JP7077257B2 - Turbine controller, turbine control method, and turbine power generation equipment - Google Patents

Turbine controller, turbine control method, and turbine power generation equipment Download PDF

Info

Publication number
JP7077257B2
JP7077257B2 JP2019049180A JP2019049180A JP7077257B2 JP 7077257 B2 JP7077257 B2 JP 7077257B2 JP 2019049180 A JP2019049180 A JP 2019049180A JP 2019049180 A JP2019049180 A JP 2019049180A JP 7077257 B2 JP7077257 B2 JP 7077257B2
Authority
JP
Japan
Prior art keywords
opening
steam
signal
turbine
immediately before
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049180A
Other languages
Japanese (ja)
Other versions
JP2020148194A (en
Inventor
尚史 根岸
雄介 山根
健司 荻原
円 斉藤
雅之 高木
竜平 竹丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019049180A priority Critical patent/JP7077257B2/en
Publication of JP2020148194A publication Critical patent/JP2020148194A/en
Application granted granted Critical
Publication of JP7077257B2 publication Critical patent/JP7077257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明の実施形態は、タービン制御装置、タービン制御方法、およびタービン発電設備に関する。 Embodiments of the present invention relate to a turbine control device, a turbine control method, and a turbine power generation facility.

タービンバイパス系統を有する再熱式のタービン発電設備では、高圧タービンに導入される主蒸気を主蒸気管から分岐して高圧タービン排気管に導く高圧タービンバイパス管と、高圧タービンバイパス管に設けられた高圧タービンバイパス弁と、中低圧のタービンに導入される再熱蒸気の一部を再熱蒸気管から分岐して復水器に導く低圧タービンバイパス管と、低圧タービンバイパス管に設けられた低圧タービンバイパス弁とを備えている。また、主蒸気管と再熱蒸気管とには、高圧タービンと中低圧タービンとにそれぞれ蒸気を導くための蒸気弁(蒸気加減弁、インターセプト弁)が設置されている。 In a reheatable turbine power generation facility having a turbine bypass system, a high-pressure turbine bypass pipe that branches the main steam introduced into the high-pressure turbine from the main steam pipe and guides it to the high-pressure turbine exhaust pipe, and a high-pressure turbine bypass pipe are provided. A high-pressure turbine bypass valve, a low-pressure turbine bypass pipe that branches a part of the reheated steam introduced into the medium- and low-pressure turbine from the reheat steam pipe and guides it to the water condensing device, and a low-pressure turbine provided in the low-pressure turbine bypass pipe. It is equipped with a bypass valve. Further, steam valves (steam control valve, intercept valve) for guiding steam to the high-pressure turbine and the medium-low pressure turbine are installed in the main steam pipe and the reheat steam pipe, respectively.

このタービン発電設備を起動させるタービン起動時においては、ボイラで発生する主蒸気が最適な条件に到達するまでの間、主蒸気がボイラから高圧タービン、および中低圧のタービンを迂回して復水器へ流すために、高圧タービンバイパス弁および低圧タービンバイパス弁を利用する。すなわち、それぞれの蒸気弁を共に全閉としたまま、高圧タービンバイパス弁および低圧タービンバイパス弁を開くことで、ボイラからの主蒸気が主蒸気管、高圧タービンバイパス管、再熱蒸気管、低圧タービンバイパス管、復水器へと順次導かれる。このようにすることで、タービン起動時間の短縮およびタービンの起動制御の効率化を実現させることができる。 At the time of starting the turbine that starts this turbine power generation facility, the main steam bypasses the boiler, the high-pressure turbine, and the medium- and low-pressure turbine until the main steam generated in the boiler reaches the optimum conditions, and the condenser A high pressure turbine bypass valve and a low pressure turbine bypass valve are used to flow to. That is, by opening the high-pressure turbine bypass valve and the low-pressure turbine bypass valve while keeping each steam valve fully closed, the main steam from the boiler is the main steam pipe, the high-pressure turbine bypass pipe, the condensate steam pipe, and the low-pressure turbine. It is guided to the bypass pipe and the condenser in sequence. By doing so, it is possible to shorten the turbine start-up time and improve the efficiency of turbine start-up control.

ところで、一般に蒸気弁における実際に計測される開度と開度指令値との間の調整は、例えばタービン起動時に行われる。蒸気を導く前の蒸気弁の温度が十分に低い状態でこの調整を行うと、主蒸気からの熱による蒸気弁の熱膨張を加味して蒸気弁の開度を制御することができない。そこで、主蒸気からの熱による蒸気弁の熱膨張を加味するために、例えば蒸気弁を構成する弁箱に変位検出器を新たに設置して、高圧タービンバイパス弁および低圧タービンバイパス弁を経て蒸気をバイパスする間に、変器計測器により検出される弁箱の変位および既設の開度検出器により検出される弁棒の変位の差である伸び差を測定し、この伸び差を用いて開度指令値を調整する技術が知られている。 By the way, in general, the adjustment between the actually measured opening degree and the opening degree command value in the steam valve is performed, for example, when the turbine is started. If this adjustment is performed when the temperature of the steam valve before guiding steam is sufficiently low, the opening of the steam valve cannot be controlled in consideration of the thermal expansion of the steam valve due to the heat from the main steam. Therefore, in order to take into account the thermal expansion of the steam valve due to the heat from the main steam, for example, a displacement detector is newly installed in the valve box that constitutes the steam valve, and steam passes through the high-pressure turbine bypass valve and the low-pressure turbine bypass valve. While bypassing, measure the elongation difference, which is the difference between the displacement of the valve box detected by the change measuring instrument and the displacement of the valve rod detected by the existing opening detector, and open using this elongation difference. The technique of adjusting the degree command value is known.

特開2018-80672号公報Japanese Unexamined Patent Publication No. 2018-80672

しかしながら、上述した従来技術では弁棒の変位に加えて弁箱の変位を測定するための変位検出器が必要である。したがって、この変位検出器が故障した際など、弁棒と弁箱との間の伸び差を測定できない場合には、熱膨張を加味して蒸気弁の開度を制御することができない。 However, in the above-mentioned conventional technique, a displacement detector for measuring the displacement of the valve box in addition to the displacement of the valve stem is required. Therefore, when the expansion difference between the valve stem and the valve box cannot be measured, such as when the displacement detector fails, the opening degree of the steam valve cannot be controlled in consideration of thermal expansion.

そこで、本発明が解決しようとする課題は、新たな検出器を設けることなく熱膨張による影響を加味した蒸気弁の制御を可能とするタービン制御装置、タービン制御方法、およびタービン発電設備を提供することである。 Therefore, the problem to be solved by the present invention is to provide a turbine control device, a turbine control method, and a turbine power generation facility that can control a steam valve in consideration of the influence of thermal expansion without providing a new detector. That is.

