JP7119266B2 - copper alloy powder - Google Patents
copper alloy powder Download PDFInfo
- Publication number
- JP7119266B2 JP7119266B2 JP2020187490A JP2020187490A JP7119266B2 JP 7119266 B2 JP7119266 B2 JP 7119266B2 JP 2020187490 A JP2020187490 A JP 2020187490A JP 2020187490 A JP2020187490 A JP 2020187490A JP 7119266 B2 JP7119266 B2 JP 7119266B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy powder
- powder
- mass
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、銅合金粉末に関する。 The present invention relates to copper alloy powder.
近年、銅及び銅合金の抗菌作用に注目が集まっているなかで、様々な立体形状を有する製品の造形や、既存部品へのコーティングを容易にするために、抗菌作用を有する銅及び銅合金の金属AM(Additive Manufactuaring)への適用が期待されている。この金属AMのうち、レーザーを用いたSLM(セレクティブレーザーメルティング)法が広く用いられている。 In recent years, the antibacterial effect of copper and copper alloys has been attracting attention. Application to metal AM (Additive Manufacturing) is expected. Among these metal AMs, the SLM (selective laser melting) method using a laser is widely used.
例えば、以下の特許文献1に開示されているような、クロムと珪素のいずれかを有する銅合金粉末、特許文献2に開示されているような、CrとZrを有する銅合金粉末を用いて、金属AMによる積層造形物を作成する技術が知られている。
For example, using a copper alloy powder containing either chromium or silicon as disclosed in
しかしながら、特許文献1や特許文献2に記載の技術による積層造形物には銅の酸化を防ぐことのできる元素は含まれていない。このため、例えば抗菌作用が求められるドアノブとして利用した場合には、積層造形時の酸化反応、大気との反応や使用者の皮脂や水分との接触により、ドアノブが容易に変色するという問題を抱えている。
更に、酸化しやすい場合は大気との反応等により粉末自体の変色(酸化皮膜形成)が起きてしまうことが懸念される。その際、レーザー溶融式の積層造形を行う場合に、酸化被膜の有無や形態、厚さによりレーザーの吸収性が粉末間で変動してしまい、溶融挙動が安定せず、安定した品質の造形物を得られないという問題点があった。また、粉末床溶融結合方式(PBF)においては、銅粉末の耐酸化性が低い場合、未溶融の銅粉末も溶融部からの伝熱によって大気と反応して酸化してしまうという問題があり、未溶融粉末のリサイクル性を低下させる一因となっている。
そのため、耐酸化性に優れている、つまり、表面酸化生成物皮膜の状態が安定していることが、レーザー溶融式の積層造形を行う上ではレーザーによる溶融挙動を安定化できるという観点、および、粉末のリサイクル性を向上させるという観点で求められている。
However, the laminate-molded articles according to the techniques described in
Furthermore, if the powder is easily oxidized, there is a concern that the powder itself will be discolored (formation of an oxide film) due to reaction with the atmosphere or the like. At that time, when laser melting additive manufacturing is performed, the laser absorption varies between powders depending on the presence, form, and thickness of the oxide film, and the melting behavior is not stable, resulting in stable quality. There was a problem that it was not possible to obtain In addition, in the powder bed fusion method (PBF), when the oxidation resistance of the copper powder is low, there is a problem that the unmelted copper powder reacts with the atmosphere due to heat transfer from the fusion zone and is oxidized. This is one of the factors that reduce the recyclability of the unmelted powder.
Therefore, excellent oxidation resistance, that is, the state of the surface oxidation product film is stable, from the viewpoint that the melting behavior by laser can be stabilized when performing laser melting type additive manufacturing, and It is required from the viewpoint of improving the recyclability of the powder.
本発明は前記の問題に鑑み創案されたものであり、その目的の1つは、耐酸化性に優れた銅合金粉末を提供することにある。また、本発明の他の目的の1つは、耐酸化性に優れるとともに金属AMに好適な積層造形物を製造可能な銅合金粉末を提供することにある。 The present invention was created in view of the above problems, and one of its objects is to provide a copper alloy powder having excellent oxidation resistance. Another object of the present invention is to provide a copper alloy powder which is excellent in oxidation resistance and capable of producing a laminate-molded article suitable for metal AM.
(1)上記目的を達成するために本発明の一形態に係る銅合金粉末は、Znを14質量%以上42質量%以下含有し、Niを8質量%以上50質量%以下含有する銅合金からなることを特徴とする。
(1) A copper alloy powder according to one aspect of the present invention for achieving the above object is a copper alloy containing 14% by mass or more and 42% by mass or less of Zn and 8% by mass or more and 50% by mass or less of Ni. characterized by becoming
適切な量のNiを含有することで耐酸化性に優れた銅合金粉末を提供でき、容易に酸化しないことにより積層造形物を形成する場合のレーザーの照射時に酸化反応に起因するレーザー吸収性の変動を引き起こさない。このため、レーザーの照射に伴い、安定した状態で発熱を得ることができ、溶融挙動の安定した状態で積層造形物を製造可能とする。つまり、Niを上述の範囲含む銅合金粉末は、レーザー吸収率の変化率が少なく、積層造形などの用途に望ましい。
また、積層造形物が使用者の手に触れる物、使用者の目視可能な物である場合、表面にCuの酸化反応に起因して生成される変色相が存在すると意匠性が著しく低下し、酸化の程度によっては手触り性も低下するので、Niを上述の範囲含有することが望ましい。
ZnはCuに対し固溶範囲が広く、Cuの置き換えとして比較的多くのZnを含有させたとして本形態の目的を達成できる銅合金粉末を得やすい。また、Niを上述の範囲含んでいる銅合金に対し上述の範囲のZnを添加しても耐酸化性に対し大きな悪影響はない。
また、NiとともにZnを上述の範囲含むことでレーザー吸収性についても良好となり、大きな悪影響となる問題はない。
By containing an appropriate amount of Ni, it is possible to provide a copper alloy powder with excellent oxidation resistance, and it is not easily oxidized to form a laminate model. do not cause fluctuations. Therefore, it is possible to generate heat in a stable state along with the laser irradiation, and to manufacture a laminate-molded article in a state in which the melting behavior is stable. In other words, a copper alloy powder containing Ni in the above range has a small rate of change in laser absorptance, and is desirable for applications such as additive manufacturing.
