JP7101844B1 - Internal combustion engine control device - Google Patents
Internal combustion engine control device Download PDFInfo
- Publication number
- JP7101844B1 JP7101844B1 JP2021074624A JP2021074624A JP7101844B1 JP 7101844 B1 JP7101844 B1 JP 7101844B1 JP 2021074624 A JP2021074624 A JP 2021074624A JP 2021074624 A JP2021074624 A JP 2021074624A JP 7101844 B1 JP7101844 B1 JP 7101844B1
- Authority
- JP
- Japan
- Prior art keywords
- amount
- inert gas
- egr
- pressure
- gas amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 128
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 214
- 239000007789 gas Substances 0.000 claims abstract description 166
- 239000011261 inert gas Substances 0.000 claims abstract description 160
- 238000002347 injection Methods 0.000 claims description 35
- 239000007924 injection Substances 0.000 claims description 35
- 238000001514 detection method Methods 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 230000007717 exclusion Effects 0.000 claims description 15
- 238000010586 diagram Methods 0.000 abstract description 6
- 239000000446 fuel Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 30
- 238000012545 processing Methods 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】吸気路に吸入される大気に含まれる水蒸気量、及びEGRガス量を考慮して、燃焼室に吸入された吸入ガスに含まれる水蒸気量及びEGRガス量を合計した不活性ガス量を適切に制御することができる内燃機関の制御装置を提供する。
【解決手段】燃焼室に吸入される目標不活性ガス量を算出し、目標不活性ガス量に基づいて、前記EGRバルブを制御し、燃焼室に吸入される実EGRガス量を算出し、燃焼室に吸入される大気に含まれる水蒸気量を検出し、目標不活性ガス量に対して、実EGRガス量及び水蒸気量を合計した合計不活性ガス量が不足している場合は、不足している不足不活性ガス量に基づいて、水インジェクタを駆動し、吸入空気に水を噴射させる内燃機関の制御装置。
【選択図】図2
PROBLEM TO BE SOLVED: To obtain an inert gas amount which is a sum of the amount of water vapor contained in the intake gas sucked into a combustion chamber and the amount of EGR gas in consideration of the amount of water vapor contained in the atmosphere sucked into the intake passage and the amount of EGR gas. Provided is a control device for an internal combustion engine that can be appropriately controlled.
SOLUTION: A target inert gas amount sucked into a combustion chamber is calculated, the EGR valve is controlled based on the target inert gas amount, an actual EGR gas amount sucked into a combustion chamber is calculated, and combustion is performed. If the total amount of inert gas, which is the sum of the actual EGR gas amount and the water vapor amount, is insufficient for the target inert gas amount by detecting the amount of water vapor contained in the air sucked into the chamber, it is insufficient. A control device for an internal combustion engine that drives a water injector to inject water into the intake air based on the amount of insufficient inert gas.
[Selection diagram] Fig. 2
Description
本願は、内燃機関の制御装置に関する。 The present application relates to a control device for an internal combustion engine.
内燃機関を好適に制御するためには、燃焼室に吸入される吸入空気量を高精度に算出し、吸入空気量に応じた燃料制御及び点火制御を行うことが重要である。内燃機関の燃焼室に吸入される空気量を計測する方法として、スロットルバルブの上流側の吸気路に設けられたエアフローセンサ(以下、AFSと称す)により空気流量を計測する方法(以下、AFS方式と称す)と、スロットルバルブの下流側の吸気路(インテークマニホールド)内の圧力を計測する圧力センサ(以下、吸気路内圧力センサ)を設け、吸気路内圧力センサにより計測される吸気路内圧力と内燃機関の回転速度により燃焼室に吸入される吸入空気量を推定する方法(以下、S/D方式と称す)の2種類が一般的である。また、これらのセンサを併置して運転状態に応じてそれぞれの方式を切換えるもの、又はAFS方式であっても吸気路内圧力を計測して用いているものもある。 In order to adequately control the internal combustion engine, it is important to calculate the amount of intake air sucked into the combustion chamber with high accuracy, and to perform fuel control and ignition control according to the amount of intake air. As a method of measuring the amount of air sucked into the combustion chamber of an internal combustion engine, a method of measuring the air flow rate by an air flow sensor (hereinafter referred to as AFS) provided in the intake passage on the upstream side of the throttle valve (hereinafter referred to as AFS method). A pressure sensor (hereinafter referred to as an intake passage pressure sensor) for measuring the pressure in the intake passage (intake manifold) on the downstream side of the throttle valve is provided, and the intake passage pressure measured by the intake passage pressure sensor is provided. And a method of estimating the amount of intake air sucked into the combustion chamber based on the rotation speed of the internal combustion engine (hereinafter referred to as an S / D method) are generally used. Further, there are those in which these sensors are juxtaposed and the respective methods are switched according to the operating state, or even in the AFS method, the pressure in the intake passage is measured and used.
燃料制御については、検出した燃焼室の吸入空気量に誤差があっても、空燃比センサによりフィードバック制御を行えば、概ね良好な制御性が得られる。しかし、点火制御については、回転速度と燃焼室の吸入空気量のみならず、他の要因、例えば、内燃機関の温度、ノック発生状況、燃料性状、EGR率(EGRガス量と吸入空気量の比、EGR:Exhaust Gas Recirculation)に応じて出力が最大となる点火進角(以下、MBT:Minimum Spark Advance for Best Torque)において制御する必要がある。MBTに影響のある前記要因の中でも、例えば、内燃機関の温度は、冷却水温度センサにより、ノック発生状況はノックセンサにより検出でき、燃料性状はノック発生状況に応じてレギュラーガソリンかハイオクガソリンかを判断することができる。 Regarding fuel control, even if there is an error in the detected intake air amount in the combustion chamber, if feedback control is performed by the air-fuel ratio sensor, generally good controllability can be obtained. However, regarding ignition control, not only the rotation speed and the amount of intake air in the combustion chamber, but also other factors such as the temperature of the internal combustion engine, the knock generation status, the fuel properties, and the EGR rate (the ratio of the amount of EGR gas to the amount of intake air). , EGR: Exhaust Gas Recirculation), it is necessary to control at the ignition advance angle (hereinafter, MBT: Minimum Spark Advance for Best Torque) where the output is maximized. Among the above-mentioned factors affecting MBT, for example, the temperature of the internal combustion engine can be detected by the cooling water temperature sensor, the knock generation status can be detected by the knock sensor, and the fuel property can be determined to be regular gasoline or high-octane gasoline according to the knock generation status. You can judge.
ところで、EGR率については、排気路と吸気路とを結ぶEGR通路にEGRバルブを設け、そのバルブ開度によりEGR量を制御する方法(以下、外部EGR)と、吸気バルブ及び排気バルブのバルブ開閉タイミングを可変化する可変バルブタイミング機構(以下、VVT:Variable Valve Timing)を設け、そのバルブ開閉タイミングにより吸気バルブと排気バルブが同時に開いている状態であるオーバーラップ期間を変えることで、排気が燃焼室内に残留することによるEGR量を制御する方法(以下、内部EGR)があり、また、これらを同時に用いる場合もある。近年では、更なる低燃費化、高出力化のために、外部EGR及び吸排気VVTを持つ内燃機関が一般的になっている。本出願で単にEGR、EGR率と表記した場合、外部EGR、外部EGR率を示す。 By the way, regarding the EGR rate, a method of providing an EGR valve in the EGR passage connecting the exhaust passage and the intake passage and controlling the EGR amount by the valve opening degree (hereinafter referred to as an external EGR), and opening and closing of the intake valve and the exhaust valve. A variable valve timing mechanism (hereinafter referred to as VVT: Variable Valve Timing) that changes the timing is provided, and the exhaust is burned by changing the overlap period in which the intake valve and the exhaust valve are open at the same time depending on the valve opening / closing timing. There is a method of controlling the amount of EGR by remaining in the room (hereinafter referred to as internal EGR), and these may be used at the same time. In recent years, an internal combustion engine having an external EGR and an intake / exhaust VVT has become common in order to further reduce fuel consumption and output. When simply referred to as EGR and EGR rate in this application, it indicates an external EGR and an external EGR rate.
また、吸気に水を噴射する事により、燃焼室内での気化潜熱により燃焼室内の温度を低下させ、ノッキングの発生を抑制する技術もある。水の噴射位置は吸気ポートに噴射するものと、燃焼室内に直接噴射するものがあり、燃焼室内に直接噴射する方が、吸気ポート及びバルブ表面に付着する水分量を考慮する必要が無いため、より高精度な噴射量の制御が可能となるが、コストは高くなる。 There is also a technique of injecting water into the intake air to lower the temperature in the combustion chamber by the latent heat of vaporization in the combustion chamber and suppress the occurrence of knocking. There are two types of water injection positions, one that injects water into the intake port and the other that injects water directly into the combustion chamber. It is possible to control the injection amount with higher accuracy, but the cost is high.
燃焼室内に吸入される乾燥空気及び燃料が、燃焼に直接寄与し、EGR及び水蒸気は、燃焼には直接寄与しない。つまり、EGR及び水蒸気は燃焼に直接寄与しない不活性ガスであり、それらの成分は異なるものの、燃焼への影響は類似しており、不活性ガス量が増加すると、燃焼速度が遅くなりMBTの位置が変化する。 Dry air and fuel sucked into the combustion chamber directly contribute to combustion, and EGR and water vapor do not directly contribute to combustion. In other words, EGR and water vapor are inert gases that do not directly contribute to combustion, and although their components are different, their effects on combustion are similar. As the amount of inert gas increases, the combustion rate slows down and the position of MBT Changes.
