of the electrodes E respectively arranged in the other pair of regions A out of the pair of regions A other than the pair of regions A where the electrodes E for current supply are arranged are connected to the detection unit 5 as electrodes E for voltage detection. do. Therefore, according to the processing apparatus 1A and the processing method, the voltage value V can be detected at all positions on the inner peripheral surface 22 of the container 2 which are defined at regular intervals along the circumferential direction. Therefore, according to the processing apparatus 1A and the processing method, it is possible to reduce the bias in the position where the voltage value V is detected, and as a result, the mixture degree M can be specified more accurately.

次に、「処理装置」他の一例としての図1に示す処理装置1Bおよび処理装置1Bを用いる処理方法について説明する。 Next, the processing apparatus 1B shown in FIG. 1 as another example of the "processing apparatus" and the processing method using the processing apparatus 1B will be described.

この処理装置1Bでは、図10に示すように、16個(4つ以上の偶数の一例)の各領域Aにおける底面23からの高さが互いに同じ位置に、電極Eが1つずつ配置されている。なお、底面23から各電極Eまでの高さが互いに多少異なる構成を採用することもできる。また、処理装置1Bは、図1に示すように、上記した接続切替部6に代えて接続切替部6Bを備えると共に、上記した処理部9に代えて処理部9Bを備えて構成されている。また、この処理装置1Bでは、接続切替部6Bが、処理部9Bの指示に従って電流供給用の各電極Eと電流供給部4とを接続すると共に、処理部9Bの指示に従って電圧検出用の各電極Eと検出部5とを接続する。 In this processing apparatus 1B, as shown in FIG. 10, one electrode E is arranged in each of 16 regions A (an example of an even number of four or more) at positions having the same height from the bottom surface 23. there is A configuration in which the heights from the bottom surface 23 to each electrode E are slightly different from each other can also be adopted. Further, as shown in FIG. 1, the processing device 1B includes a connection switching section 6B in place of the connection switching section 6 and a processing section 9B in place of the processing section 9 described above. In the processing device 1B, the connection switching unit 6B connects each electrode E for current supply to the current supply unit 4 according to an instruction from the processing unit 9B, and connects each electrode for voltage detection according to an instruction from the processing unit 9B. E and the detector 5 are connected.

また、接続切替部6Bは、図13,14に示すように、収容容器2の中心軸21を挟んで対向する一対の領域Aの一方に配置されている電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、対向する一対の領域Aの他方に配置されている電極Eを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる第1接続処理を対向する一対の領域Aの組み合わせを変更しつつ複数回(この例では、8回)実行する。 As shown in FIGS. 13 and 14, the connection switching unit 6B switches the electrode E arranged in one of a pair of regions A facing each other across the central axis 21 of the container 2 to one electrode for current supply. E is connected to one output terminal 41a of the current supply unit 4, and the electrode E arranged in the other of the pair of opposing regions A is used as the other electrode E for current supply, and is used as the other output of the current supply unit 4. The first connection processing for connecting to the terminal 41b is executed a plurality of times (eight times in this example) while changing the combination of the pair of regions A facing each other.

また、接続切替部6Bは、図13,14に示すように、電流供給用の電極Eが配置されている対向する一対の領域Aを除く他の領域Aのうちの隣接する一対の領域Aの一方に配置されている電極Eを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、隣接する一対の領域Aの他方に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる処理を隣接する一対の領域Aのすべての組み合わせを順次変更しつつ複数回(この例では、12回)実行する第2接続処理を、第1接続処理を実行する毎に実行する。 As shown in FIGS. 13 and 14, the connection switching unit 6B is connected to a pair of adjacent regions A other than the pair of opposing regions A in which the electrodes E for current supply are arranged. The electrode E arranged on one side is connected to one input terminal 51a of the detection section 5 as one electrode E for voltage detection, and the electrode E arranged on the other side of the pair of adjacent regions A is used for voltage detection. The second electrode E is connected to the other input terminal 51b of the detection unit 5 a plurality of times (12 times in this example) while sequentially changing all the combinations of the pair of adjacent regions A. A connection process is executed each time the first connection process is executed.

また、この処理装置1Bでは、検出部5が各第2接続処理において接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出する。 Further, in the processing device 1B, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E to be connected is changed in each second connection process.

この処理装置1Bを用いて、上記した混合対象100a,100bの混合度Mを特定する際には、混合対象100a,100bを収容容器2の本体部2aに収容し(図5参照)、次いで、混合対象100a,100bの混合を開始する以前の完全分離状態において、図外の操作部を操作して、検出処理の実行を指示する。検出処理では、処理部9Bは、まず、接続切替部6Bに対して接続処理を実行させる。 When using this processing apparatus 1B to specify the mixing degree M of the above-described mixed objects 100a and 100b, the mixed objects 100a and 100b are accommodated in the main body portion 2a of the container 2 (see FIG. 5), and then In the completely separated state before starting the mixing of the objects to be mixed 100a and 100b, an operation unit (not shown) is operated to instruct execution of detection processing. In the detection process, the processing unit 9B first causes the connection switching unit 6B to perform connection processing.

接続処理では、接続切替部6Bは、電流供給用の一対の電極Eを電流供給部4に接続させる1回目の第1接続処理を実行する。具体的には、接続切替部6Bは、図13,14に示すように、収容容器2の中心軸21を挟んで対向する一対の領域A(例えば、領域A1,A9)の一方(例えば、領域A1)に配置されている電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、対向する一対の領域Aの他方(領域A9)に配置されている電極Eを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる。 In the connection process, the connection switching unit 6B executes the first connection process for connecting the pair of electrodes E for current supply to the current supply unit 4 for the first time. Specifically, as shown in FIGS. 13 and 14, the connection switching unit 6B is one of a pair of areas A (for example, areas A1 and A9) facing each other across the central axis 21 of the container 2 (for example, area A1). A1) is connected to one output terminal 41a of the current supply unit 4 as one electrode E for current supply, and is arranged in the other of the pair of opposing regions A (region A9). The other electrode E for current supply is connected to the other output terminal 41b of the current supply unit 4 as the other electrode E for current supply.

続いて、接続切替部6Bは、1回目の第2接続処理を実行する。この1回目の第2接続処理では、接続切替部6Bは、図13,14に示すように、電流供給用の電極Eが配置されている対向する一対の領域A(この例では、領域A1,A9)を除く他の領域A(この例では、領域A2~A8,A10~A16)のうちの隣接する一対の領域Aの各組み合わせのうちの1組目(例えば、領域A2,A3)の一方(例えば、領域A2)に配置されている電極Eを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、領域A2,A3の他方(領域A3)に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる。 Subsequently, the connection switching unit 6B executes the second connection process for the first time. In this first second connection process, the connection switching unit 6B, as shown in FIGS. One of the first pairs (for example, areas A2 and A3) of each combination of a pair of adjacent areas A among other areas A (in this example, areas A2 to A8 and A10 to A16) excluding A9) The electrode E arranged in (for example, area A2) is connected to one input terminal 51a of the detection unit 5 as one electrode E for voltage detection, and is arranged in the other of areas A2 and A3 (area A3). The other electrode E for voltage detection is connected to the other input terminal 51b of the detector 5 as the other electrode E for voltage detection.

次いで、処理部9Bは、電流供給部4に対して電流Iの出力を指示し、電流供給部4が電流Iを出力する。この際に、各領域A1,A9にそれぞれ配置されている各電極E間に電流Iが供給される。続いて、検出部5が、領域A2,A3にそれぞれ配置されている各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Bが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, the processing unit 9B instructs the current supply unit 4 to output the current I, and the current supply unit 4 outputs the current I. At this time, a current I is supplied between the electrodes E arranged in the regions A1 and A9. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E arranged in the regions A2 and A3 and the phase difference θ between the voltage and the current I, and the processing unit 9B detects The storage unit 8 stores the voltage value V and the phase difference .theta.

次いで、接続切替部6Bは、図14に示すように、隣接する一対の領域Aの各組み合わせのうちの2組目(例えば、領域A3,A4)の一方(例えば、領域A3)に配置されている電極E、および領域A3,A4の他方(領域A4)に配置されている電極Eを、電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる。続いて、検出部5が、各領域A3,A4の各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Bが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, as shown in FIG. 14, the connection switching unit 6B is arranged in one (for example, area A3) of the second set (for example, areas A3 and A4) of each combination of a pair of adjacent areas A. and the electrode E arranged in the other of the regions A3 and A4 (region A4) are connected to the input terminals 51a and 51b of the detection section 5 as the electrodes E for voltage detection. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E in the regions A3 and A4 and the phase difference θ between the voltage and the current I, and the processing unit 9B detects the detected voltage value V and the phase difference θ are stored in the storage unit 8 .

以下、同様にして、接続切替部6Bは、図14に示す12組目までの隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6Bは、1回の第2接続処理において、この処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で12回実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Bは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、1回目の第2接続処理が終了する。 In the same manner, the connection switching unit 6B sets the electrodes E arranged in the pair of adjacent regions A up to the 12th pair shown in FIG. The process of connecting to the input terminals 51a and 51b is executed while sequentially changing the combination of a pair of adjacent areas A. FIG. That is, in this example, the connection switching unit 6B performs this process 12 times in total while sequentially changing all combinations of the pair of adjacent regions A in one second connection process. Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9B detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the first second connection process.