In addition, when the layered product is an object that is touched by the user's hand or is visible to the user, the presence of a discoloration phase generated due to the oxidation reaction of Cu on the surface significantly reduces the designability. It is desirable to contain Ni in the range described above, since the touchability is also lowered depending on the degree of oxidation.
Zn has a wide solid solubility range in Cu, and even if a relatively large amount of Zn is contained as a substitute for Cu, it is easy to obtain a copper alloy powder that can achieve the object of the present embodiment. Further, even if Zn in the above range is added to a copper alloy containing Ni in the above range, there is no significant adverse effect on oxidation resistance.
In addition, by including Zn in the above-described range together with Ni, the laser absorbability is also improved, and there is no problem of significant adverse effects.
(2)本発明の一形態に係る銅合金粉末において、前記Cuを45質量%以上95質量%以下含有することが好ましい。 (2) The copper alloy powder according to one aspect of the present invention preferably contains 45% by mass or more and 95% by mass or less of Cu.
Cuを45質量%以上含有することで積層造形物とした場合に積層造形物の表面に充分な量のCuを含む相を露出する事が可能となり、Cuが本来有する抗菌作用により抗菌性に優れた積層造形物を提供できる。 By containing 45% by mass or more of Cu, it becomes possible to expose a sufficient amount of a phase containing Cu on the surface of the laminate-molded product when it is produced as a laminate-molded product, and the antibacterial action inherent in Cu makes it excellent in antibacterial properties. It is possible to provide a laminate-molded product.
(4)本発明に係る一形態に係る銅合金粉末において、Mnを7質量%以下含有してもよい。 (4) The copper alloy powder according to one aspect of the present invention may contain 7% by mass or less of Mn.
MnはNiとともにCuに対し広い範囲で固溶する元素であり、上述の範囲添加することに問題はない。Cuが本来有する抗菌性を損なわず、Niを上述の範囲含有することにより得られる耐酸化性を損なうことなくMnを添加する場合、上述の範囲添加することができる。 Mn, together with Ni, is an element that forms a solid solution with Cu over a wide range, and there is no problem in adding Mn in the above range. When Mn is added without impairing the antibacterial properties that Cu originally has and without impairing the oxidation resistance obtained by containing Ni in the above range, the above range can be added.
(5)本発明に係る一形態に係る銅合金粉末において、粉末表面のXPS分析におけるCuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上であることが好ましい。
XPS分析によるCuとOのピークから求めた元素の存在比率Cu/Oが0.10以上であるならば、表面酸化の程度の低い銅合金粉末を提供でき、積層造形用途とした場合に酸化の程度の低い積層造形物を提供できる。
(5) In the copper alloy powder according to one aspect of the present invention, the abundance ratio Cu/O of each element obtained from the peaks of Cu and O in XPS analysis of the powder surface is preferably 0.10 or more.
If the element abundance ratio Cu/O obtained from the peaks of Cu and O by XPS analysis is 0.10 or more, it is possible to provide a copper alloy powder with a low degree of surface oxidation, and when it is used for additive manufacturing, oxidation does not occur. A low degree of additive manufacturing can be provided.
(6)本発明に係る一形態に係る銅合金粉末において、粉末表面のXPS分析におけるCuのピークのうち、CuとCu2Oの合計(Cu+Cu2O)とCuOの比率(Cu+Cu2O)/CuOが1以上であることが好ましい。
XPS分析によるCuのピークのうち、(Cu+Cu2O)/CuOが1以上であるならば、表面酸化の程度の低い銅合金粉末を提供でき、積層造形用途とした場合に酸化の程度の低い積層造形物を提供できる。
(6) In the copper alloy powder according to one aspect of the present invention, among the Cu peaks in the XPS analysis of the powder surface, the total of Cu and Cu 2 O (Cu + Cu 2 O) and the ratio of CuO (Cu + Cu 2 O) / CuO is preferably 1 or more.
Among the peaks of Cu by XPS analysis, if (Cu + Cu 2 O) / CuO is 1 or more, it is possible to provide a copper alloy powder with a low degree of surface oxidation, and when used for lamination manufacturing, a lamination with a low degree of oxidation can be obtained. We can provide moldings.
(7)本発明に係る一形態に係る銅合金粉末において、粉末表面のXPS分析におけるCuのピークのうちCuOの比率が40%以下であることが好ましい。
XPS分析によるCuのピークのうち、CuOの比率が40%以下であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
(7) In the copper alloy powder according to one aspect of the present invention, it is preferable that the ratio of CuO in the peak of Cu in the XPS analysis of the powder surface is 40% or less.
If the ratio of CuO among the peaks of Cu by XPS analysis is 40% or less, it is possible to provide a copper alloy powder with a low rate of surface oxidation, and when used for layered manufacturing, a layered product with a low rate of oxidation can be obtained. can provide.
(8)本発明に係る一形態に係る銅合金粉末において、表面に形成された表面酸化生成物皮膜の厚みが3μm以下であることが好ましい。
表面酸化生成物皮膜の厚みが3μm以下であるならば、表面酸化生成物皮膜の厚みが少ないので積層造形用途とした場合に酸化物の割合の少ない積層造形物を提供できる。
表面酸化生成物皮膜は、FIB(Focused Ion Beam)法を用いて粉末の断面を観察用に加工し、その後断面をSEMにて観察し、酸化生成物の皮膜の厚みを確認した。
(8) In the copper alloy powder according to one aspect of the present invention, it is preferable that the thickness of the surface oxidation product film formed on the surface is 3 μm or less.
If the thickness of the surface oxidation product film is 3 μm or less, the thickness of the surface oxidation product film is small, so that a layered product with a small proportion of oxide can be provided when used for layered manufacturing.
For the surface oxidation product film, the FIB (Focused Ion Beam) method was used to process a cross section of the powder for observation, and then the cross section was observed with an SEM to confirm the thickness of the oxidation product film.
(9)本発明に係る一形態に係る銅合金粉末において、体積平均粒径が10μm以上150μm以下であることが好ましい。
体積平均粒径が上述の範囲であれば、積層造形用途とした場合に粉末凝集が生じ難く、流動性の低下を生じ難い。また、粉末粒径が適切な大きさであるため、均一な粉末積層が可能となり、造形不良を生じない。
(9) The copper alloy powder according to one aspect of the present invention preferably has a volume average particle size of 10 μm or more and 150 μm or less.