上記の課題を解決するために、実施形態のタービン制御装置は、蒸気加減弁が設置された主蒸気管を介してボイラからの主蒸気を流入させる蒸気タービンを備えるタービン発電設備のタービン制御装置であって、前記蒸気加減弁に流す前記主蒸気の蒸気流量の目標値に基づいて、前記蒸気加減弁の開度の目標値である開度信号を算出する蒸気流量開度変換部と、タービン起動時の前記蒸気加減弁を開く直前に前記蒸気加減弁の開度検出器で計測された実開度のデータである開直前実開度信号を記憶する記憶部と、前記開度信号および前記開直前開度信号が入力され、前記開度信号と前記開直前実開度信号との加算値である開度目標信号を前記蒸気加減弁に出力する加算部と、を備える。 In order to solve the above problems, the turbine control device of the embodiment is a turbine control device of a turbine power generation facility including a steam turbine that inflows main steam from a boiler through a main steam pipe in which a steam control valve is installed. Therefore, the steam flow rate opening conversion unit that calculates the opening signal, which is the target value of the opening of the steam control valve, based on the target value of the steam flow rate of the main steam flowing through the steam control valve, and the turbine start-up. A storage unit that stores the actual opening signal immediately before opening, which is the data of the actual opening measured by the opening detector of the steam control valve immediately before opening the steam control valve at the time, and the opening signal and the opening. The steam control valve is provided with an addition unit to which an opening signal is input and an opening target signal, which is an addition value of the opening signal and the actual opening signal immediately before opening, is output to the steam control valve.

本発明によれば、新たな検出器を設けることなく熱膨張による影響を加味した蒸気弁の制御を可能とするタービン制御装置、タービン制御方法、およびタービン発電設備を提供することができる。 According to the present invention, it is possible to provide a turbine control device, a turbine control method, and a turbine power generation facility capable of controlling a steam valve in consideration of the influence of thermal expansion without providing a new detector.

第一の実施形態に係るタービン発電設備の構成を示す図である。It is a figure which shows the structure of the turbine power generation facility which concerns on 1st Embodiment. 第一の実施形態に係るタービン制御装置の構成を示す図である。It is a figure which shows the structure of the turbine control device which concerns on 1st Embodiment. 第二の実施形態に係るタービン制御装置の構成を示す図である。It is a figure which shows the structure of the turbine control device which concerns on the 2nd Embodiment. 第三の実施形態に係るタービン制御装置の構成を示す図である。It is a figure which shows the structure of the turbine control device which concerns on 3rd Embodiment.

(第一の実施形態)
第一の実施形態に係るタービン発電設備について、図1を用いて説明する。図1は、第一の実施形態に係るタービン発電設備の構成を示す図である。
(First embodiment)
The turbine power generation facility according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a turbine power generation facility according to the first embodiment.

タービン発電設備1は、ボイラ10と、蒸気タービン20と、再熱器30と、復水器60と、発電機70と、主蒸気管P10と、低温再熱蒸気管P21と、クロスオーバー管P22と、高温再熱蒸気管P30と、高圧タービンバイパス管PB1と、低圧タービンバイパス管PB2と、主蒸気止め弁V10aと、蒸気加減弁V10bと、インタセプト弁V30aと、再熱蒸気止め弁V30bと、高圧タービンバイパス弁VB1と、低圧タービンバイパス弁VB2とを備える。また、図1では図示を省略しているが、タービン発電設備1はタービン制御装置100をさらに備える。 The turbine power generation facility 1 includes a boiler 10, a steam turbine 20, a reheater 30, a water recovery device 60, a generator 70, a main steam pipe P10, a low temperature reheat steam pipe P21, and a crossover pipe P22. , High temperature reheat steam pipe P30, high pressure turbine bypass pipe PB1, low pressure turbine bypass pipe PB2, main steam stop valve V10a, steam control valve V10b, intercept valve V30a, reheat steam stop valve V30b. A high-pressure turbine bypass valve VB1 and a low-pressure turbine bypass valve VB2 are provided. Further, although not shown in FIG. 1, the turbine power generation facility 1 further includes a turbine control device 100.

ボイラ10は、水を加熱して主蒸気を発生させる。 The boiler 10 heats water to generate main steam.

蒸気タービン20は、上流側に設けられた高圧タービン21と、この高圧タービン21よりも下流側に設けられた中圧タービン22および低圧タービン23とを備える。本実施形態においては、高中低圧の蒸気タービンをそれぞれ有する場合を例示しているが蒸気タービン20の構成はこの場合に限定されず、例えば中圧タービン22を備えずに、高低圧の蒸気タービンを有する構成でもよい。 The steam turbine 20 includes a high-pressure turbine 21 provided on the upstream side, and a medium-pressure turbine 22 and a low-pressure turbine 23 provided on the downstream side of the high-pressure turbine 21. In the present embodiment, the case where each of the high, medium and low pressure steam turbines is provided is illustrated, but the configuration of the steam turbine 20 is not limited to this case. For example, a high and low pressure steam turbine is provided without the medium pressure turbine 22. It may have a configuration.

ボイラ10と高圧タービン21との間には、主蒸気管P10が設けられ、この主蒸気管P10に主蒸気止め弁V10aと蒸気加減弁V10bとが設置されている。この蒸気加減弁V10bには、図示していない開度検出器11が取り付けられ、蒸気加減弁V10bの開度を常時測定している。 A main steam pipe P10 is provided between the boiler 10 and the high-pressure turbine 21, and a main steam stop valve V10a and a steam control valve V10b are installed in the main steam pipe P10. An opening degree detector 11 (not shown) is attached to the steam control valve V10b to constantly measure the opening degree of the steam control valve V10b.

高圧タービン21と再熱器30との間には、低温再熱蒸気管P21が設けられている。再熱器30と中圧タービン22との間には、高温再熱蒸気管P30が設けられ、この高温再熱蒸気管P30にインタセプト弁V30aと再熱蒸気止め弁V30bとが設置されている。さらに、中圧タービン22と低圧タービン23との間には、クロスオーバー管P22が設けられている。 A low temperature reheat steam pipe P21 is provided between the high pressure turbine 21 and the reheater 30. A high-temperature reheat steam pipe P30 is provided between the reheater 30 and the medium-pressure turbine 22, and an intercept valve V30a and a reheat steam stop valve V30b are installed in the high-temperature reheat steam pipe P30. Further, a crossover pipe P22 is provided between the medium pressure turbine 22 and the low pressure turbine 23.

ボイラ10で発生した主蒸気は、主蒸気管P10から主蒸気止め弁V10aと蒸気加減弁V10bとを順次経て、高圧タービン21に導かれる。主蒸気は、高圧タービン21の各タービン段落(図示省略)で膨張仕事をした後に、高圧排気として排出される。この高圧排気は、低温再熱蒸気管P21から再熱器30に導かれた後、この再熱器30で加熱されて再熱蒸気となる。再熱蒸気は、高温再熱蒸気管P30からインタセプト弁V30aと再熱蒸気止め弁V30bとを順次経て、中圧タービン22に導かれる。再熱蒸気は、中圧タービン22の各タービン段落(図示省略)で膨張仕事をした後に中圧排気として排出され、クロスオーバー管P22から低圧タービン23に導かれる。中圧排気は、低圧タービン23の各タービン段落(図示省略)で膨張仕事をした後に低圧排気として排気され、復水器60で凝縮(復水)される。復水器60で凝縮された水(復水)は、配管(図示省略)を経て再度ボイラ10に導かれる。 The main steam generated in the boiler 10 is guided from the main steam pipe P10 to the high-pressure turbine 21 via the main steam stop valve V10a and the steam control valve V10b in sequence. The main steam is discharged as high-pressure exhaust after performing expansion work in each turbine paragraph (not shown) of the high-pressure turbine 21. This high-pressure exhaust is guided from the low-temperature reheat steam pipe P21 to the reheater 30, and then heated by the reheater 30 to become reheated steam. The reheated steam is guided from the high temperature reheated steam pipe P30 to the medium pressure turbine 22 via the intercept valve V30a and the reheated steam stop valve V30b in sequence. The reheated steam is discharged as medium pressure exhaust after performing expansion work in each turbine paragraph (not shown) of the medium pressure turbine 22, and is guided from the crossover pipe P22 to the low pressure turbine 23. The medium pressure exhaust is exhausted as low pressure exhaust after expansion work is performed in each turbine paragraph (not shown) of the low pressure turbine 23, and is condensed (condensed) by the condenser 60. The water (condensed water) condensed by the condenser 60 is guided to the boiler 10 again via a pipe (not shown).

蒸気タービン20においては、高圧タービン21、中圧タービン22、および低圧タービン23それぞれのタービンロータが同軸に連結されている。作動流体である蒸気(主蒸気、再熱蒸気、または中圧排気)の膨張仕事によって各タービンロータが回転すると、発電機70が駆動して発電が行われる。 In the steam turbine 20, the turbine rotors of the high-pressure turbine 21, the medium-pressure turbine 22, and the low-pressure turbine 23 are coaxially connected. When each turbine rotor rotates due to the expansion work of steam (main steam, reheated steam, or medium pressure exhaust) as a working fluid, the generator 70 is driven to generate electricity.

高圧タービンバイパス管PB1は、主蒸気管P10と低温再熱蒸気管P21とを連結する。具体的には、高圧タービンバイパス管PB1は、ボイラ10および主蒸気止め弁V10aの間の位置と、高圧タービン21および再熱器30の間の位置とを連結する。また、高圧タービンバイパス管PB1には、高圧タービンバイパス弁VB1が設置されている。 The high-pressure turbine bypass pipe PB1 connects the main steam pipe P10 and the low-temperature reheat steam pipe P21. Specifically, the high pressure turbine bypass pipe PB1 connects the position between the boiler 10 and the main steam stop valve V10a and the position between the high pressure turbine 21 and the reheater 30. Further, a high pressure turbine bypass valve VB1 is installed in the high pressure turbine bypass pipe PB1.

これに対して、低圧タービンバイパス管PB2は、高温再熱蒸気管P30と復水器60とを連結する。具体的には、低圧タービンバイパス管PB2は、再熱器30およびインタセプト弁V30aの間の位置と復水器60とを連結する。また、低圧タービンバイパス管PB2には、低圧タービンバイパス弁VB2が設置されている。 On the other hand, the low-pressure turbine bypass pipe PB2 connects the high-temperature reheat steam pipe P30 and the condenser 60. Specifically, the low pressure turbine bypass pipe PB2 connects the position between the reheater 30 and the intercept valve V30a to the condenser 60. Further, a low pressure turbine bypass valve VB2 is installed in the low pressure turbine bypass pipe PB2.

タービン発電設備1を起動させるタービン起動時においては、ボイラ10で発生する蒸気が最適な条件に到達するまでの間、ボイラ10からの主蒸気を蒸気タービン20を迂回して復水器60へ導くために、高圧タービンバイパス管PB1と低圧タービンバイパス管PB2とが利用される。具体的には、ボイラ10からの主蒸気が主蒸気管P10から高圧タービンバイパス管PB1を通り、高圧タービンバイパス弁VB1、および低温再熱蒸気管P21を順次経て再熱器30に導かれる。この主蒸気は、再熱器30から高温再熱蒸気管P30を通り、低圧タービンバイパス管PB2および低圧タービンバイパス弁VB2を経て復水器60に導かれる。 At the time of starting the turbine for starting the turbine power generation facility 1, the main steam from the boiler 10 is guided to the condenser 60 by bypassing the steam turbine 20 until the steam generated in the boiler 10 reaches the optimum conditions. Therefore, the high pressure turbine bypass pipe PB1 and the low pressure turbine bypass pipe PB2 are used. Specifically, the main steam from the boiler 10 passes from the main steam pipe P10 through the high-pressure turbine bypass pipe PB1, and is sequentially guided to the reheater 30 via the high-pressure turbine bypass valve VB1 and the low-temperature reheat steam pipe P21. This main steam is guided from the reheater 30 to the condenser 60 via the high temperature reheat steam pipe P30, the low pressure turbine bypass pipe PB2 and the low pressure turbine bypass valve VB2.

そして、ボイラ10で発生する主蒸気が最適条件になってタービンを起動させる段階になったときは、蒸気加減弁V10bを流れる主蒸気の流量とインタセプト弁V30aを流れる蒸気(再熱蒸気)の流量との比率を最適に保った状態で、蒸気タービンに流入させる蒸気流量を増加させる。これにより、所望の蒸気流量で蒸気タービンを駆動させることができる。 Then, when the main steam generated in the boiler 10 is in the optimum condition and the turbine is started, the flow rate of the main steam flowing through the steam control valve V10b and the flow rate of the steam (reheated steam) flowing through the intercept valve V30a. While maintaining the optimum ratio with, increase the steam flow rate flowing into the steam turbine. This makes it possible to drive the steam turbine at a desired steam flow rate.

なお、タービン起動前においては、主蒸気止め弁V10a、蒸気加減弁V10b、インタセプト弁V30a、および再熱蒸気止め弁V30bが全閉にされ、高圧タービンバイパス弁VB1、低圧タービンバイパス弁VB2が圧力制御運転に対応して動作する。そして、タービンリセットの際には、主蒸気止め弁V10aは全開にされ、インタセプト弁V30aを開ける。起動開始のときには、まずは蒸気加減弁V10bおよび再熱蒸気止め弁V30bの副弁を開ける動作が開始され、副弁を全開とした状態で再熱蒸気止め弁V30bの主弁を全開とし、その後、インタセプト弁V30aを開ける。そして、規定の負荷に到達したところで、インタセプト弁V30aが全開にされ、蒸気加減弁V10bを動作させて負荷を制御する。なお、負荷運転中においては、高圧タービンバイパス弁VB1と低圧タービンバイパス弁VB2とは全閉にされる。 Before starting the turbine, the main steam stop valve V10a, steam control valve V10b, intercept valve V30a, and reheat steam stop valve V30b are fully closed, and the high pressure turbine bypass valve VB1 and low pressure turbine bypass valve VB2 are pressure controlled. Operates in response to driving. Then, at the time of turbine reset, the main steam stop valve V10a is fully opened and the intercept valve V30a is opened. At the start of startup, the operation of opening the sub-valve of the steam control valve V10b and the reheat steam stop valve V30b is started, and the main valve of the reheat steam stop valve V30b is fully opened with the sub-valve fully open, and then the main valve is fully opened. Open the intercept valve V30a. Then, when the specified load is reached, the intercept valve V30a is fully opened, and the steam control valve V10b is operated to control the load. During load operation, the high-pressure turbine bypass valve VB1 and the low-pressure turbine bypass valve VB2 are fully closed.