次いで、接続切替部6Bは、2回目の第1接続処理を実行する。この場合、接続切替部6Bは、図14に示すように、1回目の第1接続処理において電流供給部4に接続した各電極Eが配置されている領域A1,A9とは異なる組み合わせの対向する一対の領域A(例えば、領域A2,A10)にそれぞれ配置されている各電極Eを電流供給用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させる。 Next, the connection switching unit 6B executes the first connection process for the second time. In this case, as shown in FIG. 14, the connection switching unit 6B has a combination of opposing electrodes that is different from the regions A1 and A9 where the electrodes E connected to the current supply unit 4 are arranged in the first connection process of the first time. The electrodes E arranged in a pair of regions A (for example, regions A2 and A10) are connected to the output terminals 41a and 41b of the current supply section 4 as the electrodes E for current supply.

続いて、接続切替部6Bは、2回目の第2接続処理を実行する。この場合、接続切替部6Bは、この2回目の第2接続処理において、上記した1回目の第2接続処理と同様にして、図14に示す1組目~12組目の隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせ(この例では、合計で12の組み合わせ)を順次変更しつつ複数回(この例では、合計で12回)実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Bは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、2回目の第2接続処理が終了する。 Subsequently, the connection switching unit 6B executes the second connection process for the second time. In this case, in the second connection process of the second time, the connection switching unit 6B, in the same manner as in the second connection process of the first time, sets the first to twelfth pairs of adjacent regions shown in FIG. The process of connecting the electrodes E arranged in A respectively to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection is applied to all combinations of a pair of adjacent areas A (in this example, , a total of 12 combinations) are sequentially changed and executed a plurality of times (in this example, a total of 12 combinations). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9B detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the second connection process for the second time.

次いで、接続切替部6Bは、図14に示す3回目~8回目の第1接続処理を、対向する一対の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6Bは、第1接続処理を、対向する一対の領域Aのすべての組み合わせを順次変更しつつ合計で8回実行する。また、接続切替部6Bは、上記した第2接続処理を第1接続処理を実行する毎に(つまり、8回)実行し、各第2接続処理において、1組目~12組目の隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を、隣接する一対の領域Aのすべての組み合わせを順次変更しつつ合計で12回実行する。つまり、この例では、接続切替部6Bは、一対の電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を合計で96回(8回の第2接続処理×1回の第2接続処理毎に12回)実行する。また、検出部5は、各第2接続処理において検出部5に接続される一対の電極Eが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Bは、検出された各電圧値Vおよび各位相差θ(96種類の電圧値Vおよび位相差θ)を記憶部8に記憶させる。以上により、完全分離状態における検出処理が終了する。 Next, the connection switching unit 6B executes the third to eighth first connection processes shown in FIG. 14 while sequentially changing the combination of the pair of opposing regions A. As shown in FIG. That is, in this example, the connection switching unit 6B executes the first connection process eight times in total while sequentially changing all combinations of the pair of opposing regions A. FIG. In addition, the connection switching unit 6B executes the above-described second connection processing each time the first connection processing is executed (that is, eight times), and in each second connection processing, the first to twelfth adjacent pairs of The process of connecting the electrodes E arranged in the pair of regions A respectively to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection is performed by connecting all combinations of the pair of adjacent regions A. It is executed 12 times in total while being changed sequentially. That is, in this example, the connection switching unit 6B performs the process of connecting the pair of electrodes E to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection, a total of 96 times (8 times). 2 connection processes×1 second connection process (12 times for each second connection process). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the pair of electrodes E connected to the detection unit 5 is changed in each second connection process, and the processing unit 9B detects each detected The voltage value V and each phase difference θ (96 types of voltage values V and phase differences θ) are stored in the storage unit 8 . Thus, the detection processing in the completely separated state is completed.

次いで、操作部を操作して撹拌器7を作動させ、撹拌を開始させる。次いで、処理部9Bが、撹拌器7を制御して、予め決められた時間だけ撹拌(混合)を継続させた後に、撹拌を停止させる。 Next, the operation part is operated to operate the stirrer 7 to start stirring. Next, the processing section 9B controls the stirrer 7 to continue the stirring (mixing) for a predetermined time, and then stop the stirring.

続いて、混合対象100a,100bを混合した混合状態(図6参照)において、操作部を操作して、検出処理の実行を指示し、これに応じて、処理部9Bが上記した検出処理を実行して、各電極E間の電圧値Vおよび位相差θを検出部5に検出させると共に、その電圧値Vおよび位相差θを記憶部8に記憶させる。 Subsequently, in the mixed state (see FIG. 6) in which the objects to be mixed 100a and 100b are mixed, the operation unit is operated to instruct execution of detection processing, and in response to this, the processing unit 9B executes the detection processing described above. Then, the detection unit 5 detects the voltage value V and the phase difference θ between the electrodes E, and stores the voltage value V and the phase difference θ in the storage unit 8 .

次いで、操作部を操作して、混合度Mの算出の実行を指示する。これに応じて、処理部9は、上記した分割処理を実行し、続いて、上記した標準偏差算出処理を実行して、標準偏差η,ηを算出する。次いで、処理部9は、上記した混合度算出処理を実行して、混合度Mを算出し、算出した混合度Mを記憶部8に記憶させる。続いて、処理部9は、算出した混合度Mを図外の表示部に表示させる。 Next, the operation unit is operated to instruct the execution of the calculation of the mixture degree M. In response to this, the processing unit 9 executes the division processing described above, and then executes the standard deviation calculation processing described above to calculate the standard deviations η and η0 . Next, the processing unit 9 executes the mixing degree calculation process described above, calculates the mixing degree M, and stores the calculated mixing degree M in the storage unit 8 . Subsequently, the processing unit 9 displays the calculated mixture degree M on a display unit (not shown).

このように、この処理装置1Bおよび処理方法では、収容容器2の中心軸21を挟んで対向する一対の領域Aにそれぞれ配置されている各電極Eを電流供給用の電極Eとして電流供給部4に接続させる第1接続処理を対向する一対の領域Aの組み合わせを順次変更しつつ複数回実行し、電流供給用の電極Eが配置されている対向する一対の領域Aを除く他の領域Aのうちの一対の領域Aにそれぞれ配置されている電極Eを電圧検出用の電極Eとして検出部5に接続させる処理を一対の領域Aのすべての組み合わせを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置1Bおよび処理方法によれば、中心軸21を挟んで対向する一対の領域Aにそれぞれ配置されている各電極Eを介して収容容器2に収容されている混合対象100に電流Iを供給することで、収容容器2の中央部に電流Iを流すことができる結果、収容容器2に収容されている混合対象100の中央部分の混合状態が正確に反映された混合度Mを特定することができる。また、この処理装置1Bおよび処理方法によれば、第1接続処理において中心軸21を挟んで対向する一対の領域Aにそれぞれ配置されている各電極Eを電流供給部4に接続させるため、例えば、第1接続処理において隣接する一対の領域Aにそれぞれ配置されている各電極を電流供給用の電極Eとして電流供給部4に接続させる構成および方法と比較して、収容容器2の内周面22の一周に亘って供給位置を変更しつつ電流Iを供給する際の第1接続処理の実行回数を少なく(半分に)抑えることができるため、電圧値Vや位相差θを検出する検出処理の効率を十分に向上させることができる。 As described above, in the processing apparatus 1B and the processing method, the current supply unit 4 uses the electrodes E arranged in the pair of regions A facing each other across the central axis 21 of the container 2 as the electrodes E for current supply. are executed a plurality of times while sequentially changing the combination of the pair of regions A facing each other, and the first connection processing of the regions A other than the pair of regions A facing each other in which the electrodes E for current supply are arranged. A second connection in which the process of connecting the electrodes E respectively arranged in the pair of regions A to the detection unit 5 as the electrodes E for voltage detection is executed a plurality of times while sequentially changing all the combinations of the pair of regions A. The process is executed each time the first connection process is executed. Therefore, according to the processing apparatus 1B and the processing method, the mixture target 100 contained in the container 2 is fed through the electrodes E respectively arranged in the pair of regions A facing each other with the central axis 21 interposed therebetween. By supplying the current I, the current I can be passed through the central portion of the container 2. As a result, the mixing degree M accurately reflects the mixed state of the central portion of the object 100 to be mixed contained in the container 2. can be specified. Further, according to the processing apparatus 1B and the processing method, in order to connect the electrodes E arranged in the pair of regions A facing each other across the central axis 21 to the current supply section 4 in the first connection processing, for example , in the first connection process, each electrode arranged in a pair of adjacent regions A is connected to the current supply unit 4 as the current supply electrode E, the inner peripheral surface of the container 2 22, the number of executions of the first connection process when supplying the current I while changing the supply position over one round can be reduced (halved). efficiency can be sufficiently improved.

次に、「処理装置」他の一例としての図1に示す処理装置1Cおよび処理装置1Cを用いる処理方法について説明する。 Next, a processing method using the processing device 1C shown in FIG. 1 as another example of the “processing device” and the processing device 1C will be described.

この処理装置1Cでは、図10に示すように、各領域Aにおける底面23からの高さが互いに同じ位置に、電極Eが1つずつ配置されている。なお、底面23から各電極Eまでの高さが互いに多少異なる構成を採用することもできる。また、処理装置1Cは、図1に示すように、上記した接続切替部6に代えて接続切替部6Cを備えると共に、上記した処理部9に代えて処理部9Cを備えて構成されている。また、この処理装置1Cでは、接続切替部6Cが、処理部9Cの指示に従って電流供給用の各電極Eと電流供給部4とを接続すると共に、処理部9Cの指示に従って電圧検出用の各電極Eと検出部5とを接続する。 In this processing apparatus 1C, as shown in FIG. 10, one electrode E is arranged in each area A at the same height from the bottom surface 23. As shown in FIG. A configuration in which the heights from the bottom surface 23 to each electrode E are slightly different from each other can also be adopted. Further, as shown in FIG. 1, the processing device 1C includes a connection switching section 6C in place of the connection switching section 6 and a processing section 9C in place of the processing section 9 described above. In the processing device 1C, the connection switching unit 6C connects each electrode E for current supply to the current supply unit 4 according to an instruction from the processing unit 9C, and connects each electrode for voltage detection according to an instruction from the processing unit 9C. E and the detector 5 are connected.

