JP7105485B2 - A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser - Google Patents

A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser Download PDF

Info

Publication number
JP7105485B2
JP7105485B2 JP2018201607A JP2018201607A JP7105485B2 JP 7105485 B2 JP7105485 B2 JP 7105485B2 JP 2018201607 A JP2018201607 A JP 2018201607A JP 2018201607 A JP2018201607 A JP 2018201607A JP 7105485 B2 JP7105485 B2 JP 7105485B2
Authority
JP
Japan
Prior art keywords
fiber
periodic structure
laser
fibers
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018201607A
Other languages
Japanese (ja)
Other versions
JP2020066824A (en
Inventor
昌樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2018201607A priority Critical patent/JP7105485B2/en
Publication of JP2020066824A publication Critical patent/JP2020066824A/en
Application granted granted Critical
Publication of JP7105485B2 publication Critical patent/JP7105485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は,表面に周期構造を有する繊維の製造方法,及びその繊維に関する。 TECHNICAL FIELD The present invention relates to a method for producing a fiber having a periodic structure on its surface, and the fiber.

Birnbaum は,レーザー加工痕の底面に波長サイズの周期構造が「瞬時に」できることを1965年に偶然発見した (非特許文献1)。この周期構造は,入射光と表面にできるプラズマ波もしくは散乱光との干渉によりできる定常波が,物質表面を選択的に昇華するアブレーション現象であることが解明され,表面波干渉法と呼ばれる。つまり,レーザーによる物質の加工原理には,それまでの熱加工と,新しく発見されたアブレーション (昇華) の2種類がある。レーザーのパワーが十分であればアブレーションのみが起こり熱は発生しない。レーザーのパワーが足りないと,アブレーションと熱加工の両方が発生することになる。そして,レーザーのパワーが低いと,熱加工のみが起こることになる。このいずれかの状況になるかは,パルスレーザーにおいては後述するようにパルス幅に依存する。 In 1965, Birnbaum accidentally discovered that a wavelength-sized periodic structure could be formed "instantaneously" on the bottom surface of laser processing marks (Non-Patent Document 1). This periodic structure is called surface wave interferometry because it is an ablation phenomenon in which the standing wave generated by the interference between the incident light and the plasma wave or scattered light generated on the surface selectively sublimates the material surface. In other words, there are two types of laser processing principles: conventional thermal processing and newly discovered ablation (sublimation). If the laser power is sufficient, only ablation occurs and no heat is generated. Insufficient laser power results in both ablation and thermal processing. And if the power of the laser is low, only thermal processing will occur. Which of these situations occurs depends on the pulse width in the case of a pulsed laser, as will be described later.

繊維分野においても,従来からこのような原理を応用し,レーザーを繊維に照射して繊維表面を改質し,新たな機能を付与するという技術が知られている。例えば特許文献1では,ポリエステル繊維やアラミド繊維に対し,Nd-YAGレーザー光を照射する繊維の表面改質法について記載されている。この繊維の表面改質方法によれば,ポリエステル繊維やアラミド繊維の表面層の化学構造を変化させ,構成元素割合を変化させたり,官能基を生成させて活性を高めたりすることができる。 In the field of textiles as well, there has been a known technology that applies this principle to modify the surface of the fiber by irradiating it with a laser beam and imparting new functions to it. For example, Patent Document 1 describes a fiber surface modification method in which polyester fibers and aramid fibers are irradiated with Nd-YAG laser light. According to this fiber surface modification method, it is possible to change the chemical structure of the surface layer of polyester fibers and aramid fibers, change the ratio of constituent elements, and generate functional groups to increase activity.

また,非特許文献2では,パルス紫外線レーザー(エキシマレーザー)を合成繊維に照射し,繊維表面に微細構造を形成させるという技術が記載されている。さらに,非特許文献3では,20nsのパルス紫外線レーザ(エキシマレーザ)をPET樹脂繊維に照射し,レーザーアブレーションによる表面微細構造の形成や表面化学構造の変化について記載されている。また,非特許文献4では,ポリエステルフィルムやポリエステル繊維にパルス紫外線レーザ(エキシマレーザ)を照射し,染色性や濡れ性についてプラズマ処理や電子線処理との違いを検討している。 In addition, Non-Patent Document 2 describes a technique of irradiating a synthetic fiber with a pulsed ultraviolet laser (excimer laser) to form a fine structure on the fiber surface. Furthermore, Non-Patent Document 3 describes formation of a fine surface structure and change in surface chemical structure by laser ablation by irradiating a PET resin fiber with a pulsed ultraviolet laser (excimer laser) of 20 ns. In addition, in Non-Patent Document 4, a pulsed ultraviolet laser (excimer laser) is irradiated to a polyester film or polyester fiber, and the difference between plasma treatment and electron beam treatment is examined with respect to dyeability and wettability.

特開平8-60534号公報JP-A-8-60534

Birnbaum M.: Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., 36(11), 3688-3689 (1965)Birnbaum M.: Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., 36(11), 3688-3689 (1965) Thomas Bahners ,Eckhard Schollmeyer:Die A ngewandte Makromolekulare Chemie 151 (1987) 19 -37 (Nr, 2509)Thomas Bahners, Eckhard Schollmeyer: Die Angewandte Makromolekulare Chemie 151 (1987) 19-37 (Nr, 2509) 渡辺博佐・高田忠彦・都解・圭郎,「Surface Changes of Poly(ethylene terefuthalate)Fibers by Laser Ablation」SEN-I GAKKAISHI Vol.49,No.4(1993)p.157-162Hirosa Watanabe, Tadahiko Takada, Tokai, Keiro, "Surface Changes of Poly(ethylene terefuthalate) Fibers by Laser Ablation" SEN-I GAKKAISHI Vol.49, No.4 (1993) p.157-162 榎本一郎・伊藤寿・吉田英敏・吉田博一・栗田征彦,「Efect of surface modification of polyester fabrics」,東京都立産業技術研究所報告 第5号(2002)p.105-108Ichiro Enomoto, Hisashi Ito, Hidetoshi Yoshida, Hirokazu Yoshida, Yukihiko Kurita, "Effect of surface modification of polyester fabrics", Tokyo Metropolitan Institute of Industrial Technology Report No. 5 (2002) p.105-108

しかしながら,特許文献1によるレーザーを利用した繊維の表面改質法では,レーザーを繊維に連続的に照射しているため,熱加工となっていた。また,非特許文献3では,パルス幅が数十 ns 領域である。パルス発振レーザーにおいて,パルスパワーPp (W) は,1ショットのエネルギ― E (J) をパルス幅 t (s) で割ることで得られる。つまり,パルス幅が数十 ns 程度ではパルスパワーが足りず,被加工物にアブレーションだけでなく熱加工も加えられてしまう。よってこれら従来の加工法では,光解離性の高い一部の高分子材料のみで加工に成功したものの,繊維表面のみならず繊維の内部にまで熱が伝導して繊維が破断したり,繊維どうしが溶着したり,繊維が変質して強度が弱くなったりするなどの諸問題があった。 However, in the fiber surface modification method using a laser according to Patent Document 1, the fiber is continuously irradiated with the laser, so that the fiber is thermally processed. Also, in Non-Patent Document 3, the pulse width is in the region of several tens of nanoseconds. In a pulse oscillation laser, the pulse power P p (W) is obtained by dividing the energy E (J) of one shot by the pulse width t (s). In other words, if the pulse width is several tens of nanoseconds, the pulse power is insufficient, and the workpiece is not only ablated but also thermally processed. Therefore, in these conventional processing methods, although we succeeded in processing only some polymer materials with high photodissociation, heat was conducted not only to the surface of the fiber but also to the inside of the fiber, causing the fiber to break and the fibers to break. However, there were various problems such as welding and deterioration of fibers, resulting in weakening of strength.

また,表面波干渉法では,波長に等しい周期性 (ピッチ) を有する微細構造を一気に形成できる。逆に考えれば,表面波干渉法だけでは周期構造のピッチが波長で決まってしまう。アブレーション現象を起こしうるレーザーの波長は 1,080 nm 程度以下であるため,マイクロメートル領域の周期性を有する微細な周期構造を形成することができなかった。 In addition, surface wave interferometry can form a fine structure with a periodicity (pitch) equal to the wavelength at once. Conversely, if only the surface wave interferometry method is used, the pitch of the periodic structure is determined by the wavelength. Since the wavelength of the laser that can cause the ablation phenomenon is about 1,080 nm or less, it was not possible to form a fine periodic structure with periodicity in the micrometer range.

本発明は,上記従来の実情に鑑みてなされたものであり,レーザー照射によって容易に繊維表面にナノ領域からマイクロメートル領域の微細な周期構造を形成することが可能であり,しかも繊維の切断・溶着や繊維内部の変質が生じ難い製造方法,及び表面に微細な周期構造を有する繊維を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to easily form a fine periodic structure in the nano-range to micrometer range on the surface of the fiber by laser irradiation, and cut and cut the fiber. The problem to be solved is to provide a production method that does not easily cause adhesion and deterioration of the inside of the fiber, and to provide a fiber having a fine periodic structure on the surface.

本発明者は,まず上記従来の1つ目の課題,すなわち繊維の切断,溶着及び変質を解決する方法として,超短パルスレーザーを繊維に照射することを考えた(本明細書において「超短パルスレーザー」とは,パルス幅が20ピコ秒以下のパルスレーザーのことをいう)。このように短いパルス幅のレーザーでは,繊維を構成している分子を昇華させるため,熱が発生することなく,レーザーが照射された繊維の表面近傍のみの物質が除去される。このため,熱影響層を著しく小さくすることができ,熱に起因する繊維の切断,溶着,変質のおそれが極めて小さい。また,超短パルスレーザーを用いているため,繊維表面に表面波干渉を起こさせることができ,これによって繊維表面の周期構造をレーザーの波長に応じて100マイクロメートル以下100ナノメートル以上のピッチを有する周期的構造とすることができる。 The present inventor first considered irradiating the fiber with an ultrashort pulse laser as a method of solving the first conventional problem, that is, cutting, welding, and deterioration of the fiber (referred to in this specification as "ultrashort laser “Pulse laser” refers to a pulse laser with a pulse width of 20 picoseconds or less). A laser with such a short pulse width sublimates the molecules that make up the fibers, so that no heat is generated and only the material near the surface of the fiber irradiated with the laser is removed. As a result, the heat-affected layer can be significantly reduced, and the risk of fiber cutting, welding, and alteration due to heat is extremely small. In addition, since an ultrashort pulse laser is used, surface wave interference can be caused on the fiber surface, which allows the periodic structure of the fiber surface to have a pitch of 100 micrometers or less and 100 nanometers or more depending on the wavelength of the laser. It can be a periodic structure with

次に,本発明者は上記従来の2つ目の課題,すなわちマイクロメートル領域の周期性を有する微細な周期構造の形成を解決する方法として,超短パルスレーザーを用いたパーカッション加工の併用を考えた。パーカッション加工法とは,パルス加工を被加工物 (ワーク) に対して時間間隔,もしくは一定距離間隔,及びこれらを併用したショットを,連続的に繰り返す加工法である。表面波干渉では,最初の加工の加工痕がトリガーとなって,次の周期構造が連続的に生じる。そこで,パーカッション加工法において,レーザースポット径 (1 ~ 100μm) に対して加工距離間隔を変化することで,加工範囲のオーバーラップ率を微調整し,その結果として逆に表面波干渉の発生度合を抑制する。このようにして,パーカッション加工の加工ピッチであるマイクロメートル領域のピッチを有し,かつそれ以下のピッチの微細パターンも同時発生した微細周期構造を形成する。 Next, the present inventor considered the combination of percussion processing using an ultrashort pulse laser as a method of solving the second problem of the conventional art, that is, the formation of a fine periodic structure having a periodicity in the micrometer range. rice field. The percussion machining method is a machining method in which pulse machining is continuously repeated on the workpiece (work) at time intervals, fixed distance intervals, and shots using both. In the surface wave interference, the traces of the first processing are triggered, and the next periodic structure is continuously generated. Therefore, in the percussion processing method, by changing the processing distance interval with respect to the laser spot diameter (1 to 100 μm), the overlap rate of the processing range can be finely adjusted, and as a result, the degree of surface wave interference can be reduced. Suppress. In this way, a fine periodic structure is formed which has a pitch in the micrometer range, which is the processing pitch of percussion processing, and in which a fine pattern with a pitch smaller than that is also generated at the same time.

すなわち,本発明の繊維表面に周期構造を形成させる方法は,超短パルスレーザーを繊維の長手方向に相対移動させつつ該繊維の表面に照射してパーカッション加工を行い,繊維表面に周期構造を形成させることを特徴とする。 That is, in the method of forming a periodic structure on the fiber surface of the present invention, an ultrashort pulse laser is irradiated to the surface of the fiber while relatively moving in the longitudinal direction of the fiber to perform percussion processing, thereby forming a periodic structure on the fiber surface. It is characterized by

超短パルスレーザーを繊維の長手方向に相対移動させる方法としては,繊維を移動させたり,超短パルスレーザーの照射位置を鏡によって移動させたりする方法や,繊維及び超短パルスレーザーの照射位置の双方を移動させたりする方法を採用することができる。これらの操作により,繊維の長手方向に表面波干渉を生じさせることによって微細な周期構造を容易に形成することができる。また,パルス幅が20ピコ秒以下という超短パルスレーザーを照射するため,繊維どうしの溶着がし難く,繊維のごく表面のみの加工が可能で,繊維内部までの変質は生じ難くなる。このため,太さが数 μm という細い繊維の表面形状加工を行うこともできる。 As a method of relatively moving the ultrashort pulse laser in the longitudinal direction of the fiber, there are methods such as moving the fiber, moving the irradiation position of the ultrashort pulse laser with a mirror, and changing the irradiation position of the fiber and the ultrashort pulse laser. A method of moving both can be adopted. By these operations, a fine periodic structure can be easily formed by causing surface wave interference in the longitudinal direction of the fiber. In addition, since an ultra-short pulse laser with a pulse width of 20 picoseconds or less is applied, it is difficult to weld the fibers together, and only the surface of the fibers can be processed, making it difficult for the interior of the fibers to deteriorate. For this reason, it is possible to process the surface shape of thin fibers with a thickness of several μm.

本発明において超短パルスレーザーを照射する繊維の種類としては特に制限はなく,ポリエステルやポリプロピレンなどの合成繊維,セルロース系繊維やたんぱく質系繊維などの半合成繊維,レーヨンなどの再生繊維,ガラス繊維,炭素繊維などの無機繊維であっても表面に微細な周期構造を形成させることができる。 In the present invention, the type of fiber to be irradiated with an ultrashort pulse laser is not particularly limited, and synthetic fibers such as polyester and polypropylene, semi-synthetic fibers such as cellulose fibers and protein fibers, regenerated fibers such as rayon, glass fibers, Even inorganic fibers such as carbon fibers can form a fine periodic structure on the surface.

また,超短パルスレーザーのパルス幅は20ピコ秒以下100フェムト秒以上であることが好ましい。このような超短パルスレーザーであれば,高いピークパワーを有するパルスを比較的容易に得ることができるため,利用し易くなる。 Further, the pulse width of the ultrashort pulse laser is preferably 20 picoseconds or less and 100 femtoseconds or more. With such an ultrashort pulse laser, it is relatively easy to obtain a pulse with a high peak power, so it is easy to use.

本発明の繊維表面に周期構造を形成させる方法において,超短パルスレーザーは所定の距離間隔及び所定の時間間隔で照射されるパーカッション加工法によって照射することができる。これにより,繊維表面に形成される周期構造をレーザーのスポット径のオーバーラップ率を容易に調整することが可能となり,表面波干渉を制御したり,周期的構造のピッチを制御したりすることが容易となる。 In the method of forming a periodic structure on the fiber surface of the present invention, the ultrashort pulse laser can be irradiated by a percussion processing method in which it is irradiated at predetermined distance intervals and predetermined time intervals. This makes it possible to easily adjust the overlap ratio of the spot diameter of the laser on the periodic structure formed on the fiber surface, thereby controlling the surface wave interference and the pitch of the periodic structure. easier.

本発明の繊維表面に周期構造を形成させる方法において,周期構造は,超短パルスレーザーの波長とほぼ等しい長さの構造が繰り返し形成された周期的構造,及びパーカッション加工の所定の距離間隔に等しい周期的構造とすることができる。なお,表面波干渉法によって生じる周期構造のピッチ a は,レーザーの波長λと入射角θに依存して a =λ/ (1 ± sinθ) の関係で変化することが理論的に示されている(下記論文参照)。
Campbell EEB, Ashkenasi D, Rosenfeld A: Ultra-short-pulse laser irradiation and ablation of dielectrics, Materials Science Forum, 301, 123-144 (1999)
Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K: Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B, 79, 33409-1-33409-4 (2009)
In the method of forming a periodic structure on the fiber surface of the present invention, the periodic structure is a periodic structure in which a structure with a length approximately equal to the wavelength of the ultrashort pulse laser is repeatedly formed, and a predetermined distance interval for percussion processing. It can be a periodic structure. It is theoretically shown that the pitch a of the periodic structure produced by the surface wave interferometry changes according to the relationship a = λ/ (1 ± sin θ) depending on the laser wavelength λ and the incident angle θ. (See paper below).
Campbell EEB, Ashkenasi D, Rosenfeld A: Ultra-short-pulse laser irradiation and ablation of dielectrics, Materials Science Forum, 301, 123-144 (1999)
Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K: Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B, 79, 33409-1-33409-4 (2009)

また.長手方向に相対移動させる工程は,長辺と短辺を有する楕円軌道を描きながらパーカッション加工することができる。 Also. In the step of relatively moving in the longitudinal direction, percussion processing can be performed while drawing an elliptical orbit having long sides and short sides.

本発明の繊維表面に周期構造を形成させる方法において得られる繊維は,表面に超短パルスレーザーの波長とほぼ等しい長さの構造が繰り返し形成された周期的構造,及びパーカッション加工の所定の距離間隔に等しい周期的構造が設けられた繊維とすることができる。 The fiber obtained by the method of forming a periodic structure on the fiber surface of the present invention has a periodic structure in which a structure with a length approximately equal to the wavelength of the ultrashort pulse laser is repeatedly formed on the surface, and a predetermined distance interval for percussion processing. can be a fiber provided with a periodic structure equal to

本発明によれば,超短パルスレーザーの照射によって繊維表面にナノ領域からマイクロメートル領域の微細な周期構造を容易に形成することが可能となる。しかも繊維の破断,溶着や繊維内部の変質を抑えることができる。このため,例えば,超親水性や超撥水性を有する繊維を提供することができる。また,これにより防水,防汚,保温,保温,通気性,高染色性,高クッション性等に優れた布帛を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to easily form a fine periodic structure in the nano-range to the micrometer range on the surface of a fiber by irradiating it with an ultrashort pulse laser. Moreover, it is possible to suppress breakage and welding of the fibers and deterioration of the inside of the fibers. Therefore, for example, it is possible to provide fibers having superhydrophilicity and superhydrophobicity. In addition, it is possible to provide a fabric excellent in waterproofness, stain resistance, heat retention, heat retention, air permeability, high dyeability, high cushioning properties, and the like.

ポリプロピレン1,2及びポリエステルのSEM写真である。SEM photographs of polypropylene 1, 2 and polyester. 様々な条件で超短パルスレーザー加工を行ったポリプロピレンのSEM写真である。It is a SEM photograph of polypropylene subjected to ultrashort pulse laser processing under various conditions. 実施例1における表面微細構造及びその測定結果を示す図である。1 is a diagram showing the surface microstructure and its measurement results in Example 1. FIG. 実施例2における表面微細構造及びその測定結果を示す図である。FIG. 10 is a diagram showing the surface microstructure and its measurement results in Example 2; 実施例3における表面微細構造及びその測定結果を示す図である。FIG. 10 is a diagram showing the surface microstructure and its measurement results in Example 3; 楕円軌道を描きながら行うパーカッション加工の模式図である。It is a schematic diagram of percussion processing performed while drawing an elliptical orbit. ビームスプリッターを用い,超短パルスレーザーを繊維に対して様々な周方向から行う場合の模式図である。FIG. 2 is a schematic diagram of a case where a beam splitter is used and an ultrashort pulse laser is applied to a fiber from various circumferential directions.

以下,本発明を具体化した実施例について説明する。ただし,本発明はこの実施例に限定されるものではない。特許請求の範囲を逸脱せず,当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 An embodiment embodying the present invention will be described below. However, the present invention is not limited to this example. Various modifications are also included in the present invention within the scope of those skilled in the art without departing from the scope of the claims.

<実施例>
実施例ではポリプロピレン (PP) 製繊維の表面へ,超短パルスレーザーを繊維の長手方向に移動させて間欠的に照射した(すなわちパーカッション加工を行った)。実施例で用いた繊維は次に示す繊維束である。
ポリプロピレン (PP)
三菱レーヨン製W0056T30 75d(84T)10fil, 繊維直径75デニール,単一繊維の直径60-90 μm
上記ポリプロピレンの詳細な仕様を表1に,SEM写真を図1に示す。
<Example>
In this example, the surface of a polypropylene (PP) fiber was intermittently irradiated with an ultrashort pulse laser that was moved in the longitudinal direction of the fiber (that is, percussion processing was performed). The fibers used in the examples are the following fiber bundles.
Polypropylene (PP)
Mitsubishi Rayon W0056T30 75d(84T)10fil, fiber diameter 75 denier, single fiber diameter 60-90 μm
Detailed specifications of the above polypropylene are shown in Table 1, and a SEM photograph is shown in Fig. 1.

Figure 0007105485000001
Figure 0007105485000001

また,超短パルスレーザーには,Light Conversion社製のPHAROS SPを用いて行った。この装置の仕様を表2に示す。 In addition, PHAROS SP manufactured by Light Conversion was used as an ultrashort pulse laser. Table 2 shows the specifications of this device.

Figure 0007105485000002
Figure 0007105485000002

超短パルスレーザーの照射条件については実施例1~9に示す条件で行った(下記表3及び表4参照)。
ここで,パーカッション加工において,超短パルスレーザーを繊維の円周方向に移動させて照射したときの距離間隔を径方向ピッチとし,繊維の長手方向に移動させて照射したときの距離間隔を長手方向ピッチとする。
The irradiation conditions of the ultrashort pulse laser were the conditions shown in Examples 1 to 9 (see Tables 3 and 4 below).
Here, in percussion processing, the distance interval when the ultrashort pulse laser is moved in the circumferential direction of the fiber and irradiated is the radial pitch, and the distance interval when the ultrashort pulse laser is moved in the longitudinal direction of the fiber and irradiated is the longitudinal direction. Pitch.

Figure 0007105485000003
Figure 0007105485000003

Figure 0007105485000004
Figure 0007105485000004

-結 果-
以上のようにして超短パルスレーザーによる加工を行った繊維について,SEM写真撮影を行った。結果を図2に示す。
-Results-
SEM photographs were taken of the fibers processed by the ultrashort pulse laser as described above. The results are shown in FIG.

まず,図2を基に,パルスパワー (W) を中心に表面波干渉の発生度合を検討する。超短パルスレーザーのスポット径が 30 μm なので,長手方向ピッチが 40 μm のときオーバーラップ率は 0%,長手方向ピッチが 20 μm のときオーバーラップ率は 33%,長手方向ピッチが 10 μm のときオーバーラップ率は 67%となる。今回の実験条件においては,オーバーラップ率 67% ではパルスパワーによらずすべての加工で,オーバーラップ率 33% ではパルスパワー 50MW 以上で,超短パルスレーザーの波長とほぼ等しい直径 1,000 nm ほどのファイバー形状の微細構造が観察され,これは表面波干渉で生じたものと考えられた。一方で,オーバーラップ率 0% では,いずれのパルスパワーにおいてもファイバー形状の微細構造は観察されなかった。よって,好適にはパルスパワー50MW 以上でかつオーバーラップ率 33% 以上であれば,繊維表面全体に連続した表面波干渉が生じ,それ以下のパルスパワーでも,パルスパワーとオーバーラップ率の両条件が満たせば (25MWでかつ67%),表面波干渉が生じると考えられた。
一方で,オーバーラップ率 0%においては,隣り合う加工痕がトリガーとはならず,長手方向ピッチ 40 μm に等しい微細周期構造が形成された。その場合でも,パルスパワー50MW 以上では,上面から見て円形状に生じた加工痕の内側に,直径 1,000 nm ほどのファイバー形状の微細構造が観察された。よって,オーバーラップ率を低く調整することによって,ミクロンメートル領域の基本微細周期構造を作成することができ,かつその内側にナノメートル領域の微細構造が複合的に形成されることが判った。
First, based on Fig. 2, the degree of occurrence of surface wave interference is examined, centering on the pulse power (W). Since the spot diameter of the ultrashort pulse laser is 30 μm, the overlap ratio is 0% when the longitudinal pitch is 40 μm, 33% when the longitudinal pitch is 20 μm, and 33% when the longitudinal pitch is 10 μm. The overlap ratio is 67%. Under the experimental conditions of this study, the fiber diameter of about 1,000 nm, which is almost the same as the wavelength of the ultrashort pulse laser, was used for all processing regardless of the pulse power at an overlap rate of 67%, and at a pulse power of 50 MW or more at an overlap rate of 33%. A morphological fine structure was observed, which was considered to be caused by surface wave interference. On the other hand, at an overlap rate of 0%, no fiber-shaped fine structure was observed at any pulse power. Therefore, if the pulse power is 50 MW or more and the overlap ratio is 33% or more, continuous surface wave interference occurs over the entire fiber surface. If satisfied (25 MW and 67%), surface wave interference was thought to occur.
On the other hand, when the overlap ratio was 0%, adjacent machining marks did not trigger the formation of a fine periodic structure with a longitudinal pitch equal to 40 μm. Even in that case, when the pulse power was 50 MW or more, a fiber-shaped fine structure with a diameter of about 1,000 nm was observed inside the circular processing marks when viewed from the top. Therefore, it was found that by adjusting the overlap ratio to a low level, a basic fine periodic structure in the micron-meter range can be produced, and a fine structure in the nanometer-range is formed in a complex manner inside it.

これら微細周期構造の寸法形状の絶対値について,レーザー顕微鏡 (OLS4000,オリンパス株式会社製) によって測定した結果を図3~図5に示す。ピークパワー147MW (170 fs), 長手方向ピッチ 10 μm において,微細周期構造のピッチは長手方向でτ1= 10-42 μm,円周方向でτ2 = 6-22 μm であった。これらの微細周期構造は,平均直径 1,010 nm のファイバー形状が寄り集まって形成されていた。ピークパワー147MW (170 fs), 長手方向ピッチ 20 μm では,凹の幅がf2 = 11.8 μm の穴 (ウェル) 構造が形成されていた。ピークパワー147MW (170 fs), 長手方向ピッチ 40 μmでは,微細周期構造のピッチは,長手方向でτ1= 40.1 μm,円周方向でτ2 = 20.4 μm となり,パーカッション加工のピッチと一致した。 3 to 5 show the absolute values of the dimensions and shapes of these fine periodic structures measured with a laser microscope (OLS4000, manufactured by Olympus Corporation). At a peak power of 147 MW (170 fs) and a longitudinal pitch of 10 μm, the pitch of the fine periodic structure was τ 1 = 10–42 μm in the longitudinal direction and τ 2 = 6–22 μm in the circumferential direction. These fine periodic structures were formed by gathering fiber shapes with an average diameter of 1,010 nm. At a peak power of 147 MW (170 fs) and a longitudinal pitch of 20 μm, a hole (well) structure with a concave width of f 2 = 11.8 μm was formed. At a peak power of 147 MW (170 fs) and a longitudinal pitch of 40 μm, the pitch of the fine periodic structure was τ 1 = 40.1 μm in the longitudinal direction and τ 2 = 20.4 μm in the circumferential direction, matching the percussion pitch.

以上の結果から,超短パルスレーザーのパワーやパーカッション加工における周期を制御することにより,容易に繊維表面にナノメートル領域からマイクロメートル領域の微細な周期構造を形成することが可能となることが判った。また,超短パルスレーザーの出力を制御することにより,繊維どうしの溶着や繊維内部の変質を抑えることができることが判った。すなわち,本発明の加工法を利用することにより,例えば,繊維に微細な凹凸を形成することにより,保温性,通気性,高染色性,高クッション性,肌触り等に優れた布帛を提供することができる。 From the above results, it was found that by controlling the power of the ultrashort pulse laser and the period in percussion processing, it is possible to easily form a fine periodic structure in the nanometer to micrometer range on the fiber surface. rice field. In addition, it was found that by controlling the output of the ultrashort pulse laser, it is possible to suppress adhesion between fibers and deterioration of the inside of the fibers. That is, by using the processing method of the present invention, for example, by forming fine irregularities in the fibers, it is possible to provide a fabric that is excellent in heat retention, breathability, high dyeability, high cushioning properties, touch, etc. can be done.

上記実施例では,前記長手方向に相対移動させる工程は直線的な走査を繰り返したが,長辺と短辺を有する楕円軌道を描きながらパーカッション加工しても良い(図6参照)。これによって,先の加工痕をトリガーとして次の微細周期構造形成につなげることがより確実となり,繊維表面全体に微細周期構造を形成することが可能となる。 In the above embodiment, linear scanning is repeated in the step of relative movement in the longitudinal direction, but percussion processing may be performed while drawing an elliptical orbit having long and short sides (see FIG. 6). As a result, it is possible to more reliably lead to the formation of the next fine periodic structure using the previous working trace as a trigger, and to form the fine periodic structure on the entire fiber surface.

また.上記実施例では,超短パルスレーザーの照射の軸方向は繊維に対して一方向からでのみであったが,図7に示すように.ビームスプリッター等を用いて繊維に対して様々な周方向から照射しても良い(図7参照)。これによって,繊維に対して周方向全体に微細な形状加工を施すことが可能となる。 Also. In the above example, the axial direction of irradiation of the ultrashort pulse laser was only from one direction with respect to the fiber, but as shown in FIG. A beam splitter or the like may be used to irradiate the fiber from various circumferential directions (see FIG. 7). As a result, it becomes possible to apply fine shape processing to the entire circumferential direction of the fiber.

Claims (5)

超短パルスレーザーを、繊維の長手方向に相対移動させつつ該繊維の表面に照射してパーカッション加工を行い、前記パーカッション加工の所定の距離間隔に等しい周期的構造を形成する繊維表面に周期構造を形成する方法。 An ultrashort pulse laser is applied to the surface of the fiber while relatively moving in the longitudinal direction of the fiber to perform percussion processing, and a periodic structure is formed on the fiber surface to form a periodic structure equal to the predetermined distance interval of the percussion processing. How to form. 前記超短パルスレーザーのパルス幅は、20ピコ秒以下100フェムト秒以上であることを特徴とする請求項1に記載の繊維表面に周期構造を形成する方法。 2. The method of forming a periodic structure on a fiber surface according to claim 1, wherein the pulse width of said ultrashort pulse laser is 20 picoseconds or less and 100 femtoseconds or more. 前記繊維は、化学繊維炭素繊維、又はガラス繊維であることを特徴とする請求項1又は2記載の繊維表面に周期構造を形成する方法。 3. The method of forming a periodic structure on a fiber surface according to claim 1 , wherein the fibers are chemical fibers , carbon fibers , or glass fibers. 前記パーカッション加工は、パルス発振したレーザーを所定の距離間隔で照射することにより行い、レーザーのスポット径のオーバーラップ率を調整することで表面波干渉の発生度合を調整し、その結果として周期的構造を調整することを特徴とする請求項1乃至3のいずれか1項に記載の繊維表面に周期構造を形成する方法。 The percussion processing is performed by irradiating a pulsed laser at a predetermined distance interval, adjusting the overlap rate of the laser spot diameter to adjust the degree of occurrence of surface wave interference, resulting in a periodic structure 4. The method of forming a periodic structure on a fiber surface according to any one of claims 1 to 3, characterized in that the is adjusted. 繊維の長 手方向に相対移動させる工程は、長辺と短辺を有する楕円軌道を描きながらパーカッション加工することを特徴とする請求項1乃至4のいずれか1項に記載の繊維表面に周期構造を形成する方法。 fiber length A periodic structure is formed on the fiber surface according to any one of claims 1 to 4, wherein the step of relatively moving in the hand direction performs percussion processing while drawing an elliptical orbit having a long side and a short side. Method.
JP2018201607A 2018-10-26 2018-10-26 A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser Active JP7105485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201607A JP7105485B2 (en) 2018-10-26 2018-10-26 A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201607A JP7105485B2 (en) 2018-10-26 2018-10-26 A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser

Publications (2)

Publication Number Publication Date
JP2020066824A JP2020066824A (en) 2020-04-30
JP7105485B2 true JP7105485B2 (en) 2022-07-25

Family

ID=70389717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201607A Active JP7105485B2 (en) 2018-10-26 2018-10-26 A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser

Country Status (1)

Country Link
JP (1) JP7105485B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035255A1 (en) 2002-09-27 2004-04-29 Nec Machinery Corporation Cyclic structure formation method and surface treatment method
JP2005270992A (en) 2004-03-23 2005-10-06 Toppan Printing Co Ltd Method for machining surface of material by pulse laser, method for manufacturing copy, method for processing surface treatment data, information carrier, optical element and image
JP2006212646A (en) 2005-02-01 2006-08-17 Canon Machinery Inc Method for preparing periodic structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3679316D1 (en) * 1985-11-14 1991-06-20 Deutsches Textilforschzentrum FIBER, FILAMENT, YARN AND / OR THIS OR THIS PROPERTY AREA AND / OR PULL-UP AND METHOD FOR PRODUCING THE SAME OR. THE SAME.
EP0656082B1 (en) * 1992-08-20 1996-10-23 E.I. Du Pont De Nemours And Company Process for microstructuring surfaces of oriented polymeric substrates using laser radiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035255A1 (en) 2002-09-27 2004-04-29 Nec Machinery Corporation Cyclic structure formation method and surface treatment method
JP2005270992A (en) 2004-03-23 2005-10-06 Toppan Printing Co Ltd Method for machining surface of material by pulse laser, method for manufacturing copy, method for processing surface treatment data, information carrier, optical element and image
JP2006212646A (en) 2005-02-01 2006-08-17 Canon Machinery Inc Method for preparing periodic structure

Also Published As

Publication number Publication date
JP2020066824A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
Takahashi et al. Influence of laser scanning conditions on CFRP processing with a pulsed fiber laser
Wolynski et al. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
Haubold et al. Laser welding of copper using a high power disc laser at green wavelength
Salama et al. Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel
AU2016283066A1 (en) Method of, and apparatus for, laser blackening of a surface, wherein the laser has a specific power density and/or a specific pulse duration
Heiderscheit et al. Keyhole cutting of carbon fiber reinforced polymer using a long-duration nanosecond pulse laser
KR102617598B1 (en) Method for laser welding of transparent workpieces and associated laser processing machine
US20100243625A1 (en) Minimizing thermal effect during material removal using a laser
Wu et al. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser
Lickschat et al. Ablation of steel using picosecond laser pulses in burst mode
JP2006212646A (en) Method for preparing periodic structure
JP7105485B2 (en) A method of forming a periodic structure on a fiber surface with an ultrashort pulse laser
WO2006027850A1 (en) Method for enhancing adhesion of thin film
Zettl et al. Laser turning with ultrashort laser pulses
JP6382154B2 (en) Laser processing method and laser processing apparatus
Bogue Fifty years of the laser: its role in material processing
JP6719231B2 (en) Carbon fiber composite material processing method and processing apparatus
Liu et al. Development of high-performance polycrystalline CVD diamond-coated cutting tools using femtosecond lasers
Sato et al. Experimental investigation of CFRP ablation with UV and N-IR nanosecond lasers
Jung et al. Ultra high speed laser cutting of CFRP using a scanner head
TW201736029A (en) Mirror cutting method without processing sectional ends of a mirror
JP5814988B2 (en) Method for surface modification of casting mold
JP2017217677A (en) Laser processing method and laser processing device
Amiaga et al. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50 W fiber laser

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210721

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7105485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150