さらには、水蒸気は、吸気路に吸入される大気にも含まれており、大気中に含まれる水蒸気量は、天候、外気温度、季節等によって大きく変化する。計測される吸入空気量には、大気の水蒸気が含まれ、乾燥空気量に対して誤差が生じ、最適な燃料量及び点火時期に対して誤差が生じる。これらに対する技術として、特許文献1及び特許文献2が知られている。
Furthermore, water vapor is also contained in the atmosphere sucked into the intake passage, and the amount of water vapor contained in the atmosphere changes greatly depending on the weather, the outside air temperature, the season, and the like. The measured intake air amount includes water vapor in the atmosphere, which causes an error with respect to the dry air amount and an error with respect to the optimum fuel amount and ignition timing.
大気湿度の影響を補正する方法として、特許文献1では、吸気路に湿度センサが設けられており、雨天時の湿度を基準とし、運転時の湿度が雨天時の湿度よりも低い場合には、その差分に基づいて吸入空気に水を噴射するように構成されている。この方法では、低湿度環境の運転時において、燃焼に寄与しない水蒸気が多く供給されることになり、特に低負荷運転において、内燃機関等の機差ばらつきによっては燃焼不良等の問題が発生する可能性がある。
As a method of correcting the influence of air humidity, in
また、EGRガス量と水噴射量の調整方法として、特許文献2では、加速での目標EGR率の過渡増加時に、アクチュエータの応答遅れ等により生じる目標EGR率に対する実EGR率の偏差に応じて水を噴射するように構成されている。この方法では、EGRが導入される中負荷の運転領域のみで水噴射が行われ、大気湿度による影響は、考慮されていない。また、特許文献2では噴射する水は超臨界水又は亜臨界水を前提としたものであり、それらの温度及び圧力を実現させるためには大幅なコストの増加が伴う。
Further, as a method for adjusting the amount of EGR gas and the amount of water injection, in
そこで、本願は、吸気路に吸入される大気に含まれる水蒸気量、及びEGRガス量を考慮して、燃焼室に吸入された吸入ガスに含まれる水蒸気量及びEGRガス量を合計した不活性ガス量を適切に制御することができる内燃機関の制御装置を提供することを目的とする。 Therefore, in the present application, an inert gas obtained by totaling the amount of water vapor and the amount of EGR gas contained in the intake gas sucked into the combustion chamber in consideration of the amount of water vapor contained in the atmosphere sucked into the intake passage and the amount of EGR gas. It is an object of the present invention to provide a control device for an internal combustion engine capable of appropriately controlling the amount.
本願に係る内燃機関の制御装置は、排気路から吸気路に排気ガスを還流するEGR流路と、前記EGR流路を開閉するEGRバルブと、吸入空気に水を噴射する水インジェクタと、を備えた内燃機関を制御する内燃機関の制御装置であって、
燃焼室に吸入される目標不活性ガス量を算出する目標不活性ガス量算出部と、
前記目標不活性ガス量に基づいて、前記EGRバルブを制御するEGR制御部と、
前記燃焼室に吸入される実EGRガス量を算出する実EGR量算出部と、
前記燃焼室に吸入される大気に含まれる水蒸気量を検出する水蒸気量検出部と、
前記目標不活性ガス量に対して、前記実EGRガス量及び前記水蒸気量を合計した合計不活性ガス量が不足している場合は、不足している不足不活性ガス量に基づいて、前記水インジェクタを駆動し、吸入空気に水を噴射させる水噴射制御部と、を備えたものである。
The control device for an internal combustion engine according to the present application includes an EGR flow path that recirculates exhaust gas from an exhaust path to an intake path, an EGR valve that opens and closes the EGR flow path, and a water injector that injects water into intake air. An internal combustion engine control device that controls an internal combustion engine.
The target inert gas amount calculation unit that calculates the target inert gas amount to be sucked into the combustion chamber,
An EGR control unit that controls the EGR valve based on the target amount of inert gas,
An actual EGR amount calculation unit that calculates the actual EGR gas amount sucked into the combustion chamber,
A water vapor amount detection unit that detects the amount of water vapor contained in the atmosphere sucked into the combustion chamber, and
When the total amount of inert gas, which is the sum of the actual EGR gas amount and the water vapor amount, is insufficient with respect to the target inert gas amount, the water is based on the insufficient insufficient inert gas amount. It is equipped with a water injection control unit that drives the injector and injects water into the intake air.
本願に係る内燃機関の制御装置によれば、EGRガスの導入により、目標不活性ガス量を達成できなかった場合に、水インジェクタにより噴射水を供給し、目標不活性ガス量を達成することができる。この際、実EGRガス量、及び燃焼室に吸入される大気に含まれる水蒸気量が考慮されているので、不足不活性ガス量を精度よく算出でき、不活性ガス量の制御精度を向上できる。よって、不活性ガス量により燃焼状態を精度よく制御できる。例えば、EGRバルブ制御の応答遅れ、及びEGRバルブから燃焼室までの吸気路による搬送遅れ等により、目標EGRガス量に対して実EGRガス量に応答遅れが生じ、不足不活性ガス量が生じた場合に、水噴射により不足分を精度よく補うことができる。或いは、吸気路内圧力が高く、吸気路にEGRガスを十分に還流できず、不足不活性ガス量が生じた場合に、水噴射により不足分を精度よく補うことできる。 According to the control device of the internal combustion engine according to the present application, when the target inert gas amount cannot be achieved due to the introduction of EGR gas, the jet water is supplied by the water injector to achieve the target inert gas amount. can. At this time, since the actual amount of EGR gas and the amount of water vapor contained in the atmosphere sucked into the combustion chamber are taken into consideration, the amount of insufficient inert gas can be calculated accurately, and the control accuracy of the amount of inert gas can be improved. Therefore, the combustion state can be accurately controlled by the amount of the inert gas. For example, due to the response delay of EGR valve control and the transfer delay by the intake path from the EGR valve to the combustion chamber, the response delay occurred in the actual EGR gas amount with respect to the target EGR gas amount, and the insufficient inert gas amount occurred. In some cases, water injection can accurately make up for the shortfall. Alternatively, when the pressure in the intake passage is high and the EGR gas cannot sufficiently return to the intake passage and the amount of insufficient inert gas occurs, the shortage can be accurately compensated by water injection.
1.実施の形態1
実施の形態1に係る内燃機関の制御装置50(以下、単に制御装置50と称す)について図面を参照して説明する。図1は、本実施の形態に係る内燃機関1及び制御装置50の概略構成図であり、図2は、本実施の形態に係る制御装置50のブロック図である。内燃機関1及び制御装置50は、車両に搭載され、内燃機関1は、車両(車輪)の駆動力源となる。
1. 1.