また、接続切替部6Cは、図15,16に示すように、複数(一例として、5つ)の領域Aにそれぞれ配置されている各電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に、他の複数(一例として、5つ)の領域Aにそれぞれ配置されている各電極Eを電流供給用の他方の電極Eとして電流供給部4の他方の出力端子41bに接続させる第1接続処理を、各領域Aの組み合わせを順次変更しつつ複数回(この例では、16回)実行する Further, as shown in FIGS. 15 and 16, the connection switching unit 6C uses each electrode E arranged in each of a plurality of (for example, five) regions A as one electrode E for current supply. 4, and each electrode E arranged in each of a plurality of (for example, five) regions A is used as the other electrode E for current supply. The first connection process for connecting to the output terminal 41b of is executed a plurality of times (16 times in this example) while sequentially changing the combination of each area A.

また、接続切替部6Cは、図15,16に示すように、電流供給用の電極Eのうちのいずれか1つの電極Eを電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、電圧検出用の一方の電極Eが配置されている領域Aを除く他の領域Aのうちのいずれか1つの領域Aに配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる処理をいずれか1つの領域Aを順次変更しつつ複数回(この例では、15回)実行する第2接続処理を、第1接続処理を実行する毎に実行する。 15 and 16, the connection switching unit 6C uses one of the electrodes E for current supply as one electrode E for voltage detection and switches one input terminal of the detection unit 5. 51a, and the electrode E arranged in any one of the regions A other than the region A where one electrode E for voltage detection is arranged is connected to the other electrode E for voltage detection. The first connection process is the second connection process in which the process of connecting the electrode E to the other input terminal 51b of the detection unit 5 is executed a plurality of times (15 times in this example) while sequentially changing one of the areas A. Run every time you run

また、この処理装置1Cでは、検出部5が各第2接続処理において接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出する。 Further, in the processing device 1C, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E to be connected is changed in each second connection process.

この処理装置1Cを用いて、上記した混合対象100a,100bの混合度Mを特定する際には、混合対象100a,100bを収容容器2の本体部2aに収容し(図5参照)、次いで、混合対象100a,100bの混合を開始する以前の完全分離状態において、図外の操作部を操作して、検出処理の実行を指示する。検出処理では、処理部9Cは、まず、接続切替部6Cに対して接続処理を実行させる。 When using this processing apparatus 1C to specify the degree of mixing M of the above-described mixed objects 100a and 100b, the mixed objects 100a and 100b are accommodated in the main body 2a of the container 2 (see FIG. 5), and then In the completely separated state before starting the mixing of the objects to be mixed 100a and 100b, an operation unit (not shown) is operated to instruct execution of detection processing. In the detection process, the processing unit 9C first causes the connection switching unit 6C to perform connection processing.

接続処理では、接続切替部6Cは、電流供給用の複数の電極Eを電流供給部4に接続させる1回目の第1接続処理を実行する。具体的には、接続切替部6Cは、図15,16に示すように、5つの領域A(例えば、領域A1~A5)にそれぞれ配置されている各電極Eを電流供給用の一方の電極Eとして電流供給部4の一方の出力端子41aに接続させると共に領域A1~A5を除く他の5つの領域A(例えば、領域A9~A13)にそれぞれ配置されている各電極Eを電流供給用の一方の電極Eとして電流供給部4の他方の出力端子41bに接続させる。 In the connection process, the connection switching unit 6</b>C executes the first connection process for the first time to connect the current supply electrodes E to the current supply unit 4 . Specifically, as shown in FIGS. 15 and 16, the connection switching unit 6C switches each electrode E arranged in five areas A (for example, areas A1 to A5) to one electrode E for current supply. are connected to one output terminal 41a of the current supply unit 4, and each electrode E arranged in each of the other five areas A (for example, areas A9 to A13) excluding the areas A1 to A5 is connected to one output terminal 41a for current supply. is connected to the other output terminal 41b of the current supply unit 4 as the electrode E of the current supply unit 4. As shown in FIG.

続いて、接続切替部6Cは、1回目の第2接続処理を実行する。この1回目の第2接続処理では、接続切替部6Cは、図15、および図16における領域Aの組み合わせの1組目に示すように、電流供給用の電極Eのうちのいずれか1つの電極E(例えば、領域A1に配置されている電極E)を電圧検出用の一方の電極Eとして検出部5の一方の入力端子51aに接続させると共に、電圧検出用の一方の電極Eが配置されている領域A1を除く他の領域A(領域A2~A16)のうちのいずれか1つの領域A(例えば、領域A16)に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の他方の入力端子51bに接続させる。 Subsequently, the connection switching unit 6C executes the second connection process for the first time. In this first second connection process, the connection switching unit 6C selects one of the electrodes E for current supply, as shown in the first set of combinations in the region A in FIGS. 15 and 16 . E (for example, the electrode E arranged in the area A1) is connected to one input terminal 51a of the detection unit 5 as one electrode E for voltage detection, and one electrode E for voltage detection is arranged. The detection unit 5 uses the electrode E arranged in one of the regions A (for example, the region A16) as the other electrode E for voltage detection, out of the regions A (regions A2 to A16) other than the region A1 where the is connected to the other input terminal 51b.

次いで、処理部9Cは、電流供給部4に対して電流Iの出力を指示し、電流供給部4が電流Iを出力する。この際に、各領域A1~A5にそれぞれ配置されている各電極Eと、各領域A9~A13にそれぞれ配置されている各電極Eとの間に電流Iが供給される。続いて、検出部5が、領域A1,A16の各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Cが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, the processing unit 9C instructs the current supply unit 4 to output the current I, and the current supply unit 4 outputs the current I. At this time, the current I is supplied between each electrode E arranged in each of the regions A1 to A5 and each electrode E arranged in each of the regions A9 to A13. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E in the regions A1 and A16 and the phase difference θ between the voltage and the current I, and the processing unit 9C detects the detected voltage value V and the phase difference θ are stored in the storage unit 8 .

次いで、接続切替部6Cは、図16における領域Aの組み合わせの2組目に示すように、1組目と同じ領域A1の電極Eを電圧検出用の一方の電極Eをとして検出部5の入力端子51aに接続させると共に、領域A1を除く領域A2~A16のうちの領域A16(1組目で電圧検出用の他方とした電極Eが配置されている領域A16)を除く他のいずれか1つの領域A(例えば、領域A15)に配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の入力端子51bに接続させる。続いて、検出部5が、領域A1,A15の各電極E間の電圧の電圧値V、およびその電圧と電流Iとの位相差θを検出し、処理部9Cが、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。 Next, the connection switching unit 6C uses the electrode E in the same area A1 as the first set as one electrode E for voltage detection, as shown in the second set of combinations in the area A in FIG. In addition to being connected to the terminal 51a, any one of the areas A2 to A16 excluding the area A1 except for the area A16 (the area A16 where the electrode E, which is the other for voltage detection in the first set) is arranged The electrode E arranged in the area A (for example, the area A15) is connected to the input terminal 51b of the detection section 5 as the other electrode E for voltage detection. Subsequently, the detection unit 5 detects the voltage value V of the voltage between the electrodes E in the regions A1 and A15 and the phase difference θ between the voltage and the current I, and the processing unit 9C detects the detected voltage value V and the phase difference θ are stored in the storage unit 8 .

以下、同様にして、接続切替部6Cは、図16における領域Aの組み合わせの3組目~15組目に示すように、領域A1の電極Eを電圧検出用の一方の電極Eとして検出部5の入力端子51aに接続させると共に、領域A2~A16のうちのいずれか1つの領域Aに配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の入力端子51bに接続させる処理を、いずれか1つの領域Aを順次変更しつつ実行する。つまり、この例では、接続切替部6Cは、1回の第2接続処理において、この処理を、いずれか1つの領域Aを順次変更しつつ合計で15回実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Cは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、1回目の第2接続処理が終了する。 Similarly, the connection switching unit 6C sets the electrode E in the area A1 as one electrode E for voltage detection, as shown in the third to fifteenth combinations of the area A in FIG. and connect the electrode E arranged in one of the regions A2 to A16 to the input terminal 51b of the detection unit 5 as the other electrode E for voltage detection. are executed while one of the areas A is sequentially changed. That is, in this example, the connection switching unit 6C executes this process 15 times in total while sequentially changing any one of the areas A in one second connection process. Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9C detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the first second connection process.

次いで、接続切替部6Cは、2回目の第1接続処理を実行する。この場合、接続切替部6Cは、図16に示すように、1回目の第1接続処理において電流供給部4に接続した各電極Eが配置されている領域A1~A5および領域A9~A13の組み合わせとは異なる組み合わせの複数の領域A(例えば、領域A2~A6および領域A10~A14)にそれぞれ配置されている各電極Eを電流供給用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させる。 Next, the connection switching unit 6C executes the first connection process for the second time. In this case, as shown in FIG. 16, the connection switching unit 6C selects a combination of the areas A1 to A5 and the areas A9 to A13 where the electrodes E connected to the current supply unit 4 are arranged in the first connection processing of the first time. Each of the electrodes E arranged in a plurality of regions A (for example, regions A2 to A6 and regions A10 to A14) of different combinations is used as each electrode E for current supply, and each output terminal 41a of the current supply unit 4, 41b respectively.