If the volume average particle diameter is within the above range, powder aggregation is less likely to occur and flowability is less likely to decrease when used for layered manufacturing. In addition, since the particle size of the powder is appropriate, it is possible to form a uniform layer of the powder, which does not cause molding defects.
(10)本発明に係る一形態に係る銅合金粉末において、粉末ゆるみかさ密度Da、粉末真密度Dtの比、Da/Dtが0.4以上であることが好ましい。
Da/Dtを0.4以上にすることにより、粉末積層時の空隙を小さくすることができ、レーザーによる溶融後において積層造形物の密度低下を防止できる。
(10) In the copper alloy powder according to one aspect of the present invention, it is preferable that the ratio of powder loose bulk density Da to powder true density Dt, Da/Dt, is 0.4 or more.
By setting Da/Dt to 0.4 or more, it is possible to reduce voids during powder lamination, and to prevent a reduction in the density of a laminate-molded article after melting with a laser.
(11)本発明に係る一形態に係る銅合金粉末において、積層造形用であることが好ましい。
(12)本発明に係る一形態に係る銅合金粉末において、抗菌性を有することが好ましい。
(11) The copper alloy powder according to one aspect of the present invention is preferably for additive manufacturing.
(12) The copper alloy powder according to one aspect of the present invention preferably has antibacterial properties.
本発明の一形態に係る銅合金粉末によれば、適切な量のNiを含有することで耐酸化性に優れたCu合金粉末を提供でき、容易に酸化しないことにより積層造形物を形成する場合のレーザーの照射時に酸化に起因するレーザー吸収性の変動を引き起こさない。また、Niを上述の範囲含む銅合金粉末は、耐熱試験後のレーザー吸収率の変化率が少なく、積層造形などの用途に望ましい。
このため、レーザーの照射に伴い、安定した状態で発熱を得ることができ、溶融挙動の安定した状態で積層造形物を製造可能な銅合金粉末を提供できる。
According to the copper alloy powder according to one aspect of the present invention, it is possible to provide a Cu alloy powder having excellent oxidation resistance by containing an appropriate amount of Ni, and to form a laminate-molded product by not easily oxidizing. It does not cause fluctuations in laser absorption due to oxidation during laser irradiation. In addition, the copper alloy powder containing Ni in the above range has a small rate of change in laser absorptivity after a heat resistance test, and is desirable for applications such as additive manufacturing.
For this reason, it is possible to provide a copper alloy powder that can generate heat in a stable state with laser irradiation and can produce a laminate-molded article in a state of stable melting behavior.
以下に本発明を詳細に説明するが、本発明は以下に説明する実施形態に限定されるものではない。
図1は本発明に係る第1実施形態の積層造形用銅合金粉末の一部を破断して示した側面図である。
本実施形態の銅合金粉末1は銅合金からなる粉末本体2の外周面に表面酸化生成物皮膜3が形成されてなる。本実施形態の銅合金粉末1は一例として球形状あるいはそれに類似する形状の粉末本体2とその外周面全体を薄く覆っている表面酸化生成物皮膜3を有する。なお、表面酸化生成物皮膜3については備えてない構造が望ましいが、形成されていたとして、できる限り薄いことが望ましく、後述する膜厚範囲程度とすることが望ましい。
Although the present invention will be described in detail below, the present invention is not limited to the embodiments described below.
FIG. 1 is a side view showing a partially cutaway copper alloy powder for lamination manufacturing according to a first embodiment of the present invention.
The
粉末本体2を構成する銅合金の組成は一例として、Niを5質量%以上50質量%以下含有する銅合金からなる。例えば、Niを5質量%以上50質量%以下含有し、残部Cuと不可避不純物の組成を有する銅合金であっても良い。
以下に各成分の限定理由について説明する。
「Ni:5質量%以上50質量%以下」
NiはCuに含有させて銅合金とした場合、銅合金粉末1の耐酸化性の向上に寄与する元素である。上述の範囲の適切な量のNiを含有することで銅合金粉末を提供できる。容易に酸化しないことにより積層造形物を形成する場合のレーザーの照射時に酸化に起因するレーザー吸収性の変化を引き起こさない。このため、レーザーの照射に伴い、安定した状態で発熱を得ることができ、溶融挙動の安定した状態で積層造形物を製造可能とする。また、Niを上述の範囲含む銅合金粉末は、耐熱試験後のレーザー吸収率の変化率が少ないことからも、積層造形などの用途に望ましいことが分かる。
積層造形物が使用者の手に触れる物、使用者の目視可能な物である場合、表面にCuの酸化反応に起因する生成物相が存在すると意匠性が著しく低下し、手触り性も低下するので、Niを上述の範囲、含有することが望ましい。なお、Niは銅合金粉末1に含有させる元素の中では高価な元素であり、粉末の低コスト化のためにNi含有量は低い方が望ましい。Niの含有量を低く抑える場合、以下に説明するZnを銅合金粉末1に比較的多く含有させることができる。Ni含有量に関し、5質量%以上45質量%以下の範囲が好ましく、7質量%以上40質量%以下の範囲がより好ましい。
The composition of the copper alloy forming the
The reason for limitation of each component will be explained below.