The internal combustion engine control device 50 (hereinafter, simply referred to as a control device 50) according to the first embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an
1-1.内燃機関1の構成
まず、内燃機関1の構成について説明する。内燃機関1は、空気と燃料の混合気を燃焼する燃焼室25を有している。内燃機関1は、燃焼室25に空気を供給する吸気路23と、燃焼室25で燃焼した排気ガスを排出する排気路17とを備えている。内燃機関1は、吸気路23を開閉するスロットルバルブ6を備えている。スロットルバルブ6は、制御装置50により制御される電気モータにより開閉駆動される電子制御式スロットルバルブとされている。スロットルバルブ6には、スロットルバルブ6の開度に応じた電気信号を出力するスロットル開度センサ7が設けられている。
1-1. Configuration of
吸気路23の最上流部には、吸気路23に吸入された空気を浄化するエアクリーナ24が設けられている。スロットルバルブ6の上流側の吸気路23には、吸気路23に吸入される空気である吸入空気の流量に応じた電気信号を出力するエアフローセンサ3(以下、AFS3と称す)と、吸気路23に吸入される大気の温度である大気温度Taに応じた電気信号を出力する大気温度センサ4と、吸気路23に吸入される大気の湿度である大気湿度Haに応じた電気信号を出力する大気湿度センサ5と、が設けられている。スロットルバルブ6の上流側の吸気路23内の圧力は、大気圧力と等しいとみなすことができる。吸気路23の外部(例えば、制御装置50の内部)には、大気圧力Paに応じた電気信号を出力する大気圧力センサ2が設けられている。
An
なお、大気温度センサ4及び大気湿度センサ5は、AFS3と一体化されてもよいし、別体化されてもよい。或いは、大気温度センサ4及び大気湿度センサ5は、大気圧力センサ2と同様に、吸気路23の外部に設けられてもよいし、大気圧力センサ2は、大気温度センサ4及び大気湿度センサ5と同じ個所に設けられてもよい。
The
スロットルバルブ6の下流側の吸気路23の部分は、吸気マニホールド12とされている。内燃機関1は、排気路17から吸気路23(本例では、吸気マニホールド12)に排気ガスを還流するEGR流路21と、EGR流路21を開閉するEGRバルブ22と、を備えている。EGRバルブ22は、制御装置50により制御される電動モータ等の電動アクチュエータより開閉駆動される電子制御式EGRバルブとされている。EGRバルブ22には、EGRバルブ22の開度に応じた電気信号を出力するEGR開度センサ27が設けられている。吸気マニホールド12に還流された排気ガス(以下、還流排気ガスと称す)と、吸気マニホールド12に吸入された吸入空気は、吸気マニホールド12内で混合され、均一化される。なお、EGRは、Exhaust Gas Recirculationの頭文字である。
The portion of the
吸気路23には、吸気路23(本例では、吸気マニホールド12)内のガス圧力である吸気路内圧力Pbに応じた電気信号を出力する吸気路内圧力センサ8と、吸気路23(本例では、吸気マニホールド12)内のガス温度である吸気路内温度Tbに応じた電気信号を出力する吸気路内温度センサ9と、が設けられている。なお、吸気路内圧力センサ8及び吸気路内温度センサ9は、一体化されてもよいし、別体化されてもよい。
The
燃焼室25に直接燃料を噴射する燃料インジェクタ13が設けられている。なお、燃料インジェクタ13は、吸気マニホールド12の下流側の部分に燃料を噴射するように設けられてもよい。また、吸入空気に水を噴射する水インジェクタ28が設けられている。本実施の形態では、水インジェクタ28は、燃焼室25内に直接水を噴射するように設けられている。水インジェクタ28は、吸気マニホールド12の下流側の部分に水を噴射するように設けられてもよい。水インジェクタ28には、水を貯蔵したタンク内の水を、加圧ポンプにより加圧した水が供給される。
A
燃焼室25の頂部には、空気と燃料の混合気に点火する点火プラグと、点火プラグに点火エネルギーを供給する点火コイル16と、が設けられている。また、燃焼室25の頂部には、吸気路23から燃焼室25内に吸入される吸入空気量を調節する吸気バルブ14と、燃焼室内から排気路17に排出される排気ガス量を調節する排気バルブ15と、が設けられている。吸気バルブ14には、そのバルブ開閉タイミングを可変にする吸気可変バルブタイミング機構が設けられている。排気バルブ15には、そのバルブ開閉タイミングを可変にする排気可変バルブタイミング機構が設けられている。可変バルブタイミング機構14、15は、電動アクチュエータを有している。内燃機関1のクランク軸には、その回転角に応じた電気信号を出力するクランク角センサ20が設けられている。なお、可変バルブタイミング機構は、吸気及び排気の一方にのみ設けられてもよく、双方に設けられなくてもよい。
The top of the
排気路17には、排気ガス中の空気と燃料との比率である空燃比AF(Air/Fuel)に応じた電気信号を出力する空燃比センサ18が設けられている。また、排気路17には、排気ガスを浄化する触媒19が設けられている。
The
1-2.制御装置50の構成
次に、制御装置50について説明する。制御装置50は、内燃機関1を制御する制御装置である。図2に示すように、制御装置50は、運転状態検出部51、水蒸気量検出部52、乾燥吸気量算出部53、目標不活性ガス量算出部54、EGR制御部55、実EGRガス量算出部56、水噴射制御部57、実不活性ガス量算出部58、及び点火制御部59等の制御部を備えている。制御装置50の各制御部51~59等は、制御装置50が備えた処理回路により実現される。具体的には、制御装置50は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90にバス等の信号線を介して接続された記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、および演算処理装置90から外部に信号を出力する出力回路93等を備えている。
1-2. Configuration of
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、および各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。
The
記憶装置91として、RAM(Random Access Memory)、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable ROM)等の揮発性及び不揮発性の記憶装置が備えられている。入力回路92は、各種のセンサ及びスイッチが接続され、これらセンサ及びスイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
The
そして、制御装置50が備える各制御部51~59等の各機能は、演算処理装置90が、ROM、EEPROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、および出力回路93等の制御装置50の他のハードウェアと協働することにより実現される。なお、各制御部51から56等が用いる変換係数Kev、Kve、目標不活性ガス量QINt、圧力比上限値、各マップデータ等の設定データは、ソフトウェア(プログラム)の一部として、ROM、EEPROM等の記憶装置91に記憶されている。
Then, in each function of the
本実施の形態では、入力回路92には、大気圧力センサ2、AFS3、大気温度センサ4、大気湿度センサ5、スロットル開度センサ7、吸気路内圧力センサ8、吸気路内温度センサ9、空燃比センサ18、クランク角センサ20、アクセルポジションセンサ26、及びEGR開度センサ27等が接続されている。出力回路93には、スロットルバルブ6(電気モータ)、燃料インジェクタ13、水インジェクタ28、吸気可変バルブタイミング機構14、排気可変バルブタイミング機構15、点火コイル16、及びEGRバルブ22(電動アクチュエータ)等が接続されている。なお、制御装置50には、図示していない各種のセンサ、スイッチ、及びアクチュエータ等が接続されている。
In the present embodiment, the
制御装置50は、基本的な制御として、入力された各種センサの出力信号等に基づいて、燃料噴射量、点火時期等を算出し、燃料インジェクタ13及び点火コイル16等を駆動制御する。制御装置50は、アクセルポジションセンサ26の出力信号等に基づいて、運転者が要求している内燃機関1の出力トルクを算出し、当該要求出力トルクを実現する吸入空気量となるように、スロットルバルブ6等を制御する。具体的には、制御装置50は、目標スロットル開度を算出し、スロットル開度センサ7の出力信号に基づき検出したスロットル開度が、目標スロットル開度に近づくように、スロットルバルブ6の電気モータを駆動制御する。また、制御装置50は、入力された各種センサの出力信号等に基づいて、吸気バルブの目標開閉タイミング及び排気バルブの目標開閉タイミングを算出し、各目標開閉タイミングに基づいて、吸気及び排気可変バルブタイミング機構14、15を駆動制御する。
As a basic control, the
<運転状態検出部51>
運転状態検出部51は、内燃機関1及び車両の運転状態を検出する。運転状態検出部51は、各種のセンサの出力信号等に基づいて各種の運転状態を検出する。
<Operating
The operating
例えば、運転状態検出部51は、クランク角センサ20の出力信号に基づいて内燃機関1のクランク角度θ及び回転速度Neを検出し、スロットル開度センサ7の出力信号に基づいてスロットル開度を検出し、EGR開度センサ27の出力信号に基づいてEGRバルブ22の開度Oeを検出する。運転状態検出部51は、空燃比センサ18の出力信号に基づいて排気ガスの空燃比AFを検出し、アクセルポジションセンサ26の出力信号に基づいてアクセル開度を検出する。
For example, the operating
運転状態検出部51は、燃焼室25に吸入される吸入空気量QWAcを検出する。本実施の形態では、運転状態検出部51は、AFS3の出力信号に基づいて、スロットルバルブ6を通過する吸気路吸入空気流量Qwaを検出する。ここで、吸気路吸入空気流量Qwa及び吸入空気量QWAcは、乾燥空気と水蒸気を含んだ湿り空気の空気流量及び空気量である。
The operating
運転状態検出部51は、吸気路吸入空気流量Qwa[g/s]を、1行程間積分して、1行程間に吸気路23に吸入される吸気路吸入空気量QWA[g/stroke]を算出し、吸気路吸入空気量QWAに対して吸気マニホールド12の遅れを模擬した1次遅れフィルタ処理を行って、1行程間に燃焼室25に吸入される吸入空気量QWAc[g/stroke]を算出する。なお、運転状態検出部51は、AFS3の出力信号を用いずに、公知の方法を用い、圧力センサの情報等に基づいて、吸入空気量QWAcを算出してもよい。
The operating
運転状態検出部51は、吸気路23に吸入される大気温度Taを検出し、大気湿度Haを検出し、大気圧力Paを検出する。本実施の形態では、それぞれの検出に、大気温度センサ4、大気湿度センサ5、及び大気圧力センサ2の出力信号が用いられる。なお、運転状態検出部51は、大気温度Ta、大気湿度Ha、及び大気圧力Paを、エアコンディショナ装置等の外部の装置から、通信を介して取得するように構成されてもよい。
The operating
本実施の形態では、大気湿度センサ5には、相対湿度を検出するタイプのものが用いられており、例えば、感湿材料の電気抵抗値により検出する電気抵抗式のもの、センサ素子の静電容量により検出する静電容量式のもの等とされる。そのため、運転状態検出部51は、大気湿度Haとして相対湿度を検出する。ここで、相対湿度とは、空気の温度により決まる飽和水蒸気圧に対するその空気の水蒸気分圧の比率を示すものであり、空気中の水蒸気分圧が同じであっても、温度により、相対湿度は変化する。
In the present embodiment, the atmospheric humidity sensor 5 is of a type that detects relative humidity, for example, an electric resistance type sensor that detects by the electric resistance value of a humidity-sensitive material, or an electrostatic sensor element. It is a capacitance type that detects by capacitance. Therefore, the operating
運転状態検出部51は、吸気路内圧力Pbを検出し、吸気路内温度Tbを検出する。本実施の形態では、それぞれの検出に、吸気路内圧力センサ8、及び吸気路内温度センサ9の出力信号が用いられる。
The operating
運転状態検出部51は、排気路17内のガス圧力である排気路内圧力Pexを検出し、排気路17内のガス温度である排気路内温度Texを検出する。本実施の形態では、運転状態検出部51は、回転速度、吸入空気量、EGR率、大気圧力Pa、空燃比、及び点火時期などの特定の運転状態に基づいて、排気路内圧力Pex及び排気路内温度Texを算出する。この算出の際、特定の運転状態と排気路内圧力Pexとの関係が予めされた排気路内圧力特性データ、及び特定の運転状態と排気路内温度Texとの関係が予めされた排気温度特性データが用いられる。各特性データには、マップデータ、多項式等の数式が用いられる。或いは、排気路17に温度センサ及び圧力センサが設けられ、各センサの出力信号が用いられてもよい。
The operating
<水蒸気量検出部52>
水蒸気量検出部52は、燃焼室25に吸入される大気に含まれる水蒸気量QVcを検出する。本実施の形態では、水蒸気量検出部52は、運転状態検出部51により検出された吸入空気量QWAc、大気温度Ta、大気湿度Ha、及び大気圧力Paに基づいて、水蒸気量QVcを検出する。以下で詳細に説明する。
<Water vapor
The water vapor
水蒸気量検出部52は、次式を用い、大気温度Taに基づいて、大気温度Ta[℃]における飽和水蒸気圧Ps[hPa]を算出する。
上述したように、大気湿度Haは相対湿度であり、飽和水蒸気圧Psに対する水蒸気分圧Pvの比率を示している。よって、水蒸気量検出部52は、次式を用い、式(1)により算出した飽和水蒸気圧Ps[hPa]及び大気湿度Ha[%RH]に基づいて、水蒸気分圧Pv[hPa]を算出する。
ドルトンの法則より、物質量の比は、圧力の比と等しくなるため、大気中における水蒸気の物質量の比、つまり水蒸気のモル分率χvは、次式により示される。なお、水蒸気のモル分率χvは、大気に対する水蒸気の体積比と考える事もできる。
一般的に、検出した吸入空気量QWAcを目標空燃比で除算して、燃料噴射量が算出される。しかし、検出した吸入空気量QWAcには水蒸気量が含まれるため、正確な空気量を得るためには、吸入空気量QWAcから水蒸気量を減算する必要がある。そのためには、湿り空気に含まれる水蒸気の質量比が必要となる。湿り空気における水蒸気の割合を一般的には比湿qという。比湿qは、湿り空気の密度ρw、乾燥空気の密度ρd、水蒸気の密度ρvを用い、次式で表される。
一般に知られる理想気体の状態方程式より、気体の密度ρは、気体の圧力P、気体の温度T、気体のガス定数Rを用い、式(5)で表され、気体のガス定数Rは、一般ガス定数R0、気体の分子量Mを用い、式(6)で表される。
式(7)及び式(8)は、式(5)及び式(6)を用いて、水蒸気の密度ρvと乾燥空気の密度ρdを表したものである。ここで、Mvは水蒸気の分子量、Mdは乾燥空気の分子量である。
式(9)は、式(7)及び式(8)を、式(4)に代入し、水蒸気の分子量Mvに18.015、乾燥空気の分子量Mdに28.966を代入したものである。水蒸気量検出部52は、式(9)を用い、大気圧力Pa、及び式(2)により算出した水蒸気分圧Pvに基づいて、比湿qを算出する。
AFS3が熱式の場合、吸入空気の湿度により、湿り空気量の検出誤差が生じる可能性もあり、その誤差についても湿度情報を用いて補正を行う必要がある。しかし、その補正方法は本願の範囲には含まれないため、湿度によるAFS3の検出誤差は生じない、もしくは、誤差が補正された湿り空気量がAFS3から出力されるものとする。AFS3は熱式検出を例としているため、湿り空気の質量流量[g/s]が検出されるものとする。 When the AFS3 is a thermal type, there is a possibility that a detection error of the amount of moist air may occur due to the humidity of the intake air, and it is necessary to correct the error by using the humidity information. However, since the correction method is not included in the scope of the present application, it is assumed that the detection error of AFS3 due to humidity does not occur, or the amount of moist air whose error is corrected is output from AFS3. Since AFS3 uses thermal detection as an example, it is assumed that the mass flow rate [g / s] of moist air is detected.
AFS3により検出される湿り空気流量Qwaに対する水蒸気分の流量Qvの割合は、比湿qで示される。よって、水蒸気量検出部52は、式(10)に示すように、湿り空気の吸入空気量QWAc[g/stroke]に、式(9)により算出した比湿qを乗算して、燃焼室25に吸入される水蒸気量QVc[g/stroke]を算出する。
<乾燥吸気量算出部53>
乾燥吸気量算出部53は、式(11)に示すように、吸入空気量QWAcから水蒸気量QVcを減算して、燃焼室25に吸入される乾燥吸入空気量QDAcを算出する。
As shown in the formula (11), the dry intake air
また、乾燥吸気量算出部53は、乾燥吸入空気量QDAcを、標準大気状態(例えば、一気圧、25℃)の空気密度ρ0とシリンダ容積Vcとを乗算した値で除算して、乾燥充填効率Ecdaを算出する。乾燥充填効率Ecdaは、シリンダ容積Vcを満たす標準大気状態の空気質量(ρ0×Vc)に対する乾燥吸入空気量QDAcの比率である。
Further, the dry intake air
<目標不活性ガス量算出部54>
目標不活性ガス量算出部54は、燃焼室に吸入される目標不活性ガス量QINtを算出する。目標不活性ガス量算出部54は、回転速度Ne、吸入空気量情報等の運転状態に基づいて、目標不活性ガス量QINtを算出する。例えば、運転状態と目標不活性ガス量QINtとの関係が予め設定された目標ガス量設定マップデータを参照して算出される。吸入空気量情報として、乾燥吸入空気量QDAc、又は乾燥吸入空気量QDAcに基づいて算出された乾燥充填効率Ecdaが用いられる。これにより、燃焼する乾燥吸入空気量QDAcと、燃焼に影響する目標不活性ガス量QINtとの比を精度よく制御することができ、燃焼状態の制御精度を向上させることができる。なお、湿り空気の吸入空気量QWAcが用いられてもよい。
<Target inert gas
The target inert gas
一般に中負荷域にて導入される不活性ガスはEGRに代表され、ポンピングロス低減等による燃費向上等の効果が知られている。また高負荷域にて導入される不活性ガスは水に代表され、点火時期のノック限界拡大の効果、又は燃料冷却を水の潜熱に担わせてA/Fリッチ化を抑制する効果等が知られている。それら各種効果を考慮した最適な不活性ガス量がマップデータに設定され、目標不活性ガス量QINtとして算出される。 Generally, the inert gas introduced in the medium load range is typified by EGR, and is known to have the effect of improving fuel efficiency by reducing pumping loss and the like. In addition, the inert gas introduced in the high load region is typified by water, and it is known that it has the effect of expanding the knock limit of ignition timing, or the effect of suppressing fuel enrichment by causing the latent heat of water to cool the fuel. Has been done. The optimum amount of inert gas in consideration of these various effects is set in the map data and calculated as the target amount of inert gas QINT.
<EGRガスと水蒸気との相関性>
しかし、EGRガスと水蒸気とでは、物質が異なるため、単位質量当たりの燃焼に与える影響度合いが異なる。そこで、EGRガスと水蒸気とを共通の指標で管理する必要がある。本実施の形態では、目標不活性ガス量算出部54は、不活性ガス量をEGRガス相当量に換算した目標不活性ガス量QINtを算出する。すなわち、目標不活性ガス量算出部54は、目標不活性ガス量QINtとして目標EGRガス量を算出する。なお、目標不活性ガス量算出部54は、不活性ガス量を水蒸気相当量に換算した目標不活性ガス量QINtを算出してもよい。
<Correlation between EGR gas and water vapor>
However, since the substances of EGR gas and steam are different, the degree of influence on combustion per unit mass is different. Therefore, it is necessary to manage EGR gas and water vapor with a common index. In the present embodiment, the target inert gas
以下で詳細に説明する。不活性ガス量は、例えばEGRではEGR率Regrにより示されることがある。EGR率Regrは、一般的に吸入空気量に対するEGR流路から循環された排気ガス量の比とされており、CO2濃度を用いた式(12)にて示されている。なお、式(12)において、CO2_inは、吸入ガスのCO2濃度[vol%]を示し、CO2_exは、排気路から循環される外気ガスのCO2濃度[vol%]を示し、CO2_aは、大気中のCO2濃度[vol%]を示す。一般的に大気中のCO2濃度は、0.038[vol%]程度である。
燃料を例えばガソリンとした場合の炭化水素の燃焼反応式は、一般的に式(13)により表される。
ガソリンの平均分子式をC7H14、空気の組成を「酸素(O2):窒素(N2)=21:79」と仮定し、ガソリンと空気が理論空燃比で完全燃焼した場合の燃焼反応式は、式(14)により表され、燃焼により生成される二酸化炭素(CO2)の量と水分(H2O)の量が等しい事が示されている。
図4は、所定の乾燥吸入空気量及び燃料噴射量の運転条件において、点火時期SAをMBT(Minimum advance for the Best Torque)の前後に変化させた場合の内燃機関の出力特性と、同じ乾燥吸入空気量及び燃料噴射量の運転条件において、外部EGRの導入量又は水噴射量を変化させた場合の点火時期SAの変化に対する内燃機関の出力特性を示したものである。EGR率を増加させた場合も、水噴射量を増加させた場合も、MBTは進角側に変化する傾向を示し、点火時期SAの変化に対する内燃機関の出力特性は、同様の傾向で変化することが確認された。図4に示すように、EGR率=約15%の内燃機関の出力特性と、水噴射パルス幅=3msの内燃機関の出力特性は、ほぼ同じ特性になっている。 FIG. 4 shows the output characteristics of an internal combustion engine when the ignition timing SA is changed before and after MBT (Minimum advance for the Best Torque) under the operating conditions of a predetermined dry intake air amount and fuel injection amount, and the same dry suction. It shows the output characteristics of the internal combustion engine with respect to the change of the ignition timing SA when the introduction amount of the external EGR or the water injection amount is changed under the operating conditions of the air amount and the fuel injection amount. The MBT tends to change to the advance angle side regardless of whether the EGR rate is increased or the water injection amount is increased, and the output characteristics of the internal combustion engine with respect to the change in the ignition timing SA change in the same tendency. It was confirmed that. As shown in FIG. 4, the output characteristics of an internal combustion engine having an EGR rate of about 15% and the output characteristics of an internal combustion engine having a water injection pulse width of 3 ms have almost the same characteristics.
これは、ともに不活性ガスであるEGRガス量と水蒸気量との間に、点火時期SAの変化に対する内燃機関の出力特性について、相関性がある事を示している。その相関性は回転速度及び充填効率等の運転状態により影響を受ける。そのため、水蒸気量からEGRガス相当量への換算係数Kve、及びEGRガス量から水蒸気相当量への換算係数Kevは、回転速度及び充填効率等の運転状態ごとに予め設定されている。例えば、各換算係数と運転状態との関係が予め設定されたマップデータ又は数式が用いられる。 This indicates that there is a correlation between the amount of EGR gas, which is both inert gas, and the amount of water vapor, regarding the output characteristics of the internal combustion engine with respect to the change in ignition timing SA. The correlation is affected by operating conditions such as rotation speed and filling efficiency. Therefore, the conversion coefficient Kve from the amount of water vapor to the equivalent amount of EGR gas and the conversion coefficient Kev from the amount of EGR gas to the equivalent amount of water vapor are preset for each operating state such as the rotation speed and the filling efficiency. For example, map data or mathematical formulas in which the relationship between each conversion coefficient and the operating state is preset are used.
<EGR制御部55>
EGR制御部55は、目標不活性ガス量QINtに基づいて、EGRバルブを制御する。
<
The
本実施の形態では、EGR制御部55は、目標不活性ガス量QINtから水蒸気量QVcを除外した水除外目標不活性ガス量QINDAtを演算し、水除外目標不活性ガス量QINDAtに基づいてEGRバルブを制御する。
In the present embodiment, the
目標不活性ガス量QINtから水蒸気量QVcを除外することにより、EGRガス及び水蒸気を合計した目標不活性ガス量QINtが達成されるように、EGRガス量を制御することができる。よって、目標不活性ガス量QINtの制御精度を向上させることができる。 By excluding the water vapor amount QVc from the target inert gas amount QINT, the EGR gas amount can be controlled so that the target inert gas amount QINT, which is the sum of the EGR gas and the water vapor, is achieved. Therefore, the control accuracy of the target inert gas amount QINT can be improved.
本実施の形態では、上述したように、不活性ガス量をEGRガス相当量に換算した目標不活性ガス量QINtが算出される。EGR制御部55は、水蒸気量QVcをEGRガス相当量に換算した水蒸気換算量QVINcを算出する。例えば、次式に示すように、EGR制御部55は、水蒸気量QVcに、水蒸気量をEGRガス相当量に換算する換算係数Kveを乗算して、水蒸気換算量QVINcを算出する。上述したように、換算係数Kveは、換算前後のガス量に対応する、点火時期SAの変化に対する内燃機関の出力特性が同等になるように、運転状態ごとに設定されている。
EGR制御部55は、次式に示すように、目標不活性ガス量QINtから、水蒸気量QVcをEGRガス相当量に換算した水蒸気換算量QVINcを減算して、水除外目標不活性ガス量QINDAtを算出する。
EGR制御部55は、EGRガス量が、水除外目標不活性ガス量QINDAtに一致するようにEGRバルブを制御する。
The
本実施の形態では、EGRガス量の制御精度を向上させるため、EGRバルブ22近傍の流れを絞り弁前後の流れと考えた、圧縮性流体における流体力学の理論式であるオリフィスの流量算出式が用いられ、吸気路内圧力Pb、排気路内圧力Pex、及び排気路内温度Texも考慮される。すなわち、EGR制御部55は、水除外目標不活性ガス量QINDAt、吸気路内圧力Pb、排気路内圧力Pex、及び排気路内温度Texに基づいて、EGRバルブの目標開度を算出し、目標開度に基づいて、EGRバルブを制御する。
In this embodiment, in order to improve the control accuracy of the EGR gas amount, the flow rate calculation formula of the orifice, which is a theoretical formula of fluid dynamics in a compressible fluid, is used in which the flow near the
具体的には、EGR制御部55は、次式に示すように、水除外目標不活性ガス量QINDAt[g/stroke]を1行程の周期Tst[s/stroke]で除算して、EGRバルブを通過する目標EGRガス流量Qegrt[g/s]を算出する。
EGR制御部55は、式(18)を用い、排気路内温度Texに基づいて、排気ガスの音速αexを算出し、式(19)を用い、排気路内温度Tex及び排気路内圧力Pexに基づいて、排気ガスの密度ρexを算出する。ここで、Rは、排気ガスのガス定数であり、予め設定された値が用いられる。κは、排気ガスの比熱比であり、予め設定された値が用いられる。また、EGR制御部55は、式(20)を用い、排気路内圧力Pexに対する吸気路内圧力Pbの圧力比Pb/Pexに基づいて、無次元流量定数σexを算出する。ここで、Rp0は、臨界圧力比であり、空気の場合は、約0.528になり、排気ガスに合わせて予め設定された値が用いられる。図5に示すように、圧力比Pb/Pexが、臨界圧力比Rp0以下の場合は、無次元流量定数σexは一定値σex0になり、圧力比Pb/Pexが、臨界圧力比Rp0より大きい場合は、圧力比Pb/Pexが増加するに従って、無次元流量定数σexは減少し、圧力比Pb/Pex=1で、無次元流量定数σex=0になる。なお、演算負荷の低減のために、式(18)から式(20)をマップデータ化したものが用いられてもよい。
そして、EGR制御部55は、次式に示すように、目標EGRガス流量Qegrtを、排気ガスの音速αex、排気ガスの密度ρex、及び無次元流量定数σexで除算して、EGRバルブの目標開口面積Segrtを算出する。
EGR制御部55は、EGRバルブの目標開口面積Segrtを、変換マップデータ又は数式を用いて、EGRバルブの目標開度に変換する。EGR制御部55は、実開度Oeが目標開度に近づくように、EGRバルブの電動アクチュエータを駆動制御する。
The
<吸気路内圧力Pbが高い場合の、開度増加の制限>
また、圧力比Pb/Pexが1に近くなると、無次元流量定数σexが0に近くなり、圧力脈動により、目標開口面積Segrtが大きく変動し、また、目標開口面積Segrtを増加させても、EGRガス流量を増加させることができない。
<Restriction on increase in opening when pressure Pb in the intake passage is high>
Further, when the pressure ratio Pb / Pex approaches 1, the dimensionless flow rate constant σex becomes close to 0, the target opening area Segrt fluctuates greatly due to pressure pulsation, and even if the target opening area Segrt is increased, EGR The gas flow rate cannot be increased.
そこで、EGR制御部55は、圧力比Pb/Pexが、予め設定された圧力比上限値よりも大きい場合は、EGRバルブの開度の増加を制限する。例えば、圧力比上限値は、0.95に設定される。例えば、EGR制御部55は、圧力比Pb/Pexを、圧力比上限値で上限制限する。上限制限前の圧力比Pb/Pexが、圧力比上限値よりも大きい場合は、上限制限後の圧力比Pb/Pexは、圧力比上限値に設定される。そして、上限制限された圧力比Pb/Pexに基づいて、式(20)の無次元流量定数σexの算出処理が行われる。
Therefore, when the pressure ratio Pb / Pex is larger than the preset pressure ratio upper limit value, the
上限制限前の圧力比Pb/Pexが、圧力比上限値よりも大きい場合は、無次元流量定数σexは、圧力比上限値に対応する、0よりも大きい所定値になり、目標開口面積Segrtは、無次元流量定数σexの所定値に対応する所定値になり、開度の増加が制限される。開度の上限制限が行われている場合は、公知のEGRバルブの開度の学習制御が停止されてもよい。 When the pressure ratio Pb / Pex before the upper limit limit is larger than the pressure ratio upper limit value, the dimensionless flow rate constant σex becomes a predetermined value larger than 0 corresponding to the pressure ratio upper limit value, and the target opening area Segrt is set. , The dimensionless flow rate constant σex becomes a predetermined value corresponding to a predetermined value, and the increase in the opening degree is limited. When the upper limit of the opening degree is limited, the learning control of the opening degree of the known EGR valve may be stopped.
EGRバルブの開度の上限制限が行われることにより、水除外目標不活性ガス量QINDAtに対して実EGRガス量QEGRcが不足しても、後述するように、不足分は、水噴射による水蒸気により補われるので、精度よく目標不活性ガス量QINtを達成することができると共に、EGRバルブの開度が不必要に大きくなったり、変動したりすることを防止できる。 Even if the actual EGR gas amount QEGRc is insufficient for the water exclusion target inert gas amount QINDAt due to the upper limit of the opening of the EGR valve, as will be described later, the shortage is due to water vapor from the water injection. Since it is supplemented, the target inert gas amount QINT can be achieved with high accuracy, and the opening degree of the EGR valve can be prevented from being unnecessarily increased or fluctuated.