続いて、接続切替部6Cは、2回目の第2接続処理を実行する。この場合、接続切替部6Cは、この2回目の第2接続処理において、上記した1回目の第2接続処理と同様にして、図16における領域Aの組み合わせの1組目~15組目に示すように、電流供給用の電極Eのうちのいずれか1つの電極E(例えば、領域A2に配置されている電極E)を電圧検出用の一方の電極Eとして検出部5の入力端子51aに接続させると共に、領域A2を除く他の領域A(領域A1,A3~A16)のうちのいずれか1つの領域Aに配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の入力端子51bに接続させる処理を、いずれか1つの領域Aを順次変更しつつ複数回(この例では、合計で15回)実行する。また、検出部5は、第2接続処理において検出部5に接続される一対の電極Eの組み合わせが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Cは、検出された電圧値Vおよび位相差θを記憶部8に記憶させる。これにより、2回目の第2接続処理が終了する。 Subsequently, the connection switching unit 6C executes the second connection process for the second time. In this case, in the second connection processing of the second time, the connection switching unit 6C performs the first to fifteenth combinations of the region A in FIG. 16 in the same manner as the first second connection processing. , one of the electrodes E for current supply (for example, the electrode E arranged in the area A2) is connected to the input terminal 51a of the detection unit 5 as one electrode E for voltage detection. In addition, the electrode E arranged in any one of the regions A (regions A1, A3 to A16) other than the region A2 is used as the other electrode E for voltage detection, and is input to the detection unit 5. The process of connecting to the terminal 51b is executed a plurality of times (in this example, 15 times in total) while sequentially changing one of the areas A. FIG. Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the combination of the pair of electrodes E connected to the detection unit 5 is changed in the second connection process, and the processing unit 9C detects The storage unit 8 is caused to store the voltage value V and the phase difference θ. This completes the second connection process for the second time.

次いで、接続切替部6Cは、図16に示す3回目~16回目の第1接続処理を、複数の領域Aの組み合わせを順次変更しつつ実行する。つまり、この例では、接続切替部6Cは、第1接続処理を、複数の領域Aの組み合わせを順次変更しつつ合計で16回実行する。また、接続切替部6Cは、上記した第2接続処理を第1接続処理を実行する毎に(つまり、16回)実行し、各第2接続処理において、電流供給用の電極Eのうちのいずれか1つの電極Eを電圧検出用の一方の電極Eとして検出部5の入力端子51aに接続させると共に、電圧検出用の一方の電極Eが配置されている領域Aを除く他の領域Aのうちのいずれか1つの領域Aに配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の入力端子51bに接続させる処理をいずれか1つの領域Aを順次変更しつつ複数回(この例では、合計で15回)実行する。つまり、この例では、接続切替部6Cは、一対の電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる処理を合計で240回(16回の第2接続処理×1回の第2接続処理毎に15回)実行する。また、検出部5は、各第2接続処理において検出部5に接続される一対の電極Eが変更される毎に電圧値Vおよび位相差θを検出し、処理部9Cは、検出された各電圧値Vおよび各位相差θ(240種類の電圧値Vおよび位相差θ)を記憶部8に記憶させる。以上により、完全分離状態における検出処理が終了する。 Next, the connection switching unit 6C executes the third to sixteenth first connection processes shown in FIG. 16 while sequentially changing the combination of the plurality of areas A. FIG. That is, in this example, the connection switching unit 6C executes the first connection process 16 times in total while sequentially changing the combination of the plurality of areas A. FIG. In addition, the connection switching unit 6C executes the above-described second connection processing each time the first connection processing is executed (that is, 16 times), and in each second connection processing, one of the electrodes E for current supply is or one electrode E is connected to the input terminal 51a of the detection unit 5 as one electrode E for voltage detection, and one of the regions A excluding the region A in which the one electrode E for voltage detection is arranged The process of connecting the electrode E arranged in one of the areas A to the input terminal 51b of the detection unit 5 as the other electrode E for voltage detection is repeated a plurality of times while sequentially changing one of the areas A ( In this example, 15 times in total). That is, in this example, the connection switching unit 6C performs the process of connecting the pair of electrodes E to the input terminals 51a and 51b of the detection unit 5 as the electrodes E for voltage detection a total of 240 times (16 times). 2 connection processing×1 second connection processing (15 times for each second connection processing). Further, the detection unit 5 detects the voltage value V and the phase difference θ each time the pair of electrodes E connected to the detection unit 5 is changed in each second connection process, and the processing unit 9C detects each detected The voltage value V and each phase difference θ (240 types of voltage values V and phase differences θ) are stored in the storage unit 8 . Thus, the detection processing in the completely separated state is completed.

次いで、操作部を操作して撹拌器7を作動させ、撹拌を開始させる。次いで、処理部9Cが、撹拌器7を制御して、予め決められた時間だけ撹拌(混合)を継続させた後に、撹拌を停止させる。 Next, the operation part is operated to operate the stirrer 7 to start stirring. Next, the processing section 9C controls the stirrer 7 to continue the stirring (mixing) for a predetermined time, and then stops the stirring.

続いて、混合対象100a,100bを混合した混合状態(図6参照)において、操作部を操作して、検出処理の実行を指示し、これに応じて、処理部9Cが上記した検出処理を実行して、各電極E間の電圧値Vおよび位相差θを検出部5に検出させると共に、その電圧値Vおよび位相差θを記憶部8に記憶させる。 Subsequently, in the mixed state (see FIG. 6) in which the objects to be mixed 100a and 100b are mixed, the operation unit is operated to instruct the execution of detection processing, and in response to this, the processing unit 9C executes the detection processing described above. Then, the detection unit 5 detects the voltage value V and the phase difference θ between the electrodes E, and stores the voltage value V and the phase difference θ in the storage unit 8 .

次いで、操作部を操作して、混合度Mの算出の実行を指示する。これに応じて、処理部9は、上記した分割処理を実行し、続いて、上記した標準偏差算出処理を実行して、標準偏差η,ηを算出する。次いで、処理部9は、上記した混合度算出処理を実行して、混合度Mを算出し、算出した混合度Mを記憶部8に記憶させる。続いて、処理部9は、算出した混合度Mを図外の表示部に表示させる。 Next, the operation unit is operated to instruct the execution of the calculation of the mixture degree M. In response to this, the processing unit 9 executes the division processing described above, and then executes the standard deviation calculation processing described above to calculate the standard deviations η and η0 . Next, the processing unit 9 executes the mixing degree calculation process described above, calculates the mixing degree M, and stores the calculated mixing degree M in the storage unit 8 . Subsequently, the processing unit 9 displays the calculated mixture degree M on a display unit (not shown).

このように、この処理装置1Cおよび処理方法では、複数の領域Aにそれぞれ配置されている各電極Eを電流供給用の電極Eとして電流供給部4に接続させる第1接続処理を各領域Aの組み合わせを順次変更しつつ複数回実行し、電流供給用の電極Eのうちのいずれか1つの電極Eとその電極Eが配置されている領域Aを除く他の領域Aのうちのいずれか1つの領域Aに配置されている電極Eとを検出部5に接続させる処理をいずれか1つの領域Aを順次変更しつつ複数回実行する第2接続処理を第1接続処理を実行する毎に実行する。このため、この処理装置1Cおよび処理方法によれば、一対の電極E間に電流Iを供給する構成および方法と比較して、収容容器2に収容されている混合対象100内に電流Iを均一に流すことができる。したがって、この処理装置1Cおよび処理方法によれば、混合対象100内を流れる電流Iが不均一なことによって検出部5によって検出される電圧値Vが不正確となる事態を確実に回避して、混合度Mをより正確に特定することができる。 As described above, in the processing apparatus 1C and the processing method, the first connection processing for connecting the electrodes E arranged in the plurality of regions A to the current supply unit 4 as the electrodes E for current supply is performed in each region A. The combination is sequentially changed and executed a plurality of times, and any one of the electrodes E for current supply and any one of the other regions A excluding the region A in which the electrode E is arranged Each time the first connection process is executed, the second connection process is executed a plurality of times while sequentially changing one of the areas A to connect the electrodes E arranged in the area A to the detection unit 5. . For this reason, according to the processing apparatus 1C and the processing method, compared to the configuration and method of supplying the current I between the pair of electrodes E, the current I is uniformly distributed in the mixed object 100 housed in the container 2. can flow to Therefore, according to the processing apparatus 1C and the processing method, it is possible to reliably avoid a situation in which the voltage value V detected by the detection unit 5 becomes inaccurate due to non-uniformity of the current I flowing through the object to be mixed 100. The degree of mixing M can be specified more accurately.

なお、処理装置および処理方法は、上記の構成および方法に限定されない。例えば、混ざり具合としての混合度M(混ざり具合を示す指標)を特定する処理装置1,1A,1B,1Cに適用した例について上記したが、混ざり具合を示す他の指標を特定する処理装置および処理方法に適用することもできる。例えば、分散度や均一性(均一性指標)を混ざり具合を示す指標として特定する処理装置および処理方法に適用することができる。 The processing apparatus and processing method are not limited to the above configurations and methods. For example, the examples applied to the processing devices 1, 1A, 1B, and 1C that specify the degree of mixing M (index indicating the degree of mixing) as the degree of mixing have been described above, but the processing devices that specify other indices indicating the degree of mixing and It can also be applied to processing methods. For example, it can be applied to a processing apparatus and a processing method that specify the degree of dispersion or uniformity (uniformity index) as an index indicating the degree of mixing.