"Ni: 5% by mass or more and 50% by mass or less"
Ni is an element that contributes to improving the oxidation resistance of the
When a laminate-molded product is an object that is touched by a user's hand or is visible to the user, the presence of a product phase resulting from the oxidation reaction of Cu on the surface significantly reduces the design property and the touch property. Therefore, it is desirable to contain Ni within the above range. Incidentally, Ni is an expensive element among the elements to be contained in the
粉末本体2を構成する銅合金において、Cuを45質量%以上含有することができる。なお、Cuの含有量の上限は95質量%である。また、粉末本体2を構成する銅合金の組成として、前記NiとCuに加え、Znを1質量%以上42質量%以下含有することができる。また、粉末本体2を構成する銅合金の組成として、前記NiとCuに加え、あるいは、前記NiとCuとZnに加え、Mnを7質量%以下含有することができる。
The copper alloy constituting the
「Cu:45質量%以上」
Cuは主成分であり、銅合金粉末1の抗菌性を確保するためには45質量%以上含有することが望ましく、耐酸化性を発現するために必要なNi含有量の下限を考慮し、95質量%以下含有することが望ましい。Cuを45質量%以上含有することで積層造形物とした場合に積層造形物の表面に充分な量のCuを含む相を露出する事が可能となり、Cuが本来有する抗菌作用により抗菌性に優れた積層造形物を提供できる。
"Cu: 45% by mass or more"
Cu is the main component, and in order to ensure the antibacterial properties of the
「Zn:1質量%以上42質量%以下」
Znは、Cuに対し固溶範囲が広く、Cuの置き換えとして比較的多くのZnを含有させたとして本形態の目的を達成できる銅合金粉末を得やすい。また、Niを上述の範囲含んでいる銅合金に対し上述の範囲のZnを添加しても耐酸化性に対し大きな悪影響はない。また、NiとともにZnを上述の範囲含むことでレーザー吸収性についても良好となり、大きな悪影響となる問題はない。このため、銅合金粉末1をできるだけ低コスト化するためにもNiの含有量を少なくしてZnを適量含有させることが望ましい。Zn含有量に関し、5質量%以上40質量%以下の範囲がより好ましい。
"Zn: 1% by mass or more and 42% by mass or less"
Zn has a wide solid solubility range in Cu, and even if a relatively large amount of Zn is contained as a substitute for Cu, it is easy to obtain a copper alloy powder that can achieve the object of the present embodiment. Further, even if Zn in the above range is added to a copper alloy containing Ni in the above range, there is no significant adverse effect on oxidation resistance. In addition, by including Zn in the above-described range together with Ni, the laser absorbability is also improved, and there is no problem of significant adverse effects. Therefore, in order to reduce the cost of the
「Mn:7質量%以下」
MnはNiとともにCuに対し広い範囲で固溶する元素であり、上述の範囲添加することに問題はない。Cuが本体有する抗菌性を損なわず、Niを上述の範囲含有することにより得られる耐酸化性を損なうことなくMnを添加する場合、上述の範囲添加することができる。Mn含有量として、0.5質量%以上7質量%以下の範囲を選択することができる。Mn含有量に関し、0.7質量%以上5.5質量%以下の範囲がより好ましい。
"Mn: 7% by mass or less"
Mn, together with Ni, is an element that forms a solid solution with Cu over a wide range, and there is no problem in adding Mn in the above range. When Mn is added without impairing the antibacterial property that Cu inherently has and without impairing the oxidation resistance obtained by containing Ni in the above range, the above range can be added. The Mn content can be selected in the range of 0.5% by mass or more and 7% by mass or less. Regarding the Mn content, a range of 0.7% by mass or more and 5.5% by mass or less is more preferable.
「その他の元素」
本形態の銅合金粉末1には、その他の元素としてFe、Al、Si、Sn、Pを1種または2種以上、0.1質量%以上10質量%以下程度含有していても良い。
また、その他の不純物元素は、0.1質量%以下程度、不純物として含有していても良い。本形態の合金を溶製から製造する場合、原料に不可避不純物として混入することがある、Ag、Sなどの元素を上述の範囲不純物として含有していても差し支えない。勿論、その他の不純物元素を上述の範囲含有していても差し支えない。
"Other Elements"
The
Other impurity elements may be contained as impurities in an amount of about 0.1% by mass or less. When the alloy of this embodiment is produced by melting, it may contain elements such as Ag and S, which may be mixed into the raw material as unavoidable impurities, as impurities within the above range. Of course, other impurity elements may be contained within the above ranges.
「銅合金粉末のメディアン径」
銅合金粉末1のメディアン径(体積基準の50%平均粒子径)は積層造形用途とした場合、10μm以上、150μm以下であることが好ましい。銅合金粉末1のメディアン径が10μm未満では、粉末の凝集により流動性が低下し、積層造形用原料粉末として不適になる可能性がある。銅合金粉末1のメディアン径が150μmを超える範囲では、銅合金粉末1の径が大き過ぎるため、均一な粉末積層や供給が出来なくなり、造形不良等の原因となる恐れがある。より好ましい銅合金粉末のメディアン径は、積層造形の手法や装置構成によって異なるが、PBF方式(Powder Bed Fusion)においては10μm以上、60μm以下、DED方式(Directed Energy Deposition)においては50μm以上、150μm以下程度である。
"Median diameter of copper alloy powder"
The median diameter (volume-based 50% average particle diameter) of the
「銅合金粉末のゆるみかさ密度と真密度の比」
銅合金粉末1は積層造形用途とした場合、粉末ゆるみかさ密度Da、粉末真密度Dtの比、Da/Dtが0.4以上であることが好ましい。
銅合金粉末1のDa/Dtが0.4未満では粉末積層時の空隙が多くなり、レーザー溶融後の積層造形物において造形物の密度が低下するおそれがある。また、Da/Dtを0.4以上にすることにより、粉末積層時の空隙を小さくすることができ、レーザーによる溶融後において積層造形物の密度低下を防止できる。
さらに好ましくは、銅合金粉末1のDa/Dtが0.5以上である。
"Ratio between loose bulk density and true density of copper alloy powder"
When the
If the Da/Dt of the
More preferably, the Da/Dt of the
「銅合金粉末表面の表面酸化生成物皮膜」
本形態の銅合金粉末1の表面には表面酸化生成物皮膜3が形成されていないことが望ましいが、膜厚3μm以下の薄い表面酸化生成物皮膜3であれば形成されていても良い。また、この表面酸化生成物皮膜3について以下の状態であることが望ましい。
銅合金粉末1の表面のXPS分析(表面酸化生成物皮膜3のXPS分析)において、CuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上であることが好ましい。
XPS分析によるCuとOのピークから求めた元素の存在比率Cu/Oが0.10以上であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
"Surface Oxidation Product Film on the Surface of Copper Alloy Powder"
Although it is desirable that the surface
In the XPS analysis of the surface of the copper alloy powder 1 (XPS analysis of the surface oxidation product film 3), the abundance ratio Cu/O of each element obtained from the peaks of Cu and O is preferably 0.10 or more.
If the element abundance ratio Cu/O obtained from the peaks of Cu and O by XPS analysis is 0.10 or more, it is possible to provide a copper alloy powder with a low surface oxidation rate, and when it is used for additive manufacturing, oxidation does not occur. A laminate-molded article with a small proportion can be provided.
銅合金粉末1の表面のXPS分析(表面酸化生成物皮膜3のXPS分析)において、Cuのピークのうち、CuとCu2Oの合計(Cu+Cu2O)とCuOの比率(Cu+Cu2O)/CuOが1以上であることが好ましい。
XPS分析によるCuのピークのうち、(Cu+Cu2O)/CuOが1以上であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
銅合金粉末1の表面のXPS分析(表面酸化生成物皮膜3のXPS分析)において、CuのピークのうちCuOの比率が40%以下であることが好ましい。
XPS分析によるCuのピークのうち、CuOの比率が40%以下であるならば、表面酸化の割合の少ない銅合金粉末を提供でき、積層造形用途とした場合に酸化の割合の少ない積層造形物を提供できる。
In the XPS analysis of the surface of the copper alloy powder 1 (XPS analysis of the surface oxidation product film 3), among the Cu peaks, the total of Cu and Cu 2 O (Cu + Cu 2 O) and the ratio of CuO (Cu + Cu 2 O) / CuO is preferably 1 or more.
Among the peaks of Cu by XPS analysis, if (Cu + Cu 2 O) / CuO is 1 or more, it is possible to provide a copper alloy powder with a low surface oxidation rate, and when used for lamination manufacturing, a lamination with a low oxidation rate We can provide moldings.
In the XPS analysis of the surface of the copper alloy powder 1 (XPS analysis of the surface oxidation product film 3), the ratio of CuO in the Cu peak is preferably 40% or less.
If the ratio of CuO among the peaks of Cu by XPS analysis is 40% or less, it is possible to provide a copper alloy powder with a low rate of surface oxidation, and when used for layered manufacturing, a layered product with a low rate of oxidation can be obtained. can provide.
「銅合金粉末の製造方法」
本実施形態の銅合金粉末1の製造方法は、一例として、銅合金母材を溶解して得た銅合金溶湯を用い、高圧ガス噴霧により球状または球状に類似する形状の粉末を得る手法として知られているガスアトマイズ法を採用できる。
ここで用いる銅合金母材として、前述の組成の銅合金母材を用いるか、前述の成分元素が前述の組成比となるように複数の母材を用いて合金溶湯とすることができる。また、合金母材には不可避不純物が前述の範囲含まれていても良い。
また、銅合金母材の基となる高純度銅として、純度99.99質量%以上99.9999質量%未満の高純度銅を用い、この高純度銅に必要量の単体金属あるいは合金を添加して溶解することにより上述の組成比の銅合金溶湯を得ることもできる。
銅合金粉末1におけるこれら微量元素の含有量測定は、高周波誘導プラズマ発光分析法などにより実施することができる。
"Method for producing copper alloy powder"
The method for producing the
As the copper alloy base material used here, the copper alloy base material having the above-described composition can be used, or a plurality of base materials can be used so that the above-described component elements have the above-described composition ratio, and a molten alloy can be obtained. In addition, the alloy base material may contain inevitable impurities within the aforementioned range.
In addition, high-purity copper having a purity of 99.99% by mass or more and less than 99.9999% by mass is used as the base material of the copper alloy base material, and a required amount of a single metal or alloy is added to this high-purity copper. It is also possible to obtain a molten copper alloy having the composition ratio described above by melting with
The content measurement of these trace elements in the
本実施形態においては、銅合金粉末1の製造方法について、ガスアトマイズ法を用いた例を説明したが、粉末製造方法については、この他、水アトマイズ法や遠心力アトマイズ法、誘導結合プラズマ法やプラズマアトマイズ法などによって、銅合金粉末を製造してもよい。あるいは、その他一般的に知られている積層造形用粉末の製造方法を適用しても良い。上述のように得られた銅合金粉末1に対し、適宜熱処理を施して組織の安定化などを図ってもよい。
In the present embodiment, an example using a gas atomization method has been described as a method for producing the
上述のように得られた銅合金粉末1の流動調整及び凝集分離を行うために、銅合金粉末1のメディアン径が、10μm以上、150μm以下となるように、分級工程を行うことが望ましい。分級工程には、篩分法や重力分級、遠心分級などを利用することが出来る。
In order to adjust the flow and separate agglomeration of the
上述のように得られた銅合金粉末1を用い、例えば、EOS社のM280(ドイツ、エレクトロオプティカルシステムズ(EOS)社商品名)を用いて積層造形を実施できる。
この積層造形物において、適切な粒径とかさ密度の銅合金粉末1を用いるならば、形成精度に優れ、緻密な積層造形物を提供できる。
Using the
If the
上述の銅合金粉末1は、所定量のNiを含有し、耐酸化性に優れているので、高温多湿環境などに保管しておいたとして、酸化や変色を生じ難い。また、200℃などの高温に加熱した後、レーザー吸収率の変化も少ない。このため、レーザーを照射して積層造形物を形成したとして、銅合金粉末1から安定した発熱を得ることができ、積層造形物を製造する際に安定した発熱と溶融状態を得ることができ、目的の形状と形成精度で積層造形物を製造することができる。
The above-described
また、上述の銅合金粉末1は、45質量%以上のCuを含んでいるので、Cuが本来有する抗菌性に基づき、抗菌性に優れる。このため、積層造形物がドアノブ等の使用者に触れる造形物であった場合でも、優れた抗菌性を具備するドアノブなどの造形物を提供できる。また、積層造形物として耐変色性に優れるので、積層造形物がドアノブ等の使用者により目視される積層造形物であったとして、表面に変色を生じ難い積層造形物を提供できる。
Moreover, since the
純度(99.999)質量%の高純度銅に必要量の母合金を添加して溶解炉に投入し、銅合金溶湯を作製し、この銅合金溶湯からガスアトマイズ法により各銅合金粉末を作成した。得られた各銅合金粉末は、粗大な粉末や亜鉛ヒュームなどからなる微細な粉末を篩分けで除去したうえ、必要に応じて目的粒度に応じた篩分けを実施することで、表1に示す本発明例1~本発明例25の銅合金粉末と比較例1~3の銅合金粉末を得た。
表1に本発明例1~25の銅合金粉末と比較例1~3の銅合金粉末の組成を示す。
A required amount of master alloy was added to high-purity copper with a purity (99.999) mass%, and the mixture was put into a melting furnace to prepare a copper alloy melt, and each copper alloy powder was prepared from this copper alloy melt by a gas atomization method. . Each of the obtained copper alloy powders is sieved to remove coarse powders and fine powders such as zinc fumes, and if necessary, is sieved according to the target particle size, and is shown in Table 1. Copper alloy powders of Inventive Examples 1 to 25 and copper alloy powders of Comparative Examples 1 to 3 were obtained.