<実EGRガス量算出部56>
実EGRガス量算出部56は、燃焼室に吸入される実EGRガス量QEGRcを算出する。実EGRガス量算出部56は、EGRバルブの開度Oe、及び吸気路内圧力Pbに基づいて、実EGRガス量QEGRcを算出する。
<Actual EGR gas
The actual EGR gas
本実施の形態では、実EGRガス量の算出精度を向上させるため、EGRバルブのオリフィスの流量算出式が用いられ、排気路内圧力Pex及び排気路内温度Texも考慮される。すなわち、実EGRガス量算出部56は、EGRバルブの開度Oe及び吸気路内圧力Pbに加えて、排気路内圧力Pex、及び排気路内温度Texに基づいて、実EGRガス量QEGRcを算出する。
In the present embodiment, in order to improve the calculation accuracy of the actual EGR gas amount, the flow rate calculation formula of the orifice of the EGR valve is used, and the pressure Pex in the exhaust passage and the temperature Tex in the exhaust passage are also taken into consideration. That is, the actual EGR gas
実EGRガス量算出部56は、EGR開度センサ27により検出された実開度Oeを、変換マップデータ又は数式を用いて、EGRバルブの実開口面積Segrrに変換する。そして、実EGRガス量算出部56は、次式に示すように、実開口面積Segrrに、排気ガスの音速αex、排気ガスの密度ρex、及び無次元流量定数σexを乗算して、実EGRガス流量Qegrrを算出する。
実EGRガス量算出部56は、実EGRガス流量Qegrr[g/s]を、1行程間積分して、1行程間に吸気路23に還流される還流EGRガス量QEGR[g/stroke]を算出し、還流EGRガス量QEGRに対して吸気マニホールド12の遅れを模擬した1次遅れフィルタ処理を行って、1行程間に燃焼室25に吸入される実EGRガス量QEGRc[g/stroke]を算出する。
The actual EGR gas
<水噴射制御部57>
水噴射制御部57は、目標不活性ガス量QINtに対して、実EGRガス量QEGRc及び水蒸気量QVcを合計した合計不活性ガス量QINsumが不足している場合は、不足している不足不活性ガス量QINlackに基づいて、水インジェクタを駆動し、吸入空気に水を噴射させる。
<Water
When the total inert gas amount QINsum, which is the sum of the actual EGR gas amount QEGRc and the water vapor amount QVc, is insufficient with respect to the target inert gas amount QINT, the water
この構成によれば、EGRガスの導入により、目標不活性ガス量QINtを達成できなかった場合に、水インジェクタにより噴射水を供給し、目標不活性ガス量QINtを達成することができる。この際、実EGRガス量QEGRc及び水蒸気量QVcが考慮されているので、不足不活性ガス量を精度よく算出でき、不活性ガス量の制御精度を向上できる。よって、不活性ガス量により燃焼状態を精度よく制御できる。例えば、EGRバルブ制御の応答遅れ、及びEGRバルブから燃焼室までの吸気路による搬送遅れ等により、目標EGRガス量に対して実EGRガス量に応答遅れが生じ、不足不活性ガス量が生じた場合に、水噴射により不足分を精度よく補うことができる。或いは、吸気路内圧力Pbが高く、吸気路にEGRガスを十分に還流できず、不足不活性ガス量が生じた場合に、水噴射により不足分を精度よく補うことできる。 According to this configuration, when the target inert gas amount QINT cannot be achieved by introducing the EGR gas, the jet water is supplied by the water injector, and the target inert gas amount QINT can be achieved. At this time, since the actual EGR gas amount QEGRc and the water vapor amount QVc are taken into consideration, the insufficient inert gas amount can be calculated accurately, and the control accuracy of the inert gas amount can be improved. Therefore, the combustion state can be accurately controlled by the amount of the inert gas. For example, due to the response delay of EGR valve control and the transfer delay by the intake path from the EGR valve to the combustion chamber, the response delay occurred in the actual EGR gas amount with respect to the target EGR gas amount, and the insufficient inert gas amount occurred. In some cases, water injection can accurately make up for the shortfall. Alternatively, when the pressure Pb in the intake passage is high and the EGR gas cannot sufficiently return to the intake passage and the amount of insufficient inert gas occurs, the shortage can be accurately compensated by water injection.
本実施の形態では、水噴射制御部57は、次式に示すように、実EGRガス量QEGRcと、水蒸気量QVcをEGRガス相当量に換算した水蒸気換算量QVINcとを合計して、合計不活性ガス量QINsumを算出する。水蒸気換算量QVINcの算出は、上記の式(15)と同様に算出される。水噴射制御部57は、目標不活性ガス量QINtから合計不活性ガス量QINsumを減算して、不足不活性ガス量QINlackを算出する。水噴射制御部57は、不足不活性ガス量QINlackに、EGRガス量を水蒸気相当量に換算する換算係数Kevを乗算して、不足水蒸気量QVlackを算出する。上述したように、換算係数Kve、Kevは、換算前後のガス量に対応する、点火時期SAの変化に対する内燃機関の出力特性が同等になるように、運転状態ごとに設定されている。
水噴射制御部57は、不足水蒸気量QVlackに基づいて、噴射水量を算出し、噴射水量に基づいて、水インジェクタのオン期間を算出する。例えば、不足水蒸気量QVlackが、噴射水量に設定される。噴射水の蒸発率、壁面への付着率が考慮されてもよい。そして、水噴射制御部57は、吸気行程から圧縮行程の所定のタイミングで、水インジェクタをオン期間だけオン駆動し、不足水蒸気量QVlackの水を燃焼室に供給させる。
The water
<実不活性ガス量算出部58>
実不活性ガス量算出部58は、実EGRガス量QEGRc、水蒸気量QVc、及び水インジェクタの噴射水による噴射水蒸気量QVinjを合計して、実不活性ガス量QINrを算出する。噴射水蒸気量QVinjは、噴射水量に基づいて算出される。例えば、噴射水量又は不足水蒸気量QVlackが、噴射水蒸気量QVinjに設定される。噴射水の蒸発率、壁面への付着率が考慮されてもよい。
<Actually inert gas
The actual inert gas
本実施の形態では、実不活性ガス量算出部58は、次式に示すように、実EGRガス量QEGRcと、水蒸気量QVc及び噴射水蒸気量QVinjをEGRガス相当量に換算した水蒸気換算量及び噴射水蒸気換算量とを合計して、実不活性ガス量を算出する。水蒸気量からEGRガス相当量に換算するために、水蒸気量QVc及び噴射水蒸気量QVinjに上述した換算係数Kveが乗算される。
<点火制御部59>
点火制御部59は、実不活性ガス量QINrに基づいて、点火時期SAを設定する。点火制御部59は、点火時期SA(点火角度)及びクランク角度に基づいて、点火コイル16への通電制御を行う。例えば、点火制御部59は、実不活性ガス量QINrに基づいてMBTの点火時期SAを設定する。なお、設定された点火時期SAに対して、ノック制御等の各種の補正制御が行われる。
<
The
図4に示したように、同じ新気量及び燃料噴射量の運転条件においても、燃焼室内の不活性ガス量が変化すると、MBTが変化する。実EGRガス量QEGRc、水蒸気量QVc、及び噴射水蒸気量QVinjを合計した実不活性ガス量QINrに基づいて、点火時期SAが設定されるので、精度よく、MBTを基準にした点火制御を行うことができ、燃焼状態の制御精度を向上させることができる。また、点火時期SAの変化に対する内燃機関の出力特性が同等になるように、各水蒸気量がEGRガス相当量に換算されて、実不活性ガス量QINrが算出されているので、物質の異なるEGRガスと水蒸気とが任意の混合比で混合されても、MBTを基準にした制御精度を高めることができる。 As shown in FIG. 4, even under the operating conditions of the same fresh air amount and fuel injection amount, the MBT changes when the amount of the inert gas in the combustion chamber changes. Since the ignition timing SA is set based on the actual inert gas amount QINr, which is the sum of the actual EGR gas amount QEGRc, the water vapor amount QVc, and the injected water vapor amount QVinj, the ignition control should be performed accurately based on the MBT. It is possible to improve the control accuracy of the combustion state. Further, since each water vapor amount is converted into an EGR gas equivalent amount and the actual inert gas amount QINr is calculated so that the output characteristics of the internal combustion engine become the same with respect to the change of the ignition timing SA, the EGR of different substances is calculated. Even if the gas and water vapor are mixed at an arbitrary mixing ratio, the control accuracy based on the MBT can be improved.