タービン制御装置100は、タービン発電設備1を構成するそれぞれの弁の動作を制御する。ここで、第一の実施形態におけるタービン制御装置100の詳細について、図2を用いて説明する。図2は、第一の実施形態に係るタービン制御装置100の構成を示す。なお、これ以降の説明においてはタービン制御装置100による制御対象として蒸気加減弁V10bを例示するが、このタービン制御装置100の制御対象は蒸気加減弁V10bだけでなく、例えば主蒸気止め弁V10a、インタセプト弁V30a、または再熱蒸気止め弁V30bでもよい。この関係は、後述する他の実施形態においても同様に成り立つこととする。 The turbine control device 100 controls the operation of each valve constituting the turbine power generation facility 1. Here, the details of the turbine control device 100 in the first embodiment will be described with reference to FIG. FIG. 2 shows the configuration of the turbine control device 100 according to the first embodiment. In the following description, the steam control valve V10b is illustrated as a control target by the turbine control device 100, but the control target of the turbine control device 100 is not only the steam control valve V10b, but also, for example, the main steam stop valve V10a and intercept. The valve V30a or the reheat steam stop valve V30b may be used. This relationship is similarly established in other embodiments described later.

図2に示すように、タービン制御装置100は、回転数変換部101と、蒸気流量開度変換部102と、ワンショット回路103と、記憶部104と、加算部105と、減算部106とを備える。 As shown in FIG. 2, the turbine control device 100 includes a rotation speed conversion unit 101, a steam flow rate opening degree conversion unit 102, a one-shot circuit 103, a storage unit 104, an addition unit 105, and a subtraction unit 106. Be prepared.

回転数変換部101は、タービン回転数信号S20を蒸気流量信号S101に変換する。具体的には、回転数変換部101にタービン回転数信号S20が入力されると、回転数変換部101は、目標回転数とこのタービン回転数信号が示す蒸気タービン20の実回転数との偏差に対して一定のゲイン(1/k、kは速度調定率)を積算して、蒸気流量信号S101を出力する。この蒸気流量信号S101は、蒸気加減弁V10bに流す主蒸気の蒸気流量の目標値である。 The rotation speed conversion unit 101 converts the turbine rotation speed signal S20 into the steam flow rate signal S101. Specifically, when the turbine rotation speed signal S20 is input to the rotation speed conversion unit 101, the rotation speed conversion unit 101 deviates from the target rotation speed and the actual rotation speed of the steam turbine 20 indicated by the turbine rotation speed signal. A constant gain (1 / k and k are speed adjustment rates) is integrated with respect to the above, and the steam flow rate signal S101 is output. This steam flow rate signal S101 is a target value of the steam flow rate of the main steam flowing through the steam control valve V10b.

蒸気流量開度変換部102は、蒸気流量信号S101を蒸気加減弁開度信号S102(開度信号)に変換する。本実施形態では、あらかじめ求められている蒸気流量と蒸気加減弁V10bの開度との関係から、蒸気流量信号S101に対応する蒸気加減弁V10bの開度のデータを求め、その開度を蒸気加減弁開度信号S102として出力する。この蒸気加減弁開度信号S102は、蒸気流量信号S101に基づいて出力される蒸気加減弁V10bの目標値である。 The steam flow rate opening degree conversion unit 102 converts the steam flow rate signal S101 into the steam control valve opening degree signal S102 (opening degree signal). In the present embodiment, the data of the opening degree of the steam control valve V10b corresponding to the steam flow rate signal S101 is obtained from the relationship between the steam flow rate obtained in advance and the opening degree of the steam control valve V10b, and the opening degree is adjusted by steam. It is output as a valve opening signal S102. The steam control valve opening signal S102 is a target value of the steam control valve V10b output based on the steam flow rate signal S101.

ワンショット回路103は、外部からタービン起動指令信号S103が入力される。ワンショット回路103は、タービン起動指令信号S103が入力された時(蒸気加減弁V10bを開く直前)に、開度検出器11からの開直前実開度信号S11aを記憶部104に出力する。この開直前実開度信号S11aは、蒸気加減弁V10bを開く直前に、開度検出器11により測定された蒸気加減弁V10bの開度である。 The turbine start command signal S103 is input to the one-shot circuit 103 from the outside. When the turbine start command signal S103 is input (immediately before opening the steam control valve V10b), the one-shot circuit 103 outputs the actual opening signal S11a immediately before opening from the opening detector 11 to the storage unit 104. The actual opening signal S11a immediately before opening is the opening degree of the steam control valve V10b measured by the opening degree detector 11 immediately before opening the steam control valve V10b.

記憶部104は、開度検出器11からの開直前実開度信号S11aを記憶する。具体的には、タービン起動指令信号S103がワンショット回路103に入力された場合に、記憶部104は、ワンショット回路103を経て開度検出器11からの開直前実開度信号S11aが入力される。この開直前実開度信号S11aは、後述する加算部105に対して、開直前実開度信号S104として出力される(S104=S11a)。 The storage unit 104 stores the actual opening signal S11a immediately before opening from the opening detector 11. Specifically, when the turbine start command signal S103 is input to the one-shot circuit 103, the storage unit 104 inputs the actual opening signal S11a immediately before opening from the opening detector 11 via the one-shot circuit 103. To. The actual opening signal S11a immediately before opening is output as the actual opening signal S104 immediately before opening to the addition unit 105 described later (S104 = S11a).

加算部105は、蒸気流量開度変換部102から入力される蒸気加減弁開度信号S102と、記憶部104から入力される開直前実開度信号S104(S11a)とを加算処理する。つまり、加算部105は、蒸気流量開度変換部102からの蒸気加減弁開度信号S102に、蒸気加減弁V10bを開く直前の蒸気加減弁V10bの開度である開直前実開度信号S11aを加算して、蒸気加減弁V10bの開度の目標値である蒸気流量開度変換部からの蒸気加減弁開度信号S102を補正する。そして、加算部105は、加算処理の結果である開度目標信号S105を減算部106へ出力する(S105=S102+S104=S102+S11a)。 The addition unit 105 adds the steam control valve opening signal S102 input from the steam flow rate opening degree conversion unit 102 and the actual opening signal S104 (S11a) immediately before opening input from the storage unit 104. That is, the addition unit 105 sends the steam control valve opening signal S102 from the steam flow rate opening conversion unit 102 the actual opening signal S11a immediately before opening, which is the opening degree of the steam control valve V10b immediately before opening the steam control valve V10b. In addition, the steam control valve opening signal S102 from the steam flow rate opening conversion unit, which is the target value of the opening of the steam control valve V10b, is corrected. Then, the addition unit 105 outputs the opening target signal S105, which is the result of the addition processing, to the subtraction unit 106 (S105 = S102 + S104 = S102 + S11a).

減算部106は、開度目標信号S105と、開度検出器11からの実開度信号S11bとを減算処理する。この実開度信号S11bは、今の蒸気加減弁V10bの開度である。そして、減算部106は、減算処理の結果である開度指令信号S106を蒸気加減弁V10bへ出力する(S106=S105-S11b)。蒸気加減弁V10bの開度は、開度指令信号S106に基づいて制御される。 The subtraction unit 106 subtracts the opening target signal S105 and the actual opening signal S11b from the opening detector 11. This actual opening degree signal S11b is the opening degree of the current steam control valve V10b. Then, the subtraction unit 106 outputs the opening command signal S106, which is the result of the subtraction process, to the steam control valve V10b (S106 = S105-S11b). The opening degree of the steam control valve V10b is controlled based on the opening degree command signal S106.

例えば、蒸気加減弁V10bの全開時に対する百分率で表記して、開直前実開度信号S11aが0.1パーセントの開度、蒸気加減弁開度信号S102が50パーセントの開度、実開度信号S11bが5.3パーセントの開度をそれぞれ示す場合を考える。この場合、開度目標信号S105は、開直前実開度信号S11aと蒸気加減弁開度信号S102とを加算した50.1パーセント、開度指令信号S106は、この値から実開度信号S11bを減算した44.8パーセントとなり、44.8パーセント分だけ蒸気加減弁V10bの開度を開けるよう指令する開度指令信号S106が、蒸気加減弁V10bへ出力される。 For example, expressed as a percentage of the steam control valve V10b when fully opened, the actual opening signal S11a immediately before opening has an opening of 0.1%, the steam control valve opening signal S102 has an opening of 50%, and the actual opening signal. Consider the case where S11b shows an opening of 5.3%, respectively. In this case, the opening target signal S105 is 50.1% obtained by adding the actual opening signal S11a immediately before opening and the steam control valve opening signal S102, and the opening command signal S106 is the actual opening signal S11b from this value. It becomes 44.8% after subtraction, and the opening command signal S106 instructing to open the opening of the steam control valve V10b by 44.8% is output to the steam control valve V10b.

上述した第一の実施形態によれば、タービン制御装置100は、蒸気加減弁V10bを開く直前に開度検出器11で測定された開度である開直前実開度信号S11aを用いて、蒸気加減弁V10bの目標値である蒸気加減弁開度信号S102を補正し、補正後の開度目標信号S105を基に蒸気加減弁V10bへの開度指令信号106を出力する。したがって、タービン起動前に主蒸気管P10を流れる主蒸気によって蒸気加減弁V10bを構成する弁棒や弁箱(共に図示省略)が熱膨張した場合でも、その影響を加味して蒸気加減弁V10bの開度を制御することができる。 According to the first embodiment described above, the turbine control device 100 uses the steam immediately before opening actual opening signal S11a, which is the opening measured by the opening detector 11 immediately before opening the steam control valve V10b. The steam control valve opening signal S102, which is the target value of the control valve V10b, is corrected, and the opening command signal 106 to the steam control valve V10b is output based on the corrected opening target signal S105. Therefore, even if the valve stem or valve box (both not shown) constituting the steam control valve V10b is thermally expanded by the main steam flowing through the main steam pipe P10 before the turbine is started, the effect of the steam control valve V10b is taken into consideration. The opening can be controlled.

なお、本実施形態においては、開度検出器11が蒸気加減弁V10bの開度を常時測定している場合を例示したが、この開度検出器11は少なくとも蒸気加減弁V10bを開く直前、および減算部106による減算処理の直前に蒸気加減弁V10bの開度を測定していればよく、必ずしも蒸気加減弁V10bの開度を常時測定する必要はない。本実施形態の変形例として、例えばタービン制御装置100に新たに開度検出指令部を設け、蒸気加減弁V10bを開く直前および減算部106による減算処理の直前に、この開度検出指令部から開度検出器11に対して、蒸気加減弁V10bの開度を検出する信号を出力する構成としてもよい。 In this embodiment, the case where the opening degree detector 11 constantly measures the opening degree of the steam control valve V10b is illustrated, but the opening degree detector 11 is at least immediately before opening the steam control valve V10b and. It suffices to measure the opening degree of the steam control valve V10b immediately before the subtraction process by the subtraction unit 106, and it is not always necessary to constantly measure the opening degree of the steam control valve V10b. As a modification of the present embodiment, for example, an opening degree detection command unit is newly provided in the turbine control device 100, and the opening degree detection command unit is opened immediately before opening the steam control valve V10b and immediately before the subtraction process by the subtraction unit 106. A signal for detecting the opening degree of the steam control valve V10b may be output to the degree detector 11.

また、本実施形態においては、タービン制御装置100の制御対象が蒸気加減弁V10bである場合を例示して説明したが、本実施形態の変形例として、蒸気加減弁V10bとインタセプト弁V30aとを、それぞれを流れる蒸気流量の比率が最適になるように制御してもよい。 Further, in the present embodiment, the case where the control target of the turbine control device 100 is the steam control valve V10b has been described as an example, but as a modification of the present embodiment, the steam control valve V10b and the intercept valve V30a are used. It may be controlled so that the ratio of the steam flow rate flowing through each is optimized.

さらに、本実施形態においては、蒸気加減弁V10bを開く直前に外部からワンショット回路103にタービン起動指令信号S103が入力される場合を例示して説明したが、本実施形態の変形例として、例えば蒸気加減弁V10bのウォーミング直前に、外部からワンショット回路103にウォーミング直前指令信号を入力させる構成としてもよい。 Further, in the present embodiment, the case where the turbine start command signal S103 is input to the one-shot circuit 103 from the outside immediately before the steam control valve V10b is opened has been described as an example. Immediately before warming of the steam control valve V10b, the one-shot circuit 103 may be configured to input a command signal immediately before warming from the outside.

これらの変形例については、後述する他の実施形態においても同様に成り立つ。 The same applies to other embodiments described later with respect to these modified examples.

(第二の実施形態)
第二の実施形態に係るタービン発電設備について、図3を用いて説明する。図3は、第二の実施形態に係るタービン制御装置100の構成を示す図である。以降では、第一の実施形態と異なる箇所について説明し、それ以外の箇所については、第一の実施形態と同じものとして同じ図番を付し、その説明を省略する。
(Second embodiment)
The turbine power generation facility according to the second embodiment will be described with reference to FIG. FIG. 3 is a diagram showing the configuration of the turbine control device 100 according to the second embodiment. Hereinafter, the parts different from the first embodiment will be described, and the other parts will be given the same drawing numbers as those of the first embodiment, and the description thereof will be omitted.

図3に示すように、第二の実施形態に係るタービン制御装置100は、回転数変換部101と、蒸気流量開度変換部102と、ワンショット回路103と、記憶部104と、加算部105と、減算部106と、開直前実開度評価部117とを備える。すなわち、第二の実施形態では、タービン制御装置100が開直前実開度評価部117をさらに備える点が第一の実施形態と異なる。 As shown in FIG. 3, the turbine control device 100 according to the second embodiment includes a rotation speed conversion unit 101, a steam flow rate opening degree conversion unit 102, a one-shot circuit 103, a storage unit 104, and an addition unit 105. And a subtraction unit 106 and an actual opening degree evaluation unit 117 immediately before opening. That is, the second embodiment is different from the first embodiment in that the turbine control device 100 further includes the actual opening degree evaluation unit 117 immediately before opening.

開直前実開度評価部117は、記憶部104と加算部105との間に設けられる。開直前実開度評価部117は、記憶部104から入力される開直前実開度信号S104(S11a)が所定の開度を超える場合、この所定の開度を評価後開直前実開度信号S117として、加算部105へ出力する。ここでいう所定の開度は、あらかじめ開直前実開度評価部117に設定された値である。一方、開直前実開度信号S104が所定の開度以下である場合、開直前実開度信号S104をそのまま評価後開直前実開度信号S117として加算部105へ出力する。 The actual opening degree evaluation unit 117 immediately before opening is provided between the storage unit 104 and the addition unit 105. When the actual opening signal S104 (S11a) immediately before opening, which is input from the storage unit 104, exceeds the predetermined opening, the actual opening immediately before opening evaluation unit 117 evaluates the predetermined opening and then the actual opening signal immediately before opening. It is output to the addition unit 105 as S117. The predetermined opening degree referred to here is a value set in advance in the actual opening degree evaluation unit 117 immediately before opening. On the other hand, when the actual opening signal S104 immediately before opening is equal to or less than a predetermined opening, the actual opening signal S104 immediately before opening is directly evaluated and then output to the addition unit 105 as the actual opening signal S117 immediately before opening.

例えば、蒸気加減弁V10bの全開時に対する百分率で表記して、所定の開度が0.2パーセント、開直前実開度信号S11aが0.3パーセントの開度である場合、開直前実開度信号S11aは所定の開度よりも大きいため、開直前実開度評価部117では、0.2パーセントの開度(所定の開度)を評価後開直前実開度信号S117として加算部105へ出力する。 For example, when the predetermined opening is 0.2% and the actual opening signal S11a immediately before opening is 0.3%, expressed as a percentage of the steam control valve V10b when fully opened, the actual opening immediately before opening is Since the signal S11a is larger than the predetermined opening degree, the actual opening degree evaluation unit 117 immediately before opening evaluates the opening degree (predetermined opening degree) of 0.2% and sets the actual opening degree signal S117 immediately before opening to the adding unit 105. Output.

一方、蒸気加減弁V10bの全開時に対する百分率で表記して、所定の開度が0.2パーセント、開直前実開度信号S104(S11a)が0.1パーセントの開度である場合、開直前実開度信号S104は所定の開度よりも小さいため、開直前実開度評価部117では、0.1パーセントの開度(開直前実開度信号S104)を評価後開直前実開度信号S117としてそのまま加算部105へ出力する。 On the other hand, when the predetermined opening is 0.2% and the actual opening signal S104 (S11a) immediately before opening is 0.1%, expressed as a percentage of the steam control valve V10b when fully opened, immediately before opening. Since the actual opening signal S104 is smaller than the predetermined opening, the actual opening evaluation unit 117 immediately before opening evaluates the opening of 0.1% (actual opening signal S104 immediately before opening) and then the actual opening signal immediately before opening. It is output to the addition unit 105 as it is as S117.

加算部105は、蒸気加減弁開度信号S102と評価後開直前実開度信号S117とを加算処理して、その結果である開度目標信号S115を減算部106へ出力する(S115=S102+S117)。また、減算部106は、開度目標信号S115と、開度検出器11からの実開度信号S11bとを減算処理して、その結果である開度指令信号S116を蒸気加減弁V10bへ出力する(S116=S115-S11b)。 The addition unit 105 adds the steam control valve opening signal S102 and the actual opening signal S117 immediately before opening after evaluation, and outputs the result opening target signal S115 to the subtraction unit 106 (S115 = S102 + S117). .. Further, the subtraction unit 106 subtracts the opening target signal S115 and the actual opening signal S11b from the opening detector 11 and outputs the resulting opening command signal S116 to the steam control valve V10b. (S116 = S115-S11b).

上述した第二の実施形態によれば、記憶部104と加算部105との間に開直前実開度評価部117を設け、開度検出器11の位置ずれ等によって基準値である開直前実開度信号S11aが過度に大きな値を示した場合であっても、この基準値に補正をかけて蒸気加減弁V10bの開度を制御することができる。 According to the second embodiment described above, the actual opening just before opening evaluation unit 117 is provided between the storage unit 104 and the adding unit 105, and the actual opening just before opening is a reference value due to the positional deviation of the opening detector 11. Even when the opening signal S11a shows an excessively large value, the opening of the steam control valve V10b can be controlled by correcting this reference value.

なお、本実施形態の変形例として、例えば蒸気加減弁V10bのメタル温度を検出するメタル温度検出部を設けると共に、開直前実開度評価部117に対して、所定の開度をメタル温度毎にそれぞれ設定してもよい。このような構成とすることにより、メタル温度検出部から開直前実開度評価部117に入力されるメタル温度に応じて所定の開度を適宜変化させ、蒸気加減弁V10bを構成する弁棒や弁箱(共に図示省略)が熱膨張した場合の影響をより詳細に加味して蒸気加減弁V10bの開度を制御することができる。また、メタル温度検出部の代わりに、蒸気加減弁V10bを流れる主蒸気の温度を検出する蒸気温度検出部を設けてもよいし、これらを組み合わせた構成としてもよい。 As a modification of the present embodiment, for example, a metal temperature detecting unit for detecting the metal temperature of the steam control valve V10b is provided, and a predetermined opening degree is set for each metal temperature with respect to the actual opening degree evaluation unit 117 immediately before opening. Each may be set. With such a configuration, a predetermined opening degree can be appropriately changed according to the metal temperature input from the metal temperature detection unit to the actual opening degree evaluation unit 117 immediately before opening, and the valve bar constituting the steam control valve V10b can be used. It is possible to control the opening degree of the steam control valve V10b by taking into account the influence of thermal expansion of the valve box (both not shown) in more detail. Further, instead of the metal temperature detection unit, a steam temperature detection unit that detects the temperature of the main steam flowing through the steam control valve V10b may be provided, or a configuration in which these may be combined may be provided.

(第三の実施形態)
第三の実施形態に係るタービン発電設備について、図4を用いて説明する。図4は、第三の実施形態に係るタービン制御装置100の構成を示す図である。以降では、第一および第二の実施形態と異なる箇所について説明し、それ以外の箇所については、第一および第二の実施形態と同じものとして同じ図番を付し、その説明を省略する。
(Third embodiment)
The turbine power generation facility according to the third embodiment will be described with reference to FIG. FIG. 4 is a diagram showing the configuration of the turbine control device 100 according to the third embodiment. Hereinafter, the parts different from the first and second embodiments will be described, and the other parts will be given the same drawing numbers as those of the first and second embodiments, and the description thereof will be omitted.

図4に示すように、第三の実施形態に係るタービン制御装置100は、回転数変換部101と、蒸気流量開度変換部102と、ワンショット回路103と、記憶部104と、第一の減算部126と、第二の減算部127とを備える。すなわち、第三の実施形態では、タービン制御装置100が加算器105の代わりに第一の減算部126を、減算部106の代わりに第二の減算部127をそれぞれ備える点が第一および第二の実施形態と異なる。 As shown in FIG. 4, the turbine control device 100 according to the third embodiment includes a rotation speed conversion unit 101, a steam flow rate opening degree conversion unit 102, a one-shot circuit 103, a storage unit 104, and a first unit. A subtraction unit 126 and a second subtraction unit 127 are provided. That is, in the third embodiment, the first and second points are that the turbine control device 100 includes the first subtraction unit 126 instead of the adder 105, and the second subtraction unit 127 instead of the subtraction unit 106, respectively. Is different from the embodiment of.

第一の減算部126は、記憶部104から入力される開直前実開度信号S104(S11a)と、開度検出器11から入力される実開度信号S11bとを減算処理する。つまり、第一の減算部126は、蒸気加減弁V10bを開く直前の蒸気加減弁V10bの開度である開直前実開度信号S11aをオフセット値として用いることで、今の蒸気加減弁V10bの開度を補正する。そして、第一の減算部126は、減算処理の結果である補正蒸気加減弁実開度信号S126(補正実開度信号)を第二の減算部127へ出力する(S126=S11b-S104=S11b-S11a)。 The first subtraction unit 126 subtracts the actual opening degree signal S104 (S11a) immediately before opening input from the storage unit 104 and the actual opening degree signal S11b input from the opening degree detector 11. That is, the first subtraction unit 126 opens the current steam control valve V10b by using the actual opening signal S11a immediately before opening, which is the opening degree of the steam control valve V10b immediately before opening the steam control valve V10b, as an offset value. Correct the degree. Then, the first subtraction unit 126 outputs the corrected steam control valve actual opening signal S126 (corrected actual opening degree signal), which is the result of the subtraction process, to the second subtraction unit 127 (S126 = S11b-S104 = S11b). -S11a).