Table 1 shows the compositions of the copper alloy powders of Examples 1 to 25 of the present invention and the copper alloy powders of Comparative Examples 1 to 3.
それぞれの組成比の銅合金粉末について、平均粒径とゆるみかさ密度を求めた結果を表1に示す。各銅合金粉末の平均粒径、ゆるみかさ密度の測定を以下に説明する方法で実施した。 Table 1 shows the average particle size and loose bulk density of the copper alloy powders having the respective composition ratios. The average particle size and loose bulk density of each copper alloy powder were measured by the methods described below.
「銅合金粉末の平均粒径測定」
銅合金粉末の平均粒径測定は、マイクロトラック社製 MT3300EXIIを用い、湿式による粒子径分布の測定を行い、得られた結果の50%累積粒径を平均粒径とした。
「銅合金粉末のゆるみかさ密度と真密度の比」
銅合金粉末のゆるみかさ密度は、日本粉体工業技術協会規格 SAP05-98:2013に準じて、ホソカワミクロン社製パウダテスターPT-Xを用い、粉体を、50メッシュのふるいを通して自然落下させて容器に充填させたときのゆるみかさ密度を測定した。粉末のゆるみかさ密度の算出においては3回の測定の単純平均値を用いた。
銅合金粉末の真密度は、QURNTACHROME INSTRUMENTS社製 ウルトラピクノメータ 1000型を用い、気体置換法のよって真密度を測定した。
得られた粉末ゆるみかさ密度(Da)と粉末真密度(Dt)の値から粉末ゆるみかさ密度と粉末真密度の比を算出した。
"Average particle size measurement of copper alloy powder"
The average particle size of the copper alloy powder was measured using MT3300EXII manufactured by Microtrack Co., Ltd., and the particle size distribution was measured by a wet method.
"Ratio between loose bulk density and true density of copper alloy powder"
The loose bulk density of the copper alloy powder is determined by using a powder tester PT-X manufactured by Hosokawa Micron Co., Ltd. according to the Japan Powder Industry Technology Association Standard SAP05-98: 2013, and letting the powder fall naturally through a 50-mesh sieve. The loose bulk density was measured when filled in. A simple average value of three measurements was used in calculating the loose bulk density of the powder.
The true density of the copper alloy powder was measured by a gas replacement method using an Ultra Pycnometer Model 1000 manufactured by QURNTACHROME INSTRUMENTS.
The ratio of the powder loose bulk density to the powder true density was calculated from the obtained powder loose bulk density (Da) and powder true density (Dt) values.
「積層造形物の作製」
次に、銅合金粉末試料(本発明例1~25と比較例1~3)を用い、EOS社のM280(3Dプリンタ)を用いて、10mm角キューブ状の積層造形物を作製した。
得られた積層造形物について、抗菌作用の測定、耐変色性の測定について以下に説明する方法で求めた。
"Fabrication of additive manufacturing"
Next, using the copper alloy powder samples (Inventive Examples 1 to 25 and Comparative Examples 1 to 3), a 10 mm square cube-shaped lamination-molded product was produced using an EOS M280 (3D printer).
The obtained laminate-molded article was measured for antibacterial action and color fastness by the methods described below.
「XPSによる表面分析」
対象の試料のうち本発明例1と本発明例4に対し、XPS(X線光電分光法)にて表面φ200μmの領域に対して分析を行った。XPSの測定結果を表2に示す。
なお、XPSの測定結果は、同一組成の試料について、複数回測定した時の最小値と最大値を記載した。
表面のCuおよびOのピークについてそれぞれ積分強度値を取得し、相対感度係数法による濃度換算を実施し、CuとOの存在比率を求めて、Cu/Oの比率を算出した。
表面のCu、Cu2O、CuOの比率については、Cuのピークを用い、化学状態分離をして求めた。具体的には、まずCu2p3/2ピークについて、CuO由来の933.7eV、およびCuまたはCu2O由来の932.5~932.7eVの二つのピークに分離した。そして各ピークの積分強度値の比をそれぞれの存在量比とした。なお、CuとCu2Oは932.5~932.7eVのエネルギー帯にそれぞれにピークを持ち、原理的にピーク分離が難しいため、CuとCu2Oを合わせた形での存在量として算出した。また、CuのピークのうちCuOの比率は、CuO/(Cu+Cu2O+CuO)の値とした。
"Surface analysis by XPS"
Of the target samples, the present invention example 1 and the present invention example 4 were subjected to analysis by XPS (X-ray photoelectric spectroscopy) on a surface area of φ200 μm. Table 2 shows the XPS measurement results.
As for the XPS measurement results, the minimum and maximum values of the samples having the same composition were measured multiple times.
An integrated intensity value was obtained for each of the peaks of Cu and O on the surface, concentration conversion was performed by the relative sensitivity coefficient method, the existence ratio of Cu and O was obtained, and the ratio of Cu/O was calculated.
The ratio of Cu, Cu 2 O, and CuO on the surface was obtained by chemical state separation using the peak of Cu. Specifically, the Cu2p3/2 peak was first separated into two peaks of 933.7 eV derived from CuO and 932.5 to 932.7 eV derived from Cu or Cu 2 O. The ratio of the integrated intensity values of each peak was defined as the abundance ratio. Note that Cu and Cu2O each have a peak in the energy band of 932.5 to 932.7 eV, and it is theoretically difficult to separate the peaks. Moreover, the ratio of CuO in the Cu peak was taken as the value of CuO/(Cu+Cu 2 O+CuO).