また、電流供給部4が電流Iとしての交流定電流を出力し、検出部5が交流電圧の電圧値Vおよびその交流電圧と電流Iとの位相差θを検出する例について上記したが、電流供給部4が直流電流を出力し検出部5が直流電圧の電圧値Vを検出して、その電圧値Vに基づいて混ざり具合(混ざり具合を示す指標)を特定する構成および方法を採用することもできる。 Further, the example in which the current supply unit 4 outputs a constant alternating current as the current I and the detection unit 5 detects the voltage value V of the alternating voltage and the phase difference θ between the alternating voltage and the current I has been described above. Adopting a configuration and method in which the supply unit 4 outputs a DC current, the detection unit 5 detects the voltage value V of the DC voltage, and the degree of mixture (index indicating the degree of mixture) is specified based on the voltage value V. can also

また、第1接続処理を一対の領域Aの組み合わせを変更して複数回実行する例について上記したが、第1接続処理を1回だけ実行する(第2接続処理も1回だけ実行する)構成および方法を採用することもできる。 Also, the example of executing the first connection process multiple times by changing the combination of the pair of areas A has been described above, but the configuration is such that the first connection process is executed only once (the second connection process is also executed only once). and methods can also be employed.

また、処理装置1,1A,1B,1Cおよび処理装置1,1A,1B,1Cによって実行される処理方法を用いて処理方法を用いて電気的特性が互いに異なる2種類の混合対象100a,100bの混合度Mを特定する例について上記したが、電気的特性が互いに異なる3種類以上の混合対象の混合度Mを特定する際にこれらの処理装置1,1A,1B,1Cおよび処理方法を用いることができ、この際にも、上記した各効果と同様の効果を実現することができる。 In addition, two types of mixed objects 100a and 100b having different electrical characteristics are processed using the processing methods executed by the processing apparatuses 1, 1A, 1B, and 1C and the processing apparatuses 1, 1A, 1B, and 1C. Although the example of specifying the mixing degree M has been described above, these processing apparatuses 1, 1A, 1B, and 1C and the processing method can be used when specifying the mixing degree M of three or more types of mixing objects having different electrical characteristics. Also in this case, the same effects as those described above can be realized.

また、有機溶媒および導電性粒子(カーボンブラック)を混合対象とした例について上記したが、混合対象はこれに限定されず、電気的特性が互いに異なる複数種類の任意の物質を混合対象とすることができる。一例として、水と食塩のように、溶媒と溶媒に溶解する溶質とを混合対象とすることもできる。また、同じ物質で構成されて粒径が互いに異なる(電気的特性が互いに異なる)複数種類の物体を混合対象とすることもできる。さらに、同じ物質で構成されて結晶構造が互いに異なる(電気的特性が互いに異なる)複数種類の物体を混合対象とすることもできる。また、各混合対象の状態は、固体、液体、気体のいずれであってもよい。 In addition, although an example in which an organic solvent and conductive particles (carbon black) are mixed is described above, the mixed object is not limited to this, and a plurality of types of arbitrary substances having different electrical properties may be mixed. can be done. For example, a solvent and a solute that dissolves in the solvent, such as water and salt, can be mixed. In addition, a plurality of types of objects which are made of the same material but have different particle sizes (different electrical characteristics) can be mixed. Furthermore, a plurality of types of objects that are made of the same material but have different crystal structures (different electrical characteristics) can be mixed. Moreover, the state of each object to be mixed may be any of solid, liquid, and gas.

また、処理装置1,1A、および処理装置1,1Aによって実行される処理方法における第1接続処理において、互いに隣接する一対の領域Aにそれぞれ配置されている各電極Eを電流供給用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させる例について上記したが、第1接続処理において、互いに隣接していない(例えば、1つ置きや2つ置きの)一対の領域Aにそれぞれ配置されている電極Eを電圧検出用の各電極Eとして電流供給部4の各出力端子41a,41bにそれぞれ接続させることもできる。 In addition, in the first connection processing in the processing apparatuses 1 and 1A and the processing method executed by the processing apparatuses 1 and 1A, each electrode E arranged in a pair of regions A adjacent to each other is connected to each electrode for current supply. The example of connecting each of the output terminals 41a and 41b of the current supply unit 4 as E is described above. can be connected to the output terminals 41a and 41b of the current supply unit 4 as the electrodes E for voltage detection.

また、処理装置1,1A,1B、および処理装置1,1A,1Bによって実行される処理方法における第2接続処理において、互いに隣接する一対の領域Aにそれぞれ配置されている各電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させる例について上記したが、第2接続処理において、互いに隣接していない(例えば、1つ置きや2つ置きの)一対の領域Aにそれぞれ配置されている電極Eを電圧検出用の各電極Eとして検出部5の各入力端子51a,51bにそれぞれ接続させることもできる。 In addition, in the second connection process in the processing method executed by the processing apparatuses 1, 1A, 1B and the processing apparatuses 1, 1A, 1B, voltage detection is performed on the electrodes E arranged in the pair of regions A adjacent to each other. Although the example in which each electrode E is connected to each input terminal 51a, 51b of the detection unit 5 as each electrode E is described above, in the second connection process, a pair of electrodes E that are not adjacent to each other (for example, every other one or every two) It is also possible to connect the electrodes E respectively arranged in the regions A to the input terminals 51a and 51b of the detection section 5 as the electrodes E for voltage detection.

また、処理装置1C、および処理装置1Cによって実行される処理方法における第1接続処理において、5つの領域Aにそれぞれ配置されている各電極E(つまり、5つの電極E)を電流供給部4の一方の出力端子41aに接続させると共に、5つの領域Aにそれぞれ配置されている各電極E(つまり、5つの電極E)を電流供給部4の他方の出力端子41bに接続させる例について上記したが、電流供給部4の出力端子41a,41bに接続させる電極Eの数は5つに限定されず、2つ~4つ、および6つ以上の任意の数(複数)の電極Eを電流供給部4の出力端子41a,41bに接続させることができる。この場合、電流供給部4の出力端子41aに接続させる電極Eの数と電流供給部4の出力端子41bに接続させる電極Eの数とが異なっても良い。また、第1接続処理において、電流供給部4の出力端子41a,41bのいずれか一方(上記の例では、出力端子41a)には電極Eを1つだけ接続させ、出力端子41a,41bの他方には複数の電極Eを接続させる構成および方法を採用することもできる。 In addition, in the first connection process in the processing device 1C and the processing method executed by the processing device 1C, the electrodes E arranged in the five regions A (that is, the five electrodes E) are connected to the current supply unit 4. The example of connecting to one output terminal 41a and connecting each electrode E (that is, five electrodes E) arranged in each of the five regions A to the other output terminal 41b of the current supply unit 4 has been described above. , the number of electrodes E to be connected to the output terminals 41a and 41b of the current supply unit 4 is not limited to five, and an arbitrary number (plurality) of two to four and six or more electrodes E may be connected to the current supply unit. 4 output terminals 41a and 41b. In this case, the number of electrodes E connected to the output terminal 41a of the current supply section 4 and the number of electrodes E connected to the output terminal 41b of the current supply section 4 may be different. In the first connection process, only one electrode E is connected to one of the output terminals 41a and 41b of the current supply unit 4 (the output terminal 41a in the above example), and the other of the output terminals 41a and 41b is connected. A configuration and method for connecting a plurality of electrodes E can also be adopted.

また、処理装置1C、および処理装置1Cによって実行される処理方法における第2接続処理において、電流供給用のいずれか1つの電極Eを電圧検出用の一方の電極Eとして検出部5の入力端子51aに接続させると共に、電圧検出用の一方の電極Eが配置されている領域Aを除く他の領域A(上記の例では、15個の領域A:以下単に「他の領域A」ともいう)のうちのいずれか1つの領域Aに配置されている電極Eを電圧検出用の他方の電極Eとして検出部5の入力端子51bに接続させる処理(以下「対象処理」ともいう)を、他の領域Aのすべての電極Eについて順次変更しつつ実行する(つまり、合計で15回実行する)例について上記したが、他の領域Aのすべの電極Eについて対象処理を実行することは必ずしも必要ではない。例えば、他の領域Aのすべての電極Eのうちの、電流供給部4の一方の出力端子41aに接続されている電極Eを除く電極Eだけを対象として対象処理を実行する構成および方法を採用することもできる。また、他の領域Aのすべての電極Eのうちの、電流供給部4の他方の出力端子41bに接続されている電極Eを除く電極Eだけを対象として対象処理を実行する構成および方法を採用することもできる。さらに、他の領域Aのすべての電極Eのうちの、電流供給部4の双方の出力端子41a,41bに接続されている電極Eを除く電極Eだけを対象として対象処理を実行する構成および方法を採用することもできる。 In addition, in the processing device 1C and the second connection processing in the processing method executed by the processing device 1C, any one electrode E for current supply is used as one electrode E for voltage detection, and the input terminal 51a of the detection unit 5 and other regions A (in the above example, 15 regions A: hereinafter simply referred to as “other regions A”) excluding the region A where one electrode E for voltage detection is arranged The process of connecting the electrode E arranged in one of the areas A to the input terminal 51b of the detection unit 5 as the other electrode E for voltage detection (hereinafter also referred to as "target process") is performed in the other area. Although the example in which all the electrodes E in A are sequentially changed and executed (that is, executed 15 times in total) has been described above, it is not always necessary to execute the target process for all electrodes E in other regions A. . For example, a configuration and method for executing the target process only on the electrodes E excluding the electrodes E connected to one output terminal 41a of the current supply unit 4 among all the electrodes E in the other area A are adopted. You can also In addition, a configuration and method are adopted in which target processing is performed on only the electrodes E excluding the electrodes E connected to the other output terminal 41b of the current supply unit 4 among all the electrodes E in the other area A. You can also Furthermore, the configuration and method for executing the target process only on the electrodes E excluding the electrodes E connected to both the output terminals 41a and 41b of the current supply unit 4 among all the electrodes E in the other area A. can also be adopted.

また、接続切替部6,6A,6B,6Cが第1接続処理および第2接続処理の双方を実行する例について上記したが、第1接続処理および第2接続処理を別々の接続切替部が実行する構成を採用することもできる。 Further, although the example in which the connection switching units 6, 6A, 6B, and 6C execute both the first connection process and the second connection process has been described above, the first connection process and the second connection process are executed by separate connection switching units. A configuration can also be adopted.

また、電流供給部4が電流I(例えば、交流定電流)を出力する構成例について上記したが、電流供給部4が定電圧を出力することで電流Iを供給する(電流供給部4として定電圧源を用いる)構成を採用することもできる。この場合、混合対象100a,100bのインピーダンスが高いときには、電流制御よりも電圧制御の方が制御を容易に行うことができる。このため、電流供給部4として定電圧源を用いる構成を採用することで、インピーダンスが高い混合対象100a,100bに対して電流供給部4から安定的に電流Iを供給することができる。 In addition, although the configuration example in which the current supply unit 4 outputs the current I (for example, alternating current constant current) has been described above, the current I is supplied by the current supply unit 4 outputting a constant voltage (the current supply unit 4 is a constant voltage). (using a voltage source) can also be employed. In this case, when the impedance of the objects to be mixed 100a and 100b is high, voltage control can be performed more easily than current control. Therefore, by adopting a configuration using a constant voltage source as the current supply unit 4, the current I can be stably supplied from the current supply unit 4 to the mixed objects 100a and 100b having high impedance.

1,1A,1B,1C 処理装置
2 収容容器
4 電流供給部
5 検出部
6,6A,6B,6C 接続切替部
9,9A,9B,9C 処理部
41a,41b 出力端子
51a,51b 入力端子
100a,100b 混合対象
A1~A16 領域
E,Ef,Efh,Efl,Es 電極
M 混合度
V 電圧値
Reference Signs List 1, 1A, 1B, 1C Processing device 2 Storage container 4 Current supply unit 5 Detection unit 6, 6A, 6B, 6C Connection switching unit 9, 9A, 9B, 9C Processing unit 41a, 41b Output terminals 51a, 51b Input terminals 100a, 100b Mixing target A1 to A16 Area E, Ef, Efh, Efl, Es Electrode M Mixing degree V Voltage value

Claims (8)

電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、
前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、
前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、
前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、
前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、
前記各電極は、前記各領域における前記収容容器の底面からの高さが互いに等しい高位置側の各位置および当該高位置側の各位置から当該収容容器の高さ方向に沿って当該底面側に離間して当該底面からの高さが互いに等しい低位置側の各位置にそれぞれ配置された複数の第1電極と、前記各領域の前記各第1電極の間における底面からの高さが互いに等しい各位置にそれぞれ配置された複数の第2電極とを備え、
前記接続切替部は、前記第1接続処理において、一対の前記領域の一方に配置されている前記各第1電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記各第1電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、一対の前記領域の一方に配置されている前記第2電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該一対の領域の他方に配置されている前記第2電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理装置。
A cylindrical storage container that stores a plurality of types of mixing targets having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current that supplies current between the electrodes for current supply. a supply unit, a voltage detection unit for detecting a voltage between the electrodes for voltage detection, each electrode for current supply and the current supply unit are connected, and each electrode for voltage detection and the voltage detection unit are connected. and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit,
each of the electrodes is arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of the container,
The connection switching unit performs a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to the current supply unit as the current supply electrode once or sequentially in combination with each of the regions. While changing and executing a plurality of times, the process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit as the electrodes for voltage detection while sequentially changing the combination of the pair of regions executing a second connection process that is executed a plurality of times each time the first connection process is executed;
The voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process ,
The processing unit divides a virtual plane defined to be orthogonal to the center axis of the container into a plurality of divided regions having a predetermined planar shape in each of the mixing objects contained in the container, and , the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and the conductivity of all the divided regions in the virtual plane is the population standard of the population Calculate the deviation, and subtract the division value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1. Subtraction A processing device that identifies the degree of mixing based on a value,
Each of the electrodes extends from each position on the high position side of each area to the same height from the bottom surface of the container and from each position on the high position side along the height direction of the container toward the bottom surface side. A plurality of first electrodes spaced apart from each other and having equal heights from the bottom surface, respectively, and arranged at respective positions on the low position side, and the heights from the bottom surface between the first electrodes in each region being equal to each other. A plurality of second electrodes arranged at respective positions,
The connection switching unit connects each of the first electrodes arranged in one of the pair of regions to one output terminal of the current supply unit as one electrode for current supply in the first connection process. and connecting each of the first electrodes arranged in the other of the pair of regions to the other output terminal of the current supply unit as the other electrode for current supply, and in the second connection process, the pair of The second electrode arranged in one of the regions is connected to one input terminal of the voltage detection section as one electrode for voltage detection, and the second electrode arranged in the other of the pair of regions is connected to one input terminal of the voltage detection unit. A processing device for executing a process of connecting the electrode as the other electrode for voltage detection to the other input terminal of the voltage detection unit a plurality of times while sequentially changing all combinations of the pair of regions.
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、
前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、
前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、
前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、
前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、
前記各電極は、前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、
前記接続切替部は、前記第1接続処理において、一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極が配置されている前記一対の領域を除く他の前記領域のうちの他の一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該他の一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該他の一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理装置。
A cylindrical storage container that stores a plurality of types of mixing targets having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current that supplies current between the electrodes for current supply. a supply unit, a voltage detection unit for detecting a voltage between the electrodes for voltage detection, each electrode for current supply and the current supply unit are connected, and each electrode for voltage detection and the voltage detection unit are connected. and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit,
each of the electrodes is arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of the container,
The connection switching unit performs a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to the current supply unit as the current supply electrode once or sequentially in combination with each of the regions. While changing and executing a plurality of times, the process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit as the electrodes for voltage detection while sequentially changing the combination of the pair of regions executing a second connection process that is executed a plurality of times each time the first connection process is executed;
The voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process ,
The processing unit divides a virtual plane defined to be orthogonal to the center axis of the container into a plurality of divided regions having a predetermined planar shape in each of the mixing objects contained in the container, and , the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and the conductivity of all the divided regions in the virtual plane is the population standard of the population Calculate the deviation, and subtract the division value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1. Subtraction A processing device that identifies the degree of mixing based on a value,
Each of the electrodes is arranged at each position in the region with the same height from the bottom surface of the container,
In the first connection process, the connection switching unit connects the electrode arranged in one of the pair of regions as one of the electrodes for current supply to one output terminal of the current supply unit. The electrode arranged in the other of the pair of regions is connected as the other electrode for current supply to the other output terminal of the current supply unit, and in the second connection process, the electrode for current supply is arranged. one input terminal of the voltage detection unit, with the electrode arranged in one of the other pair of regions as the one electrode for voltage detection, of the other regions excluding the pair of regions where the and connecting the electrode arranged in the other of the other pair of regions to the other input terminal of the voltage detection unit as the other electrode for voltage detection. A processing device that executes multiple times while sequentially changing all combinations of
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、
前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、
前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、
前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、
前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、
前記各電極は、4つ以上の偶数の前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、
前記接続切替部は、前記第1接続処理において、前記収容容器の中心軸を挟んで対向する一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該対向する一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極が配置されている前記対向する一対の領域を除く他の前記領域のうちの一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理装置。
A cylindrical storage container that stores a plurality of types of mixing targets having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current that supplies current between the electrodes for current supply. a supply unit, a voltage detection unit for detecting a voltage between the electrodes for voltage detection, each electrode for current supply and the current supply unit are connected, and each electrode for voltage detection and the voltage detection unit are connected. and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit,
each of the electrodes is arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of the container,
The connection switching unit performs a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to the current supply unit as the current supply electrode once or sequentially in combination with each of the regions. While changing and executing a plurality of times, the process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit as the electrodes for voltage detection while sequentially changing the combination of the pair of regions executing a second connection process that is executed a plurality of times each time the first connection process is executed;
The voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process ,
The processing unit divides a virtual plane defined to be orthogonal to the center axis of the container into a plurality of divided regions having a predetermined planar shape in each of the mixing objects contained in the container, and , the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and the conductivity of all the divided regions in the virtual plane is the population standard of the population Calculate the deviation, and subtract the division value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1. Subtraction A processing device that identifies the degree of mixing based on a value,
Each of the electrodes is arranged at each position where the height from the bottom surface of the container is equal to each other in the four or more even-numbered regions,
In the first connection process, the connection switching unit uses the electrode arranged in one of the pair of regions facing each other across the central axis of the container as one electrode for current supply. and connecting the electrode arranged in the other of the pair of opposing regions to the other output terminal of the current supply unit as the other electrode for current supply, In the 2-connection process, the electrodes arranged in one of the pair of regions other than the pair of opposing regions where the electrodes for current supply are arranged are connected to the electrodes for voltage detection. One electrode is connected to one input terminal of the voltage detection section and the electrode arranged in the other of the pair of regions is connected to the other input terminal of the voltage detection section as the other electrode for voltage detection. A processing device that executes a process of connecting a plurality of times while sequentially changing all combinations of the pair of areas .
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器と、当該収容容器内に配設された複数の電極と、電流供給用の前記電極間に電流を供給する電流供給部と、電圧検出用の前記電極間の電圧を検出する電圧検出部と、前記電流供給用の各電極と前記電流供給部とを接続すると共に前記電圧検出用の各電極と前記電圧検出部とを接続する接続切替部と、前記電圧検出部によって検出された電圧値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理を実行する処理部とを備え、
前記各電極は、前記収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域にそれぞれ配置され、
前記接続切替部は、複数の前記領域にそれぞれ配置されている前記各電極を前記電流供給用の電極として前記電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行すると共に、一対の前記領域にそれぞれ配置されている前記各電極を前記電圧検出用の電極として前記電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を、前記第1接続処理を実行する毎に実行し、
前記電圧検出部は、前記各第2接続処理において当該電圧検出部に接続する前記各電極が変更される毎に前記電圧値を検出し、
前記処理部は、前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記混ざり具合を特定する処理装置であって、
前記各電極は、前記領域における前記収容容器の底面からの高さが互いに等しい各位置にそれぞれ配置され、
前記接続切替部は、前記第1接続処理において、1または複数の前記領域にそれぞれ配置されている各前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該複数の領域を除く他の複数の前記領域にそれぞれ配置されている各前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続させ、前記第2接続処理において、前記電流供給用の電極のうちのいずれか1つの電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続させると共に当該電圧検出用の一方の電極が配置されている前記領域を除く他の前記領域のうちのいずれか1つの領域に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続させる処理を当該いずれか1つの領域を順次変更しつつ複数回実行する処理装置。
A cylindrical storage container that stores a plurality of types of mixing targets having different electrical characteristics, a plurality of electrodes arranged in the storage container, and a current that supplies current between the electrodes for current supply. a supply unit, a voltage detection unit for detecting a voltage between the electrodes for voltage detection, each electrode for current supply and the current supply unit are connected, and each electrode for voltage detection and the voltage detection unit are connected. and a processing unit that executes a process of specifying the mixing state of the plurality of types of mixture objects based on the voltage value detected by the voltage detection unit,
each of the electrodes is arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of the container,
The connection switching unit performs a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to the current supply unit as the current supply electrode once or sequentially in combination with each of the regions. While changing and executing a plurality of times, the process of connecting the electrodes respectively arranged in the pair of regions to the voltage detection unit as the electrodes for voltage detection while sequentially changing the combination of the pair of regions executing a second connection process that is executed a plurality of times each time the first connection process is executed;
The voltage detection unit detects the voltage value each time the electrodes connected to the voltage detection unit are changed in each second connection process ,
The processing unit divides a virtual plane defined to be orthogonal to the center axis of the container into a plurality of divided regions having a predetermined planar shape in each of the mixing objects contained in the container, and , the conductivity based on the impedance calculated from the detected voltage value is calculated for each of the divided regions, and the conductivity of all the divided regions in the virtual plane is the population standard of the population Calculate the deviation, and subtract the division value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1. Subtraction A processing device that identifies the degree of mixing based on a value,
Each of the electrodes is arranged at each position in the region with the same height from the bottom surface of the container,
In the first connection process, the connection switching unit connects each of the electrodes arranged in one or more of the regions as one electrode for supplying current to one output terminal of the current supply unit. connecting each of the electrodes arranged in the plurality of regions other than the plurality of regions together with the other electrode to the other output terminal of the current supply unit as the other electrode for supplying the current, and performing the second connection processing any one of the electrodes for current supply is connected to one input terminal of the voltage detection section as one electrode for voltage detection, and the one electrode for voltage detection is arranged. The process of connecting the electrode arranged in any one of the other areas excluding the area where the voltage is detected to the other input terminal of the voltage detection unit as the other electrode for voltage detection. A processing device that executes a plurality of times while sequentially changing any one area .
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、
複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、
一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、
前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、
前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、
前記各電極として複数の第1電極および複数の第2電極を用いて、前記各領域における前記収容容器の底面からの高さが互いに等しい高位置側の各位置および当該高位置側の各位置から当該収容容器の高さ方向に沿って当該底面側に離間して当該底面からの高さが互いに等しい低位置側の各位置に前記複数の第1電極をそれぞれ配置すると共に前記各領域の前記各第1電極の間における底面からの高さが互いに等しい各位置に前記複数の第2電極をそれぞれ配置し、
前記第1接続処理において、一対の前記領域の一方に配置されている前記各第1電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記各第1電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、
前記第2接続処理において、一対の前記領域の一方に配置されている前記第2電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該一対の領域の他方に配置されている前記第2電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理方法。
A plurality of electrodes are respectively arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is accommodated in the container,
performing a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to a current supply unit as an electrode for current supply once or a plurality of times while sequentially changing the combination of the regions;
A second connection process is performed a plurality of times while sequentially changing the combination of the pair of areas to connect the electrodes respectively arranged in the pair of areas to the voltage detection unit as electrodes for voltage detection. 1 Executed each time connection processing is executed,
causing the voltage detection unit to detect a voltage value between the electrodes each time the electrodes connected to the voltage detection unit are changed in each of the second connection processes;
A virtual plane defined to be orthogonal to the central axis of the container is divided into a plurality of divided regions having a predetermined planar shape in each of the mixed objects contained in the container, and the detected Calculate the conductivity based on the impedance calculated from the voltage value for each of the divided regions, and calculate the standard deviation of the population with the conductivity for all the divided regions in the virtual plane as a population, Based on the subtraction value obtained by subtracting the divided value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1 A processing method for identifying the degree of mixture of multiple types of mixture objects,
Using a plurality of first electrodes and a plurality of second electrodes as the electrodes, each position on the high position side having the same height from the bottom surface of the container in each region and each position on the high position side Along the height direction of the container, the plurality of first electrodes are spaced apart from the bottom surface side and arranged at respective positions on the low position side that are equal to each other in height from the bottom surface, and arranging the plurality of second electrodes at respective positions between the first electrodes having equal heights from the bottom surface;
In the first connection process, each of the first electrodes arranged in one of the pair of regions is connected as one electrode for current supply to one output terminal of the current supply unit, and the pair of regions is connected to one output terminal of the current supply unit. connecting each of the first electrodes arranged on the other side to the other output terminal of the current supply section as the other electrode for current supply,
In the second connection process, the second electrode arranged in one of the pair of regions is connected as one electrode for voltage detection to one input terminal of the voltage detection unit, A process of connecting the second electrode arranged on the other side to the other input terminal of the voltage detection section as the other electrode for voltage detection is executed a plurality of times while sequentially changing all combinations of the pair of regions. processing method.
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、
複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、
一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、
前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、
前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、
前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、
前記第1接続処理において、一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続させると共に当該一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、
前記第2接続処理において、前記電流供給用の電極が配置されている前記一対の領域を除く他の前記領域のうちの他の一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該他の一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該他の一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理方法。
A plurality of electrodes are respectively arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is accommodated in the container,
performing a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to a current supply unit as an electrode for current supply once or a plurality of times while sequentially changing the combination of the regions;
A second connection process is performed a plurality of times while sequentially changing the combination of the pair of areas to connect the electrodes respectively arranged in the pair of areas to the voltage detection unit as electrodes for voltage detection. 1 Executed each time connection processing is executed,
causing the voltage detection unit to detect a voltage value between the electrodes each time the electrodes connected to the voltage detection unit are changed in each of the second connection processes;
A virtual plane defined to be orthogonal to the central axis of the container is divided into a plurality of divided regions having a predetermined planar shape in each of the mixed objects contained in the container, and the detected Calculate the conductivity based on the impedance calculated from the voltage value for each of the divided regions, and calculate the standard deviation of the population with the conductivity for all the divided regions in the virtual plane as a population, Based on the subtraction value obtained by subtracting the divided value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1 A processing method for identifying the degree of mixture of multiple types of mixture objects,
arranging each of the electrodes in each position in the area having the same height from the bottom surface of the container;
In the first connection process, the electrode arranged in one of the pair of regions is connected as one of the electrodes for current supply to one output terminal of the current supply unit and connected to the other of the pair of regions. connecting the arranged electrode to the other output terminal of the current supply unit as the other electrode for current supply;
In the second connection processing, the electrodes arranged in one of the other pair of regions out of the pair of regions other than the pair of regions where the electrodes for current supply are arranged are subjected to the voltage detection. The electrode connected to one input terminal of the voltage detection section as one electrode for voltage detection and arranged in the other of the other pair of regions is used as the other electrode for voltage detection of the other voltage detection section. A processing method for executing the processing of connecting to the input terminal of the other pair of regions a plurality of times while sequentially changing all combinations of the other pair of regions .
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、
複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、
一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、
前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、
前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、
4つ以上の偶数の前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、
前記第1接続処理において、前記収容容器の中心軸を挟んで対向する一対の前記領域の一方に配置されている前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続すると共に当該対向する一対の領域の他方に配置されている前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、
前記第2接続処理において、前記電流供給用の電極が配置されている前記対向する一対の領域を除く他の前記領域のうちの一対の前記領域の一方に配置されている前記電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該一対の領域の他方に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該一対の領域のすべての組み合わせを順次変更しつつ複数回実行する処理方法。
A plurality of electrodes are respectively arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is accommodated in the container,
performing a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to a current supply unit as an electrode for current supply once or a plurality of times while sequentially changing the combination of the regions;
A second connection process is performed a plurality of times while sequentially changing the combination of the pair of areas to connect the electrodes respectively arranged in the pair of areas to the voltage detection unit as electrodes for voltage detection. 1 Executed each time connection processing is executed,
causing the voltage detection unit to detect a voltage value between the electrodes each time the electrodes connected to the voltage detection unit are changed in each of the second connection processes;
A virtual plane defined to be orthogonal to the central axis of the container is divided into a plurality of divided regions having a predetermined planar shape in each of the mixed objects contained in the container, and the detected Calculate the conductivity based on the impedance calculated from the voltage value for each of the divided regions, and calculate the standard deviation of the population with the conductivity for all the divided regions in the virtual plane as a population, Based on the subtraction value obtained by subtracting the divided value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1 A processing method for identifying the degree of mixture of multiple types of mixture objects,
Each electrode is arranged at each position where the height from the bottom surface of the container in the four or more even-numbered regions is equal to each other,
In the first connection process, the electrode disposed in one of the pair of regions facing each other across the center axis of the container is used as one electrode for supplying current, and one output terminal of the current supply unit. and connecting the electrode arranged in the other of the pair of opposing regions to the other output terminal of the current supply unit as the other electrode for current supply,
In the second connection processing, the voltage detection is performed on the electrode arranged in one of the pair of regions other than the pair of opposing regions where the electrodes for current supply are arranged. The electrode connected to one input terminal of the voltage detection section as one electrode for voltage detection and arranged in the other of the pair of regions is used as the other electrode for voltage detection and connected to the other input terminal of the voltage detection section. A processing method for executing a process of connecting to a terminal a plurality of times while sequentially changing all combinations of the pair of areas .
電気的特性が互いに異なる複数種類の混合対象が収容される円筒状の収容容器の内周面における周方向に沿って互いに等間隔に離間する3つ以上の領域に複数の電極がそれぞれ配置された当該収容容器に前記各混合対象を収容した状態において、
複数の前記領域にそれぞれ配置されている前記各電極を電流供給用の電極として電流供給部に接続させる第1接続処理を、1回または当該各領域の組み合わせを順次変更しつつ複数回実行し、
一対の前記領域にそれぞれ配置されている前記各電極を電圧検出用の電極として電圧検出部に接続させる処理を当該一対の領域の組み合わせを順次変更しつつ複数回実行する第2接続処理を前記第1接続処理を実行する毎に実行し、
前記各第2接続処理において前記電圧検出部に接続する前記各電極を変更する毎に当該各電極間の電圧値を当該電圧検出部に検出させ、
前記収容容器に収容されている前記各混合対象内において当該収容容器の中心軸に直交するように規定した仮想平面を予め決められた平面形状の複数の分割領域で分割すると共に、前記検出された電圧値から算出されるインピーダンスに基づく導電率を前記分割領域毎に算出し、前記仮想平面内のすべての分割領域についての各前記導電率を母集団とする当該母集団の標準偏差を算出し、前記各混合対象の混合を開始した後の状態における前記標準偏差を当該各混合対象の混合を開始する以前の状態における前記標準偏差で除算した除算値を値1から減算した減算値に基づいて前記複数種類の混合対象の混ざり具合を特定する処理方法であって、
前記領域における前記収容容器の底面からの高さが互いに等しい各位置に前記各電極をそれぞれ配置し、
前記第1接続処理において、1または複数の前記領域にそれぞれ配置されている各前記電極を前記電流供給用の一方の電極として前記電流供給部の一方の出力端子に接続すると共に当該複数の領域を除く他の複数の前記領域にそれぞれ配置されている各前記電極を当該電流供給用の他方の電極として当該電流供給部の他方の出力端子に接続し、
前記第2接続処理において、前記電流供給用の電極のうちのいずれか1つの電極を前記電圧検出用の一方の電極として前記電圧検出部の一方の入力端子に接続すると共に当該電圧検出用の一方の電極が配置されている前記領域を除く他の前記領域のうちのいずれか1つの領域に配置されている前記電極を当該電圧検出用の他方の電極として当該電圧検出部の他方の入力端子に接続する処理を当該いずれか1つの領域を順次変更しつつ複数回実行する処理方法。
A plurality of electrodes are respectively arranged in three or more regions spaced apart from each other at equal intervals along the circumferential direction on the inner peripheral surface of a cylindrical storage container in which a plurality of types of mixing objects having different electrical characteristics are stored. In a state in which each of the objects to be mixed is accommodated in the container,
performing a first connection process of connecting each of the electrodes arranged in each of the plurality of regions to a current supply unit as an electrode for current supply once or a plurality of times while sequentially changing the combination of the regions;
A second connection process is performed a plurality of times while sequentially changing the combination of the pair of areas to connect the electrodes respectively arranged in the pair of areas to the voltage detection unit as electrodes for voltage detection. 1 Executed each time connection processing is executed,
causing the voltage detection unit to detect a voltage value between the electrodes each time the electrodes connected to the voltage detection unit are changed in each of the second connection processes;
A virtual plane defined to be orthogonal to the central axis of the container is divided into a plurality of divided regions having a predetermined planar shape in each of the mixed objects contained in the container, and the detected Calculate the conductivity based on the impedance calculated from the voltage value for each of the divided regions, and calculate the standard deviation of the population with the conductivity for all the divided regions in the virtual plane as a population, Based on the subtraction value obtained by subtracting the divided value obtained by dividing the standard deviation in the state after starting mixing of each of the mixing targets by the standard deviation in the state before starting mixing of each of the mixing targets from the value 1 A processing method for identifying the degree of mixture of multiple types of mixture objects,
arranging each of the electrodes in each position in the area having the same height from the bottom surface of the container;
In the first connection process, each of the electrodes arranged in one or more of the regions is connected to one output terminal of the current supply unit as one of the electrodes for current supply, and the plurality of regions are connected to each other. connecting each of the electrodes arranged in each of the plurality of regions except for the other electrode to the other output terminal of the current supply unit as the other electrode for current supply,
In the second connection process, any one of the electrodes for current supply is connected to one input terminal of the voltage detection unit as one electrode for voltage detection, and one of the electrodes for voltage detection is connected to one input terminal of the voltage detection unit. The electrode arranged in one of the other regions excluding the region where the electrode of is arranged is connected to the other input terminal of the voltage detection unit as the other electrode for voltage detection A processing method in which connection processing is executed multiple times while sequentially changing any one of the regions .
JP2018179690A 2018-09-26 2018-09-26 Processing equipment and processing method Active JP7179552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018179690A JP7179552B2 (en) 2018-09-26 2018-09-26 Processing equipment and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018179690A JP7179552B2 (en) 2018-09-26 2018-09-26 Processing equipment and processing method

Publications (2)

Publication Number Publication Date
JP2020051821A JP2020051821A (en) 2020-04-02
JP7179552B2 true JP7179552B2 (en) 2022-11-29

Family

ID=69996617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018179690A Active JP7179552B2 (en) 2018-09-26 2018-09-26 Processing equipment and processing method

Country Status (1)

Country Link
JP (1) JP7179552B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711746A (en) * 2022-03-24 2022-07-08 北京华睿博视医学影像技术有限公司 Electrical impedance imaging method, electrical impedance imaging device, storage medium, and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766597A (en) 2005-11-17 2006-05-03 天津大学 Electrical resistance tomography system with single electrode excitation mode
JP2012192187A (en) 2011-03-16 2012-10-11 Draeger Medical Gmbh Method for detecting data by using device for electric impedance tomography
JP2016008898A (en) 2014-06-25 2016-01-18 株式会社Ihi Tomography measurement method
JP2016194501A (en) 2015-04-01 2016-11-17 日置電機株式会社 Mixing degree measurement device and mixing degree measurement method
US20180220922A1 (en) 2011-12-30 2018-08-09 National Chiao Tung University Three-dimensional electrical impedance tomography system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2119520B (en) * 1982-04-30 1985-05-15 Brian Hilton Brown Tomography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766597A (en) 2005-11-17 2006-05-03 天津大学 Electrical resistance tomography system with single electrode excitation mode
JP2012192187A (en) 2011-03-16 2012-10-11 Draeger Medical Gmbh Method for detecting data by using device for electric impedance tomography
US20180220922A1 (en) 2011-12-30 2018-08-09 National Chiao Tung University Three-dimensional electrical impedance tomography system
JP2016008898A (en) 2014-06-25 2016-01-18 株式会社Ihi Tomography measurement method
JP2016194501A (en) 2015-04-01 2016-11-17 日置電機株式会社 Mixing degree measurement device and mixing degree measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Susan T. L. Harrison , et al.,Assessing solids concentration homogeneity in rushton-agitated slurry reactors using electrical resistance tomography (ERT),Chemical Engineering Science,2011年11月25日,Vol. 71,pp. 392-399,doi:10.1016/j.ces.2011.10.053
伊藤直史,電気インピーダンストモグラフィの原理と応用,計測と制御,2017年11月01日,vol.56, No.11,p. 827

Also Published As

Publication number Publication date
JP2020051821A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP7179552B2 (en) Processing equipment and processing method
Jelińska et al. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis
US9297736B2 (en) Particle size distribution measuring device
JP2008541912A (en) Method and probe for impedance measurement of human or animal body tissue
JP6602601B2 (en) Mixing degree measuring apparatus and mixing degree measuring method
JPWO2015136930A1 (en) Battery inspection apparatus and battery inspection method
JP7146559B2 (en) Processing equipment and processing method
JP6667380B2 (en) Method for blood analysis, blood analyzer, computer program, calibrator set, and method for producing calibrator set
JP6189985B2 (en) Particle size distribution measuring device
US9121918B2 (en) Image acquiring method and image acquiring apparatus
JP6602600B2 (en) Mixing degree measuring apparatus and mixing degree measuring method
WO2015049766A1 (en) Metal-detection device
JP2010249607A (en) Particle detector
JP4895428B2 (en) Method and apparatus for measuring alignment parameters of liquid crystal cell
JP2021162561A (en) Detection device, measurement device, and measurement method
JP2011080819A (en) Particle-size measuring instrument
JP6323178B2 (en) Particle size distribution measuring method, particle size distribution measuring apparatus and control program therefor
TWI487901B (en) Method, apparatus and application for measuring change of electrical property in liquid
TWM502176U (en) AC impedance measuring device
JP7343411B2 (en) Uniformity measurement device, uniformity measurement method and program
EP3943921B1 (en) Inspection device, inspection method, and non-transitory computer-readable medium
JP7343412B2 (en) Uniformity evaluation device, uniformity evaluation method and program
JP7093924B2 (en) Non-contact measurement system
Datta et al. A Gram–Charlier Analysis of Scattering to Describe Nonideal Polymer Conformations
JP6191426B2 (en) Particle size distribution measuring device, display processing device used therefor, and particle size distribution measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7179552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150