JP7146117B2 - refrigeration cycle equipment - Google Patents

refrigeration cycle equipment Download PDF

Info

Publication number
JP7146117B2
JP7146117B2 JP2021560808A JP2021560808A JP7146117B2 JP 7146117 B2 JP7146117 B2 JP 7146117B2 JP 2021560808 A JP2021560808 A JP 2021560808A JP 2021560808 A JP2021560808 A JP 2021560808A JP 7146117 B2 JP7146117 B2 JP 7146117B2
Authority
JP
Japan
Prior art keywords
side refrigerant
heat exchanger
low
heat medium
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021560808A
Other languages
Japanese (ja)
Other versions
JPWO2021106084A1 (en
Inventor
正紘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021106084A1 publication Critical patent/JPWO2021106084A1/ja
Application granted granted Critical
Publication of JP7146117B2 publication Critical patent/JP7146117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は冷凍サイクル装置に関するものである。 The present invention relates to a refrigerating cycle device.

従来、高元側冷媒回路と低元側冷媒回路とを有する二元冷凍サイクル装置が使用されている。例えば、国際公開第2018/008053号公報(特許文献1)には、二元冷凍サイクル装置が記載されている。この二元冷凍サイクル装置では、カスケード熱交換器においてサブクール(過冷却度)を増加させることによりエンタルピー差が増大するため高能力化が可能となる。 Conventionally, a binary refrigeration cycle device having a high temperature side refrigerant circuit and a low temperature side refrigerant circuit has been used. For example, International Publication No. 2018/008053 (Patent Document 1) describes a dual refrigeration cycle apparatus. In this binary refrigerating cycle apparatus, increasing the subcooling (degree of supercooling) in the cascade heat exchanger increases the enthalpy difference, so that the capacity can be increased.

国際公開第2018/008053号公報International Publication No. 2018/008053

上記公報に記載された二元冷凍サイクル装置は、冷凍機としてのみ機能する。したがって、冷暖とも高能力化は不可能である。 The binary refrigerating cycle device described in the above publication functions only as a refrigerator. Therefore, it is impossible to increase the capacity of both cooling and heating.

本発明は上記課題に鑑みてなされたものであり、その目的は、冷暖とも高能力化が可能な冷凍サイクル装置を提供することである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a refrigeration cycle apparatus capable of increasing both cooling and heating capacity.

本発明の冷凍サイクル装置は、高元側冷媒回路と、低元側冷媒回路と、熱媒体回路とを備えている。高元側冷媒回路は、高元側圧縮機、六方弁、高元側冷媒熱交換器、高元側膨張弁、カスケード熱交換器および第1熱媒体熱交換器を有し、高元側冷媒を循環させる。低元側冷媒回路は、低元側圧縮機、四方弁、カスケード熱交換器、低元側膨張弁および第2熱媒体熱交換器を有し、低元側冷媒を循環させる。熱媒体回路は、第1熱媒体熱交換器および第2熱媒体熱交換器に熱媒体を流通させる。冷房運転時には、高元側冷媒回路を高元側圧縮機、六方弁、高元側冷媒熱交換器、高元側膨張弁、カスケード熱交換器、六方弁の順に高元側冷媒が流れるように六方弁が切り替えられ、低元側冷媒回路を低元側圧縮機、四方弁、カスケード熱交換器、低元側膨張弁、第2熱媒体熱交換器、四方弁の順に低元側冷媒が流れるように四方弁が切り替えられ、第2熱媒体熱交換器において熱媒体回路を流通する熱媒体と低元側冷媒回路を循環する低元側冷媒との間で熱交換が行われる。暖房運転時には、高元側冷媒回路を高元側圧縮機、六方弁、第1熱媒体熱交換器、六方弁、カスケード熱交換器、高元側膨張弁、高元側冷媒熱交換器、六方弁の順に高元側冷媒が流れるように六方弁が切り替えられ、低元側冷媒回路を低元側圧縮機、四方弁、第2熱媒体熱交換器、低元側膨張弁、カスケード熱交換器、四方弁の順に低元側冷媒が流れるように四方弁が切り替えられ、第2熱媒体熱交換器において熱媒体回路を流通する熱媒体と低元側冷媒回路を循環する低元側冷媒との間で熱交換が行われ、かつ第1熱媒体熱交換器において熱媒体回路を流通する熱媒体と高元側冷媒回路を循環する高元側冷媒との間で熱交換が行われる。 A refrigeration cycle apparatus of the present invention includes a high temperature side refrigerant circuit, a low temperature side refrigerant circuit, and a heat medium circuit. The high temperature side refrigerant circuit has a high temperature side compressor, a hexagonal valve, a high temperature side refrigerant heat exchanger, a high temperature side expansion valve, a cascade heat exchanger and a first heat medium heat exchanger, and has a high temperature side refrigerant. circulate. The low-side refrigerant circuit has a low-side compressor, a four-way valve, a cascade heat exchanger, a low-side expansion valve, and a second heat medium heat exchanger, and circulates the low-side refrigerant. The heat medium circuit circulates the heat medium through the first heat medium heat exchanger and the second heat medium heat exchanger. During cooling operation, the high temperature side refrigerant circuit is configured so that the high temperature side refrigerant flows in the order of the high temperature side compressor, the 6-way valve, the high temperature side refrigerant heat exchanger, the high temperature side expansion valve, the cascade heat exchanger, and the 6-way valve. The six-way valve is switched, and the low-side refrigerant flows through the low-side refrigerant circuit in the order of the low-side compressor, the four-way valve, the cascade heat exchanger, the low-side expansion valve, the second heat medium heat exchanger, and the four-way valve. , heat exchange is performed between the heat medium flowing through the heat medium circuit and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit in the second heat medium heat exchanger. During heating operation, the high-side refrigerant circuit consists of the high-side compressor, the 6-way valve, the first heat medium heat exchanger, the 6-way valve, the cascade heat exchanger, the high-side expansion valve, the high-side refrigerant heat exchanger, the 6-way The hexagonal valves are switched so that the high temperature side refrigerant flows in the order of the valves, and the low temperature side refrigerant circuit is composed of the low temperature side compressor, the four-way valve, the second heat medium heat exchanger, the low temperature side expansion valve, and the cascade heat exchanger. , the four-way valves are switched so that the low temperature side refrigerant flows in the order of the four way valves, and in the second heat medium heat exchanger, the heat medium flowing through the heat medium circuit and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit are switched. In the first heat medium heat exchanger, heat exchange is performed between the heat medium circulating in the heat medium circuit and the high temperature side refrigerant circulating in the high temperature side refrigerant circuit.

本発明の冷凍サイクル装置によれば、冷房運転時にはカスケード熱交換器において高元側冷媒と低元側冷媒との間で熱交換が行われる。暖房運転時にはカスケード熱交換器において高元側冷媒と低元側冷媒との間で熱交換が行われ、かつ第1熱媒体熱交換器において高元側冷媒と熱媒体との間で熱交換が行われる。したがって、冷暖とも高能力化が可能となる。 According to the refrigerating cycle apparatus of the present invention, heat exchange is performed between the high temperature side refrigerant and the low temperature side refrigerant in the cascade heat exchanger during cooling operation. During heating operation, heat is exchanged between the high temperature side refrigerant and the low temperature side refrigerant in the cascade heat exchanger, and heat exchange is performed between the high temperature side refrigerant and the heat medium in the first heat medium heat exchanger. done. Therefore, it is possible to increase the capacity of both cooling and heating.

実施の形態に係る冷凍サイクル装置の冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration cycle device according to an embodiment; FIG. 図1の六方弁での冷房運転時の高元側冷媒の流れを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing the flow of a high temperature side refrigerant during cooling operation in the hexagonal valve of FIG. 1 ; 図1の六方弁での暖房運転時の高元側冷媒の流れを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing the flow of high temperature side refrigerant during heating operation in the hexagonal valve of FIG. 1 ; 六方弁の一例の構造および冷房運転時の動作を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of an example of a hexagonal valve and its operation during cooling operation; 六方弁の一例の構造および暖房運転時の動作を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of an example of a hexagonal valve and its operation during heating operation; 図1の第1熱媒体熱交換器での高元側冷媒および熱媒体の流れを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing the flow of high-pressure side refrigerant and heat medium in the first heat medium heat exchanger of FIG. 1 ;

以下、本発明の実施の形態について図を参照して説明する。なお、以下においては、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。実施の形態では、冷凍サイクル装置の一例としてチラーについて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same reference numerals are given to the same or corresponding parts, and redundant description will not be repeated. In the embodiment, a chiller will be described as an example of a refrigeration cycle device.

図1を参照して、実施の形態に係る冷凍サイクル装置1の構成について説明する。
冷凍サイクル装置1は、高元側冷媒回路10と、低元側冷媒回路20と、熱媒体回路30と、制御装置40とを備えている。
A configuration of a refrigeration cycle apparatus 1 according to an embodiment will be described with reference to FIG.
The refrigeration cycle device 1 includes a high temperature side refrigerant circuit 10 , a low temperature side refrigerant circuit 20 , a heat medium circuit 30 and a control device 40 .

高元側冷媒回路10は、高元側圧縮機11、六方弁12、高元側冷媒熱交換器13、高元側膨張弁14、カスケード熱交換器15および第1熱媒体熱交換器16を有している。高元側圧縮機11、六方弁12、高元側冷媒熱交換器13、高元側膨張弁14、カスケード熱交換器15および第1熱媒体熱交換器16は配管で接続されている。高元側冷媒回路10は、高元側冷媒を循環させるように構成されている。 The high-side refrigerant circuit 10 includes a high-side compressor 11, a six-way valve 12, a high-side refrigerant heat exchanger 13, a high-side expansion valve 14, a cascade heat exchanger 15, and a first heat medium heat exchanger 16. have. The high temperature side compressor 11, the six-way valve 12, the high temperature side refrigerant heat exchanger 13, the high temperature side expansion valve 14, the cascade heat exchanger 15 and the first heat medium heat exchanger 16 are connected by piping. The high temperature side refrigerant circuit 10 is configured to circulate the high temperature side refrigerant.

高元側圧縮機11は、高元側冷媒を圧縮するように構成されている。高元側圧縮機11は吸入口および吐出口を有している。高元側圧縮機11は、吸入口から吸入した高元側冷媒を圧縮して吐出口から吐出するように構成されている。高元側圧縮機11は容量可変に構成されている。高元側圧縮機11は、制御装置40からの指示に基づいて高元側圧縮機11の回転数が調整されることにより容量が変化するように構成されていてもよい。 The high pressure side compressor 11 is configured to compress the high pressure side refrigerant. The high-side compressor 11 has a suction port and a discharge port. The high temperature side compressor 11 is configured to compress the high temperature side refrigerant sucked from the suction port and discharge it from the discharge port. The high-side compressor 11 is configured to have a variable capacity. The high-voltage side compressor 11 may be configured to change its capacity by adjusting the rotational speed of the high-voltage side compressor 11 based on an instruction from the control device 40 .

六方弁12は、高元側圧縮機11と、高元側冷媒熱交換器13と、カスケード熱交換器15と、第1熱媒体熱交換器16とに接続されている。六方弁12は、高元側圧縮機11により圧縮された高元側冷媒を高元側冷媒熱交換器13または第1熱媒体熱交換器16を経由してカスケード熱交換器15のいずれかに流すように切り替え可能に構成されている。具体的には、六方弁12は、冷房運転時に高元側圧縮機11から吐出された高元側冷媒を高元側冷媒熱交換器13に流し、暖房運転時に高元側圧縮機11から吐出された高元側冷媒を第1熱媒体熱交換器16を経由してカスケード熱交換器15に流すように、高元側冷媒の流れを切り替えるように構成されている。 The hexagonal valve 12 is connected to the high temperature side compressor 11 , the high temperature side refrigerant heat exchanger 13 , the cascade heat exchanger 15 and the first heat medium heat exchanger 16 . The hexagonal valve 12 directs the high temperature side refrigerant compressed by the high temperature side compressor 11 to either the high temperature side refrigerant heat exchanger 13 or the first heat medium heat exchanger 16 to the cascade heat exchanger 15. It is configured to be switchable so as to flow. Specifically, the six-way valve 12 allows the high-side refrigerant discharged from the high-side compressor 11 during cooling operation to flow to the high-side refrigerant heat exchanger 13, and discharges it from the high-side compressor 11 during heating operation. The flow of the high temperature side refrigerant is switched so that the high temperature side refrigerant flows to the cascade heat exchanger 15 via the first heat medium heat exchanger 16 .

六方弁12は、冷房運転時には、高元側冷媒回路10を高元側圧縮機11、六方弁12、高元側冷媒熱交換器13、高元側膨張弁14、カスケード熱交換器15、六方弁12の順に高元側冷媒が流れるように切り替え可能に構成されている。 During cooling operation, the hexagonal valve 12 connects the high-side refrigerant circuit 10 to the high-side compressor 11, the 6-way valve 12, the high-side refrigerant heat exchanger 13, the high-side expansion valve 14, the cascade heat exchanger 15, and the hexagonal heat exchanger. The valves 12 are configured to be switchable so that the high-side refrigerant flows in order.

六方弁12は、暖房運転時には、高元側冷媒回路10を高元側圧縮機11、六方弁12、第1熱媒体熱交換器16、六方弁12、カスケード熱交換器15、高元側膨張弁14、高元側冷媒熱交換器13、六方弁12の順に高元側冷媒が流れるように切り替え可能に構成されている。 During heating operation, the hexagonal valve 12 connects the high-side refrigerant circuit 10 to the high-side compressor 11, the 6-way valve 12, the first heat medium heat exchanger 16, the 6-way valve 12, the cascade heat exchanger 15, the high-side expansion The valve 14, the high temperature side refrigerant heat exchanger 13, and the hexagonal valve 12 are configured to be switchable so that the high temperature side refrigerant flows in this order.

高元側冷媒熱交換器13は、高元側冷媒熱交換器13内を流れる高元側冷媒と高元側冷媒熱交換器13の周りの空気との間で熱交換を行うように構成されている。高元側冷媒熱交換器13は、六方弁12と高元側膨張弁14とに接続されている。高元側冷媒熱交換器13は、冷房運転時には高元側冷媒を凝縮させる凝縮器として機能し、暖房運転時には高元側冷媒を蒸発させる蒸発器として機能する。高元側冷媒熱交換器13は、たとえば、複数のフィンと、複数のフィンを貫通する管とを有するプレートフィンチューブ式熱交換器である。 The high temperature side refrigerant heat exchanger 13 is configured to exchange heat between the high temperature side refrigerant flowing inside the high temperature side refrigerant heat exchanger 13 and the air around the high temperature side refrigerant heat exchanger 13. ing. The high temperature side refrigerant heat exchanger 13 is connected to the hexagonal valve 12 and the high temperature side expansion valve 14 . The high temperature side refrigerant heat exchanger 13 functions as a condenser that condenses the high temperature side refrigerant during cooling operation, and functions as an evaporator that evaporates the high temperature side refrigerant during heating operation. The high-voltage side refrigerant heat exchanger 13 is, for example, a plate-fin tube heat exchanger having a plurality of fins and tubes passing through the plurality of fins.

高元側膨張弁14は、凝縮器で凝縮された高元側冷媒を膨張させることにより減圧するように構成されている。高元側膨張弁14は、高元側冷媒熱交換器13とカスケード熱交換器15とに接続されている。高元側膨張弁14は、冷房運転時には高元側冷媒熱交換器13により凝縮された高元側冷媒を減圧する絞り装置となり、暖房運転時にはカスケード熱交換器15により凝縮された高元側冷媒を減圧する絞り装置となる。高元側膨張弁14は、たとえば、電磁弁またはキャピラリ-チューブである。 The high pressure side expansion valve 14 is configured to reduce the pressure by expanding the high pressure side refrigerant condensed by the condenser. The high-pressure side expansion valve 14 is connected to the high-pressure side refrigerant heat exchanger 13 and the cascade heat exchanger 15 . The high-side expansion valve 14 serves as a throttle device for decompressing the high-side refrigerant condensed by the high-side refrigerant heat exchanger 13 during cooling operation, and the high-side refrigerant condensed by the cascade heat exchanger 15 during heating operation. It becomes a throttling device that reduces the pressure of High-side expansion valve 14 is, for example, a solenoid valve or a capillary tube.

カスケード熱交換器15は、高元側冷媒回路10を循環する高元側冷媒と低元側冷媒回路20を循環する低元側冷媒との間で熱交換を行うように構成されている。カスケード熱交換器15は、高元側膨張弁14と六方弁12とに接続されている。また、カスケード熱交換器15は、低元側冷媒熱交換器23と低元側膨張弁24とに接続されている。カスケード熱交換器15は、冷房運転時には高元側冷媒を蒸発させる蒸発器として機能し、暖房運転時には高元側冷媒を凝縮させる凝縮器として機能する。 The cascade heat exchanger 15 is configured to exchange heat between the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 . The cascade heat exchanger 15 is connected to the high-side expansion valve 14 and the hexagonal valve 12 . The cascade heat exchanger 15 is also connected to the low temperature side refrigerant heat exchanger 23 and the low temperature side expansion valve 24 . The cascade heat exchanger 15 functions as an evaporator that evaporates the high temperature side refrigerant during cooling operation, and functions as a condenser that condenses the high temperature side refrigerant during heating operation.

第1熱媒体熱交換器16は、高元側冷媒回路10を循環する高元側冷媒と熱媒体回路30を流通する熱媒体との間で熱交換を行うように構成されている。第1熱媒体熱交換器16は六方弁12に接続されている。第1熱媒体熱交換器16は、冷房運転時には高元側冷媒が循環せず、暖房運転時には高元側冷媒が循環するように構成されている。 The first heat medium heat exchanger 16 is configured to exchange heat between the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 and the heat medium circulating in the heat medium circuit 30 . The first heat medium heat exchanger 16 is connected to the hexagonal valve 12 . The first heat medium heat exchanger 16 is configured such that the high temperature side refrigerant does not circulate during the cooling operation, and the high temperature side refrigerant circulates during the heating operation.

第1熱媒体熱交換器16は、冷房運転時には、熱媒体回路30を流通する熱媒体と高元側冷媒回路10を循環する高元側冷媒との間で熱交換が行われないように構成されている。 The first heat medium heat exchanger 16 is configured so that heat exchange is not performed between the heat medium circulating in the heat medium circuit 30 and the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 during cooling operation. It is

第1熱媒体熱交換器16は、暖房運転時には、熱媒体回路30を流通する熱媒体と高元側冷媒回路10を循環する高元側冷媒との間で熱交換が行われるように構成されている。 The first heat medium heat exchanger 16 is configured to perform heat exchange between the heat medium circulating in the heat medium circuit 30 and the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 during the heating operation. ing.

低元側冷媒回路20は、低元側圧縮機21、四方弁22、低元側冷媒熱交換器23、カスケード熱交換器15、低元側膨張弁24および第2熱媒体熱交換器25を有している。低元側圧縮機21、四方弁22、低元側冷媒熱交換器23、カスケード熱交換器15、低元側膨張弁24および第2熱媒体熱交換器25は配管で接続されている。低元側冷媒回路20は、低元側冷媒を循環させるように構成されている。 The low-side refrigerant circuit 20 includes a low-side compressor 21 , a four-way valve 22 , a low-side refrigerant heat exchanger 23 , a cascade heat exchanger 15 , a low-side expansion valve 24 and a second heat medium heat exchanger 25 . have. The low-side compressor 21, the four-way valve 22, the low-side refrigerant heat exchanger 23, the cascade heat exchanger 15, the low-side expansion valve 24, and the second heat medium heat exchanger 25 are connected by piping. The low temperature side refrigerant circuit 20 is configured to circulate the low temperature side refrigerant.

低元側圧縮機21は、低元側冷媒を圧縮するように構成されている。低元側圧縮機21は吸入口および吐出口を有している。低元側圧縮機21は、吸入口から吸入した低元側冷媒を圧縮して吐出口から吐出するように構成されている。低元側圧縮機21は容量可変に構成されている。低元側圧縮機21は、制御装置40からの指示に基づいて低元側圧縮機21の回転数が調整されることにより容量が変化するように構成されていてもよい。 The low-voltage side compressor 21 is configured to compress the low-voltage side refrigerant. The low pressure side compressor 21 has a suction port and a discharge port. The low temperature side compressor 21 is configured to compress the low temperature side refrigerant sucked from the suction port and discharge it from the discharge port. The low-voltage side compressor 21 is configured to have a variable capacity. The low-voltage side compressor 21 may be configured such that the displacement is changed by adjusting the rotational speed of the low-voltage side compressor 21 based on an instruction from the control device 40 .

四方弁22は、低元側圧縮機21と、低元側冷媒熱交換器23と、第2熱媒体熱交換器25とに接続されている。四方弁22は、低元側圧縮機21により圧縮された低元側冷媒を低元側冷媒熱交換器23または第2熱媒体熱交換器25のいずれかに流すように切り替え可能に構成されている。具体的には、四方弁22は、冷房運転時に低元側圧縮機21から吐出された低元側冷媒を低元側冷媒熱交換器23に流し、暖房運転時に低元側圧縮機21から吐出された低元側冷媒を第2熱媒体熱交換器25に流すように低元側冷媒の流れを切り替えるように構成されている。 The four-way valve 22 is connected to the low temperature side compressor 21 , the low temperature side refrigerant heat exchanger 23 and the second heat medium heat exchanger 25 . The four-way valve 22 is configured to be switchable so as to flow the low temperature side refrigerant compressed by the low temperature side compressor 21 to either the low temperature side refrigerant heat exchanger 23 or the second heat medium heat exchanger 25. there is Specifically, the four-way valve 22 allows the low temperature side refrigerant discharged from the low temperature side compressor 21 to flow to the low temperature side refrigerant heat exchanger 23 during cooling operation, and discharges it from the low temperature side compressor 21 during heating operation. It is configured to switch the flow of the low temperature side refrigerant so as to flow the low temperature side refrigerant to the second heat medium heat exchanger 25 .

四方弁22は、冷房運転時には、低元側冷媒回路20を低元側圧縮機21、四方弁22、カスケード熱交換器15、低元側膨張弁24、第2熱媒体熱交換器25、四方弁22の順に低元側冷媒が流れるように切り替え可能に構成されている。 During cooling operation, the four-way valve 22 connects the low-side refrigerant circuit 20 to the low-side compressor 21, the four-way valve 22, the cascade heat exchanger 15, the low-side expansion valve 24, the second heat medium heat exchanger 25, and the four-way heat exchanger. It is configured to be switchable so that the low-concentration side refrigerant flows in order of the valves 22 .

四方弁22は、暖房運転時には、低元側冷媒回路20を低元側圧縮機21、四方弁22、第2熱媒体熱交換器25、低元側膨張弁24、カスケード熱交換器15、四方弁22の順に低元側冷媒が流れるように切り替え可能に構成されている。 During heating operation, the four-way valve 22 connects the low-side refrigerant circuit 20 to the low-side compressor 21, the four-way valve 22, the second heat medium heat exchanger 25, the low-side expansion valve 24, the cascade heat exchanger 15, and the four-way heat exchanger. It is configured to be switchable so that the low-concentration side refrigerant flows in order of the valves 22 .

低元側冷媒熱交換器23は、低元側冷媒熱交換器23内を流れる低元側冷媒と低元側冷媒熱交換器23の周りの空気との間で熱交換を行うように構成されている。低元側冷媒熱交換器23は、補助熱交換器である。低元側冷媒熱交換器23は、四方弁22とカスケード熱交換器15とに接続されている。低元側冷媒熱交換器23は、冷房運転時には低元側冷媒を凝縮させる凝縮器として機能し、暖房運転時には低元側冷媒を蒸発させる蒸発器として機能する。低元側冷媒熱交換器23は、たとえば、複数のフィンと、複数のフィンを貫通する管とを有するプレートフィンチューブ式熱交換器である。 The low temperature side refrigerant heat exchanger 23 is configured to perform heat exchange between the low temperature side refrigerant flowing inside the low temperature side refrigerant heat exchanger 23 and the air around the low temperature side refrigerant heat exchanger 23. ing. The low-side refrigerant heat exchanger 23 is an auxiliary heat exchanger. The low-side refrigerant heat exchanger 23 is connected to the four-way valve 22 and the cascade heat exchanger 15 . The low temperature side refrigerant heat exchanger 23 functions as a condenser that condenses the low temperature side refrigerant during cooling operation, and functions as an evaporator that evaporates the low temperature side refrigerant during heating operation. The low-side refrigerant heat exchanger 23 is, for example, a plate-fin tube heat exchanger having a plurality of fins and tubes passing through the plurality of fins.

低元側膨張弁24は、凝縮器で凝縮された低元側冷媒を膨張させることにより減圧するように構成されている。低元側膨張弁24は、カスケード熱交換器15と第2熱媒体熱交換器25とに接続されている。低元側膨張弁24は、冷房運転時には低元側冷媒熱交換器23およびカスケード熱交換器15により凝縮された低元側冷媒を減圧する絞り装置となり、暖房運転時には第2熱媒体熱交換器25により凝縮された低元側冷媒を減圧する絞り装置となる。低元側膨張弁24は、たとえば、電磁弁またはキャリラリーチューブである。 The low-side expansion valve 24 is configured to reduce the pressure by expanding the low-side refrigerant condensed in the condenser. The low-side expansion valve 24 is connected to the cascade heat exchanger 15 and the second heat medium heat exchanger 25 . The low-side expansion valve 24 serves as a throttle device for decompressing the low-side refrigerant condensed by the low-side refrigerant heat exchanger 23 and the cascade heat exchanger 15 during cooling operation, and serves as a second heat medium heat exchanger during heating operation. 25 serves as an expansion device for decompressing the low-side refrigerant condensed. The low-side expansion valve 24 is, for example, an electromagnetic valve or a carrier tube.

第2熱媒体熱交換器25は、低元側冷媒回路20を循環する低元側冷媒と熱媒体回路30を流通する熱媒体との間で熱交換を行うように構成されている。第2熱媒体熱交換器25は低元側膨張弁24と四方弁22とに接続されている。第2熱媒体熱交換器25は、冷房運転時には低元側冷媒を蒸発させる蒸発器として機能し、暖房運転時には低元側冷媒を凝縮させる凝縮器として機能する。 The second heat medium heat exchanger 25 is configured to exchange heat between the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 and the heat medium circulating in the heat medium circuit 30 . The second heat medium heat exchanger 25 is connected to the low-side expansion valve 24 and the four-way valve 22 . The second heat medium heat exchanger 25 functions as an evaporator that evaporates the low temperature side refrigerant during cooling operation, and functions as a condenser that condenses the low temperature side refrigerant during heating operation.

第2熱媒体熱交換器25は、冷房運転時には、熱媒体回路30を流通する熱媒体と低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われるように構成されている。 The second heat medium heat exchanger 25 is configured to perform heat exchange between the heat medium circulating in the heat medium circuit 30 and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 during cooling operation. ing.

第2熱媒体熱交換器25は、暖房運転時には、熱媒体回路30を流通する熱媒体と低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われるように構成されている。 The second heat medium heat exchanger 25 is configured to perform heat exchange between the heat medium circulating in the heat medium circuit 30 and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 during the heating operation. ing.

熱媒体回路30は、第1熱媒体熱交換器16および第2熱媒体熱交換器25に熱媒体を流通させるように構成されている。第1熱媒体熱交換器16および第2熱媒体熱交換器25は配管で接続されている。熱媒体は、たとえば、水または不凍液である。熱媒体回路30は、たとえば、放熱器に接続されており、放熱器に熱媒体を供給するように構成されている。この放熱器は、たとえば、ショーケースである。 The heat medium circuit 30 is configured to circulate the heat medium through the first heat medium heat exchanger 16 and the second heat medium heat exchanger 25 . The first heat medium heat exchanger 16 and the second heat medium heat exchanger 25 are connected by piping. The heat medium is, for example, water or antifreeze. The heat medium circuit 30 is, for example, connected to a radiator and configured to supply the heat medium to the radiator. This radiator is, for example, a showcase.

高元側冷媒は、たとえば、可燃性冷媒であり、低元側冷媒は、たとえば、不燃性冷媒である。具体的には、高元側冷媒は、たとえば、プロパンであり、低元側冷媒は、たとえば、二酸化炭素(CO)である。また、高元側冷媒は、たとえば、R32であり、低元側冷媒は、たとえば、二酸化炭素(CO)である。The high-side refrigerant is, for example, a combustible refrigerant, and the low-side refrigerant is, for example, a nonflammable refrigerant. Specifically, the high-side refrigerant is, for example, propane, and the low-side refrigerant is, for example, carbon dioxide (CO 2 ). Also, the high-side refrigerant is, for example, R32, and the low-side refrigerant is, for example, carbon dioxide (CO 2 ).

制御装置40は、演算、指示等を行って冷凍サイクル装置の各手段、機器等を制御するように構成されている。 The control device 40 is configured to perform calculations, instructions, etc., and control each means, equipment, etc. of the refrigeration cycle apparatus.

次に、図1を参照して、実施の形態に係る冷凍サイクル装置1の動作について説明する。 Next, operation of the refrigeration cycle apparatus 1 according to the embodiment will be described with reference to FIG.

まず、冷凍サイクル装置1の冷房運転時の動作について説明する。冷房運転とは、高元側冷媒回路10、低元側冷媒回路20、熱媒体回路30を動作させ、熱媒体回路30を流通する熱媒体により図示しない放熱器の周囲の空間を冷やす動作である。 First, the operation of the refrigeration cycle device 1 during cooling operation will be described. The cooling operation is an operation in which the high-side refrigerant circuit 10, the low-side refrigerant circuit 20, and the heat medium circuit 30 are operated, and the space around a radiator (not shown) is cooled by the heat medium flowing through the heat medium circuit 30. .

高元側冷媒回路10においては、冷房運転時には、高元側冷媒回路10を高元側圧縮機11、六方弁12、高元側冷媒熱交換器13、高元側膨張弁14、カスケード熱交換器15、六方弁12の順に高元側冷媒が流れるように六方弁12が切り替えられる。 In the high temperature side refrigerant circuit 10, during cooling operation, the high temperature side refrigerant circuit 10 includes a high temperature side compressor 11, a six-way valve 12, a high temperature side refrigerant heat exchanger 13, a high temperature side expansion valve 14, and a cascade heat exchange. The hexagonal valve 12 is switched so that the high temperature side refrigerant flows in the order of the vessel 15 and the hexagonal valve 12 .

高元側圧縮機11は高元側冷媒を圧縮する。これにより、高元側冷媒は、高温高圧のガス状態となる。この高温高圧のガス状態の高元側冷媒は、高元側圧縮機11から吐出され、六方弁12を経由して高元側冷媒熱交換器13にて空気に対して放熱することで凝縮し、高圧の液状態となる。この高圧の液状態の高元側冷媒は、高元側膨張弁14に流れ、高元側膨張弁14にて膨張することで減圧され、低温低圧の気液二相状態となる。 The high temperature side compressor 11 compresses the high temperature side refrigerant. As a result, the high-side refrigerant becomes a high-temperature, high-pressure gas state. This high temperature and high pressure gas state high temperature side refrigerant is discharged from the high temperature side compressor 11, passes through the hexagonal valve 12, and is condensed by radiating heat to the air in the high temperature side refrigerant heat exchanger 13. , becomes a high-pressure liquid state. This high pressure liquid state high pressure side refrigerant flows into the high pressure side expansion valve 14 and is decompressed by being expanded by the high pressure side expansion valve 14 to become a low temperature and low pressure gas-liquid two-phase state.

この低温低圧の気液二相状態の高元側冷媒は、カスケード熱交換器15に流れ、低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われることで蒸発し、低圧のガス状態となる。この低圧のガス状態の高元側冷媒は、六方弁12を経由し高元側圧縮機11に戻り、高元側圧縮機11により圧縮される。このようにして、冷房運転時に高元側冷媒が高元側冷媒回路を循環する。 This low-temperature, low-pressure gas-liquid two-phase high-side refrigerant flows through the cascade heat exchanger 15 and evaporates as heat is exchanged with the low-side refrigerant circulating in the low-side refrigerant circuit 20 . , to a low-pressure gas state. This low-pressure gaseous high-side refrigerant returns to the high-side compressor 11 via the six-way valve 12 and is compressed by the high-side compressor 11 . In this way, the high temperature side refrigerant circulates in the high temperature side refrigerant circuit during the cooling operation.

低元側冷媒回路20においては、低元側冷媒回路20を低元側圧縮機21、四方弁22、カスケード熱交換器15、低元側膨張弁24、第2熱媒体熱交換器25、四方弁22の順に低元側冷媒が流れるように四方弁22が切り替えられる。 In the low energy side refrigerant circuit 20, the low energy side refrigerant circuit 20 includes a low energy side compressor 21, a four-way valve 22, a cascade heat exchanger 15, a low energy side expansion valve 24, a second heat medium heat exchanger 25, and a four way heat exchanger. The four-way valves 22 are switched so that the low-side refrigerant flows in order of the valves 22 .

低元側圧縮機21は低元側冷媒を圧縮する。これにより、低元側冷媒は、高温高圧のガス状態となる。この高温高圧のガス状態の低元側冷媒は、高元側圧縮機11から吐出され、四方弁22を経由して低元側冷媒熱交換器23にて空気に対して放熱することで凝縮する。低元側冷媒熱交換器23にて凝縮された低元側冷媒は、カスケード熱交換器15に流れ、高元側冷媒回路10を循環する高元側冷媒との間で熱交換が行われることで凝縮することにより、高圧の液状態となる。この高圧の液状態の低元側冷媒は、低元側膨張弁24に流れ、低元側膨張弁24にて膨張することで減圧され、低温低圧の気液二相状態となる。 The low temperature side compressor 21 compresses the low temperature side refrigerant. As a result, the low-side refrigerant enters a high-temperature, high-pressure gas state. This high-temperature, high-pressure gaseous low-side refrigerant is discharged from the high-side compressor 11, passes through the four-way valve 22, and is condensed by dissipating heat to the air in the low-side refrigerant heat exchanger 23. . The low temperature side refrigerant condensed in the low temperature side refrigerant heat exchanger 23 flows to the cascade heat exchanger 15, and heat exchange is performed with the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10. By condensing at , it becomes a high-pressure liquid state. This high-pressure liquid state low-side refrigerant flows into the low-side expansion valve 24 and is decompressed by being expanded by the low-side expansion valve 24 to become a low-temperature, low-pressure gas-liquid two-phase state.

この低温低圧の気液二相状態の低元側冷媒は、第2熱媒体熱交換器25に流れ、熱媒体回路30を流通する熱媒体との間で熱交換が行われることで蒸発し、低圧のガス状態となる。 This low-temperature, low-pressure gas-liquid two-phase low-side refrigerant flows to the second heat medium heat exchanger 25 and evaporates as heat is exchanged with the heat medium flowing through the heat medium circuit 30. It becomes a low-pressure gas state.

この低圧のガス状態の低元側冷媒は、四方弁22を経由し低元側圧縮機21に戻り、低元側圧縮機21により圧縮される。このようにして、冷房運転時に低元側冷媒が低元側冷媒回路を循環する。 This low-pressure gaseous low-side refrigerant returns to the low-side compressor 21 via the four-way valve 22 and is compressed by the low-side compressor 21 . In this manner, the low temperature side refrigerant circulates in the low temperature side refrigerant circuit during the cooling operation.

熱媒体回路30では、第1熱媒体熱交換器16および第2熱媒体熱交換器25に熱媒体が流通する。第2熱媒体熱交換器25において熱媒体回路30を流通する熱媒体と低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われる。冷房運転時には、第2熱媒体熱交換器25において低元側冷媒回路20を循環する低元側冷媒と熱媒体回路30を流通する熱媒体との間で熱交換が行われることにより熱媒体が冷却される。 In the heat medium circuit 30 , the heat medium flows through the first heat medium heat exchanger 16 and the second heat medium heat exchanger 25 . In the second heat medium heat exchanger 25 , heat exchange is performed between the heat medium circulating in the heat medium circuit 30 and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 . During cooling operation, heat is exchanged between the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 and the heat medium circulating in the heat medium circuit 30 in the second heat medium heat exchanger 25, whereby the heat medium is Cooled.

続いて、冷凍サイクル装置1の暖房運転時の動作について説明する。暖房運転とは、高元側冷媒回路10、低元側冷媒回路20、熱媒体回路30を動作させ、熱媒体回路30を流通する熱媒体により図示しない放熱器の周囲の空間を暖める動作である。 Next, the operation of the refrigeration cycle device 1 during heating operation will be described. The heating operation is an operation in which the high-side refrigerant circuit 10, the low-side refrigerant circuit 20, and the heat medium circuit 30 are operated, and the space around a radiator (not shown) is warmed by the heat medium flowing through the heat medium circuit 30. .

高元側冷媒回路10においては、暖房運転時には、高元側冷媒回路10を高元側圧縮機11、六方弁12、第1熱媒体熱交換器16、六方弁12、カスケード熱交換器15、高元側膨張弁14、高元側冷媒熱交換器13、六方弁12の順に高元側冷媒が流れるように六方弁12が切り替えられる。 In the high temperature side refrigerant circuit 10, during heating operation, the high temperature side refrigerant circuit 10 includes a high temperature side compressor 11, a hexagonal valve 12, a first heat medium heat exchanger 16, a hexagonal valve 12, a cascade heat exchanger 15, The hexagonal valve 12 is switched so that the high temperature side refrigerant flows in the order of the high temperature side expansion valve 14, the high temperature side refrigerant heat exchanger 13, and the 6-way valve 12.

高元側圧縮機11は高元側冷媒を圧縮する。これにより、高元側冷媒は、高温高圧のガス状態となる。この高温高圧のガス状態の高元側冷媒は、高元側圧縮機11から吐出され、六方弁12を経由して第1熱媒体熱交換器16に流れ、熱媒体回路30を流通する熱冷媒との間で熱交換が行われることで凝縮する。第1熱媒体熱交換器16にて凝縮した高元側冷媒は、六方弁12を経由してカスケード熱交換器15に流れ、低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われることで凝縮し、高圧の液状態となる。この高圧の液状態の高元側冷媒は、高元側膨張弁14に流れ、高元側膨張弁14にて膨張することで減圧され、低温低圧の気液二相状態となる。 The high temperature side compressor 11 compresses the high temperature side refrigerant. As a result, the high-side refrigerant becomes a high-temperature, high-pressure gas state. This high-temperature high-pressure gas state high-pressure side refrigerant is discharged from the high-side compressor 11, flows through the hexagonal valve 12 to the first heat medium heat exchanger 16, and flows through the heat medium circuit 30. It condenses by heat exchange being performed between. The high temperature side refrigerant condensed in the first heat medium heat exchanger 16 flows through the hexagonal valve 12 to the cascade heat exchanger 15, and flows between the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20. As heat is exchanged, it condenses into a high-pressure liquid state. This high pressure liquid state high pressure side refrigerant flows into the high pressure side expansion valve 14 and is decompressed by being expanded by the high pressure side expansion valve 14 to become a low temperature and low pressure gas-liquid two-phase state.

この低温低圧の気液二相状態の高元側冷媒は、高元側冷媒熱交換器13にて空気との間で熱交換が行われることで蒸発し、低圧のガス状態となる。この低圧のガス状態の高元側冷媒は、六方弁12を経由し高元側圧縮機11に戻り、高元側圧縮機11により圧縮される。このようにして、暖房運転時に高元側冷媒が高元側冷媒回路を循環する。 This low-temperature, low-pressure gas-liquid two-phase high-side refrigerant undergoes heat exchange with the air in the high-side refrigerant heat exchanger 13 to evaporate and become a low-pressure gas state. This low-pressure gaseous high-side refrigerant returns to the high-side compressor 11 via the six-way valve 12 and is compressed by the high-side compressor 11 . In this manner, the high temperature side refrigerant circulates in the high temperature side refrigerant circuit during the heating operation.

低元側冷媒回路20においては、低元側冷媒回路20を低元側圧縮機21、四方弁22、第2熱媒体熱交換器25、低元側膨張弁24、カスケード熱交換器15、四方弁22の順に低元側冷媒が流れるように四方弁22が切り替えられる。 In the low energy side refrigerant circuit 20, the low energy side refrigerant circuit 20 includes a low energy side compressor 21, a four-way valve 22, a second heat medium heat exchanger 25, a low energy side expansion valve 24, a cascade heat exchanger 15, and a four way heat exchanger. The four-way valves 22 are switched so that the low-side refrigerant flows in order of the valves 22 .

低元側圧縮機21は低元側冷媒を圧縮する。これにより、低元側冷媒は、高温高圧のガス状態となる。この高温高圧のガス状態の低元側冷媒は、低元側圧縮機21から吐出され、四方弁22を経由して第2熱媒体熱交換器25に流れ、熱媒体回路30を流通する熱媒体との間で熱交換が行われることで凝縮し、高圧の液状態となる。この高圧の液状態の低元側冷冷媒は、低元側膨張弁24に流れ、低元側膨張弁24に手膨張することで減圧され、低温低圧の気液二相状態となる。 The low temperature side compressor 21 compresses the low temperature side refrigerant. As a result, the low-side refrigerant enters a high-temperature, high-pressure gas state. This high-temperature, high-pressure gas state low-side refrigerant is discharged from the low-side compressor 21, flows to the second heat medium heat exchanger 25 via the four-way valve 22, and flows through the heat medium circuit 30 as a heat medium. It is condensed by heat exchange between and becomes a high-pressure liquid state. This high-pressure liquid state low-side refrigerant flows into the low-side expansion valve 24 and is manually expanded by the low-side expansion valve 24 to be decompressed into a low-temperature, low-pressure gas-liquid two-phase state.

この低温低圧の気液二相状態の高元側冷媒は、カスケード熱交換器15に流れ、高元側冷媒回路10を循環する高元側冷媒との間で熱交換が行われることで蒸発する。カスケード熱交換器15にて蒸発した低元側冷媒は、低元側冷媒熱交換器23にて空気との間で熱交換が行われることで蒸発し、低圧のガス状態となる。この低圧のガス状態の低元側冷媒は、四方弁22を経由して低元側圧縮機21に戻り、低元側圧縮機21により圧縮される。このようにして、暖房運転時に低元側冷媒が低元側冷媒回路を循環する。 This low-temperature, low-pressure gas-liquid two-phase high-temperature-side refrigerant flows through the cascade heat exchanger 15 and evaporates as heat is exchanged with the high-temperature-side refrigerant circulating in the high-temperature-side refrigerant circuit 10. . The low-side refrigerant evaporated in the cascade heat exchanger 15 is heat-exchanged with the air in the low-side refrigerant heat exchanger 23 to evaporate and become a low-pressure gas. This low-pressure gaseous low-side refrigerant returns to the low-side compressor 21 via the four-way valve 22 and is compressed by the low-side compressor 21 . In this manner, the low temperature side refrigerant circulates in the low temperature side refrigerant circuit during heating operation.

熱媒体回路30では、第1熱媒体熱交換器16および第2熱媒体熱交換器25に熱媒体が流通する。第2熱媒体熱交換器25において熱媒体回路30を流通する熱媒体と低元側冷媒回路20を循環する低元側冷媒との間で熱交換が行われる。さらに、第1熱媒体熱交換器16において熱媒体回路30を流通する熱媒体と高元側冷媒回路10を循環する高元側冷媒との間で熱交換が行われる。 In the heat medium circuit 30 , the heat medium flows through the first heat medium heat exchanger 16 and the second heat medium heat exchanger 25 . In the second heat medium heat exchanger 25 , heat exchange is performed between the heat medium circulating in the heat medium circuit 30 and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 . Furthermore, in the first heat medium heat exchanger 16 , heat exchange is performed between the heat medium circulating in the heat medium circuit 30 and the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 .

暖房運転時には、第1熱媒体熱交換器16にて高元側冷媒回路10を循環する高元側冷媒と熱媒体回路30を流通する熱媒体との間で熱交換が行われ、さらに、第2熱媒体熱交換器25にて低元側冷媒回路20を循環する低元側冷媒と熱媒体回路30を流通する熱媒体との間で熱交換が行われることにより熱媒体が加熱される。 During heating operation, heat is exchanged in the first heat medium heat exchanger 16 between the high temperature side refrigerant circulating in the high temperature side refrigerant circuit 10 and the heat medium circulating in the heat medium circuit 30. The low temperature side refrigerant circulating in the low temperature side refrigerant circuit 20 and the heat medium circulating in the heat medium circuit 30 are heat-exchanged in the heat medium heat exchanger 25 to heat the heat medium.

続いて、図1~図5を参照して、実施の形態に係る冷凍サイクル装置1の六方弁12について詳しく説明する。 Next, the hexagonal valve 12 of the refrigeration cycle apparatus 1 according to the embodiment will be described in detail with reference to FIGS. 1 to 5. FIG.

図1を参照して、六方弁12は、第1接続口P1、第2接続口P2、第3接続口P3、第4接続口P4、第5接続口P5、第6接続口を有している。第1接続口P1は、高元側圧縮機11の吐出口に接続されている。第2接続口P2は、高元側圧縮機11の吸入口に接続されている。第3接続口P3は、高元側冷媒熱交換器13に接続されている。第4接続口P4は、カスケード熱交換器15に接続されている。第5接続口P5は、第1熱媒体熱交換器16の冷媒入口に接続されている。第6接続口P6は、第1熱媒体熱交換器16の冷媒出口に接続されている。 Referring to FIG. 1, the hexagonal valve 12 has a first connection port P1, a second connection port P2, a third connection port P3, a fourth connection port P4, a fifth connection port P5 and a sixth connection port. there is The first connection port P<b>1 is connected to the discharge port of the high pressure side compressor 11 . The second connection port P2 is connected to the suction port of the high pressure side compressor 11 . The third connection port P3 is connected to the high temperature side refrigerant heat exchanger 13 . The fourth connection port P4 is connected to the cascade heat exchanger 15 . The fifth connection port P5 is connected to the refrigerant inlet of the first heat medium heat exchanger 16 . The sixth connection port P6 is connected to the refrigerant outlet of the first heat medium heat exchanger 16 .

図2を参照して、冷房運転時には、第1接続口P1および第3接続口P3は、高元側冷媒回路10の高圧側に接続されている。第2接続口P2、第4接続口P4、第5接続口P5および第6接続口P6は、高元側冷媒回路10の低圧側に接続されている。 Referring to FIG. 2, the first connection port P1 and the third connection port P3 are connected to the high-pressure side of the high-pressure side refrigerant circuit 10 during cooling operation. The second connection port P2, the fourth connection port P4, the fifth connection port P5, and the sixth connection port P6 are connected to the low pressure side of the high pressure side refrigerant circuit 10. As shown in FIG.

図3を参照して、暖房運転時には、第1接続口P1、第4接続口P4、第5接続口P5および第6接続口P6は、高元側冷媒回路10の高元側に接続されている。第2接続口P2および第3接続口P3は、高元側冷媒回路10の低元側に接続されている。 Referring to FIG. 3, during heating operation, the first connection port P1, the fourth connection port P4, the fifth connection port P5 and the sixth connection port P6 are connected to the high side of the high side refrigerant circuit 10. there is The second connection port P2 and the third connection port P3 are connected to the low voltage side of the high voltage side refrigerant circuit 10 .

図2および図3を参照して、第1接続口P1は、冷房運転時および暖房運転時において、常に高元側冷媒回路の高圧側に接続されている。第2接続口P2は、冷房運転時および暖房運転時において、常に高元側冷媒回路の低圧側に接続されている。 2 and 3, the first connection port P1 is always connected to the high pressure side of the high temperature side refrigerant circuit during cooling operation and heating operation. The second connection port P2 is always connected to the low pressure side of the high source side refrigerant circuit during cooling operation and heating operation.

図4および図5を参照して、六方弁12の一例の構造および動作について説明する。六方弁12の一例は、スライド式の切り替え弁である。この六方弁12は、弁本体12aと、弁体12bとを有している。弁本体12aは、中空の枠体である。弁体12bは、弁本体12a内を高低圧差に応じてスライドすることにより、六方弁12内の流路を切り替え可能に構成されている。六方弁12は、弁体12bに設けられた2つの流路と、この2つの流路に接続されていない接続口と第1接続口との間の1つの流路とを有している。 The structure and operation of an example of the hexagonal valve 12 will be described with reference to FIGS. 4 and 5. FIG. An example of the hexagonal valve 12 is a slide switching valve. The hexagonal valve 12 has a valve body 12a and a valve body 12b. The valve body 12a is a hollow frame. The valve body 12b is configured to be able to switch the flow path in the hexagonal valve 12 by sliding in the valve main body 12a according to the pressure difference. The hexagonal valve 12 has two flow paths provided in the valve body 12b and one flow path between a connection port not connected to the two flow paths and a first connection port.

図4に示されるように、冷房運転時には、第1接続口P1と第3接続口P3とが接続され、第2接続口P2と第4接続口P4とが接続され、第5接続口P5と第6接続口P6とが接続される。 As shown in FIG. 4, during cooling operation, the first connection port P1 and the third connection port P3 are connected, the second connection port P2 and the fourth connection port P4 are connected, and the fifth connection port P5 is connected. It is connected to the sixth connection port P6.

図5に示されるように、暖房運転時には、第1接続口P1と第5接続口P5とが接続され、第4接続口P4と第6接続口P6とが接続され、第2接続口P2と第3接続口P3とが接続される。 As shown in FIG. 5, during heating operation, the first connection port P1 and the fifth connection port P5 are connected, the fourth connection port P4 and the sixth connection port P6 are connected, and the second connection port P2 is connected. The third connection port P3 is connected.

冷房運転時および暖房運転時において、第1接続口P1が常に高元側冷媒回路の高圧側に接続され、第2接続口P2が常に高元側冷媒回路の低圧側に接続されるため、高低圧差を安定的に確保することが可能となる。 During cooling operation and heating operation, the first connection port P1 is always connected to the high-pressure side of the high-side refrigerant circuit, and the second connection port P2 is always connected to the low-pressure side of the high-side refrigerant circuit. It becomes possible to ensure a stable pressure difference.

さらに、図6を参照して、実施の形態に係る冷凍サイクル装置1の第2熱媒体熱交換器25について詳しく説明する。 Furthermore, with reference to FIG. 6, the second heat medium heat exchanger 25 of the refrigeration cycle apparatus 1 according to the embodiment will be described in detail.

第2熱媒体熱交換器25を流れる低元側冷媒は、冷房運転時には下から上に向けて流れ、暖房運転時には上から下に向けて流れる。したがって、冷房運転時にはガス状態の低元側冷媒が下から上に向けて流れ、暖房運転時には液状態の低元側冷媒が上から下に向けて流れる。第2熱媒体熱交換器25を流れる熱媒体は、冷房運転時および暖房運転時において下から上に向けて流れる。第2熱媒体熱交換器25を流れる低元側冷媒と熱媒体とは、第2熱媒体熱交換器25が蒸発器として機能する冷房運転時には並行に流れ、第2熱媒体熱交換器25が凝縮器として機能する暖房運転時には対向して流れる。 The low-side refrigerant flowing through the second heat medium heat exchanger 25 flows from bottom to top during cooling operation, and flows from top to bottom during heating operation. Therefore, the gaseous low temperature refrigerant flows from bottom to top during cooling operation, and the liquid low temperature refrigerant flows from top to bottom during heating operation. The heat medium flowing through the second heat medium heat exchanger 25 flows from bottom to top during cooling operation and heating operation. The low temperature side refrigerant and the heat medium flowing through the second heat medium heat exchanger 25 flow in parallel during cooling operation in which the second heat medium heat exchanger 25 functions as an evaporator. It functions as a condenser and flows in opposite directions during heating operation.

次に、実施の形態に係る冷凍サイクル装置1の作用効果について説明する。
実施の形態に係る冷凍サイクル装置1によれば、冷房運転時にはカスケード熱交換器15において高元側冷媒と低元側冷媒との間で熱交換が行われる。このため、サブクール(過冷却度)を増加させることによりエンタルピー差が増大するため高能力化が可能となる。一方、暖房運転時にはカスケード熱交換器15において高元側冷媒と低元側冷媒との間で熱交換が行われる。このため、カスケード熱交換器15において低元側冷媒の蒸発温度が増加するため高能力化が可能となる。さらに、第1熱媒体熱交換器16において高元側冷媒と熱媒体との間で熱交換が行われる。このため、第1熱媒体熱交換器16において高元側冷媒によって熱媒体を直接的に加熱できる。熱交換効率は、カスケード熱交換器15を介して高元側冷媒と熱媒体との間で熱交換が行われる場合よりも、高元側冷媒と熱媒体との間で直接的に熱交換が行われる場合の方が良い。よって、高能力化が可能となる。したがって、冷暖とも高能力化が可能となる。
Next, the effects of the refrigeration cycle device 1 according to the embodiment will be described.
According to the refrigerating cycle device 1 according to the embodiment, heat exchange is performed between the high temperature side refrigerant and the low temperature side refrigerant in the cascade heat exchanger 15 during the cooling operation. Therefore, by increasing the subcooling (the degree of supercooling), the enthalpy difference increases, which makes it possible to increase the performance. On the other hand, during heating operation, heat is exchanged between the high temperature side refrigerant and the low temperature side refrigerant in the cascade heat exchanger 15 . Therefore, in the cascade heat exchanger 15, the low-side refrigerant evaporates at an increased temperature, which makes it possible to increase the capacity. Furthermore, in the first heat medium heat exchanger 16, heat exchange is performed between the high pressure side refrigerant and the heat medium. Therefore, in the first heat medium heat exchanger 16, the heat medium can be directly heated by the high pressure side refrigerant. The heat exchange efficiency is such that heat exchange is more direct between the high temperature side refrigerant and the heat medium than when heat is exchanged between the high temperature side refrigerant and the heat medium via the cascade heat exchanger 15. Better if done. Therefore, it is possible to increase the capacity. Therefore, it is possible to increase the capacity of both cooling and heating.

また、六方弁12により高元側冷媒回路10の簡略化が可能となる。これにより、高元側冷媒回路10を構成する機器の縮小が可能となる。さらに、高元側冷媒回路10のコストの削減が可能となる。 In addition, the six-way valve 12 enables simplification of the high temperature side refrigerant circuit 10 . As a result, it is possible to downsize the equipment that constitutes the high-voltage side refrigerant circuit 10 . Furthermore, the cost of the high-voltage side refrigerant circuit 10 can be reduced.

実施の形態に係る冷凍サイクル装置1によれば、高元側冷媒は可燃性冷媒であり、低元側冷媒は不燃性冷媒である。冷房運転時には高元側冷媒が第1熱媒体熱交換器16に流れないため、熱媒体の凍結によって第1熱媒体熱交換器16が破壊されない。このため、第1熱媒体熱交換器16が破壊されることにより、室内に可燃性冷媒が流出しない。したがって、高元側冷媒が可燃性冷媒であっても安全性の確保が可能となる。 According to the refrigeration cycle device 1 according to the embodiment, the high-side refrigerant is a combustible refrigerant, and the low-side refrigerant is a nonflammable refrigerant. Since the high temperature side refrigerant does not flow to the first heat medium heat exchanger 16 during cooling operation, the first heat medium heat exchanger 16 is not destroyed by freezing of the heat medium. Therefore, when the first heat medium heat exchanger 16 is destroyed, the combustible refrigerant does not flow into the room. Therefore, safety can be ensured even if the high-pressure side refrigerant is a combustible refrigerant.

また、高元側冷媒がたとえばプロパンなどの可燃性冷媒であり、低元側冷媒がたとえば二酸化炭素(CO)であることにより、フロンの使用を規制する冷媒規制に対応することが可能となる。In addition, since the high-side refrigerant is a flammable refrigerant such as propane, and the low-side refrigerant is carbon dioxide (CO 2 ), for example, it is possible to comply with refrigerant regulations that regulate the use of Freon. .

実施の形態に係る冷凍サイクル装置1によれば、六方弁12において第1接続口P1は冷房運転時および暖房運転時において常に高元側冷媒回路の高圧側に接続されており、第2接続口P2は冷房運転時および暖房運転時において常に高元側冷媒回路の低圧側に接続されている。このため、六方弁12内の流路が高低圧差に応じて切り替えられる場合、高低圧差を安定的に確保することが可能となる。 According to the refrigeration cycle apparatus 1 according to the embodiment, the first connection port P1 in the hexagonal valve 12 is always connected to the high-pressure side of the high-side refrigerant circuit during cooling operation and during heating operation, and the second connection port P2 is always connected to the low pressure side of the high source side refrigerant circuit during cooling operation and heating operation. Therefore, when the flow path in the hexagonal valve 12 is switched according to the high and low pressure difference, it is possible to stably ensure the high and low pressure difference.

実施の形態に係る冷凍サイクル装置1によれば、第2熱媒体熱交換器25を流れる低元側冷媒は、冷房運転時には下から上に向けて流れ、暖房運転時には上から下に向けて流れる。したがって、冷房運転時にはガス状態の低元側冷媒が下から上に向けて流れ、暖房運転時には液状態の低元側冷媒が上から下に向けて流れる。仮に、冷房運転時にガス状態の低元側冷媒が上から下に流れると、低元側冷媒が流れる際の抵抗が大きくなるため、熱伝達効率が低下する。これに対して、実施の形態に係る冷凍サイクル装置1では、冷房運転時にはガス状態の低元側冷媒が下から上に向けて流れるため、熱伝達効率の低下を抑制することができる。 According to the refrigeration cycle apparatus 1 according to the embodiment, the low-side refrigerant flowing through the second heat medium heat exchanger 25 flows upward during cooling operation, and flows downward during heating operation. . Therefore, the gaseous low temperature refrigerant flows from bottom to top during cooling operation, and the liquid low temperature refrigerant flows from top to bottom during heating operation. If the gaseous low-concentration refrigerant flows downward during the cooling operation, the resistance of the low-concentration refrigerant will increase and the heat transfer efficiency will decrease. In contrast, in the refrigeration cycle apparatus 1 according to the embodiment, the gaseous low-side refrigerant flows upward from the bottom during the cooling operation, thereby suppressing a decrease in heat transfer efficiency.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the scope and meaning equivalent to the scope of the claims.

1 冷凍サイクル装置、10 高元側冷媒回路、11 高元側圧縮機、12 六方弁、13 高元側冷媒熱交換器、14 高元側膨張弁、15 カスケード熱交換器、16 第1熱媒体熱交換器、20 低元側冷媒回路、21 低元側圧縮機、22 四方弁、23 低元側冷媒熱交換器、24 低元側膨張弁、25 第2熱媒体熱交換器、30 熱媒体回路、40 制御装置、P1 第1接続口、P2 第2接続口、P3 第3接続口、P4 第4接続口、P5 第5接続口、P6 第6接続口。 1 refrigeration cycle device, 10 high temperature side refrigerant circuit, 11 high temperature side compressor, 12 hexagonal valve, 13 high temperature side refrigerant heat exchanger, 14 high temperature side expansion valve, 15 cascade heat exchanger, 16 first heat medium heat exchanger 20 low-side refrigerant circuit 21 low-side compressor 22 four-way valve 23 low-side refrigerant heat exchanger 24 low-side expansion valve 25 second heat medium heat exchanger 30 heat medium Circuit, 40 control device, P1 first connection port, P2 second connection port, P3 third connection port, P4 fourth connection port, P5 fifth connection port, P6 sixth connection port.

Claims (4)

高元側圧縮機、六方弁、高元側冷媒熱交換器、高元側膨張弁、カスケード熱交換器および第1熱媒体熱交換器を有し、高元側冷媒を循環させる高元側冷媒回路と、
低元側圧縮機、四方弁、前記カスケード熱交換器、低元側膨張弁および第2熱媒体熱交換器を有し、低元側冷媒を循環させる低元側冷媒回路と、
前記第1熱媒体熱交換器および前記第2熱媒体熱交換器に熱媒体を流通させる熱媒体回路とを備え、
冷房運転時には、
前記高元側冷媒回路を前記高元側圧縮機、前記六方弁、前記高元側冷媒熱交換器、前記高元側膨張弁、前記カスケード熱交換器、前記六方弁の順に前記高元側冷媒が流れるように前記六方弁が切り替えられ、
前記低元側冷媒回路を前記低元側圧縮機、前記四方弁、前記カスケード熱交換器、前記低元側膨張弁、前記第2熱媒体熱交換器、前記四方弁の順に前記低元側冷媒が流れるように前記四方弁が切り替えられ、
前記第2熱媒体熱交換器において前記熱媒体回路を流通する前記熱媒体と前記低元側冷媒回路を循環する前記低元側冷媒との間で熱交換が行われ、
暖房運転時には、
前記高元側冷媒回路を前記高元側圧縮機、前記六方弁、前記第1熱媒体熱交換器、前記六方弁、前記カスケード熱交換器、前記高元側膨張弁、前記高元側冷媒熱交換器、前記六方弁の順に前記高元側冷媒が流れるように前記六方弁が切り替えられ、
前記低元側冷媒回路を前記低元側圧縮機、前記四方弁、前記第2熱媒体熱交換器、前記低元側膨張弁、前記カスケード熱交換器、前記四方弁の順に前記低元側冷媒が流れるように前記四方弁が切り替えられ、
前記第2熱媒体熱交換器において前記熱媒体回路を流通する前記熱媒体と前記低元側冷媒回路を循環する前記低元側冷媒との間で熱交換が行われ、かつ前記第1熱媒体熱交換器において前記熱媒体回路を流通する前記熱媒体と前記高元側冷媒回路を循環する前記高元側冷媒との間で熱交換が行われる、冷凍サイクル装置。
A high temperature side refrigerant that has a high temperature side compressor, a hexagonal valve, a high temperature side refrigerant heat exchanger, a high temperature side expansion valve, a cascade heat exchanger, and a first heat medium heat exchanger, and circulates the high temperature side refrigerant. a circuit;
a low gas side refrigerant circuit having a low gas side compressor, a four-way valve, the cascade heat exchanger, a low gas side expansion valve and a second heat medium heat exchanger, and circulating a low gas side refrigerant;
A heat medium circuit for circulating a heat medium through the first heat medium heat exchanger and the second heat medium heat exchanger,
During cooling operation,
The high-pressure side refrigerant circuit is composed of the high-pressure side compressor, the 6-way valve, the high-pressure side refrigerant heat exchanger, the high-pressure side expansion valve, the cascade heat exchanger, and the 6-way valve in this order. The hexagonal valve is switched so that
The low-side refrigerant circuit comprises the low-side compressor, the four-way valve, the cascade heat exchanger, the low-side expansion valve, the second heat medium heat exchanger, and the four-way valve in this order. The four-way valve is switched so that
In the second heat medium heat exchanger, heat exchange is performed between the heat medium circulating in the heat medium circuit and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit,
During heating operation,
The high temperature side refrigerant circuit comprises the high temperature side compressor, the 6-way valve, the first heat medium heat exchanger, the 6-way valve, the cascade heat exchanger, the high temperature side expansion valve, and the high temperature side refrigerant heat. The hexagonal valve is switched so that the high pressure side refrigerant flows in the order of the exchanger and the hexagonal valve,
The low-side refrigerant circuit comprises the low-side compressor, the four-way valve, the second heat medium heat exchanger, the low-side expansion valve, the cascade heat exchanger, and the four-way valve in this order. The four-way valve is switched so that
In the second heat medium heat exchanger, heat exchange is performed between the heat medium circulating in the heat medium circuit and the low temperature side refrigerant circulating in the low temperature side refrigerant circuit, and the first heat medium A refrigeration cycle apparatus in which heat exchange is performed between the heat medium circulating in the heat medium circuit and the high temperature side refrigerant circulating in the high temperature side refrigerant circuit in a heat exchanger.
前記高元側冷媒は、可燃性冷媒であり、
前記低元側冷媒は、不燃性冷媒である、請求項1に記載の冷凍サイクル装置。
The high-pressure side refrigerant is a flammable refrigerant,
2. The refrigeration cycle apparatus according to claim 1, wherein said low-side refrigerant is a nonflammable refrigerant.
前記六方弁は、第1接続口および第2接続口を有し、
前記第1接続口は、前記冷房運転時および前記暖房運転時において、常に前記高元側冷媒回路の高圧側に接続されており、
前記第2接続口は、前記冷房運転時および前記暖房運転時において、常に前記高元側冷媒回路の低圧側に接続されている、請求項1または2に記載の冷凍サイクル装置。
The hexagonal valve has a first connection port and a second connection port,
The first connection port is always connected to the high-pressure side of the high-side refrigerant circuit during the cooling operation and during the heating operation,
3. The refrigeration cycle apparatus according to claim 1, wherein said second connection port is always connected to the low-pressure side of said high-voltage side refrigerant circuit during said cooling operation and said heating operation.
前記第2熱媒体熱交換器を流れる前記低元側冷媒は、前記冷房運転時には下から上に向けて流れ、前記暖房運転時には上から下に向けて流れる、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The low-side refrigerant flowing through the second heat medium heat exchanger flows from bottom to top during the cooling operation, and flows from top to bottom during the heating operation. The refrigeration cycle device according to the item.
JP2021560808A 2019-11-26 2019-11-26 refrigeration cycle equipment Active JP7146117B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046224 WO2021106084A1 (en) 2019-11-26 2019-11-26 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2021106084A1 JPWO2021106084A1 (en) 2021-06-03
JP7146117B2 true JP7146117B2 (en) 2022-10-03

Family

ID=76128669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021560808A Active JP7146117B2 (en) 2019-11-26 2019-11-26 refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JP7146117B2 (en)
WO (1) WO2021106084A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117716187A (en) 2021-08-03 2024-03-15 三菱电机株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071129A (en) 2004-08-31 2006-03-16 Toyo Eng Works Ltd Water vapor generating device using dual refrigerator
KR101236603B1 (en) 2011-10-07 2013-02-22 한밭대학교 산학협력단 Cascade type heat pump system and control method thereof
KR101658021B1 (en) 2015-04-30 2016-09-20 오텍캐리어 주식회사 A Heatpump System Using Duality Cold Cycle
WO2019215916A1 (en) 2018-05-11 2019-11-14 三菱電機株式会社 Refrigeration cycle system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024158A (en) * 1988-06-20 1990-01-09 Fujitsu General Ltd Hot water feed system
JP4999530B2 (en) * 2007-04-23 2012-08-15 三菱電機株式会社 Air conditioner
JP5094942B2 (en) * 2010-10-21 2012-12-12 三菱電機株式会社 Heat pump equipment
JP5054180B2 (en) * 2010-11-04 2012-10-24 サンデン株式会社 Heat pump heating system
EP3611443B1 (en) * 2017-04-11 2020-11-25 Mitsubishi Electric Corporation Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071129A (en) 2004-08-31 2006-03-16 Toyo Eng Works Ltd Water vapor generating device using dual refrigerator
KR101236603B1 (en) 2011-10-07 2013-02-22 한밭대학교 산학협력단 Cascade type heat pump system and control method thereof
KR101658021B1 (en) 2015-04-30 2016-09-20 오텍캐리어 주식회사 A Heatpump System Using Duality Cold Cycle
WO2019215916A1 (en) 2018-05-11 2019-11-14 三菱電機株式会社 Refrigeration cycle system

Also Published As

Publication number Publication date
WO2021106084A1 (en) 2021-06-03
JPWO2021106084A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP5585003B2 (en) Refrigeration equipment
EP2223021B1 (en) Refrigerating system and method for refrigerating
US10830502B2 (en) Air conditioner
JP2011512509A (en) Refrigerant vapor compression system
WO2018029784A1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
JP2007240025A (en) Refrigerating device
WO2009128271A1 (en) Ejector-type refrigeration cycle device
WO2015132966A1 (en) Refrigeration cycle device
JP4118254B2 (en) Refrigeration equipment
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP7146117B2 (en) refrigeration cycle equipment
KR100426640B1 (en) Refrigeration cycle
CN113339909B (en) Heat pump air conditioning system
CN112432255B (en) Outdoor unit and air conditioner
JP2000304380A (en) Heat exchanger
JP5003665B2 (en) Ejector refrigeration cycle
WO2018008129A1 (en) Refrigeration cycle device
JP7305050B2 (en) refrigeration cycle equipment
JP2006170536A (en) Vapor compression type heat pump
JP2006003023A (en) Refrigerating unit
JP4086011B2 (en) Refrigeration equipment
JPH11142015A (en) Engine-driven type refrigerating unit
WO2010041453A1 (en) Refrigeration device
JPH06241582A (en) Heat accumulative type cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7146117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150