「抗菌性の評価方法」
抗菌性評価に用いる簡易抗菌性試験法はJIS Z 2801に倣い、フィルム法にて試料上に菌を播種し積層造形物に対して試験を行った。積層造形物は、銅合金粉末試料を用い、EOS社のM280(3Dプリンタ)を用いて、50×50mm、厚み1mmの積層造形物を作製した。試験時間は10、20、30、40、50、60、70、80、90、100minの条件で試験を行い、それぞれ一定時間経過後、菌を回収し、生菌数を測定した。菌種としてはJIS指定の大腸菌(ATCC8739株)を用いた。
その結果から菌数が1/10になる時間(T1/10)の測定を行った。なおそれぞれの測定点でn5の結果から平均値を求め、値を導出している。
T1/10が10分以下の場合に抗菌性「◎」、10分超え20分以下の場合に「○」、20分超え100分以下の場合に「△」、100分超えで1/10にならなかった場合に「×」と評価した。なお、積層造形物と同じ組成である粒子にも同等の抗菌性があると考えられる。
"Antibacterial evaluation method"
The simple antibacterial test method used for antibacterial evaluation followed JIS Z 2801, and the film method was used to inoculate the bacteria on the sample and test the laminate-molded product. A copper alloy powder sample was used for the laminate-molded article, and an EOS M280 (3D printer) was used to produce a laminate-molded article having a size of 50×50 mm and a thickness of 1 mm. The test time was 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 minutes, and after a certain period of time, the bacteria were collected and the viable count was measured. Escherichia coli (ATCC8739 strain) designated by JIS was used as the bacterial strain.
Based on the results, the time (T 1/10 ) at which the number of bacteria became 1/10 was measured. An average value is obtained from the results of n5 at each measurement point, and the value is derived.
Antibacterial "◎" when T 1/10 is 10 minutes or less, "○" when it is over 10 minutes and 20 minutes or less, "△" when it is over 20 minutes and 100 minutes or less, 1/10 when it is over 100 minutes When it did not become, it evaluated as "x". In addition, it is considered that particles having the same composition as the laminate-molded article also have the same antibacterial properties.
「耐湿試験による耐変色性の試験方法」
銅合金粉末の耐変色性を評価する耐変色性試験は、銅合金粉末試料を用い、EOS社のM280(3Dプリンタ)を用いて作成した、10mm角キューブ状の積層造形物に対して、表面をエメリー紙#1000にて研磨を行った後に、研磨面を上部となる様に配置し、恒温恒湿槽を用いて温度60℃、相対湿度95%の雰囲気中に各サンプルを暴露した。試験時間は24時間とし、試験後に試料を取り出し、研磨面である上部の面の外観の変化を確認した。
耐変色性評価として外観上の変化が全面にわたって確認されないものを「◎」、外観の変色が全面の半分以下にのみ発生した場合を「○」、全面の半分以上にわたって外観の変色が見られた場合を「×」と判断し、表1に記載した。
ここでいう外観の変色は、コニカミノルタ製の分光測色計「CM-700d」を使用し、SCI(正反射光込み)方式でJIS 8781-4に従い色差ΔEで示される色差5以上を基準とした。色差は試験前後でのそれぞれの変化を表し、色差が5以上では目視で十分に変色していることを確認できる。
"Test method for discoloration resistance by moisture resistance test"
In the discoloration resistance test for evaluating the discoloration resistance of copper alloy powder, a copper alloy powder sample was used, and the surface was was polished with #1000 emery paper, the polished surface was positioned upward, and each sample was exposed to an atmosphere of 60° C. and 95% relative humidity using a constant temperature and humidity chamber. The test time was 24 hours, and after the test, the sample was taken out to confirm the change in the appearance of the upper surface, which was the polished surface.
As a discoloration resistance evaluation, "◎" indicates that no change in appearance was observed over the entire surface, "○" indicates that discoloration occurred only in half or less of the entire surface, and discoloration was observed in more than half of the entire surface. The case was judged as "x" and described in Table 1.
Appearance discoloration here is based on a color difference of 5 or more indicated by color difference ΔE according to JIS 8781-4 using the Konica Minolta spectrophotometer “CM-700d” using the SCI (specular reflection light included) method. did. The color difference represents each change before and after the test, and when the color difference is 5 or more, it can be visually confirmed that the color has sufficiently changed.
「レーザー吸収率の変化率」
各試料について、波長1064nmのレーザーに対する耐久試験前後のレーザー吸収率の変化率について求めた。耐久試験とは、大気雰囲気中において200℃に加熱し、60分間保持する試験を行うことである。
耐久試験前後のレーザー吸収率の変化率が±50%以下のものが好ましく、±20%以下のものがより好ましい。
以上の測定結果をまとめて以下の表1に記載する。
"Change rate of laser absorption rate"
For each sample, the rate of change in laser absorptance before and after the endurance test against a laser with a wavelength of 1064 nm was determined. The endurance test is a test in which the sample is heated to 200° C. in an air atmosphere and held for 60 minutes.
The rate of change in laser absorptance before and after the durability test is preferably ±50% or less, more preferably ±20% or less.
The above measurement results are summarized in Table 1 below.
表1に結果を示すように、本発明例1~25は、耐熱試験による耐変色性に優れ、恒温恒湿槽による耐変色性に優れ、レーザー吸収率の変化率も少ない。勿論、本発明例1~25は、抗菌性にも優れている。
本発明例1~25は、粉末ゆるみかさ密度Da、粉末真密度Dtの比、Da/Dtが0.4以上であった。
これらの結果から、本発明に係る銅合金粉末であれば、耐変色性と抗菌性に優れ、200℃高温加熱後のレーザー吸収率の変化も少ない銅合金粉末を提供できることが明らかである。
As shown in Table 1, Examples 1 to 25 of the present invention are excellent in discoloration resistance in a heat test, excellent in discoloration resistance in a constant temperature and humidity chamber, and have a small rate of change in laser absorptance. Of course, Examples 1 to 25 of the present invention are also excellent in antibacterial properties.
In Examples 1 to 25 of the present invention, the ratio of powder loose bulk density Da to powder true density Dt, Da/Dt, was 0.4 or more.
From these results, it is clear that the copper alloy powder according to the present invention can provide a copper alloy powder that is excellent in discoloration resistance and antibacterial properties and shows little change in laser absorptance after heating at a high temperature of 200 ° C.
これらに対し、純銅粉末の比較例1は、抗菌性には優れるものの、耐熱試験による耐変色性に問題を有し、恒温恒湿槽による耐変色性に問題を有し、レーザー吸収率の変化率も大きいという問題がある。
Niが70質量%でCuが30質量%の比較例2は、Niの割合が多いため、耐変色性には優れ、レーザー吸収率の変化率にも優れているものの、やや抗菌性に劣ると共にNiの含有量が70質量%と多いため高コストとなり、量産には適さない。
Niが3質量%でCuが97質量%の比較例3は、Niの割合が小さいため、耐変色性に劣り、レーザー吸収率の変化率にも劣る。
また、表2に示すように本発明例1、4では、XPS分析におけるCuとOのピークから求めたそれぞれの元素の存在比率Cu/Oが0.10以上、具体的には0.14~0.37であった。
表2に示すように本発明例1、4では、XPS分析におけるCuのピークのうち、CuとCu2Oの合計(Cu+Cu2O)とCuOの比率(Cu+Cu2O)/CuOが1以上、具体的には、1.50~8.25であった。
表2に示すように本発明例1、4では、XPS分析におけるCuのピークのうちCuOの比率が40%以下、具体的には、11~40%であった。
On the other hand, although the pure copper powder of Comparative Example 1 has excellent antibacterial properties, it has problems with discoloration resistance in a heat test, has a problem with discoloration resistance in a constant temperature and humidity bath, and has a change in laser absorptance. There is also the problem of high rates.
Comparative Example 2, in which Ni is 70% by mass and Cu is 30% by mass, has a high Ni ratio, so it has excellent discoloration resistance and excellent change in laser absorptance, but is slightly inferior in antibacterial properties. Since the Ni content is as high as 70% by mass, the cost becomes high and it is not suitable for mass production.
Comparative Example 3, in which Ni is 3% by mass and Cu is 97% by mass, has a low Ni ratio, and thus is inferior in discoloration resistance and in laser absorptance change rate.
Further, as shown in Table 2, in Examples 1 and 4 of the present invention, the abundance ratio Cu/O of each element obtained from the peaks of Cu and O in XPS analysis is 0.10 or more, specifically 0.14 to was 0.37.
As shown in Table 2, in Examples 1 and 4 of the present invention, among the Cu peaks in the XPS analysis, the total of Cu and Cu 2 O (Cu + Cu 2 O) and the ratio of CuO (Cu + Cu 2 O) / CuO is 1 or more, Specifically, it was 1.50 to 8.25.
As shown in Table 2, in Examples 1 and 4 of the present invention, the ratio of CuO in the Cu peak in the XPS analysis was 40% or less, specifically 11 to 40%.
1…銅合金粉末、2…粉末本体、3…表面酸化生成物皮膜。
DESCRIPTION OF
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020187490A JP7119266B2 (en) | 2020-11-10 | 2020-11-10 | copper alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020187490A JP7119266B2 (en) | 2020-11-10 | 2020-11-10 | copper alloy powder |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022076864A JP2022076864A (en) | 2022-05-20 |
JP2022076864A5 JP2022076864A5 (en) | 2022-06-27 |
JP7119266B2 true JP7119266B2 (en) | 2022-08-17 |
Family
ID=81618273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020187490A Active JP7119266B2 (en) | 2020-11-10 | 2020-11-10 | copper alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7119266B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7190607B1 (en) * | 2022-10-13 | 2022-12-15 | 日本冶金工業株式会社 | Ni alloy with excellent antibacterial properties |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062527A1 (en) | 2016-09-29 | 2018-04-05 | Jx金属株式会社 | Surface treatment metal powder for laser sintering |
WO2018199110A1 (en) | 2017-04-28 | 2018-11-01 | 古河電気工業株式会社 | Copper alloy particles, surface-coated copper-based particles and mixed particles |
JP2019522730A (en) | 2016-05-13 | 2019-08-15 | ナノコア テクノロジーズ | Sinterable metal paste for use in additive manufacturing |
-
2020
- 2020-11-10 JP JP2020187490A patent/JP7119266B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019522730A (en) | 2016-05-13 | 2019-08-15 | ナノコア テクノロジーズ | Sinterable metal paste for use in additive manufacturing |
WO2018062527A1 (en) | 2016-09-29 | 2018-04-05 | Jx金属株式会社 | Surface treatment metal powder for laser sintering |
WO2018199110A1 (en) | 2017-04-28 | 2018-11-01 | 古河電気工業株式会社 | Copper alloy particles, surface-coated copper-based particles and mixed particles |
Also Published As
Publication number | Publication date |
---|---|
JP2022076864A (en) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7377324B2 (en) | Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper | |
JP5767447B2 (en) | Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements | |
JP7008076B2 (en) | Copper alloy powder for additive manufacturing, manufacturing method of additive manufacturing and additive manufacturing | |
KR102640080B1 (en) | Aluminum alloys for sputtering target with high corrosion resistance and lightness and method of producing the same | |
JP2009235556A (en) | Copper powder for conductive pastes, and conductive paste | |
WO2019230018A1 (en) | Cu-based alloy powder | |
JP7119266B2 (en) | copper alloy powder | |
JP2018199862A (en) | Carbon-coated metal powder, powder material for additional production comprising the same, and method for producing additionally produced article | |
JP7425634B2 (en) | Cu-based alloy powder | |
TWI765758B (en) | Copper alloy powder with Si coating and method for producing the same | |
JP2024023541A (en) | Metal powder for additive manufacturing and additive manufacturing object formed using the same | |
JP7419290B2 (en) | Copper alloy powder for additive manufacturing with excellent conductivity | |
JP2022188809A (en) | Copper alloy powder, and additive-manufactured article | |
WO2023152831A1 (en) | Copper alloy powder | |
EP3760342B1 (en) | Copper alloy powder having excellent laser absorptivity | |
JP2019077900A (en) | Mn-W-Cu-O-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF | |
US11713496B2 (en) | Powder material, powder material for additive manufacturing, and method for producing powder material | |
JP7394241B2 (en) | Copper alloy powder for additive manufacturing and its evaluation method, method for producing a copper alloy additive manufacturing object, and copper alloy additive manufacturing object | |
JP2017025349A (en) | Te-Ge-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD OF Te-Ge-BASED SPUTTERING TARGET | |
JP2023012810A (en) | Copper-based powder, method for producing the same, and method for producing stereolithographic molding using copper-based powder | |
JP2020094278A (en) | Insulation coating soft magnetic alloy powder | |
WO2024202310A1 (en) | Additive manufacturing metal powder and method for producing additive manufacturing metal powder | |
JP7424108B2 (en) | Heat-treated unsintered copper alloy powder for additive manufacturing and its manufacturing method | |
WO2023181329A1 (en) | Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article | |
JP7522937B2 (en) | Pure copper or copper alloy powder for additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220617 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220617 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7119266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |