JP7171160B2 - Measuring device and measuring method - Google Patents

Measuring device and measuring method Download PDF

Info

Publication number
JP7171160B2
JP7171160B2 JP2016156208A JP2016156208A JP7171160B2 JP 7171160 B2 JP7171160 B2 JP 7171160B2 JP 2016156208 A JP2016156208 A JP 2016156208A JP 2016156208 A JP2016156208 A JP 2016156208A JP 7171160 B2 JP7171160 B2 JP 7171160B2
Authority
JP
Japan
Prior art keywords
shoe
load
distance
bearing
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016156208A
Other languages
Japanese (ja)
Other versions
JP2018025004A (en
Inventor
隆生 中谷
公太 中野
和男 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2016156208A priority Critical patent/JP7171160B2/en
Priority to CN201780044677.7A priority patent/CN109477319A/en
Priority to KR1020197001618A priority patent/KR102506948B1/en
Priority to PCT/JP2017/026600 priority patent/WO2018030126A1/en
Publication of JP2018025004A publication Critical patent/JP2018025004A/en
Application granted granted Critical
Publication of JP7171160B2 publication Critical patent/JP7171160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Bridges Or Land Bridges (AREA)

Description

この発明は、橋梁やビル等の構造物の上部構造と下部構造との間に配置する支承体、および、この支承体に加わっている荷重に応じた力の変化を計測する技術に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing placed between an upper structure and a lower structure of a structure such as a bridge or building, and a technique for measuring changes in force according to the load applied to the bearing.

従来、橋梁やビル等の構造物は、上部構造と、下部構造との間に支承体(以下、単に支承と言う。)を配置している。例えば、自動車や列車等の移動体が走行する橋梁は、橋桁(上部構造)と、橋脚(下部構造)との間に支承を配置している。支承は、上部構造からの荷重を支持し、下部構造へ伝達する部材である。支承には、橋桁の重さによる死荷重や、橋桁を走行する車両等による活荷重が加わる。 Conventionally, in structures such as bridges and buildings, bearing bodies (hereinafter simply referred to as bearings) are arranged between an upper structure and a lower structure. For example, in a bridge on which moving bodies such as automobiles and trains run, bearings are arranged between a bridge girder (upper structure) and a bridge pier (lower structure). A bearing is a member that supports and transfers loads from the upper structure to the lower structure. Dead loads due to the weight of bridge girders and live loads due to vehicles running on bridge girders are applied to bearings.

最近、構造物の維持管理等のために、支承の反力を計測したいという要望がある。支承の反力は、支承の劣化、下部構造の沈下、下部構造の変動等によって変化する。すなわち、支承の反力を計測し、その変化を得ることで、支承の劣化、下部構造の沈下、下部構造の変動等の不具合が発生しているかどうかの判断が行える。 Recently, there has been a demand to measure the reaction force of bearings for the maintenance of structures. The reaction force of the bearing changes due to deterioration of the bearing, subsidence of the substructure, fluctuation of the substructure, and the like. That is, by measuring the reaction force of the bearing and obtaining a change in it, it is possible to determine whether or not problems such as deterioration of the bearing, subsidence of the substructure, and fluctuation of the substructure have occurred.

反力を計測することができる支承としては、例えば、特許文献1に示されたものがある。この特許文献1に示された支承は、厚肉の上下部鋼板及び薄肉の複数の中間部鋼板からなる鋼板とゴム層とを交互に積層してなる積層ゴムを、橋桁側から橋脚側に加わる荷重を支持する荷重支持部材としたゴム支承である。積層ゴムは、上下部鋼板のいずれか一方からその厚み方向に貫通して、隣接するゴム層内部に達する複数の測定孔を設け、各測定孔に粘性流体を充填するとともに、各測定孔の鋼板側部分に圧力センサを取り付けて該測定孔を閉鎖した構成である。 As a bearing capable of measuring the reaction force, there is one disclosed in Patent Document 1, for example. In the bearing shown in Patent Document 1, a laminated rubber made by alternately laminating a steel plate and a rubber layer, which are composed of thick upper and lower steel plates and a plurality of thin intermediate steel plates, is added from the bridge girder side to the pier side. This rubber bearing is a load-bearing member that supports a load. The laminated rubber is provided with a plurality of measurement holes penetrating from either one of the upper and lower steel plates in the thickness direction to reach the inside of the adjacent rubber layer, and each measurement hole is filled with a viscous fluid. A pressure sensor is attached to the side portion to close the measurement hole.

特許第4891891号公報Japanese Patent No. 4891891

しかしながら、特許文献1に記載された支承は、圧力センサを取り付けるための複数の測定孔を荷重支持部材である積層ゴムに設ける工程、粘性流体を各測定孔に充填する工程、圧力センサを各測定孔の鋼板側部分に取り付ける工程、および圧力センサを取り付けた各測定孔を閉鎖する工程を行って製造される。すなわち、特許文献1に記載された支承は、荷重支持部材である積層ゴムの製造工程が複雑であった。 However, the bearing described in Patent Document 1 has a process of providing a plurality of measurement holes for attaching pressure sensors to the laminated rubber, which is a load supporting member, a process of filling each measurement hole with a viscous fluid, and a process of filling each measurement hole with a pressure sensor. It is manufactured by performing a step of attaching to the steel plate side portion of the hole and a step of closing each measurement hole to which the pressure sensor is attached. That is, in the bearing described in Patent Document 1, the manufacturing process of the laminated rubber, which is the load bearing member, is complicated.

この発明の目的は、加わっている荷重に応じた反力等の物理量の計測が行え、製造工程が簡単である支承体を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a bearing that can measure a physical quantity such as a reaction force according to the applied load and that can be manufactured by a simple process.

また、この発明の目的は、支承体に加わっている荷重に応じた力の変化の計測が行える技術を提供することにある。 Another object of the present invention is to provide a technique capable of measuring changes in force according to the load applied to the bearing.

この発明の支承体は、上記目的を達するために、以下のように構成している。 In order to achieve the above object, the support body of the present invention is configured as follows.

上沓は、構造物の上部構造に固定され、下沓は、構造物の下部構造に固定される。荷重支持部材は、上沓と下沓との間に配置され、構造物の上部構造側から加わる荷重を支持する。また、センサは、上沓と下沓とが荷重支持部材を挟んで重なっている方向における、上沓と下沓との距離の変化に応じて変化する対象距離を計測する。 The upper shoe is secured to the upper structure of the structure and the lower shoe is secured to the lower structure of the structure. The load bearing member is disposed between the upper and lower shoes to support loads applied from the upper structure side of the structure. In addition, the sensor measures a target distance that changes according to a change in the distance between the upper and lower shoes in the direction in which the upper and lower shoes overlap each other with the load supporting member interposed therebetween.

上沓と下沓との距離の変化に応じて変化する対象距離には、
(1)上部構造と下部構造との距離
(2)下沓と上部構造との距離
(3)上沓と下部構造との距離
(4)上沓と、下沓との距離
等がある。
The target distance that changes according to the change in the distance between the upper and lower shoes is
(1) the distance between the upper and lower structures, (2) the distance between the lower and upper structures, (3) the distance between the upper and lower shoes, and (4) the distance between the upper and lower shoes.