第二の減算部127は、蒸気流量開度変換部102から入力される蒸気加減弁開度信号S102と、第一の減算部126から入力される補正蒸気加減弁実開度信号S126とを減算処理する。そして、第二の減算部127は、減算処理の結果である開度指令信号S127を蒸気加減弁V10bへ出力する(S127=S102-S126)。蒸気加減弁V10bの開度は、開度指令信号S127に基づいて制御される。 The second subtraction unit 127 subtracts the steam control valve opening signal S102 input from the steam flow rate opening degree conversion unit 102 and the correction steam control valve actual opening signal S126 input from the first subtraction unit 126. To process. Then, the second subtraction unit 127 outputs the opening command signal S127, which is the result of the subtraction process, to the steam control valve V10b (S127 = S102-S126). The opening degree of the steam control valve V10b is controlled based on the opening degree command signal S127.

例えば、蒸気加減弁V10bの全開時に対する百分率で表記して、開直前実開度信号S11aが0.1パーセントの開度、蒸気加減弁開度信号S102が50パーセントの開度、実開度信号S11bが5.3パーセントの開度をそれぞれ示す場合を考える。この場合、補正蒸気加減弁実開度信号S126は、実開度信号S11bから開直前実開度信号S11aを減算した5.2パーセント、開度指令信号S127は、蒸気加減弁開度信号S102から補正蒸気加減弁実開度信号S126を減算した44.8パーセントとなり、44.8パーセント分だけ蒸気加減弁V10bの開度を開けるよう指令する開度指令信号S106が、蒸気加減弁V10bへ出力される。 For example, expressed as a percentage of the steam control valve V10b when fully opened, the actual opening signal S11a immediately before opening has an opening of 0.1%, the steam control valve opening signal S102 has an opening of 50%, and the actual opening signal. Consider the case where S11b shows an opening of 5.3%, respectively. In this case, the corrected steam control valve actual opening signal S126 is 5.2% obtained by subtracting the actual opening signal S11a immediately before opening from the actual opening signal S11b, and the opening command signal S127 is from the steam control valve opening signal S102. The corrected steam control valve actual opening signal S126 is subtracted to obtain 44.8%, and the opening command signal S106 instructing to open the opening of the steam control valve V10b by 44.8% is output to the steam control valve V10b. To.

上述した第三の実施形態によれば、蒸気加減弁V10bを開く直前に、開度検出器11で測定された蒸気加減弁V10bの開度である開直前実開度信号S11aをオフセット値として用いて、今の蒸気加減弁V10bの開度を補正し、補正後の開度である補正蒸気加減弁実開度信号S126を基に蒸気加減弁V10bへの開度指令信号S127を出力する。したがって、タービン起動時からの蒸気によって蒸気加減弁V10bを構成する弁棒や弁箱(共に図示省略)が熱膨張した場合でも、その影響を加味して蒸気加減弁V10bの開度を制御することができる。 According to the third embodiment described above, immediately before opening the steam control valve V10b, the actual opening signal S11a immediately before opening, which is the opening degree of the steam control valve V10b measured by the opening detector 11, is used as an offset value. Therefore, the opening degree of the current steam control valve V10b is corrected, and the opening command signal S127 to the steam control valve V10b is output based on the corrected steam control valve actual opening signal S126 which is the corrected opening. Therefore, even if the valve stem and valve box (both not shown) that make up the steam control valve V10b are thermally expanded by the steam from the start of the turbine, the opening degree of the steam control valve V10b should be controlled in consideration of the influence. Can be done.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1.タービン発電設備、10.ボイラ、11.開度検出器、20.蒸気タービン、30.再熱器、60.復水器、70.発電機、100.タービン制御装置、101.回転数変換部、102.蒸気流量開度変換部、103.ワンショット回路、104.記憶部、105.加算部、106.減算部、117.開直前実開度評価部、126.第一の減算部、127.第二の減算部、P10.主蒸気管、P21.低温再熱蒸気管、P22.クロスオーバー管、P30.高温再熱蒸気管、PB1.高圧タービンバイパス管、PB2.低圧タービンバイパス管、V10a.主蒸気止め弁、V10b.蒸気加減弁、V30a.インタセプト弁、V30b.再熱蒸気止め弁、VB1.高圧タービンバイパス弁、VB2.低圧タービンバイパス弁 1. 1. Turbine power generation equipment, 10. Boiler, 11. Opening detector, 20. Steam turbine, 30. Reheater, 60. Condenser, 70. Generator, 100. Turbine controller, 101. Rotation speed converter, 102. Steam flow rate opening converter, 103. One-shot circuit, 104. Memory unit, 105. Addition part, 106. Subtractor 117. Actual opening evaluation unit immediately before opening, 126. First subtraction part 127. Second subtraction part, P10. Main steam pipe, P21. Low temperature reheat steam tube, P22. Crossover tube, P30. High temperature reheat steam tube, PB1. High pressure turbine bypass pipe, PB2. Low pressure turbine bypass pipe, V10a. Main steam stop valve, V10b. Steam control valve, V30a. Intercept valve, V30b. Reheat steam stop valve, VB1. High pressure turbine bypass valve, VB2. Low pressure turbine bypass valve

Claims (5)