本実施の形態では、点火制御部59は、不活性ガス量がゼロである場合の第1点火時期SA1と、不活性ガス量が目標不活性ガス量QINtである場合の第2点火時期SA2と、を算出し、第1点火時期SA1と第2点火時期SA2との間を実不活性ガス量QINrに基づいて補間して、点火時期SAを設定する。例えば、次式に示すように、線形補間が行われる。
点火制御部59は、回転速度及び乾燥充填効率Ecda等の運転状態と第1点火時期SA1との関係が予め設定された第1点火時期設定マップデータを参照し、現在の運転状態に対応する第1点火時期SA1算出する。また、点火制御部59は、回転速度及び乾燥充填効率Ecda等の運転状態と第2点火時期SA2との関係が予め設定された第2点火時期設定マップデータを参照し、現在の運転状態に対応する第2点火時期SA2算出する。
The
<フローチャート>
本実施の形態に係る制御装置50の概略的な処理の手順(内燃機関1の制御方法)について、図6に示すフローチャートに基づいて説明する。図7のフローチャートの処理は、演算処理装置90が記憶装置91に記憶されたソフトウェア(プログラム)を実行することにより、所定の演算周期毎に繰り返し実行される。
<Flow chart>
A schematic processing procedure (control method of the internal combustion engine 1) of the
ステップS01で、上述したように、運転状態検出部51は、回転速度Ne、クランク角度θ、吸入空気量QWAc、大気温度Ta、大気湿度Ha、大気圧力Pa、吸気路内圧力Pb、吸気路内温度Tb、排気路内圧力Pex、及び排気路内温度Tex等の各種の内燃機関1の運転状態を検出する運転状態検出処理を実行する。
In step S01, as described above, the operating
ステップS02で、上述したように、水蒸気量検出部52は、燃焼室25に吸入される大気に含まれる水蒸気量QVcを検出する水蒸気量検出処理を実行する。本実施の形態では、水蒸気量検出部52は、吸入空気量QWAc、大気温度Ta、大気湿度Ha、及び大気圧力Paに基づいて、水蒸気量QVcを検出する。
In step S02, as described above, the water vapor
ステップS03で、上述したように、乾燥吸気量算出部53は、吸入空気量QWAcから水蒸気量QVcを減算して、燃焼室25に吸入される乾燥吸入空気量QDAcを算出する乾燥吸気量算出処理を実行する。
In step S03, as described above, the dry intake air
ステップS04で、上述したように、目標不活性ガス量算出部54は、燃焼室に吸入される目標不活性ガス量QINtを算出する目標不活性ガス量算出処理を実行する。本実施の形態では、目標不活性ガス量算出部54は、不活性ガス量をEGRガス相当量に換算した目標不活性ガス量QINtを算出する。目標不活性ガス量算出部54は、回転速度Ne、乾燥吸入空気量QDAc又は乾燥充填効率Ecda等の運転状態に基づいて、目標不活性ガス量QINtを算出する。
In step S04, as described above, the target inert gas
ステップS05で、上述したように、EGR制御部55は、目標不活性ガス量QINtに基づいて、EGRバルブを制御するEGR制御処理を実行する。本実施の形態では、EGR制御部55は、目標不活性ガス量QINtから水蒸気量QVcを除外した水除外目標不活性ガス量QINDAtを演算し、水除外目標不活性ガス量QINDAtに基づいてEGRバルブを制御する。また、EGR制御部55は、排気路内圧力Pexに対する吸気路内圧力Pbの圧力比Pb/Pexが、予め設定された圧力比上限値よりも大きい場合は、EGRバルブの開度の増加を制限する。
In step S05, as described above, the
ステップS06で、上述したように、実EGRガス量算出部56は、燃焼室に吸入される実EGRガス量QEGRcを算出する実EGRガス量算出処理を実行する。本実施の形態では、実EGRガス量算出部56は、EGRバルブの開度Oe、吸気路内圧力Pb、排気路内圧力Pex、及び排気路内温度Texに基づいて、実EGRガス量QEGRcを算出する。
In step S06, as described above, the actual EGR gas
ステップS07で、上述したように、水噴射制御部57は、目標不活性ガス量QINtに対して、実EGRガス量QEGRc及び水蒸気量QVcを合計した合計不活性ガス量QINsumが不足している場合は、不足している不足不活性ガス量QINlackに基づいて、水インジェクタを駆動し、吸入空気に水を噴射させる水噴射制御処理を実行する。本実施の形態では、水噴射制御部57は、実EGRガス量QEGRcと、水蒸気量QVcをEGRガス相当量に換算した水蒸気換算量QVINcとを合計して、合計不活性ガス量QINsumを算出する。
In step S07, as described above, when the water
ステップS08で、上述したように、実不活性ガス量算出部58は、実EGRガス量QEGRc、水蒸気量QVc、及び水インジェクタの噴射水による噴射水蒸気量QVinjを合計して、実不活性ガス量QINrを算出する実不活性ガス量算出処理を実行する。本実施の形態では、実不活性ガス量算出部58は、実EGRガス量QEGRcと、水蒸気量QVc及び噴射水蒸気量QVinjをEGRガス相当量に換算した水蒸気換算量及び噴射水蒸気換算量とを合計して、実不活性ガス量QINrを算出する。
In step S08, as described above, the actual inert gas
ステップS09で、上述したように、点火制御部59は、実不活性ガス量QINrに基づいて、点火時期SAを設定する点火制御処理を実行する。本実施の形態では、点火制御部59は、不活性ガス量がゼロである場合の第1点火時期SA1と、不活性ガス量が目標不活性ガス量QINtである場合の第2点火時期SA2と、を算出し、第1点火時期SA1と第2点火時期SA2との間を実不活性ガス量QINrに基づいて補間して、点火時期SAを設定する。
In step S09, as described above, the
<転用例>
(1)上記の実施の形態1においては、内燃機関1は、ガソリンエンジンとされている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、内燃機関1は、ディーゼルエンジン、HCCI燃焼(Homogeneous-Charge Compression Ignition Combustion)を行う内燃機関等の各種の内燃機関とされてもよい。
<Example of diversion>
(1) In the above-described first embodiment, the case where the
(2)上記の実施の形態1においては、目標不活性ガス量算出部54は、不活性ガス量をEGRガス相当量に換算した目標不活性ガス量QINtを算出する場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、目標不活性ガス量算出部54は、不活性ガス量を水蒸気相当量に換算した目標不活性ガス量QINtを算出してもよい。そして、各演算値が、水蒸気相当量に換算された値であってもよい。
(2) In the first embodiment described above, the case where the target inert gas
本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。 Although the present application describes exemplary embodiments, the various features, embodiments, and functions described in the embodiments are not limited to the application of a particular embodiment, either alone or. Various combinations are applicable to the embodiments. Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted.
1 内燃機関、28 水インジェクタ、50 内燃機関の制御装置、51 運転状態検出部、52 水蒸気量検出部、53 乾燥吸気量算出部、54 目標不活性ガス量算出部、55 EGR制御部、56 実EGRガス量算出部、57 水噴射制御部、58 実不活性ガス量算出部、59 点火制御部、Pa 大気圧力、Pb 吸気路内圧力、Pex 排気路内圧力、QEGRc 実EGRガス量、QINDAt 水除外目標不活性ガス量、QINlack 不足不活性ガス量、QINr 実不活性ガス量、QINsum 合計不活性ガス量、QINt 目標不活性ガス量、QVINc 水蒸気換算量、QVc 水蒸気量、QVinj 噴射水蒸気量、QVlack 不足水蒸気量、QWAc 吸入空気量、Qegrr 実EGRガス流量、Qegrt 目標EGRガス流量、SA 点火時期、SA1 第1点火時期、SA2 第2点火時期、Ta 大気温度、Tb 吸気路内温度、Tex 排気路内温度、q 比湿 1 internal combustion engine, 28 water injector, 50 internal combustion engine control device, 51 operating condition detection unit, 52 water vapor amount detection unit, 53 dry intake amount calculation unit, 54 target inert gas amount calculation unit, 55 EGR control unit, 56 actual EGR gas amount calculation unit, 57 water injection control unit, 58 actual inert gas amount calculation unit, 59 ignition control unit, Pa atmospheric pressure, Pb intake passage pressure, Pex exhaust passage pressure, QEGRc actual EGR gas amount, QINDAt water Exclusion target inert gas amount, QINlack insufficient inert gas amount, QINr actual inert gas amount, QINsum total inert gas amount, QINT target inert gas amount, QVINc water vapor conversion amount, QVc water vapor amount, QVinj jet water vapor amount, QVlac Insufficient water vapor amount, QWAc intake air amount, Qegrr actual EGR gas flow rate, Qegrt target EGR gas flow rate, SA ignition timing, SA1 first ignition timing, SA2 second ignition timing, Ta atmospheric temperature, Tb intake passage temperature, Tex exhaust passage Internal temperature, q specific humidity
Claims (11)
燃焼室に吸入される目標不活性ガス量を算出する目標不活性ガス量算出部と、
前記目標不活性ガス量に基づいて、前記EGRバルブを制御するEGR制御部と、
前記燃焼室に吸入される実EGRガス量を算出する実EGRガス量算出部と、
前記燃焼室に吸入される大気に含まれる水蒸気量を検出する水蒸気量検出部と、
前記目標不活性ガス量に対して、前記実EGRガス量及び前記水蒸気量を合計した合計不活性ガス量が不足している場合は、不足している不足不活性ガス量に基づいて、前記水インジェクタを駆動し、吸入空気に水を噴射させる水噴射制御部と、を備えた内燃機関の制御装置。 Control of an internal combustion engine that controls an internal combustion engine including an EGR flow path that recirculates exhaust gas from an exhaust path to an intake path, an EGR valve that opens and closes the EGR flow path, and a water injector that injects water into intake air. It ’s a device,
The target inert gas amount calculation unit that calculates the target inert gas amount to be sucked into the combustion chamber,
An EGR control unit that controls the EGR valve based on the target amount of inert gas,
An actual EGR gas amount calculation unit that calculates the actual EGR gas amount sucked into the combustion chamber, and
A water vapor amount detection unit that detects the amount of water vapor contained in the atmosphere sucked into the combustion chamber, and
If the total amount of inert gas, which is the sum of the actual EGR gas amount and the water vapor amount, is insufficient with respect to the target inert gas amount, the water is based on the insufficient insufficient inert gas amount. A control device for an internal combustion engine equipped with a water injection control unit that drives an injector and injects water into the intake air.
前記水蒸気量検出部は、前記吸入空気量、前記大気の温度、前記大気の湿度、及び前記大気圧力に基づいて、前記水蒸気量を検出し、
前記実EGRガス量算出部は、前記EGRバルブの開度、及び前記吸気路内圧力に基づいて、前記実EGRガス量を算出し、
前記水噴射制御部は、前記実EGRガス量及び前記水蒸気量を合計して、前記合計不活性ガス量を算出する請求項1に記載の内燃機関の制御装置。 The amount of intake air sucked into the combustion chamber is detected, the temperature of the atmosphere sucked into the intake passage is detected, the humidity of the atmosphere is detected, the atmospheric pressure is detected, and the gas pressure in the intake passage is used. Equipped with an operating state detector that detects the pressure in a certain intake passage,
The water vapor amount detecting unit detects the water vapor amount based on the intake air amount, the atmospheric temperature, the atmospheric humidity, and the atmospheric pressure.