上沓と下沓との距離の変化は、荷重支持部材のひずみの変化である。このため、センサで計測した対象距離と、荷重支持部材のヤング係数Eを用いることで、支承体(荷重支持部材)の反力を算出できる。 A change in the distance between the upper and lower shoes is a change in strain on the load bearing member. Therefore, by using the object distance measured by the sensor and the Young's modulus E of the load bearing member, the reaction force of the bearing (load bearing member) can be calculated.

したがって、センサによる上沓と下沓との距離の変化に応じて変化する対象距離の計測を継続的、または定期的に行うことで、支承体の反力等の変化を取得することができる。そして、取得した支承体の反力等の変化を用いることで、構造物の維持管理等が簡単かつ適正に行える。 Therefore, by continuously or periodically measuring the target distance that changes according to the change in the distance between the upper shoe and the lower shoe by the sensor, it is possible to obtain the change in the reaction force of the support body. By using the obtained change in the reaction force of the bearing body, maintenance and management of the structure can be performed simply and appropriately.

なお、センサは、上沓と下沓との距離の変化に応じて変化する対象距離を計測することができれば、上沓、下沓、構造物の上部構造、または構造物の下部構造のいずれに取り付けてもよい。 In addition, if the sensor can measure the target distance that changes according to the change in the distance between the upper shoe and the lower shoe, it can be used for any of the upper shoe, the lower shoe, the upper structure of the structure, or the lower structure of the structure. may be installed.

特に、センサを上沓、または下沓の一方に取り付け、センサで計測する検知対象物を上沓、または下沓の他方に取り付ければ、支承に荷重が加わっていない状態で、上沓と下沓との距離の変化に応じて変化する対象距離の基準値を計測することができる。この基準値を用いれば、構造物の上部構造と下部構造との間に取り付けたときに、構造物の上部構造による死荷重の大きさを得ることもできる。 In particular, if the sensor is attached to one of the upper and lower shoes, and the object to be detected by the sensor is attached to the other of the upper and lower shoes, the upper and lower shoes can be detected in a state where no load is applied to the bearing. It is possible to measure the reference value of the target distance that changes according to the change in the distance to. Using this reference value, it is also possible to obtain the magnitude of the dead load due to the superstructure of the structure when installed between the superstructure and substructure of the structure.

なお、センサの個数は、1つであってもよいし、複数であってもよい。センサの個数が複数である場合には、荷重支持部材を挟んだ両側に取り付けるのが好ましい。 Note that the number of sensors may be one or plural. When the number of sensors is plural, it is preferable to attach them on both sides of the load bearing member.

また、この発明の計測装置は、センサによる上沓と下沓との距離の変化に応じて変化する対象距離の計測値から、支承体の反力等の変化を算出する。 Further, the measuring device of the present invention calculates the change in the reaction force of the support body from the measurement value of the target distance which changes according to the change in the distance between the upper shoe and the lower shoe by the sensor.

また、この発明の計測方法によれば、センサによる上沓と下沓との距離の変化に応じて変化する対象距離の計測が簡単に行える。 Further, according to the measuring method of the present invention, it is possible to easily measure the object distance that changes according to the change in the distance between the upper shoe and the lower shoe by the sensor.

この発明によれば、加わっている荷重に応じた反力等にかかる物理量の計測が行える支承体の製造工程を簡単できる。 According to the present invention, it is possible to simplify the manufacturing process of a bearing body capable of measuring the physical quantity applied to the reaction force or the like according to the applied load.

また、支承体に加わっている荷重に応じた反力等にかかる物理量の計測が簡単に行える。 In addition, it is possible to easily measure the physical quantity applied to the reaction force or the like according to the load applied to the bearing.

高架道路橋の橋軸方向の概略断面図である。It is a schematic sectional view of the bridge axis direction of an elevated road bridge. 高架道路橋の橋軸直角方向の概略断面図である。It is a schematic cross-sectional view of the elevated road bridge in the direction perpendicular to the bridge axis. 図3(A)は、橋軸方向に見た支承の概略平面図であり、図3(B)は、図3(A)におけるA-A方向の断面図である。FIG. 3(A) is a schematic plan view of the bearing viewed in the direction of the bridge axis, and FIG. 3(B) is a cross-sectional view along line AA in FIG. 3(A). 図4(A)は、図3(A)におけるB-B方向の断面図であり、図4(B)は、図3(A)におけるC-C方向の断面図である。4A is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 4B is a cross-sectional view taken along line CC in FIG. 3A. 他の例にかかる支承を示す図である。FIG. 10 is a diagram showing a bearing according to another example; 図6(A),(B)は、他の例にかかる支承を示す図である。FIGS. 6A and 6B are diagrams showing other examples of bearings. 図7(A),(B)は、他の例にかかる支承を示す図である。FIGS. 7A and 7B are diagrams showing a bearing according to another example. 監視システムを示す概略図である。1 is a schematic diagram showing a monitoring system; FIG. 反力計測装置の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of a reaction force measuring device. 管理装置の主要部の構成を示すブロック図である。3 is a block diagram showing the configuration of main parts of the management device; FIG. 反力計測装置の動作を示すフローチャートである。It is a flowchart which shows operation|movement of a reaction force measuring device. 記憶部に記憶される計測データを示す図である。It is a figure which shows the measurement data memorize|stored in a memory|storage part. 計測時刻と、支承の反力Rの変化量ΔRとの関係を示す図である。FIG. 5 is a diagram showing the relationship between measurement time and amount of change ΔR in reaction force R of a bearing; 支承1の反力Rの変化量ΔRの最大値を示すものである。It shows the maximum value of the change amount ΔR of the reaction force R of the bearing 1 . 支承1の反力Rの変化量ΔRの頻度を示す図である。4 is a diagram showing the frequency of variation ΔR of reaction force R of bearing 1. FIG. 反力計測方法の手順を示す図である。It is a figure which shows the procedure of a reaction force measuring method.

以下、この発明の実施形態について説明する。まず、支承体(以下、単に支承と言う。)の実施形態について説明する。 Embodiments of the present invention will be described below. First, an embodiment of a support body (hereinafter simply referred to as a support) will be described.

支承は、橋梁やビル等の構造物の上部構造と、下部構造との間に配置し、上部構造の荷重を支持する部材である。支承は、上部構造の振動を減衰して、下部構造に伝達する。 A bearing is a member that is placed between the superstructure and the substructure of a structure such as a bridge or building to support the load of the superstructure. The bearings damp vibrations of the upper structure and transmit them to the lower structure.

図1は、構造物である高架道路橋(橋梁)の橋軸方向(車両の走行方向)の概略断面図である。図2は、高架道路橋の橋軸直角方向(車両の幅方向)の概略断面図である。高架道路橋は、下部構造である橋脚100と、上部構造の主桁101との間に、支承1を配置している。橋脚100は、橋軸方向に適当な間隔で並んでいる。上部構造には、主桁101の上面(橋脚側の反対面)側に設けた床版の上に、自動車が走行する路面や側壁等が形成されている。支承1は、主桁101を含む上部構造の荷重を支持する。支承1は、上部構造の重さによる死荷重や、路面を走行する車両の重量や下部構造に対する上部構造の相対的な変位による振動等による活荷重を支持する。この例では、図2に示すように、橋脚100の上面(主桁101との対向面)には、3つの支承1が橋軸直角方向に並べて固定されている。 FIG. 1 is a schematic cross-sectional view of an elevated road bridge (bridge), which is a structure, in a bridge axis direction (vehicle running direction). FIG. 2 is a schematic cross-sectional view of the elevated road bridge in the direction perpendicular to the bridge axis (the width direction of the vehicle). In the elevated highway bridge, bearings 1 are arranged between piers 100, which are the lower structure, and main girders 101, which are the upper structure. The bridge piers 100 are arranged at proper intervals in the bridge axis direction. In the upper structure, a road surface, side walls, etc. on which automobiles run are formed on a floor slab provided on the upper surface (opposite side of the pier side) of the main girder 101 . The bearing 1 supports the load of the superstructure including the main girder 101 . The bearing 1 supports a dead load due to the weight of the upper structure and a live load due to vibration due to the weight of the vehicle traveling on the road surface and the relative displacement of the upper structure with respect to the lower structure. In this example, as shown in FIG. 2, three bearings 1 are fixed to the upper surface of the bridge pier 100 (the surface facing the main girder 101) in a line perpendicular to the bridge axis.

図3(A)は、橋軸方向に見た支承の概略平面図であり、図3(B)は、図3(A)におけるA-A方向の断面図である。また、図4(A)は、図3(A)におけるB-B方向の断面図であり、図4(B)は、図3(A)におけるC-C方向の断面図である。支承1は、下沓2と、上沓3と、ベースプレート4と、荷重支持部材5と、近接センサ10、11と、取付金具20、21とを備えている。 FIG. 3(A) is a schematic plan view of the bearing viewed in the direction of the bridge axis, and FIG. 3(B) is a cross-sectional view along line AA in FIG. 3(A). 4A is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 4B is a cross-sectional view taken along line CC in FIG. 3A. The bearing 1 includes a lower shoe 2, an upper shoe 3, a base plate 4, a load bearing member 5, proximity sensors 10, 11, and mounting hardware 20, 21.

支承1は、主桁101側から、上沓3、荷重支持部材5、下沓2、ベースプレート4の順番に重なっている。 In the bearing 1, the upper shoe 3, the load bearing member 5, the lower shoe 2, and the base plate 4 are stacked in this order from the main girder 101 side.

上沓3は、主桁101に固定されている。また、ベースプレート4は、図示していないアンカーボルト等で橋脚100に固定されている。下沓2は、ベースプレート4に取り付けられる。すなわち、下沓2は、ベースプレート4を介して橋脚100に固定されている。支承1には、この例のように、下沓2と、ベースプレート4とを別々の部材で構成したものもあれば、下沓2と、ベースプレート4とを1つの部材で構成したものある。支承1は、下沓2と、ベースプレート4とを別々の部材で構成したものであってもよいし、下沓2と、ベースプレート4とを1つの部材で構成したものであってもよい。また、下沓2には、橋脚100の反対面側(主桁101の対向面側)に凹部(窪み)が形成されている。 The upper shoe 3 is fixed to the main girder 101 . The base plate 4 is fixed to the bridge pier 100 with anchor bolts (not shown) or the like. The shoe 2 is attached to the base plate 4 . That is, the lower shoe 2 is fixed to the bridge pier 100 via the base plate 4 . Some bearings 1 have the lower shoe 2 and the base plate 4 made up of separate members, while others have the lower shoe 2 and the base plate 4 made up of one member. The bearing 1 may comprise the lower shoe 2 and the base plate 4 as separate members, or may comprise the lower shoe 2 and the base plate 4 as a single member. Further, the lower shoe 2 is formed with a concave portion (hollow) on the side opposite to the pier 100 (the side opposite to the main girder 101).

荷重支持部材5は、橋脚100側の端部が下沓2の凹部に嵌挿され、主桁101側の端部が下沓2の凹部から突出している。荷重支持部材5と、上沓3とは、対向する面で接触している。下沓2と、上沓3との間には、荷重支持部材5が位置し、下沓2と、上沓3とは接触していない。荷重支持部材5は、水平方向(橋軸方向や、橋軸直角方向)における上沓3と、下沓2との相対的な変位による水平力(水平荷重)を支持する部材や、鉛直方向における力(鉛直荷重)を支持する部材等で構成される。 The end of the load bearing member 5 on the side of the bridge pier 100 is inserted into the concave portion of the lower shoe 2 , and the end on the side of the main girder 101 protrudes from the concave portion of the lower shoe 2 . The load bearing member 5 and the upper shoe 3 are in contact with each other on opposite surfaces. A load bearing member 5 is positioned between the lower shoe 2 and the upper shoe 3, and the lower shoe 2 and the upper shoe 3 are not in contact with each other. The load supporting member 5 is a member that supports horizontal force (horizontal load) due to relative displacement between the upper shoe 3 and the lower shoe 2 in the horizontal direction (the direction of the bridge axis or the direction perpendicular to the bridge axis), or the It consists of members that support force (vertical load).

なお、支承1は、水平方向における上沓3と、下沓2との相対的な変位量を制限するサイドブロック(不図示)を備えるものであってもよい。 The bearing 1 may be provided with a side block (not shown) that limits the amount of relative displacement between the upper shoe 3 and the lower shoe 2 in the horizontal direction.

さらに、この例の支承1は、2つの近接センサ10、11を下沓2に取り付けている。近接センサ10、11は、近接センサ10、11の検知面から検知対象物までの距離(この発明で言う対象距離に相当する。)の計測が非接触で行えるセンサであればどのようなものであってもよい。近接センサ10、11は、例えば、https://www.fa.omron.co.jp/products/family/1457/に記載されているセンサを用いればよい。 Furthermore, the bearing 1 in this example has two proximity sensors 10 , 11 attached to the shoe 2 . The proximity sensors 10 and 11 may be any sensor capable of non-contact measurement of the distance from the detection surfaces of the proximity sensors 10 and 11 to the object to be detected (corresponding to the object distance referred to in the present invention). There may be. For the proximity sensors 10 and 11, for example, sensors described in https://www.fa.omron.co.jp/products/family/1457/ may be used.

近接センサ10、11は、荷重支持部材5を挟んで支承1の両側に取り付けている。近接センサ10、11は、橋軸直角方向に並んでいる。近接センサ10、11は、下沓2に設けた取付金具20、21に取り付けている。取付金具20、21は、下沓2に固定している。この近接センサ10、11は、検知面から主桁101の対向面までの距離を計測する。近接センサ10、11の検知面は、主桁101の底面に対向している。この例における近接センサ10、11は、下沓2と上部構造(主桁101)との距離を計測する。 The proximity sensors 10 and 11 are attached to both sides of the bearing 1 with the load bearing member 5 interposed therebetween. The proximity sensors 10 and 11 are arranged in the direction perpendicular to the bridge axis. The proximity sensors 10 and 11 are attached to mounting metal fittings 20 and 21 provided on the lower shoe 2 . The mounting brackets 20 and 21 are fixed to the lower shoe 2 . The proximity sensors 10 and 11 measure the distance from the detection surface to the facing surface of the main girder 101 . Detection surfaces of the proximity sensors 10 and 11 face the bottom surface of the main girder 101 . The proximity sensors 10, 11 in this example measure the distance between the lower shoe 2 and the upper structure (main girder 101).

支承1は、上部構造側から荷重が加わることによって、荷重支持部材5がひずむ。したがって、支承1に加わっている上部構造側から荷重が変化すると、荷重支持部材5のひずみ量が変化し、その結果、橋脚100と、主桁101との対向面間の距離が変化する。橋脚100と、主桁101との対向面間の距離の変化量と、下沓2と上部構造(主桁101)との距離の変化量と、は同じである。また、橋脚100と、主桁101との対向面間の距離の変化量と、上沓3と下沓2との対向面間の距離の変化量と、は同じである。すなわち、近接センサ10、11によって計測される下沓2と上部構造(主桁101)との距離の変化量は、上沓3と下沓2との対向面間の距離の変化量である。 In the bearing 1, the load bearing member 5 is distorted by applying a load from the upper structure side. Therefore, when the load applied to the bearing 1 from the superstructure side changes, the strain amount of the load bearing member 5 changes, and as a result, the distance between the facing surfaces of the pier 100 and the main girder 101 changes. The amount of change in the distance between the facing surfaces of the bridge pier 100 and the main girder 101 is the same as the amount of change in the distance between the lower shoe 2 and the upper structure (main girder 101). Also, the amount of change in the distance between the facing surfaces of the pier 100 and the main girder 101 and the amount of change in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 are the same. That is, the amount of change in the distance between the lower shoes 2 and the upper structure (main girder 101) measured by the proximity sensors 10 and 11 is the amount of change in the distance between the facing surfaces of the upper shoes 3 and 2.

後述する反力計測装置50は、上沓3と下沓2との対向面間の距離の変化量Δxを、
Δx=(Δx1+Δx2)/2
により算出する。Δx1は、近接センサ10の検知面から主桁101の対向面までの距離の変化量であり、
Δx1=近接センサ10の基準距離-近接センサ10の計測距離
により算出する。また、Δx2は、近接センサ11の検知面から主桁101の対向面までの距離の変化量であり、
Δx2=近接センサ11の基準距離-近接センサ11の計測距離
により算出する。近接センサ10、11の基準距離は、支承1の設置時等に、各近接センサ10、11で計測した距離にすればよい。また、上述したように、近接センサ10、11は、荷重支持部材5を挟んで、橋軸直角方向に並べて取り付けている。そして、近接センサ10の検知面から主桁101の対向面までの距離の変化量Δx1と、近接センサ11の検知面から主桁101の対向面までの距離の変化量Δx2との平均を、上沓3と下沓2との対向面間の距離の変化量Δxとして算出する。したがって、上沓3と下沓2との対向面間の距離の変化量Δxにおいて、橋軸直角方向における上沓3と下沓2との対向面間の距離の変化量の差(Δx1と、Δx2との差)をキャンセルできる。
The reaction force measuring device 50, which will be described later, measures the amount of change Δx in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 as
Δx=(Δx1+Δx2)/2
Calculated by Δx1 is the amount of change in the distance from the detection surface of the proximity sensor 10 to the facing surface of the main girder 101,
Δx1=reference distance of proximity sensor 10−measured distance of proximity sensor 10. Δx2 is the amount of change in the distance from the detection surface of the proximity sensor 11 to the facing surface of the main girder 101,
Δx2=reference distance of proximity sensor 11−measured distance of proximity sensor 11. The reference distances of the proximity sensors 10 and 11 may be the distances measured by the proximity sensors 10 and 11 when the bearing 1 is installed. Further, as described above, the proximity sensors 10 and 11 are mounted side by side in the direction perpendicular to the bridge axis with the load supporting member 5 interposed therebetween. Then, the average of the amount of change Δx1 in the distance from the detection surface of the proximity sensor 10 to the facing surface of the main girder 101 and the amount of change Δx2 in the distance from the detection surface of the proximity sensor 11 to the facing surface of the main girder 101 is calculated as above. It is calculated as the amount of change Δx in the distance between the facing surfaces of the shoe 3 and the lower shoe 2 . Therefore, in the amount of change Δx in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2, the difference in the amount of change in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 in the direction perpendicular to the bridge axis (Δx1 and Δx2) can be canceled.

このように、この支承1は、上沓3と下沓2との対向面間の距離の変化量Δxを計測することができる。また、上沓3と下沓2との対向面間の距離がΔx短くなったときにおける、荷重支持部材5の反力Rの変化量ΔRは、
ΔR=E×Δx
である。但し、Eは、荷重支持部材5のヤング係数である。すなわち、この支承1は、荷重支持部材5の反力Rの変化についても計測できる。
Thus, the bearing 1 can measure the amount of change Δx in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 . Further, when the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 is shortened by Δx, the amount of change ΔR in the reaction force R of the load supporting member 5 is
ΔR=E×Δx
is. where E is the Young's modulus of the load bearing member 5; That is, this bearing 1 can also measure changes in the reaction force R of the load bearing member 5 .

また、近接センサ10、11によって計測する距離は、上沓3と下沓2との対向面間の距離の変化に応じて変化する距離であれば特に制限されない。例えば、図5に示すように、近接センサ10、11を上沓3に取り付け、近接センサ10、11の検知面と、ベースプレート4の対向面との距離を計測するように構成してもよい。また、図6(A)に示すように、近接センサ10、11を下沓2に取り付けるとともに、近接センサ10、11の検知面に対向する検知対象物30、31を上沓3に取り付け、近接センサ10、11の検知面と、検知対象物30、31の対向面との距離を計測するように構成してもよい。また、図6(B)に示すように、近接センサ10、11を上沓3に取り付けるとともに、近接センサ10、11の検知面に対向する検知対象物30、31を下沓2に取り付け、近接センサ10、11の検知面と、検知対象物30、31の対向面との距離を計測するように構成してもよい。 Also, the distances measured by the proximity sensors 10 and 11 are not particularly limited as long as they change according to the change in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 . For example, as shown in FIG. 5, the proximity sensors 10 and 11 may be attached to the upper shoe 3 to measure the distance between the sensing surfaces of the proximity sensors 10 and 11 and the opposing surface of the base plate 4. FIG. Further, as shown in FIG. 6A, the proximity sensors 10 and 11 are attached to the lower shoe 2, and the detection objects 30 and 31 facing the detection surfaces of the proximity sensors 10 and 11 are attached to the upper shoe 3, and the proximity sensors 10 and 11 are attached to the upper shoe 3. The distance between the detection surfaces of the sensors 10 and 11 and the facing surfaces of the detection targets 30 and 31 may be measured. Further, as shown in FIG. 6(B), the proximity sensors 10 and 11 are attached to the upper shoe 3, and the detection objects 30 and 31 facing the detection surfaces of the proximity sensors 10 and 11 are attached to the lower shoe 2. The distance between the detection surfaces of the sensors 10 and 11 and the facing surfaces of the detection targets 30 and 31 may be measured.

また、支承1に取り付ける近接センサの個数や、その配置も特に制限されない。例えば、支承1は、2つの近接センサ10、11を、図7(A)に示すように取り付ける構成であってもよいし、4つの近接センサ10、11、12、13を図7(B)に示すように取り付ける構成であってもよい。 Also, the number of proximity sensors attached to the bearing 1 and their arrangement are not particularly limited. For example, the bearing 1 may have two proximity sensors 10, 11 attached as shown in FIG. 7A, or four proximity sensors 10, 11, 12, 13 attached may be configured to be attached as shown in .

なお、図5、および図6は、図3(A)と同じ方向からみた図であり、図7は、図4(B)に対応する方向の断面図である。 5 and 6 are views viewed from the same direction as FIG. 3A, and FIG. 7 is a cross-sectional view in the direction corresponding to FIG. 4B.

次に、反力計測装置(この発明で言う、計測装置に相当する。)の実施形態について説明する。ここでは、図3に示した支承1を例にする。 Next, an embodiment of a reaction force measuring device (corresponding to a measuring device referred to in this invention) will be described. Here, the bearing 1 shown in FIG. 3 is taken as an example.

図8は、この例にかかる反力計測装置を用いた、監視システムを示す概略図である。この監視システムは、複数の反力計測装置50と、管理装置60とを備える。各反力計測装置50は、ネットワーク70を介して管理装置60と通信可能に接続されている。この例では、反力計測装置50と、支承1とを1対1で対応付けている。反力計測装置50は、対応付けられている支承1(荷重支持部材5)の反力を演算し、その演算結果をネットワーク70を介して管理装置60に通知する。 FIG. 8 is a schematic diagram showing a monitoring system using the reaction force measuring device according to this example. This monitoring system includes a plurality of reaction force measurement devices 50 and a management device 60 . Each reaction force measuring device 50 is communicably connected to a management device 60 via a network 70 . In this example, the reaction force measuring device 50 and the bearing 1 are associated on a one-to-one basis. The reaction force measuring device 50 calculates the reaction force of the associated bearing 1 (load supporting member 5 ) and notifies the management device 60 of the calculation result via the network 70 .

管理装置60は、橋梁の状態を管理する管理事務所等に設置される。管理者は、この管理装置60において、各支承1の状態の確認等を行う。 The management device 60 is installed in a management office or the like that manages the state of the bridge. A manager checks the state of each bearing 1 using the management device 60 .

図9は、反力計測装置の主要部の構成を示すブロック図である。反力計測装置50は、制御部51と、センサ処理部52と、記憶部53と、通信部54と、を備えている。 FIG. 9 is a block diagram showing the configuration of the main part of the reaction force measuring device. The reaction force measuring device 50 includes a control section 51 , a sensor processing section 52 , a storage section 53 and a communication section 54 .

制御部51は、反力計測装置50本体各部の動作を制御する。 The control unit 51 controls the operation of each part of the reaction force measuring device 50 main body.

センサ処理部52は、支承1の近接センサ10、11が接続されている。センサ処理部52は、近接センサ10、11の計測信号(検知面から対向面までの計測距離)が入力される。近接センサ10、11は、上述したように、検知面から主桁101の対向面までの距離を計測する。センサ処理部52は、接続されている近接センサ10、11毎に、その近接センサ10、11から入力された計測信号を処理し、支承1の反力Rの変化量ΔRを演算する処理回路(この例では、2つの処理回路)を備えている。センサ処理部52が、この発明言う入力部、および演算部を備えている。 The proximity sensors 10 and 11 of the bearing 1 are connected to the sensor processing section 52 . The sensor processing unit 52 receives measurement signals from the proximity sensors 10 and 11 (measured distance from the detection surface to the opposing surface). The proximity sensors 10 and 11 measure the distance from the detection surface to the facing surface of the main girder 101 as described above. The sensor processing unit 52 processes measurement signals input from the proximity sensors 10 and 11 connected to each of the proximity sensors 10 and 11, and a processing circuit ( In this example, two processing circuits) are provided. The sensor processing section 52 has an input section and a calculation section according to the present invention.

記憶部53は、近接センサ10、11の基準距離や、計測データ等を記憶する。 The storage unit 53 stores reference distances of the proximity sensors 10 and 11, measurement data, and the like.

通信部54は、ネットワーク70を介した管理装置60との通信を制御し、記憶部53に記憶している計測データを管理装置60へ送信する。 The communication unit 54 controls communication with the management device 60 via the network 70 and transmits measurement data stored in the storage unit 53 to the management device 60 .

なお、各反力計測装置50には、自装置を識別する識別コードが付与されている。上述したように、反力計測装置50と、支承1とを1対1で対応付けているので、反力計測装置50の識別コードから、対応する支承1を特定することができる。 Each reaction force measuring device 50 is given an identification code for identifying itself. As described above, since the reaction force measuring device 50 and the bearing 1 are associated on a one-to-one basis, the corresponding bearing 1 can be identified from the identification code of the reaction force measuring device 50 .

図10は、管理装置の主要部の構成を示すブロック図である。管理装置60は、制御部61と、操作部62と、表示部63と、記憶部64と、通信部65とを備えている。 FIG. 10 is a block diagram showing the configuration of the main part of the management device. The management device 60 includes a control section 61 , an operation section 62 , a display section 63 , a storage section 64 and a communication section 65 .

制御部61は、管理装置60本体各部の動作を制御する。 The control unit 61 controls the operation of each unit of the main body of the management device 60 .

操作部62には、マウスやキーボード等の入力デバイスが接続されている。オペレータは、操作部62に接続されている入力デバイスを操作することにより、管理装置60本体に対する入力操作を行う。操作部62は、管理装置60本体に対する入力を受け付ける。 Input devices such as a mouse and a keyboard are connected to the operation unit 62 . The operator performs an input operation on the main body of the management device 60 by operating an input device connected to the operation unit 62 . The operation unit 62 accepts input to the main body of the management device 60 .

表示部63には、液晶ディスプレイ等の表示デバイスが接続されている。表示部63は、接続されている表示デバイスにおける画面表示を制御する。 A display device such as a liquid crystal display is connected to the display unit 63 . The display unit 63 controls screen display on the connected display device.

記憶部64は、管理装置60本体の動作制御に用いる各種パラメータ等を記憶する。 The storage unit 64 stores various parameters and the like used for controlling the operation of the main body of the management device 60 .

通信部65は、ネットワーク70を介した反力計測装置50との通信を制御する。 The communication unit 65 controls communication with the reaction force measuring device 50 via the network 70 .

以下、反力計測装置50の動作について説明する。 The operation of the reaction force measuring device 50 will be described below.

図11は、反力計測装置の動作を示すフローチャートである。反力計測装置50は、近接センサ10、11で計測された、検知面から主桁101の対向面までの距離の計測値を、予め定められた計測時間間隔a(例えば、20msec間隔)で繰り返し取得する。反力計測装置50は、近接センサ10、11で計測された、検知面から主桁101の対向面までの距離の計測値を取得すると(s1)、上沓3と下沓2との対向面間の距離の変化量Δxを算出する(s2)。 FIG. 11 is a flow chart showing the operation of the reaction force measuring device. The reaction force measuring device 50 repeats the measurement value of the distance from the detection surface to the facing surface of the main girder 101 measured by the proximity sensors 10 and 11 at a predetermined measurement time interval a (for example, 20 msec intervals). get. When the reaction force measuring device 50 acquires the measurement value of the distance from the detection surface to the facing surface of the main girder 101 measured by the proximity sensors 10 and 11 (s1), the facing surface of the upper shoe 3 and the lower shoe 2 A change amount Δx in the distance between is calculated (s2).

上沓3と下沓2との対向面間の距離の変化量Δxは、上述したように、
Δx=(Δx1+Δx2)/2
である。また、Δx1およびΔx2は、
Δx1=近接センサ10の基準距離-近接センサ10の計測距離
Δx2=近接センサ11の基準距離-近接センサ11の計測距離
である。
The amount of change Δx in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 is, as described above,
Δx=(Δx1+Δx2)/2
is. Also, Δx1 and Δx2 are
Δx1=reference distance of proximity sensor 10−measured distance of proximity sensor 10 Δx2=reference distance of proximity sensor 11−measured distance of proximity sensor 11

反力計測装置50は、近接センサ10の基準距離、および近接センサ11の基準距離を記憶部53に記憶している。 The reaction force measuring device 50 stores the reference distance of the proximity sensor 10 and the reference distance of the proximity sensor 11 in the storage unit 53 .

反力計測装置50は、s2で算出した上沓3と下沓2との対向面間の距離の変化量Δxを用いて支承1の反力Rの変化量ΔRを算出する(s3)。反力Rの変化量ΔRは、
ΔR=E×Δx
である。但し、Eは、荷重支持部材5のヤング係数である。
The reaction force measuring device 50 calculates the change amount ΔR of the reaction force R of the bearing 1 using the change amount Δx of the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 calculated in s2 (s3). The amount of change ΔR in the reaction force R is
ΔR=E×Δx
is. where E is the Young's modulus of the load bearing member 5;

反力計測装置50は、計測時刻、s1で近接センサ10、11が計測した検知面から主桁101の対向面までの距離、s2で算出した上沓3と下沓2との対向面間の距離の変化量Δx、およびs3で算出した荷重支持部材5の反力Rの変化量ΔRを対応付けたレコード(今回の計測結果)を計測データに追加登録し(s4)、s1に戻る。 The reaction force measuring device 50 measures the measurement time, the distance from the detection surface measured by the proximity sensors 10 and 11 to the facing surface of the main girder 101 at s1, and the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 calculated at s2. A record (current measurement results) in which the variation Δx of the distance and the variation ΔR of the reaction force R of the load supporting member 5 calculated in s3 are associated is additionally registered in the measurement data (s4), and the process returns to s1.

図12は、記憶部に記憶される計測データを示す図である。図12では、計測時間間隔aを20msecとした場合の例である。図12において、Sa#(#=1、2、3・・・)は、近接センサ10による主桁101の対向面までの計測距離であり、Sb#は、近接センサ11による主桁101の対向面までの計測距離である。また、ave#は、s2で算出した上沓3と下沓2との対向面間の距離の変化量Δxである。また、ΔR#は、s3で算出した支承1の反力Rの変化量ΔRである。 FIG. 12 is a diagram showing measurement data stored in a storage unit. FIG. 12 shows an example in which the measurement time interval a is set to 20 msec. In FIG. 12, Sa# (#=1, 2, 3 . It is the measured distance to the surface. Also, ave# is the amount of change Δx in the distance between the facing surfaces of the upper shoe 3 and the lower shoe 2 calculated in s2. ΔR# is the change amount ΔR of the reaction force R of the bearing 1 calculated in s3.

また、反力計測装置50は、予め定められた通知タイミングになると、通信部54が記憶部53に記憶している計測データを管理装置60に送信する。この通知タイミングは、1日毎や数時間毎に設定すればよい。 Further, the reaction force measurement device 50 transmits the measurement data stored in the storage unit 53 by the communication unit 54 to the management device 60 at a predetermined notification timing. This notification timing may be set every day or every few hours.

管理装置60は、反力計測装置50から送信されてきた計測データを通信部で受信し、記憶部64に記憶する。 The management device 60 receives the measurement data transmitted from the reaction force measurement device 50 by the communication unit and stores the data in the storage unit 64 .

また、管理装置60は、操作部62におけるオペレータの入力操作に応じて、記憶部64に記憶している計測データ(反力計測装置50から送信されてきた計測データ)を処理し、その処理結果を表示部63に表示する。 In addition, the management device 60 processes the measurement data stored in the storage unit 64 (the measurement data transmitted from the reaction force measurement device 50) according to the operator's input operation on the operation unit 62, and the processing result is is displayed on the display unit 63 .

例えば、管理装置60は、操作部62におけるオペレータの入力操作に応じて、計測時刻と、支承1の反力Rの変化量ΔRと、の関係を表示部63に表示する処理を行う。図13は、計測時刻と、支承の反力Rの変化量ΔRとの関係を示す図である。図13において、横軸は計測時刻であり、縦軸は支承1の反力Rの変化量ΔRの大きさである。図13において、支承1の反力Rの変化量ΔRが大きいところは、走行している車両の軸重が支承1に加わったタイミングである。支承1の反力Rの変化量ΔRは、活荷重の大きさに応じて変化する。 For example, the management device 60 performs processing for displaying the relationship between the measurement time and the amount of change ΔR of the reaction force R of the bearing 1 on the display unit 63 according to the operator's input operation on the operation unit 62 . FIG. 13 is a diagram showing the relationship between the measurement time and the amount of change ΔR in the reaction force R of the bearing. In FIG. 13 , the horizontal axis is the measurement time, and the vertical axis is the amount of change ΔR of the reaction force R of the bearing 1 . In FIG. 13 , the point where the amount of change ΔR in the reaction force R of the bearing 1 is large is the timing at which the axle load of the running vehicle is applied to the bearing 1 . The amount of change ΔR in the reaction force R of the bearing 1 changes according to the magnitude of the live load.

また、反力計測装置50は、支承1の反力Rの変化量ΔRにより活荷重(例えば、走行している車両の軸重)の大きさを得ることもできる。活荷重の大きさは、
活荷重=ΔR×A/H
により算出できる。但し、Aは、上沓3によって荷重支持部材5が押圧される面積(上沓3と、荷重支持部材5との接触面積)である。また、Hは、鉛直方向(上沓3と、下沓2との並び方向)における荷重支持部材5の長さ(高さ)である。
The reaction force measuring device 50 can also obtain the magnitude of the live load (for example, the axle load of a running vehicle) from the amount of change ΔR of the reaction force R of the bearing 1 . The magnitude of the live load is
Live load = ΔR x A/H
It can be calculated by However, A is the area where the load bearing member 5 is pressed by the upper shoe 3 (contact area between the upper shoe 3 and the load bearing member 5). Further, H is the length (height) of the load bearing member 5 in the vertical direction (direction in which the upper shoes 3 and the lower shoes 2 are arranged).

また、反力計測装置50は、操作部62におけるオペレータの入力操作に応じて、図14や、図15に示すデータを表示部63に表示してもよい。図14は、支承1の反力Rの変化量ΔRの最大値を示すものである。また、図15は、支承1の反力Rの変化量ΔRの頻度を示す図である。図14は、例えば検出時間間隔を5分や10分に設定し、検出時間毎に、その検出時間内における支承1の反力Rの変化量ΔRの最大値をプロットしたグラフである。 Further, the reaction force measuring device 50 may display the data shown in FIG. 14 and FIG. FIG. 14 shows the maximum value of the variation ΔR of the reaction force R of the bearing 1. In FIG. FIG. 15 is a diagram showing the frequency of the amount of change ΔR in the reaction force R of the bearing 1. As shown in FIG. FIG. 14 is a graph plotting the maximum value of the change amount ΔR of the reaction force R of the bearing 1 within each detection time, for example, when the detection time interval is set to 5 minutes or 10 minutes.

また、図6に示す構成の支承1であれば、この支承1に荷重が加わっていない状態で、近接センサ10が計測した、検知面と、検知対象物30との距離を近接センサ10の基準距離とし、近接センサ11が計測した、検知面と、検知対象物31との距離を近接センサ11の基準距離とすることで、死荷重(上部構造の荷重)による、支承1の反力Rを得ることができる。 6, the distance between the detection surface and the detection object 30, which is measured by the proximity sensor 10 when no load is applied to the support 1, is the reference of the proximity sensor 10. By setting the distance between the detection surface and the detection object 31 measured by the proximity sensor 11 as the reference distance of the proximity sensor 11, the reaction force R of the bearing 1 due to the dead load (the load of the superstructure) can be calculated as Obtainable.

また、既設の橋梁に取り付けられている支承1であっても、この支承1について反力Rの変化量ΔRを計測できる。 Further, even with the bearing 1 attached to the existing bridge, the amount of change ΔR of the reaction force R can be measured for this bearing 1 .

具体的には、図16に示すように、反力Rの変化量ΔRを計測する支承1について、近接センサ10、11を、上沓3と下沓2との対向面間の距離の変化に応じて変化する対象距離の計測が行えるように取り付ける(s11)。また、近接センサ10、11を反力計測装置50に接続する(s12)。そして、反力計測装置50に、図11に示した処理を実行させる。 Specifically, as shown in FIG. 16, for the bearing 1 that measures the amount of change ΔR in the reaction force R, the proximity sensors 10 and 11 are set to detect changes in the distance between the facing surfaces of the upper shoe 3 and lower shoe 2. It is installed so as to measure the object distance which changes accordingly (s11). Also, the proximity sensors 10 and 11 are connected to the reaction force measuring device 50 (s12). Then, the reaction force measuring device 50 is caused to execute the processing shown in FIG.

これにより、既設の橋梁に取り付けられている支承1についても、反力Rの変化量ΔRを計測が行える。 As a result, the amount of change ΔR in the reaction force R can be measured for the bearing 1 attached to the existing bridge as well.

なお、この場合、近接センサ10、11の基準距離を、支承1に活荷重が加わっていないタイミングにおいて、近接センサ10、11が計測した距離にすればよい。 In this case, the distances measured by the proximity sensors 10 and 11 at the timing when the live load is not applied to the bearing 1 may be set as the reference distances of the proximity sensors 10 and 11 .

このように、上沓3と、下沓2とが荷重支持部材5を挟んで重なっている方向における、上沓3と下沓2との距離の変化に応じて変化する対象距離を計測する近接センサ10、11を設けるという簡単な方法で、加わっている荷重に応じた反力等にかかる物理量の計測が行える。 In this way, in the direction in which the upper shoe 3 and the lower shoe 2 overlap each other with the load supporting member 5 interposed therebetween, the distance to be measured changes according to the change in the distance between the upper shoe 3 and the lower shoe 2. By a simple method of providing the sensors 10 and 11, it is possible to measure the physical quantity applied to the reaction force or the like according to the applied load.

1…支承
2…下沓
3…上沓
4…ベースプレート
5…荷重支持部材
10~13…近接センサ
20、21…取付金具
30、31…検知対象物
50…反力計測装置
51…制御部
52…センサ処理部
53…記憶部
54…通信部
100…橋脚
101…主桁
Reference Signs List 1 Bearing 2 Lower shoe 3 Upper shoe 4 Base plate 5 Load supporting members 10 to 13 Proximity sensors 20, 21 Mounting brackets 30, 31 Object to be detected 50 Reaction force measuring device 51 Control unit 52 Sensor processing unit 53 Storage unit 54 Communication unit 100 Pier 101 Main girder

Claims (6)

橋梁の上部構造に固定される上沓と、
前記橋梁の下部構造に固定される下沓と、
前記上沓と、前記下沓との間に配置され、前記橋梁の前記上部構造側から加わる荷重を支持する荷重支持部材と、
前記上沓と前記下沓とが前記荷重支持部材を挟んで重なっている方向における、前記上沓と前記下沓との距離の変化に応じて変化する対象距離を計測するセンサと、を備え、
前記センサ前記荷重支持部材を挟んだ橋軸直角方向の両側に取り付けられている支承体の前記センサによって計測された前記対象距離が入力される入力部と、
前記入力部に入力された前記対象距離を処理し、前記荷重支持部材に加わっている荷重に応じた力の変化量を演算する演算部と、を備えた計測装置。
an upper shoe fixed to the superstructure of the bridge;
a shoe fixed to the substructure of the bridge;
a load supporting member disposed between the upper shoe and the lower shoe and supporting a load applied from the upper structure side of the bridge;
a sensor that measures a target distance that changes according to a change in the distance between the upper shoe and the lower shoe in the direction in which the upper shoe and the lower shoe overlap with the load supporting member interposed therebetween;
an input unit for inputting the target distance measured by the sensors of the bearing body in which the sensors are attached on both sides in the direction perpendicular to the bridge axis across the load bearing member;
and a computing unit that processes the target distance input to the input unit and computes a change in force according to the load applied to the load supporting member.
前記センサは、前記上沓、または前記下沓の一方に取り付けている、請求項1に記載の計測装置The measuring device according to claim 1, wherein the sensor is attached to either the upper shoe or the lower shoe. 前記センサは、前記上沓、または前記下沓の一方に取り付け、前記上沓、または前記下沓の他方に取り付けている計測対象物までの距離を計測する請求項1に記載の計測装置2. The measuring device according to claim 1, wherein the sensor is attached to one of the upper shoe and the lower shoe, and measures a distance to a measurement object attached to the other of the upper shoe and the lower shoe. 前記演算部は、前記荷重支持部材の反力の変化量を演算する、請求項1~3のいずれかに記載の計測装置。 The measuring device according to any one of claims 1 to 3 , wherein the calculating section calculates the amount of change in the reaction force of the load supporting member. 橋梁の上部構造と下部構造との間に配置され、前記上部構造側から上沓、荷重支持部材、下沓の順番に重なっている支承について、前記荷重支持部材に加わっている荷重に応じた力を計測する計測方法であって、
前記上沓と前記下沓とが前記荷重支持部材を挟んで重なっている方向における、前記上沓と前記下沓との距離の変化に応じて変化する対象距離を計測するセンサを、前記荷重支持部材を挟んだ橋軸直角方向の両側に取り付け、
演算部が、前記センサによって計測された前記対象距離を処理し、前記荷重支持部材に加わっている荷重に応じた力の大きさを演算する、計測方法。
A force corresponding to the load applied to the load-bearing members for the bearings placed between the upper structure and the lower structure of the bridge, in which upper shoes, load-bearing members, and lower shoes are stacked in order from the upper-structure side. A measuring method for measuring
a sensor for measuring a target distance that changes according to a change in the distance between the upper shoe and the lower shoe in the direction in which the upper shoe and the lower shoe overlap with the load supporting member interposed therebetween; Installed on both sides of the bridge axis perpendicular to the member,
A measuring method, wherein a computing unit processes the target distance measured by the sensor and computes the magnitude of the force according to the load applied to the load supporting member.
前記演算部は、前記荷重支持部材の反力の変化量を演算する、請求項に記載の計測方法。 6. The measuring method according to claim 5 , wherein said calculation unit calculates the amount of change in the reaction force of said load supporting member.
JP2016156208A 2016-08-09 2016-08-09 Measuring device and measuring method Active JP7171160B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016156208A JP7171160B2 (en) 2016-08-09 2016-08-09 Measuring device and measuring method
CN201780044677.7A CN109477319A (en) 2016-08-09 2017-07-24 Supporting mass, measuring device and measuring method
KR1020197001618A KR102506948B1 (en) 2016-08-09 2017-07-24 Supporting body, measuring device, and measuring method
PCT/JP2017/026600 WO2018030126A1 (en) 2016-08-09 2017-07-24 Supporting body, measuring device, and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156208A JP7171160B2 (en) 2016-08-09 2016-08-09 Measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2018025004A JP2018025004A (en) 2018-02-15
JP7171160B2 true JP7171160B2 (en) 2022-11-15

Family

ID=61162077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156208A Active JP7171160B2 (en) 2016-08-09 2016-08-09 Measuring device and measuring method

Country Status (4)

Country Link
JP (1) JP7171160B2 (en)
KR (1) KR102506948B1 (en)
CN (1) CN109477319A (en)
WO (1) WO2018030126A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382604B2 (en) * 2018-09-27 2023-11-17 パナソニックIpマネジメント株式会社 Detection device and detection method
JP7173840B2 (en) * 2018-11-13 2022-11-16 首都高速道路株式会社 Bearing plate bearing device, computing device, bearing plate bearing device installation method, and rigid plate replacement method
CN110835887A (en) * 2019-10-22 2020-02-25 洛阳双瑞特种装备有限公司 Bridge beam supports is with antifriction slide of lasting lubrication
CN113215969A (en) * 2021-03-11 2021-08-06 衡通华创(北京)科技有限公司 Multichannel basin-type force measurement support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639254B2 (en) 1991-10-08 1997-08-06 株式会社大林組 Automatic measurement method for maintenance of seismically isolated buildings
JP2013195209A (en) 2012-03-19 2013-09-30 Takenaka Komuten Co Ltd Displacement measuring system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934911A (en) * 1982-08-20 1984-02-25 Mitsubishi Electric Corp Suppressing device for internal temperature of car compartment
JPH039232A (en) * 1989-06-05 1991-01-17 Sharp Corp Pressure detecting method and pressure sensor
US5597240A (en) * 1996-03-04 1997-01-28 Hexcel-Fyfe Co., L.L.C. Structural bearing
KR20040077214A (en) * 2003-02-28 2004-09-04 동일고무벨트주식회사 Structural bearing having a fiber-optic sensor and method for measuring the supporting load in use of the same
JP4466297B2 (en) * 2004-09-21 2010-05-26 オイレス工業株式会社 Structure to reduce ground vibration due to vertical vibration of girder
JP2009001994A (en) * 2007-06-19 2009-01-08 Kawaguchi Metal Industries Co Ltd Laminated rubber with load detecting function
JP4891891B2 (en) * 2007-12-25 2012-03-07 株式会社川金コアテック Laminated rubber with load detection function, manufacturing method thereof and rubber bearing
KR101125982B1 (en) * 2010-04-12 2012-03-20 건국대학교 산학협력단 A hybrid bearing instrumented with load and thermo measuring sensors
KR101468068B1 (en) * 2014-02-24 2014-12-02 주식회사 다인건설 Close adhesion device for bridge
CN203947407U (en) * 2014-04-24 2014-11-19 柳州东方工程橡胶制品有限公司 A kind of intelligent shock-isolation neoprene bearing
CN204343450U (en) * 2014-12-09 2015-05-20 西南交通大学 A kind of building bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639254B2 (en) 1991-10-08 1997-08-06 株式会社大林組 Automatic measurement method for maintenance of seismically isolated buildings
JP2013195209A (en) 2012-03-19 2013-09-30 Takenaka Komuten Co Ltd Displacement measuring system

Also Published As

Publication number Publication date
KR20190019175A (en) 2019-02-26
CN109477319A (en) 2019-03-15
WO2018030126A1 (en) 2018-02-15
JP2018025004A (en) 2018-02-15
KR102506948B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP7171160B2 (en) Measuring device and measuring method
Huseynov et al. Bridge damage detection using rotation measurements–Experimental validation
Park et al. Vision-based displacement measurement method for high-rise building structures using partitioning approach
EP3187838B1 (en) System for vehicles weight preselection and evaluation of the technical state of road infrastructure
US8892367B2 (en) Determination of subgrade modulus and stiffness of pavement layers for measurement of bearing capacity under fast moving wheel load
Lee et al. An experimental investigation on shear behaviour of RC T-beams strengthened with CFRP using photogrammetry
CN107064476A (en) Highway Airport Asphalt modular inverse calculation device and method based on pavement monitoring
US11274989B2 (en) Method for determining the structural integrity of an infrastructural element
CN102535313A (en) Drivable device for compacting a soil layer structure and method for ascertaining a layer modulus of elasticity of an uppermost layer of this soil layer structure
KR101202190B1 (en) Displacement measure device
Zarate Garnica et al. Monitoring structural responses during load testing of reinforced concrete bridges: A review
US11307135B2 (en) Bearing pad
Oskoui et al. Method and sensor for monitoring weight of trucks in motion based on bridge girder end rotations
Breccolotti et al. Bridge damage detection through combined quasi-static influence lines and weigh-in-motion devices
JP6452246B2 (en) Monitoring device
Shoukry et al. Longterm sensor-based monitoring of an LRFD designed steel girder bridge
WO2017142486A1 (en) A sensor for load measurement
CN111504819A (en) New and old concrete joint surface fatigue and shear resistance testing method
RU2672532C2 (en) Method of monitoring technical condition of building sites and building site engineering status monitoring system
CN112726685B (en) Existing structure system pile foundation bearing capacity detection and durability evaluation method
KR100942991B1 (en) Spherical bearing shoe with axial and shear load measuring capability
JP2020094475A (en) Diagnosis apparatus and diagnosis method for bridge having abnormal joint gap
RU2392403C1 (en) Method for detection of changes in deflected mode of building or structure components
JP7043198B2 (en) Orbital soundness evaluation method
KR102642192B1 (en) MAINTENANCE METHOD AND SYSTEM OF BRIDGE USING BIM AND IoT SENSOR

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210825

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220607

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220906

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220913

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221018

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150