蒸気加減弁が設置された主蒸気管を介してボイラからの主蒸気を流入させる蒸気タービンを備えるタービン発電設備のタービン制御装置であって、
前記蒸気加減弁に流す前記主蒸気の蒸気流量の目標値に基づいて、前記蒸気加減弁の開度の目標値である開度信号を算出する蒸気流量開度変換部と、
タービン起動時の前記蒸気加減弁を開く直前に前記蒸気加減弁の開度検出器で計測された実開度のデータである開直前実開度信号を記憶する記憶部と、
前記開度信号および前記開直前開度信号が入力され、前記開度信号と前記開直前実開度信号との加算値である開度目標信号を前記蒸気加減弁に出力する加算部と、
を備え
前記開度検出器からの前記開直前実開度信号が入力され、この開直前実開度信号とあらかじめ設定された所定の開度とを比較して、この開直前実開度信号が前記所定の開度よりも小さい場合にはこの開直前実開度信号を前記記憶部に出力し、この開直前実開度信号が前記所定の開度以上の場合には前記所定の開度を前記記憶部に出力する開直前実開度評価部を更に備えるタービン制御装置。
A turbine control device for turbine power generation equipment equipped with a steam turbine that allows main steam from a boiler to flow in through a main steam pipe equipped with a steam control valve.
A steam flow rate opening conversion unit that calculates an opening signal, which is a target value of the opening of the steam control valve, based on a target value of the steam flow rate of the main steam flowing through the steam control valve.
A storage unit that stores the actual opening signal immediately before opening, which is the data of the actual opening measured by the opening detector of the steam control valve immediately before opening the steam control valve at the time of starting the turbine.
An addition unit to which the opening signal and the actual opening signal immediately before opening are input and an opening target signal which is an addition value of the opening signal and the actual opening signal immediately before opening is output to the steam control valve.
Equipped with
The actual opening signal immediately before opening is input from the opening detector, and the actual opening signal immediately before opening is compared with a preset predetermined opening, and the actual opening signal immediately before opening is the predetermined. When it is smaller than the opening degree, the actual opening degree signal immediately before opening is output to the storage unit, and when the actual opening degree signal immediately before opening is equal to or more than the predetermined opening degree, the predetermined opening degree is stored in the storage unit. A turbine control device further equipped with an actual opening evaluation unit immediately before opening that outputs to the unit.
蒸気加減弁が設置された主蒸気管を介してボイラからの主蒸気を流入させる上流側の蒸気タービンと、
前記上流側の蒸気タービンから排出された蒸気を流入し、この蒸気を加熱する再熱器と、
インタセプト弁が設置された再熱蒸気管を介して前記再熱器で加熱された再熱蒸気を流入させる下流側の蒸気タービンと、
を備えるタービン発電設備のタービン制御装置であって、
前記インタセプト弁に流す前記再熱蒸気の蒸気流量の目標値に基づいて、前記インタセプト弁の開度の目標値である開度信号を算出する蒸気流量開度変換部と、
タービン起動時の前記インタセプト弁を開く直前に前記インタセプト弁の開度検出器で計測された実開度のデータである開直前実開度信号を記憶する記憶部と、
前記開度信号および前記開直前開度信号が入力され、前記開度信号と前記開直前実開度信号との加算値である開度目標信号を前記インタセプト弁に出力する加算部と、
を備え
前記開度検出器からの前記開直前実開度信号が入力され、この開直前実開度信号とあらかじめ設定された所定の開度とを比較して、この開直前実開度信号が前記所定の開度よりも小さい場合にはこの開直前実開度信号を前記記憶部に出力し、この開直前実開度信号が前記所定の開度以上の場合には前記所定の開度を前記記憶部に出力する開直前実開度評価部を更に備えるタービン制御装置。
The steam turbine on the upstream side, which allows the main steam from the boiler to flow in through the main steam pipe equipped with the steam control valve,
A reheater that inflows the steam discharged from the steam turbine on the upstream side and heats the steam, and
A steam turbine on the downstream side that allows reheated steam heated by the reheater to flow in through a reheated steam pipe equipped with an intercept valve.
It is a turbine control device of a turbine power generation facility equipped with
A steam flow rate opening conversion unit that calculates an opening signal, which is a target value of the opening of the intercept valve, based on a target value of the steam flow rate of the reheated steam flowing through the intercept valve.
A storage unit that stores the actual opening signal immediately before opening, which is the data of the actual opening measured by the opening detector of the intercept valve immediately before opening the intercept valve at the time of starting the turbine.
An addition unit to which the opening signal and the actual opening signal immediately before opening are input and an opening target signal which is an addition value of the opening signal and the actual opening signal immediately before opening is output to the intercept valve.
Equipped with
The actual opening signal immediately before opening is input from the opening detector, and the actual opening signal immediately before opening is compared with a preset predetermined opening, and the actual opening signal immediately before opening is the predetermined. When it is smaller than the opening degree, the actual opening degree signal immediately before opening is output to the storage unit, and when the actual opening degree signal immediately before opening is equal to or more than the predetermined opening degree, the predetermined opening degree is stored in the storage unit. A turbine control device further equipped with an actual opening evaluation unit immediately before opening that outputs to the unit.
前記開度目標信号および前記開度検出器で計測される実開度信号が入力され、前記開度目標信号と前記実開度信号との差分値である開度指令信号を前記蒸気加減弁に出力する減算部をさらに備える請求項1に記載されたタービン制御装置。 The opening target signal and the actual opening signal measured by the opening detector are input, and an opening command signal which is a difference value between the opening target signal and the actual opening signal is used as the steam control valve. The turbine control device according to claim 1, further comprising a subtraction unit for output. 前記開度目標信号および前記開度検出器で計測される実開度信号が入力され、前記開度目標信号と前記実開度信号との差分値である開度指令信号を前記インタセプト弁に出力する減算部をさらに備える請求項2に記載されたタービン制御装置。 The opening target signal and the actual opening signal measured by the opening detector are input, and an opening command signal which is a difference value between the opening target signal and the actual opening signal is output to the intercept valve. The turbine control device according to claim 2, further comprising a subtraction unit. 請求項1から4のいずれかに記載されたタービン制御装置を備えるタービン発電設備。 A turbine power generation facility including the turbine control device according to any one of claims 1 to 4.
JP2019049180A 2019-03-15 2019-03-15 Turbine controller, turbine control method, and turbine power generation equipment Active JP7077257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049180A JP7077257B2 (en) 2019-03-15 2019-03-15 Turbine controller, turbine control method, and turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049180A JP7077257B2 (en) 2019-03-15 2019-03-15 Turbine controller, turbine control method, and turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2020148194A JP2020148194A (en) 2020-09-17
JP7077257B2 true JP7077257B2 (en) 2022-05-30

Family

ID=72429366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049180A Active JP7077257B2 (en) 2019-03-15 2019-03-15 Turbine controller, turbine control method, and turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP7077257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820121B (en) * 2021-11-17 2022-02-22 常州艾肯智造科技有限公司 Combined type steam trap detection device with quick mounting structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080672A (en) 2016-11-18 2018-05-24 株式会社東芝 Turbine control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167103A (en) * 1985-01-18 1986-07-28 Toshiba Corp Turbine control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080672A (en) 2016-11-18 2018-05-24 株式会社東芝 Turbine control device

Also Published As

Publication number Publication date
JP2020148194A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
JP6550659B2 (en) Water supply method, water supply system for carrying out this method, steam generating equipment provided with water supply system
JP6264128B2 (en) Combined cycle plant, control method thereof, and control device thereof
JP2012197750A (en) Power plant and power plant operating method
JP2010163892A (en) Steam turbine facility, and method of operating feed water pump drive turbine
EP2270317B1 (en) Apparatus for control of gas turbine in uniaxial combined-cycle plant, and method therefor
JP6732640B2 (en) Turbine controller
TWI654366B (en) Factory control unit, factory control method, and power plant
JP7077257B2 (en) Turbine controller, turbine control method, and turbine power generation equipment
JP6469543B2 (en) Combined cycle power plant and starting method thereof
JPH0370804A (en) Starting of steam cycle in combined cycle plant
JP5946697B2 (en) Gas turbine high temperature cooling system
JP6685852B2 (en) Plant control equipment
JP3926048B2 (en) Combined cycle power plant
JP4415189B2 (en) Thermal power plant
JP7218280B2 (en) Turbine controller
JP3857350B2 (en) Control device for combined cycle power plant
JP2019027387A (en) Combined cycle power generation plant, and its operation method and modification method
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2008292119A (en) Power generator
JP5812873B2 (en) Combined cycle power plant
JP6730202B2 (en) Control system, gas turbine, power plant and fuel temperature control method
JP2021161991A (en) Plant control device, plant control method and power generation plant
JP5289068B2 (en) Steam turbine power plant
JP5475315B2 (en) Combined cycle power generation system

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150