The actual EGR gas amount calculation unit calculates the actual EGR gas amount based on the opening degree of the EGR valve and the pressure in the intake passage.
The control device for an internal combustion engine according to claim 1, wherein the water injection control unit totals the actual EGR gas amount and the water vapor amount to calculate the total inert gas amount.
前記水噴射制御部は、前記実EGRガス量と、前記水蒸気量をEGRガス相当量に換算した水蒸気換算量とを合計して、前記合計不活性ガス量を算出する請求項1又は2に記載の内燃機関の制御装置。 The target inert gas amount calculation unit calculates the target inert gas amount obtained by converting the inert gas amount into an EGR gas equivalent amount.
The water injection control unit according to claim 1 or 2 calculates the total inert gas amount by summing the actual EGR gas amount and the steam equivalent amount obtained by converting the steam amount into an EGR gas equivalent amount. Internal combustion engine control device.
前記EGR制御部は、前記目標不活性ガス量から、前記水蒸気量をEGRガス相当量に換算した水蒸気換算量を減算して、水除外目標不活性ガス量を演算し、EGRガス量が、前記水除外目標不活性ガス量に一致するように前記EGRバルブを制御する請求項1から4のいずれか一項に記載の内燃機関の制御装置。 The target inert gas amount calculation unit calculates the target inert gas amount obtained by converting the inert gas amount into an EGR gas equivalent amount.
The EGR control unit calculates the water exclusion target inert gas amount by subtracting the water vapor conversion amount obtained by converting the water vapor amount into the EGR gas equivalent amount from the target inert gas amount, and the EGR gas amount is the EGR gas amount. The control device for an internal combustion engine according to any one of claims 1 to 4, wherein the EGR valve is controlled so as to match the water exclusion target inert gas amount.
前記EGR制御部は、前記水除外目標不活性ガス量、前記吸気路内圧力、前記排気路内圧力、及び前記排気路内温度に基づいて、前記EGRバルブの目標開度を算出し、目標開度に基づいて、前記EGRバルブを制御する請求項5に記載の内燃機関の制御装置。 The pressure in the intake passage, which is the gas pressure in the intake passage, is detected, the pressure in the exhaust passage, which is the gas pressure in the exhaust passage, is detected, and the temperature in the exhaust passage, which is the gas temperature in the exhaust passage, is detected. Equipped with an operating state detector
The EGR control unit calculates the target opening degree of the EGR valve based on the water exclusion target inert gas amount, the intake passage pressure, the exhaust passage pressure, and the exhaust passage temperature, and opens the target. The control device for an internal combustion engine according to claim 5, which controls the EGR valve based on the temperature.
前記実EGRガス量算出部は、前記EGRバルブの開度、前記吸気路内圧力、及び前記排気路内圧力、及び前記排気路内温度に基づいて、前記実EGRガス量を算出する請求項1から6のいずれか一項に記載の内燃機関の制御装置。 The pressure in the intake passage, which is the gas pressure in the intake passage, is detected, the pressure in the exhaust passage, which is the gas pressure in the exhaust passage, is detected, and the temperature in the exhaust passage, which is the gas temperature in the exhaust passage, is detected. Equipped with an operating state detector
The actual EGR gas amount calculation unit calculates the actual EGR gas amount based on the opening degree of the EGR valve, the pressure in the intake passage, the pressure in the exhaust passage, and the temperature in the exhaust passage. The control device for an internal combustion engine according to any one of 6 to 6.
前記EGR制御部は、前記目標不活性ガス量に対して前記実EGRガス量が不足しており、且つ、前記排気路内圧力に対する前記吸気路内圧力の圧力比が、予め設定された圧力比上限値よりも大きい場合は、前記EGRバルブの開度の増加を制限する請求項1から7のいずれか一項に記載の内燃機関の制御装置。 The pressure in the intake passage, which is the gas pressure in the intake passage, is detected, the pressure in the intake passage, which is the gas pressure in the intake passage, is detected, and the pressure in the exhaust passage, which is the gas pressure in the exhaust passage, is detected. Equipped with an operating state detector
In the EGR control unit, the actual EGR gas amount is insufficient with respect to the target inert gas amount, and the pressure ratio of the intake passage pressure to the exhaust passage pressure is a preset pressure ratio. The control device for an internal combustion engine according to any one of claims 1 to 7, wherein if the value is larger than the upper limit, the increase in the opening degree of the EGR valve is restricted.
前記実不活性ガス量に基づいて、点火時期を設定する点火制御部と、を備えた請求項1から8のいずれか一項に記載の内燃機関の制御装置。 The actual inert gas amount calculation unit for calculating the actual inert gas amount by summing the actual EGR gas amount, the water vapor amount, and the water jet amount of the water injected by the water injector.
The control device for an internal combustion engine according to any one of claims 1 to 8, further comprising an ignition control unit that sets an ignition timing based on the actual amount of inert gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021074624A JP7101844B1 (en) | 2021-04-27 | 2021-04-27 | Internal combustion engine control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021074624A JP7101844B1 (en) | 2021-04-27 | 2021-04-27 | Internal combustion engine control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7101844B1 true JP7101844B1 (en) | 2022-07-15 |
JP2022168929A JP2022168929A (en) | 2022-11-09 |
Family
ID=82446213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021074624A Active JP7101844B1 (en) | 2021-04-27 | 2021-04-27 | Internal combustion engine control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7101844B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116398309A (en) * | 2023-06-06 | 2023-07-07 | 江铃汽车股份有限公司 | Natural gas engine control method and system based on intake air humidity and vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11270373A (en) * | 1998-01-21 | 1999-10-05 | Mitsubishi Motors Corp | Water injection quantity control device of fuel water injection engine |
DE102009046120A1 (en) * | 2009-10-28 | 2011-05-12 | Ford Global Technologies, LLC, Dearborn | Method for humidifying intake air of combustion engine, particularly diesel engine, involves determining humidity of intake air, where liquid is injected into intake air depending on humidity of intake air |
JP2015068234A (en) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2017089555A (en) * | 2015-11-12 | 2017-05-25 | マツダ株式会社 | Control device of engine |
JP2018013068A (en) * | 2016-07-20 | 2018-01-25 | いすゞ自動車株式会社 | Vehicular engine, and its control method |
GB2579059A (en) * | 2018-11-16 | 2020-06-10 | Delphi Automotive Systems Lux | Engine system for a vehicle |
-
2021
- 2021-04-27 JP JP2021074624A patent/JP7101844B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11270373A (en) * | 1998-01-21 | 1999-10-05 | Mitsubishi Motors Corp | Water injection quantity control device of fuel water injection engine |
DE102009046120A1 (en) * | 2009-10-28 | 2011-05-12 | Ford Global Technologies, LLC, Dearborn | Method for humidifying intake air of combustion engine, particularly diesel engine, involves determining humidity of intake air, where liquid is injected into intake air depending on humidity of intake air |
JP2015068234A (en) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2017089555A (en) * | 2015-11-12 | 2017-05-25 | マツダ株式会社 | Control device of engine |
JP2018013068A (en) * | 2016-07-20 | 2018-01-25 | いすゞ自動車株式会社 | Vehicular engine, and its control method |
GB2579059A (en) * | 2018-11-16 | 2020-06-10 | Delphi Automotive Systems Lux | Engine system for a vehicle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116398309A (en) * | 2023-06-06 | 2023-07-07 | 江铃汽车股份有限公司 | Natural gas engine control method and system based on intake air humidity and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2022168929A (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10590871B2 (en) | Controller and control method for internal combustion engine | |
US9228519B2 (en) | Estimation device for cylinder intake air amount in an internal combustion engine | |
RU2605167C2 (en) | Engine control method (versions) and engine system | |
CN107269402B (en) | Control device for internal combustion engine and control method thereof | |
JP6120533B2 (en) | Method for adjusting the mass of burned gas in a cylinder of an internal combustion engine with EGR and IGR | |
EP2142781A1 (en) | Control device for internal combustion engine | |
CN108571391B (en) | Control device and control method for internal combustion engine | |
JP2006249972A (en) | Fuel injection controller for internal combustion engine | |
US9863347B2 (en) | Control device for internal combustion engine and control method for internal combustion engine | |
WO2017090307A1 (en) | Sensor failure diagnostic apparatus | |
JPH11280567A (en) | Evaporation fuel concentration detecting device for lean combustion internal combustion engine and its applied device | |
JP7101844B1 (en) | Internal combustion engine control device | |
JP6494759B2 (en) | Control device for internal combustion engine | |
KR19990014156A (en) | Control device of internal combustion engine which performs stratified combustion | |
EP1982064A2 (en) | A method of identifying engine gas composition | |
JP2005194960A (en) | Device for measuring intake air quantity for internal combustion engine | |
JP5171740B2 (en) | Control device for internal combustion engine | |
JP6052444B2 (en) | Control device for internal combustion engine | |
JP2001020768A (en) | Method for operating internal combustion engine | |
CN115523038A (en) | Engine cylinder air inflow control method and vehicle | |
JP7177385B2 (en) | engine controller | |
EP3075991B1 (en) | Control device for internal combustion engine | |
JP2010127219A (en) | Fuel control device of diesel engine | |
JP2006207504A (en) | Method for estimating egr quantity for engine and engine control device | |
US20230023863A1 (en) | Engine ignition timing control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220705 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7101844 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |