JP6964715B1 - Waveguide of microwave heating device and microwave heating device - Google Patents

Waveguide of microwave heating device and microwave heating device Download PDF

Info

Publication number
JP6964715B1
JP6964715B1 JP2020090890A JP2020090890A JP6964715B1 JP 6964715 B1 JP6964715 B1 JP 6964715B1 JP 2020090890 A JP2020090890 A JP 2020090890A JP 2020090890 A JP2020090890 A JP 2020090890A JP 6964715 B1 JP6964715 B1 JP 6964715B1
Authority
JP
Japan
Prior art keywords
waveguide
traveling wave
wave path
transport
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090890A
Other languages
Japanese (ja)
Other versions
JP2021190174A (en
Inventor
明雄 曹
亘皓 ▲トン▼
漢穎 陳
Original Assignee
宏碩系統股▲フン▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碩系統股▲フン▼有限公司 filed Critical 宏碩系統股▲フン▼有限公司
Priority to JP2020090890A priority Critical patent/JP6964715B1/en
Application granted granted Critical
Publication of JP6964715B1 publication Critical patent/JP6964715B1/en
Publication of JP2021190174A publication Critical patent/JP2021190174A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

【課題】高マイクロ波吸収材を均一に加熱することができるマイクロ波加熱装置の導波管および該導波管を備えたマイクロ波加熱装置を提供する。【解決手段】マイクロ波加熱装置であって、導波管10と、2つのマイクロ波発射モジュール20と、搬送モジュール30を備え、導波管10は、進行波経路を形成すると共に、少なくとも1つの搬送開口対と、少なくとも1つの導波板対を有し、搬送開口対は、導波管10における搬送方向に沿った対向する両側壁に形成される2つの搬送開口を有し、導波板対は、導波管10内に設けられると共に、導波管10の頂壁及び底壁に設けられる2つの導波板を備え、2つのマイクロ波発射モジュール20はそれぞれ、導波管10における進行波経路に沿った対向する両端に設けられ、搬送モジュール30は、搬送開口対を搬送方向に貫通している。【選択図】図1PROBLEM TO BE SOLVED: To provide a waveguide of a microwave heating device capable of uniformly heating a high microwave absorber and a microwave heating device provided with the waveguide. A microwave heating device comprising a waveguide 10, two microwave emitting modules 20, a transport module 30, and the waveguide 10 forming a traveling wave path and at least one. It has a transport opening pair and at least one waveguide pair, and the transport opening pair has two waveguide openings formed on opposite side walls along the transport direction in the waveguide 10. The pair comprises two waveguides provided in the waveguide 10 as well as on the top and bottom walls of the waveguide 10, and the two microwave emission modules 20 respectively travel in the waveguide 10. Provided at both ends facing each other along the waveguide, the transport module 30 penetrates the transport opening pair in the transport direction. [Selection diagram] Fig. 1

Description

本発明は、マイクロ波を利用して加熱を行う装置に関するものであり、特に高マイクロ波吸収材及び低マイクロ波吸収材のいずれも均一に加熱することができるマイクロ波加熱装置の導波管及びマイクロ波加熱装置に関するものである。 The present invention relates to an apparatus that uses microwaves for heating, and in particular, a waveguide of a microwave heating apparatus capable of uniformly heating both a high microwave absorber and a low microwave absorber. It relates to a microwave heating device.

従来技術におけるマイクロ波加熱装置は、主に次の3つに分類することができる。 Microwave heating devices in the prior art can be mainly classified into the following three types.

1.密閉式共振チャンバ。この密閉式共振チャンバの原理は、密閉された共振チャンバ内で被加熱物を移動又は回転させることにより、共振チャンバ内のマイクロ波のホットスポットとコールドスポットに起因する被加熱物の加熱ムラを低減するものである。 1. 1. Closed resonance chamber. The principle of this closed resonance chamber is to reduce uneven heating of the object to be heated due to microwave hot spots and cold spots in the resonance chamber by moving or rotating the object to be heated in the closed resonance chamber. To do.

2.開放式共振チャンバ。この開放式共振チャンバの原理は、密閉式共振チャンバと似ており、被加熱物を連続して流す方法でチャンバ内の定在波ホットスポットを通過させ、被加熱物をイオン化させるものであり、主に光源の生成(例えば硫黄ランプ)や廃棄物処理に使用される。 2. Open resonance chamber. The principle of this open resonance chamber is similar to that of a closed resonance chamber, in which the object to be heated is passed through a standing wave hotspot in the chamber by a method of continuously flowing the object to be heated, and the object to be heated is ionized. It is mainly used for the generation of light sources (for example, sulfur lamps) and waste treatment.

3.進行波式加熱器。この進行波式加熱器の原理は、被加熱物をマイクロ波伝送路に沿って進行波で加熱し、それによって定在波のホットスポットとコールドスポットに起因する加熱ムラを防ぐものである。 3. 3. Traveling wave heater. The principle of this traveling wave heater is to heat the object to be heated with a traveling wave along the microwave transmission path, thereby preventing uneven heating caused by standing wave hot spots and cold spots.

密閉式共振チャンバ及び開放式共振チャンバは、定在波を利用して被加熱物を加熱しているが、定在波は空間において顕著なホットスポット及びコールドスポットを形成し、加熱物を均一に加熱することができない。従って、実際には、例えば木材の脱水やたばこの乾燥等といった、低単価の市場でしか使用できない。 The closed resonance chamber and the open resonance chamber use a standing wave to heat the object to be heated, but the standing wave forms remarkable hot spots and cold spots in the space to make the heated object uniform. Cannot heat. Therefore, in practice, it can only be used in low-priced markets such as dehydration of wood and drying of tobacco.

進行波加熱器は、目立ったホットスポット及びコールドスポットが形成されないため、被加熱物が低マイクロ波吸収材である場合、進行波ヒータは被加熱物に対して均一な加熱を行うことができる。しかし、被加熱物が高マイクロ波吸収材である場合には、マイクロ波エネルギーが、加熱源に近い被加熱物に急速に吸収されるため、加熱源から遠い被加熱物が十分に加熱されず、被加熱物が均一に加熱されない。 Since the traveling wave heater does not form conspicuous hot spots and cold spots, when the object to be heated is a low microwave absorber, the traveling wave heater can uniformly heat the object to be heated. However, when the object to be heated is a high microwave absorber, the microwave energy is rapidly absorbed by the object to be heated near the heating source, so that the object to be heated far from the heating source is not sufficiently heated. , The object to be heated is not heated uniformly.

従って、従来技術におけるマイクロ波加熱装置には改良の余地があった。 Therefore, there is room for improvement in the microwave heating device in the prior art.

本発明は、上記の従来技術における欠点と不足に鑑み、高マイクロ波吸収材を均一に加熱することができるマイクロ波加熱装置の導波管および該導波管を備えたマイクロ波加熱装置を提供することを目的とする。 In view of the above-mentioned drawbacks and deficiencies in the prior art, the present invention provides a waveguide of a microwave heating device capable of uniformly heating a high microwave absorber and a microwave heating device provided with the waveguide. The purpose is to do.

上記の発明の目的を達成するため、本発明が用いる技術手段は、マイクロ波加熱装置に関するものであり、
該マイクロ波加熱装置は、導波管と、2つのマイクロ波発射モジュールと、搬送モジュールを備え、
該導波管は、進行波経路を形成するとともに、少なくとも1つの加熱区間と、少なくとも1つの搬送開口対と、少なくとも1つの導波板対を有し、
前記少なくとも1つの加熱区間は、前開口壁と、該前開口壁とともに搬送方向に間隔を置いて設けられた後ろ開口壁と、該前開口壁及び該後ろ開口壁に接続される頂壁と、該前開口壁及び該後ろ開口壁に接続されるとともに、該頂壁と対向するように設けられた底壁を有し、
前記少なくとも1つの搬送開口対は、前記少なくとも1つの加熱区間の前開口壁と後ろ開口壁にそれぞれ形成された2つの搬送開口を有し、
前記少なくとも1つの導波板対は、前記少なくとも1つの加熱区間内に設けられるとともに、前記進行波経路における位置が、前記少なくとも1つの搬送開口対の該進行波経路における位置に対応し、さらに、該少なくとも1つの加熱区間の頂壁及び底壁にそれぞれ接続されるとともに該進行波経路に沿って延びる、いずれもアルミナセラミック、窒化アルミニウムセラミック、又は窒化ホウ素セラミックで製作された2つの導波板を備え、
前記2つのマイクロ波発射モジュールは、それぞれ、前記導波管の進行波経路に沿って対向する両端に設けられ、
前記搬送モジュールは、前記導波管の少なくとも1つの搬送開口対を前記搬送方向に貫通している。
The technical means used in the present invention to achieve the above object of the invention relates to a microwave heating device.
The microwave heating device includes a waveguide, two microwave emission modules, and a transfer module.
The waveguide forms a traveling wave path and has at least one heating section, at least one transport aperture pair, and at least one waveguide pair.
The at least one heating section includes a front opening wall, a rear opening wall provided together with the front opening wall at intervals in the transport direction, a front opening wall, and a top wall connected to the rear opening wall. It has a bottom wall that is connected to the front opening wall and the back opening wall and is provided so as to face the top wall.
The at least one transport opening pair has two transport openings formed on the front opening wall and the rear opening wall of the at least one heating section, respectively.
The at least one waveguide pair is provided in the at least one heating section, and the position in the traveling wave path corresponds to the position in the traveling wave path of the at least one transport opening pair, and further. Two waveguides, each made of alumina ceramic, aluminum nitride ceramic, or boron nitride ceramic, connected to the top and bottom walls of the at least one heating section and extending along the traveling wave path, respectively. Prepare,
The two microwave emission modules are provided at both ends facing each other along the traveling wave path of the waveguide.
The transport module penetrates at least one transport opening pair of the waveguide in the transport direction.

上記の発明の目的を達成するために、本発明は、さらにマイクロ波加熱装置の導波管を提供し、該マイクロ波加熱装置の導波管は、
少なくとも1つの加熱区間と、少なくとも1つの搬送開口対と、少なくとも1つの導波板対を有し、
前記少なくとも1つの加熱区間は、前開口壁と、該前開口壁とともに搬送方向に間隔を置いて設けられた後ろ開口壁と、該前開口壁及び該後ろ開口壁に接続される頂壁と、該前開口壁及び該後ろ開口壁に接続されるとともに、該頂壁と対向するように設けられた底壁を有し、
前記少なくとも1つの搬送開口対は、進行波経路に沿って伸びる細長い2つの搬送開口を有し、該2つの搬送開口は、前記少なくとも1つの加熱区間の前開口壁と後ろ開口壁にそれぞれ形成され、
前記少なくとも1つの導波板対は、導波管内に設けられるとともに、該導波管の長手方向における位置が、前記少なくとも1つの搬送開口対の、該導波管の長手方向における位置に対応し、さらに、前記少なくとも1つの加熱区間の頂壁及び底壁に接続されるとともに前記進行波経路に沿って延びる、いずれもアルミナセラミック、窒化アルミニウムセラミック、又は窒化ホウ素セラミックで製作された2つの導波板を有する。
In order to achieve the object of the above invention, the present invention further provides a waveguide of the microwave heating device, and the waveguide of the microwave heating device is provided.
It has at least one heating section, at least one transport opening pair, and at least one waveguide pair.
The at least one heating section includes a front opening wall, a rear opening wall provided together with the front opening wall at intervals in the transport direction, a front opening wall, and a top wall connected to the rear opening wall. It has a bottom wall that is connected to the front opening wall and the back opening wall and is provided so as to face the top wall.
The at least one transport opening pair has two elongated transport openings extending along the traveling wave path, the two transport openings being formed in the front opening wall and the rear opening wall of the at least one heating section, respectively. ,
The at least one waveguide pair is provided in the waveguide, and the position of the waveguide in the longitudinal direction corresponds to the position of the at least one transport opening pair in the longitudinal direction of the waveguide. Further, two waveguides made of alumina ceramic, aluminum nitride ceramic, or boron nitride ceramic, all connected to the top and bottom walls of the at least one heating section and extending along the traveling wave path. Has a board.

さらに、前記マイクロ波加熱装置は、前記導波管の各搬送開口が、頂部側周縁と底部側周縁を有し、該頂部側周縁と該底部側周縁との距離は、該搬送開口の開口幅と定義され、該各搬送開口の前記進行波経路に沿って対向する両端の開口幅がいずれも縮小する。 Further, in the microwave heating device, each transport opening of the waveguide has a top side peripheral edge and a bottom side peripheral edge, and the distance between the top side peripheral edge and the bottom side peripheral edge is the opening width of the transport opening. The widths of the openings at both ends facing each other along the traveling wave path of each of the transport openings are reduced.

さらに、前記マイクロ波加熱装置は、前記導波管の各搬送開口が、中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上直線部を有し、前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下直線部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上直線部と前記第1下直線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上直線部と該第1下直線部の末端同士が接続される。 Further, in the microwave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening are formed on both sides of the center line, respectively. The top peripheral edge of each transport opening extends along the traveling wave path, and two first upper straight lines located on both sides of the top body facing each other along the traveling wave path. Two first lower portions having a bottom side peripheral edge of each of the transport openings, which are located on both sides of the bottom main body extending along the traveling wave path and facing each other along the traveling wave path of the bottom main body. The first upper straight line portion and the first lower straight line portion at either one end of both ends facing the traveling wave path of each of the transport openings extend toward the center line. At the same time, the ends of the first upper straight line portion and the first lower straight line portion are connected to each other.

さらに、前記マイクロ波加熱装置では、前記各搬送開口の頂部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1上直線部と前記頂部本体部との間に位置する第2上直線部がさらに形成され、前記各搬送開口の底部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1下直線部と前記底部本体部との間に位置する第2下直線部がさらに形成され、前記第1上直線部と前記中心線との夾角は、前記第2上直線部の延伸線と該中心線との夾角よりも大きく、前記第1下直線部と前記中心線との夾角は、前記第2下直線部の延伸線と該中心線との夾角よりも大きい。 Further, in the microwave heating device, the top peripheral edge of each transport opening is located between the corresponding first upper straight line portion and the top body portion at both opposite ends of the transport opening. (2) An upper straight portion is further formed, and the bottom peripheral edge of each transport opening is located between the corresponding first lower straight portion and the bottom main body portion at both ends of the transport opening facing each other. 2 The lower straight line portion is further formed, and the angle between the first upper straight line portion and the center line is larger than the angle between the extension line of the second upper straight line portion and the center line, and the first lower straight line portion is formed. The angle between the center line and the center line is larger than the angle between the extension line of the second lower straight line portion and the center line.

さらに、前記マイクロ波加熱装置は、前記導波管の各搬送開口が、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上円弧線部を有し、前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下円弧線部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上円弧線部と前記第1下円弧線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上円弧線部と該第1下円弧線部の末端同士が接続される。 Further, in the traveling wave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening are formed on both sides of the center line, respectively. , The top peripheral edge of each transport opening extends along the traveling wave path, and two first upper arc lines located on both sides of the top body facing each other along the traveling wave path. Two second portions having a portion and having a bottom side peripheral edge of each of the transport openings located on both sides of the bottom main body portion extending along the traveling wave path and facing each other along the traveling wave path of the bottom main body portion. The first upper arc line portion and the first lower arc line portion at either one end of both ends facing the traveling wave path of each of the transport openings having one lower arc line portion are at the center thereof, respectively. As it extends toward the line, the ends of the first upper arc line portion and the first lower arc line portion are connected to each other.

さらに、前記マイクロ波加熱装置は、前記導波管の各搬送開口が、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの上段差部を有し、前記各搬送開口の底部側周縁が、前記頂部本体部に対応して設けられた底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの下段差部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記上段差部と前記下段差部が、それぞれ、前記中心線に向かって延びるとともに、該上段差部と該下段差部の末端同士が接続される。 Further, in the microwave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening are formed on both sides of the center line, respectively. The top peripheral edge of each of the transport openings has a top body extending along the traveling wave path and two upper steps located on both sides of the top body facing the traveling wave path, respectively. Then, the bottom peripheral edge of each of the transport openings is located on both sides of the bottom main body, which is provided corresponding to the top main body, and the bottom main body, which are opposed to each other along the traveling wave path. The upper step portion and the lower step portion at either one end of both ends of each of the transport openings facing each other along the traveling wave path extend toward the center line and are above the step portion. The stepped portion and the ends of the lower stepped portion are connected to each other.

さらに、前記マイクロ波加熱装置は、前記少なくとも1つの導波板対の各導波板の対向する両端の板の厚みが減少する。 Further, in the microwave heating device, the thickness of the plates at both ends of each waveguide of the at least one waveguide pair is reduced.

さらに、前記マイクロ波加熱装置は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの第1斜面を有する。 Further, the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and on the other side of the waveguide, the said wave guide. A main body surface that extends along the traveling wave path and whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane, and both sides of the main body surface facing each other along the traveling wave path. It has two first slopes that are located and each extend from opposite sides of the main body surface to the close contact plane to form two opposing edges along the traveling wave path of the waveguide.

さらに、前記マイクロ波加熱装置は、前記各導波板が2つの第2斜面をさらに有し、該各第2斜面は、前記第1斜面のうちの1つと前記本体面との間に位置し、前記密着平面に対する前記各導波板の第2斜面の傾斜度は、該密着平面に対する前記第1斜面の傾斜度よりも小さい。 Further, in the microwave heating device, each waveguide further has two second slopes, each of which is located between one of the first slopes and the main body surface. The degree of inclination of the second slope of each waveguide with respect to the close contact plane is smaller than the degree of inclination of the first slope with respect to the close contact plane.

さらに、前記マイクロ波加熱装置は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路に沿った長さが該密着平面の該進行波経路に沿った長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの円弧面を有する。 Further, the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and on the other side of the waveguide, the said wave guide. A main body surface that extends along the traveling wave path and whose length along the traveling wave path is shorter than the length along the traveling wave path of the close contact plane, and along the traveling wave path of the main body surface, respectively. It is located on both opposite sides and has two arcuate surfaces that extend from the opposite sides of the main body surface to the close contact plane to form two opposite edges along the traveling wave path of the waveguide. ..

さらに、前記マイクロ波加熱装置は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの段差面を有する。 Further, the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and on the other side of the waveguide, the said wave guide. A main body surface that extends along the traveling wave path and whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane, and both sides of the main body surface facing each other along the traveling wave path. It is located and has two stepped surfaces that form two opposite edges along the traveling wave path of the waveguide by extending from both opposite sides of the main body surface to the close contact plane.

さらに、前記マイクロ波加熱装置は、前記導波管の内部空間に連通するとともに、外側が加熱層に覆われている抽気モジュールをさらに有する。 Further, the microwave heating device further includes an bleeding module that communicates with the internal space of the waveguide and whose outside is covered with a heating layer.

さらに、前記マイクロ波加熱装置は、前記抽気モジュールが、集水タンクを有する。 Further, in the microwave heating device, the bleed air module has a water collecting tank.

さらに、前記マイクロ波加熱装置は、少なくとも1つのマイクロ波隔離モジュールをさらに有し、該マイクロ波隔離モジュールは、ベース体と複数のマイクロ波抑制部材を有し、前記ベース体は、前記導波管に接続され、且つ、前記搬送モジュールの外側を取り囲むとともに該導波管の搬送開口のうちの1つに連通する通路を形成し、前記複数のマイクロ波抑制部材は、前記ベース体の外側面に穿設され、管体であり、且つ該マイクロ波抑制部材の両端は、それぞれ、該ベース体の外に突出する開放端と、前記通路内に位置する閉鎖端となっている。 Further, the microwave heating device further has at least one microwave isolation module, the microwave isolation module has a base body and a plurality of microwave suppression members, and the base body is the waveguide. The plurality of microwave suppression members are formed on the outer surface of the base body by being connected to the above and forming a passage that surrounds the outside of the transfer module and communicates with one of the transfer openings of the waveguide. Both ends of the pierced, tubular body and the microwave suppression member are an open end projecting out of the base body and a closed end located in the passage, respectively.

さらに、前記マイクロ波加熱装置は、前記少なくとも1つの導波板対の2つの導波板間におけるマイクロ波電界方向が、前記搬送方向に平行である。 Further, in the microwave heating device, the direction of the microwave electric field between the two waveguides of the at least one waveguide pair is parallel to the transport direction.

さらに、前記マイクロ波加熱装置の導波管は、前記導波管の各搬送開口が、頂部側周縁と底部側周縁を有し、該頂部側周縁と該底部側周縁との距離は、該搬送開口の開口幅と定義され、該各搬送開口の前記進行波経路に沿って対向する両端の開口幅がいずれも縮小する。 Further, in the waveguide of the microwave heating device, each transport opening of the waveguide has a top side peripheral edge and a bottom side peripheral edge, and the distance between the top side peripheral edge and the bottom side peripheral edge is the transport. It is defined as the opening width of the opening, and the opening widths at both ends of each transport opening facing each other along the traveling wave path are reduced.

さらに、前記マイクロ波加熱装置の導波管は、前記導波管の各搬送開口が、中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上直線部を有し、前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下直線部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上直線部と前記第1下直線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上直線部と該第1下直線部の末端同士が接続される。 Further, in the waveguide of the microwave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening have both sides of the center line, respectively. The top side peripheral edge of each transport opening is located on both sides of the top body portion extending along the traveling wave path and on both sides of the top body portion facing each other along the traveling wave path. 2 which has an upper straight portion, and the bottom peripheral edge of each of the transport openings is located on both sides of the bottom main body extending along the traveling wave path and facing each other along the traveling wave path of the bottom main body. The first upper straight line portion and the first lower straight line portion at any one end of both ends facing the traveling wave path of each of the transport openings, respectively, have the first lower straight line portion. As well as extending toward, the ends of the first upper straight line portion and the first lower straight line portion are connected to each other.

さらに、前記マイクロ波加熱装置の導波管では、前記各搬送開口の頂部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1上直線部と前記頂部本体部との間に位置する第2上直線部がさらに形成され、前記各搬送開口の底部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1下直線部と前記底部本体部との間に位置する第2下直線部がさらに形成され、前記第1上直線部と前記中心線との夾角は、前記第2上直線部の延伸線と該中心線との夾角よりも大きく、前記第1下直線部と前記中心線との夾角は、前記第2下直線部の延伸線と該中心線との夾角よりも大きい。 Further, in the waveguide of the microwave heating device, the top peripheral edge of each transport opening is located between the corresponding first upper straight line portion and the top body portion at both opposite ends of the transport opening. A second upper straight line portion located at is further formed, and the bottom peripheral edge of each transport opening is located between the corresponding first lower straight line portion and the bottom main body portion at both opposite ends of the transport opening. A second lower straight line portion located at is further formed, and the angle between the first upper straight line portion and the center line is larger than the angle between the extension line of the second upper straight line portion and the center line, and the first The eclipse angle between the 1 lower straight line portion and the center line is larger than the eclipse angle between the extension line of the second lower straight line portion and the center line.

さらに、前記マイクロ波加熱装置の導波管は、前記導波管の各搬送開口が、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上円弧線部を有し、前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下円弧線部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上円弧線部と前記第1下円弧線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上円弧線部と該第1下円弧線部の末端同士が接続される。 Further, in the waveguide of the microwave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening have the center line, respectively. Two athi. 1 It has an upper arc line portion, and the bottom peripheral edge of each of the transport openings is located on both sides of the bottom main body extending along the traveling wave path and facing each other along the traveling wave path of the bottom main body. The first upper arc line portion and the first lower arc line portion at either one end of both ends facing each other along the traveling wave path of each of the traveling openings have two first lower arc line portions. Each extends toward the center line, and the ends of the first upper arc line portion and the first lower arc line portion are connected to each other.

さらに、前記マイクロ波加熱装置の導波管は、前記導波管の各搬送開口が、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの上段差部を有し、前記各搬送開口の底部側周縁が、前記頂部本体部に対応して設けられた底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの下段差部を有し、前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記上段差部と前記下段差部が、それぞれ、前記中心線に向かって延びるとともに、該上段差部と該下段差部の末端同士が接続される。 Further, in the waveguide of the microwave heating device, each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening have the center line, respectively. Two tops formed on both sides, the top peripherals of each transport opening are located on both sides of the top body extending along the traveling wave path and on both sides of the top body facing the traveling wave path, respectively. It has a stepped portion, and the bottom peripheral edge of each of the transport openings is located on both sides of the bottom main body, which is provided corresponding to the top main body, and which faces each other along the traveling wave path of the bottom main body. The upper step portion and the lower step portion at either one end of both ends facing each other along the traveling wave path of each of the transport openings extend toward the center line. At the same time, the ends of the upper step portion and the lower step portion are connected to each other.

さらに、前記マイクロ波加熱装置の導波管は、前記少なくとも1つの導波板対の各導波板の対向する両端の板の厚みが減少する。 Further, in the waveguide of the microwave heating device, the thickness of the plates at both ends of each waveguide of the at least one waveguide pair is reduced.

さらに、前記マイクロ波加熱装置の導波管は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から前記密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの第1斜面を有する。 Further, the waveguide of the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and the other of the waveguides. On the side, along the traveling waveguide, the main surface whose length in the traveling wave path is shorter than the length in the traveling waveguide of the close contact plane, and along the traveling waveguide of the main body surface, respectively. Two first slopes located on both opposite sides and extending from the opposite sides of the main body surface to the close contact plane to form two opposite edges along the traveling wave path of the waveguide. Have.

さらに、前記マイクロ波加熱装置の導波管は、前記各導波板が2つの第2斜面をさらに有し、該各第2斜面は、前記第1斜面のうちの1つと前記本体面との間に位置し、前記密着平面に対する前記各導波板の第2斜面の傾斜度は、該密着平面に対する前記第1斜面の傾斜度よりも小さい。 Further, in the waveguide of the microwave heating device, each waveguide further has two second slopes, and each of the second slopes is formed by one of the first slopes and the main body surface. Located in between, the degree of inclination of the second slope of each waveguide with respect to the close contact plane is smaller than the degree of inclination of the first slope with respect to the close contact plane.

さらに、前記マイクロ波加熱装置の導波管は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路に沿った長さが該密着平面の該進行波経路に沿った長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの円弧面を有する。 Further, the waveguide of the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and the other of the waveguides. On the side, a main body surface that extends along the traveling wave path and whose length along the traveling wave path is shorter than the length along the traveling wave path of the close contact plane, and the traveling wave of the main body surface, respectively. Two located on both sides facing each other along the path and extending from the opposing sides of the main body surface to the close contact plane to form two opposing edges along the traveling wave path of the waveguide. It has an arc surface.

さらに、前記マイクロ波加熱装置の導波管は、前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの段差面を有する。 Further, the waveguide of the microwave heating device has a close contact plane extending along the traveling wave path on the side of each waveguide connected to the waveguide, and the other of the waveguides. On the side, along the traveling waveguide, the main surface whose length in the traveling wave path is shorter than the length in the traveling waveguide of the close contact plane, and along the traveling waveguide of the main body surface, respectively. It is located on both opposite sides and has two stepped surfaces that extend from both opposite sides of the main body surface to the close contact plane to form two opposite edges along the traveling wave path of the waveguide. ..

さらに、前記マイクロ波加熱装置の導波管は、前記少なくとも1つの導波板対の2つの導波板間におけるマイクロ波電界方向が、前記搬送方向に平行である。 Further, in the waveguide of the microwave heating device, the direction of the microwave electric field between the two waveguides of the at least one waveguide pair is parallel to the transport direction.

本発明の優れた点は以下のとおりである。 The advantages of the present invention are as follows.

第1に、被加熱物は、前記搬送モジュールによって搬送され、前記導波管に送り込まれ、該導波管内において、前記マイクロ波放射モジュールによって発射されるマイクロ波によって加熱される。本発明は、前記導波管の対向する両端に該マイクロ波発射モジュールを1つずつ設置することにより、高マイクロ波吸収材の前記該導波管内における加熱の均一度をさらに向上させる。 First, the object to be heated is conveyed by the transport module, fed into the waveguide, and heated in the waveguide by the microwave emitted by the microwave radiation module. The present invention further improves the uniformity of heating of the high microwave absorber in the waveguide by installing one microwave emission module at each of the opposite ends of the waveguide.

第2に、前記導波管内に誘電材質の前記導波板対を設けることにより、マイクロ波吸収特性が強い材料や、金属物を有する被加熱物を処理することができ、更には、本発明が加熱可能な材料の範囲が拡大する。よって、例えば湿気を含んだ回路基板や、金属成分を含有する各種電子製品、金属を含有する半導体ウェハ、金属ワイヤを含有するソーラーウェハ、金属部品を有する湿気を含んだ衣類といった、従来のマイクロ波加熱装置では処理できなかった高単価の被加熱物を処理することができ、本発明の価値が向上する。
Secondly, by providing the waveguide pair of a dielectric material in the waveguide, it is possible to treat a material having a strong microwave absorption characteristic or a material to be heated having a metal material, and further, the present invention. Expands the range of materials that can be heated. Therefore, conventional microwaves such as circuit boards containing moisture, various electronic products containing metal components, semiconductor wafers containing metal, solar wafers containing metal wires, and clothing containing moisture containing metal parts. It is possible to treat a high unit price object to be heated that could not be treated by the heating device, and the value of the present invention is improved.

本発明のマイクロ波加熱装置の実施形態1を示す外観斜視図である。It is an external perspective view which shows Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1における一部部品の分解図である。It is an exploded view of a part part in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1における別の一部部品の分解図である。It is an exploded view of another part part in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1における一部部品の断面概略図である。It is sectional drawing of the partial part in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1における加熱区間の断面概略図である。It is sectional drawing of the heating section in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1における加熱区間の正面視概略図である。It is a front view schematic view of the heating section in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態2における加熱区間の正面視概略図である。It is a front view schematic view of the heating section in Embodiment 2 of the microwave heating apparatus of this invention. 図7の部分拡大図である。It is a partially enlarged view of FIG. 本発明のマイクロ波加熱装置の実施形態3における加熱区間の正面視概略図である。It is a front view schematic view of the heating section in Embodiment 3 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態4における加熱区間の正面視概略図である。It is a front view schematic view of the heating section in Embodiment 4 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態1におけるマイクロ波抑制部材の断面概略図である。It is sectional drawing of the microwave suppression member in Embodiment 1 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態5の導波管を示す外観斜視図である。It is an external perspective view which shows the waveguide of Embodiment 5 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態5の導波管の部品分解図である。It is a component exploded view of the waveguide of Embodiment 5 of the microwave heating apparatus of this invention. 本発明のマイクロ波加熱装置の実施形態5の導波管の断面概略図である。It is sectional drawing of the waveguide of Embodiment 5 of the microwave heating apparatus of this invention. 図5の導波管におけるマイクロ波電界パターン図である。It is a microwave electric field pattern diagram in the waveguide of FIG. 本発明の導波管の導波板対区間におけるモード変換インピーダンスマッチングの反射係数と周波数との関係を示すグラフである。It is a graph which shows the relationship between the reflection coefficient and the frequency of mode conversion impedance matching in the waveguide pair section of the waveguide of this invention. 本発明の導波管の導波板対区間におけるモード変換インピーダンスマッチングの透過係数と周波数との関係を示すグラフである。It is a graph which shows the relationship between the transmission coefficient and the frequency of mode conversion impedance matching in the waveguide pair section of the waveguide of this invention.

以下、図面及び本発明の好ましい実施形態を参照しながら、本発明が所期の目的を達成するために採用する技術的手段をさらに説明する。 Hereinafter, the technical means adopted by the present invention to achieve the intended object will be further described with reference to the drawings and preferred embodiments of the present invention.

図1から図4に示すように、本発明のマイクロ波加熱装置は、導波管10、2つのマイクロ波発射モジュール20及び搬送モジュール30を備え、本実施形態においては、抽気モジュール40とマイクロ波隔離モジュール50をさらに備える。 As shown in FIGS. 1 to 4, the microwave heating device of the present invention includes a waveguide 10, two microwave emission modules 20 and a transfer module 30, and in the present embodiment, the bleeding module 40 and microwaves. An isolation module 50 is further provided.

本実施形態において、前記導波管10は、複数の加熱区間11と複数の連通区間12が接続されることにより形成され、該加熱区間11は、搬送方向Dに並列且つ順に配置され、該連通区間12は、該加熱区間11の間に接続される。本実施形態における前記加熱区間11は直管であり、前記連通区間12は曲管であり、前記導波管10が、該加熱区間11と該連通区間12とによって略S字状の管体に形成されるとともに、S字形の進行波経路に形成されているが、該導波管10は、両端の開口同士が連通する管体であればよく、例えば該導波管10は1つの直管状の該加熱区間11のみであってもよい In the present embodiment, the waveguide 10 is formed by connecting a plurality of heating sections 11 and a plurality of communication sections 12, and the heating sections 11 are arranged in parallel and in order in the transport direction D, and the communication is provided. The section 12 is connected between the heating sections 11. The heating section 11 in the present embodiment is a straight pipe, the communication section 12 is a curved pipe, and the waveguide 10 is formed into a substantially S-shaped tube by the heating section 11 and the communication section 12. The waveguide 10 is formed in an S-shaped traveling wave path as well as being formed. The waveguide 10 may be a tube in which openings at both ends communicate with each other. For example, the waveguide 10 is a straight tube. May be only the heating section 11 of

前記2つのマイクロ波発射モジュール20は、それぞれ、前記導波管10の進行波経路に沿って対向する両端に設けられ、該導波管10は、該各マイクロ波発射モジュール20から発射されたマイクロ波を、それぞれ進行波経路に沿って該導波管10の一端から該導波管10の他端に伝送する。それにより、前記導波管10内の被加熱物(図示せず)は、前記一方のマイクロ波発射モジュール20からの距離が異なることで各被加熱物が受ける該マイクロ波発射モジュール20の加熱電力に差が生じても、他方の該マイクロ波発射モジュール20とこの差を補完し合うことができるため、各被加熱物が受ける合計の加熱電力をより均一にすることができる。具体的には、被加熱材に吸収されたマイクロ波エネルギーのパーセンテージを使用効率(%)と定義し、被加熱物が前記進行波経路に沿ってマイクロ波エネルギーを吸収する最大値

Figure 0006964715
から最小値
Figure 0006964715
を減じ、平均値
Figure 0006964715
で除した値を均一度と定義する。即ち、均一度(%)は以下のとおりである。 The two microwave emitting modules 20 are provided at both ends of the waveguide 10 facing each other along the traveling wave path of the waveguide 10, and the waveguides 10 are micros emitted from the respective microwave emitting modules 20. Waves are transmitted from one end of the waveguide 10 to the other end of the waveguide 10 along the traveling wave path, respectively. As a result, the object to be heated (not shown) in the waveguide 10 receives the heating power of the microwave emission module 20 received by each object to be heated because the distance from one of the microwave emission modules 20 is different. Even if there is a difference, the difference can be complemented with the other microwave emitting module 20, so that the total heating power received by each object to be heated can be made more uniform. Specifically, the percentage of microwave energy absorbed by the material to be heated is defined as usage efficiency (%), and the maximum value at which the object to be heated absorbs microwave energy along the traveling wave path.
Figure 0006964715
From the minimum value
Figure 0006964715
Mind and average
Figure 0006964715
The value divided by is defined as uniformity. That is, the uniformity (%) is as follows.

Figure 0006964715
Figure 0006964715

表1の計算結果から分かるように、使用効率が同じである場合、2つのマイクロ波発射モジュール20を用いることで、加熱の均一度を大幅に向上させることができる。 As can be seen from the calculation results in Table 1, when the usage efficiency is the same, the uniformity of heating can be significantly improved by using the two microwave emission modules 20.

表1:マイクロ波発射モジュール20が1つの場合と2つの場合の均一度及び使用効率の関係

Figure 0006964715
Table 1: Relationship between uniformity and usage efficiency when there is one microwave emission module 20 and when there are two microwave emission modules 20
Figure 0006964715

本実施形態において、前記マイクロ波発射モジュール20は、前記導波管10に向かって周波数が2450メガヘルツのマイクロ波を発射し、該導波管10の断面形状は、該周波数のマイクロ波に合わせて、電子工業会(Electronic Industries Alliance、EIA)によって定義されているWR340矩形断面を採用しており、この断面はTE10モードでマイクロ波を働かせることができるため、複雑性が低減される。但し、前記マイクロ波発射モジュール20が発射するマイクロ波の周波数は2450メガヘルツに限定されない。 In the present embodiment, the microwave emitting module 20 emits a microwave having a frequency of 2450 megahertz toward the waveguide 10, and the cross-sectional shape of the waveguide 10 is adjusted to the microwave having the frequency. , The WR340 rectangular section defined by the Electronic Industries Alliance (EIA) is adopted, and this section can work microwaves in TE 10 mode, thus reducing complexity. However, the frequency of the microwave emitted by the microwave emission module 20 is not limited to 2450 MHz.

また、本実施形態における前記各マイクロ波発射モジュール20は、マイクロ波源21、サーキュレータ22、方向性結合器23及び水負荷器24を備える。前記マイクロ波源21及び前記方向性結合器23は、それぞれ前記マイクロ波発射モジュール20の両端に位置し、前記サーキュレータ22は、該マイクロ波源21と該方向性結合器23とに接続され、前記水負荷器24は、該サーキュレータ22の一側面に接続され、該方向性結合器23は、前記導波管10の一端に接続される。前記サーキュレータ22は、磁気回転現象を利用してマイクロ波が特定の方向に伝送されるよう制御し、さらに前記マイクロ波源21を保護することが可能である。前記方向性結合器23は、前記マイクロ波発射モジュール20が前記導波管10に伝送するマイクロ波電力、及び該導波管10が該マイクロ波発射モジュール20に伝送するマイクロ波電力を測定することができる。 Further, each of the microwave emission modules 20 in the present embodiment includes a microwave source 21, a circulator 22, a directional coupler 23, and a water loader 24. The microwave source 21 and the directional coupler 23 are located at both ends of the microwave emission module 20, respectively, and the circulator 22 is connected to the microwave source 21 and the directional coupler 23 to load the water. The vessel 24 is connected to one side surface of the circulator 22, and the directional coupler 23 is connected to one end of the waveguide 10. The circulator 22 can control the microwaves to be transmitted in a specific direction by utilizing the magnetic rotation phenomenon, and can further protect the microwave source 21. The directional coupler 23 measures the microwave power transmitted by the microwave emitting module 20 to the waveguide 10 and the microwave power transmitted by the waveguide 10 to the microwave emitting module 20. Can be done.

図3、図5及び図6に示すように、前記導波管10の各加熱区間11には、いずれも搬送開口対13が形成され、該各搬送開口対13は、進行波経路に沿って延びる2つの搬送開口131を有し、該2つの搬送開口131は、それぞれ、対応する加熱区間11の搬送方向Dに沿って対向する2つの側壁に形成されている。具体的には、前記導波管10の各加熱区間11は、前開口壁111、後ろ開口壁112、頂壁113及び底壁114を有し、該前開口壁111と該後ろ開口壁112は、搬送方向Dに間隔を置いて設けられ、該頂壁113と該底壁114は、いずれも該前開口壁111壁及び該後ろ開口壁112に接続されるとともに、互いに対向するように設けられ、該各加熱区間11の搬送開口対13の2つの搬送開口131は、該加熱区間11の前開口壁111と後ろ開口壁112にそれぞれ形成されている。 As shown in FIGS. 3, 5 and 6, each of the heating sections 11 of the waveguide 10 is formed with a transport opening pair 13, and each transport opening pair 13 is along a traveling wave path. It has two transport openings 131 that extend, and the two transport openings 131 are formed on two side walls that face each other along the transport direction D of the corresponding heating section 11. Specifically, each heating section 11 of the waveguide 10 has a front opening wall 111, a back opening wall 112, a top wall 113 and a bottom wall 114, and the front opening wall 111 and the back opening wall 112 are The top wall 113 and the bottom wall 114 are both connected to the front opening wall 111 and the rear opening wall 112, and are provided so as to face each other. The two transport openings 131 of the transport openings pair 13 of each heating section 11 are formed on the front opening wall 111 and the rear opening wall 112 of the heating section 11, respectively.

前記搬送モジュール30は、前記導波管10の各搬送開口対13を搬送方向Dに貫通している。前記搬送モジュール30は、好ましくは、搬送ベルトであり、且つ被加熱物を搬送方向Dに沿って前記搬送開口対13から前記導波管10の各加熱区間11を順に通過させ、被加熱物は、該加熱区間11を通過する過程で、前記マイクロ波発射モジュール20から放出されるマイクロ波エネルギーを吸収して加熱される。 The transport module 30 penetrates each transport opening pair 13 of the waveguide 10 in the transport direction D. The transfer module 30 is preferably a transfer belt, and the object to be heated is sequentially passed from the transfer opening pair 13 to each heating section 11 of the waveguide 10 along the transfer direction D, and the object to be heated is transferred. In the process of passing through the heating section 11, the microwave energy emitted from the microwave emitting module 20 is absorbed and heated.

本実施形態において、前記導波管10の各搬送開口131は、中心線1311と、頂部側周縁1312と底部側周縁1313を有し、該頂部側周縁1312及び該底部側周縁1313は、それぞれ、該中心線1311の両側に形成され、該頂部側周縁1312と該底部側周縁1313との距離は、該搬送開口131の開口幅と定義され、該各搬送開口131の進行波経路に沿って対向する両端の開口幅がそれぞれ縮小することにより、該導波管10内のマイクロ波の伝送経路におけるインピーダンスマッチングの効果が向上し、該導波管10内の被加熱物がより均一に加熱される。 In the present embodiment, each of the waveguide openings 131 of the waveguide 10 has a center line 1311, a top side peripheral edge 1312, and a bottom side peripheral edge 1313, and the top side peripheral edge 1312 and the bottom side peripheral edge 1313, respectively. The distance between the top side peripheral edge 1312 and the bottom side peripheral edge 1313 formed on both sides of the center line 1311 is defined as the opening width of the transport opening 131, and faces each other along the traveling waveguide of the transport opening 131. By reducing the opening widths at both ends, the effect of impedance matching in the transmission path of the microwave in the waveguide 10 is improved, and the object to be heated in the waveguide 10 is heated more uniformly. ..

前記各搬送開口131の対向する両端の具体的な形状は以下のとおりである。前記各搬送開口131の頂部側周縁1312は、進行波経路に沿って延びる頂部本体部61と、それぞれ該頂部本体部61の進行波経路に沿って対向する両側につながる2つの上縮口部を有する。前記各搬送開口131の底部側周縁1313は、進行波経路に沿って延びる底部本体部62と、それぞれ該底部本体部62の進行波経路に沿って対向する両側に位置する2つの下縮口部を有する。前記各搬送開口131の進行波経路に沿って対向する両端のいずれか一端における前記上縮口部と前記下縮口部が、それぞれ、対応する前記中心線1311に向かって延びるとともに、該上縮口部と該下縮口部の末端同士が接続されて、該上縮口部と該下縮口部が該搬送開口131の端部を形成する。インピーダンスマッチングをさらに調整するために、前記上縮口部と前記下縮口部の形状は以下の4種類のうちの1つであってよい。 The specific shapes of the opposite ends of each of the transport openings 131 are as follows. The top peripheral edge 1312 of each of the transport openings 131 has a top body 61 extending along the traveling wave path and two superior contractions connected to both sides of the top body 61 facing each other along the traveling wave path. Have. The bottom peripheral edge 1313 of each of the transport openings 131 includes a bottom main body 62 extending along the traveling wave path and two lower contraction portions located on both sides of the bottom main body 62 facing each other along the traveling wave path. Has. The upper contraction portion and the lower contraction portion at either end of both ends facing each other along the traveling wave path of each of the transport openings 131 extend toward the corresponding center line 1311 and the upper contraction portion, respectively. The mouth portion and the ends of the lower contraction portion are connected to each other, and the upper contraction portion and the lower contraction portion form an end portion of the transport opening 131. In order to further adjust the impedance matching, the shape of the upper contraction portion and the lower contraction portion may be one of the following four types.

1.線形勾配:前記各縮口部(即ち上縮口部及び下縮口部)はいずれも直線である。つまり、前記各上縮口部は、いずれも第1上直線部63であり、前記各下縮口部は、いずれも第1下直線部64である。 1. 1. Linear gradient: Each of the contracted portions (that is, the upper contracted portion and the lower contracted portion) is a straight line. That is, each of the upper contraction portions is the first upper straight portion 63, and each of the lower contraction portions is the first lower straight portion 64.

2.多角構造:前記各縮口部(即ち上縮口部及び下縮口部)は互いにつながる2つ以上の直線部を有する。例えば、本発明の実施形態2(図7及び図8に示す)においては、前記各上縮口部は、第1上直線部63Aと第2上直線部65Aを有し、該第2上直線部65Aは、対応する該第1上直線部63Aと頂部本体部61Aとの間に位置するとともに、該第1上直線部63Aと中心線1311Aとの夾角θは、該第2上直線部65Aの延伸線と該中心線1311Aとの夾角θよりも大きく、また、前記各下縮口部は、第1下直線部64Aと第2下直線部66Aを有し、該第2下直線部66Aは、対応する該第1下直線部64Aと底部本体部62Aとの間に位置するとともに、該第1下直線部64Aと該中心線1311Aとの夾角は、該第2下直線部66Aの延伸線と該中心線1311Aとの夾角よりも大きい。ここで、前記第1上直線部63Aと前記第2上直線部65Aは、前記中心線1311Aに向かって延びた末端が互いに接続される。本実施形態における前記各直線部の長さ及び前記中心線1311Aとの夾角は、チェビシェフインピーダンスマッチング変換器(Chebyshev Multi−section Matching Transformer)の理論に基づいて設計することができ、それによってシステムの大きさを縮小するという前提において、使用周波数帯域内で最適なマッチング効果を得る。 2. Polygonal structure: Each of the contracted portions (that is, the upper contracted portion and the lower contracted portion) has two or more straight portions connected to each other. For example, in the second embodiment of the present invention (shown in FIGS. 7 and 8), each upper contraction portion has a first upper straight line portion 63A and a second upper straight line portion 65A, and the second upper straight line portion 65A. The portion 65A is located between the corresponding first upper straight portion 63A and the top main body portion 61A, and the angle θ 1 between the first upper straight portion 63A and the center line 1311A is the second upper straight portion. The width angle between the extension line of 65A and the center line 1311A is larger than θ 2 , and each lower contraction portion has a first lower straight line portion 64A and a second lower straight line portion 66A, and the second lower straight line portion 66A. The portion 66A is located between the corresponding first lower straight line portion 64A and the bottom main body portion 62A, and the angle between the first lower straight line portion 64A and the center line 1311A is the second lower straight line portion 66A. It is larger than the angle between the extension line of the above and the center line 1311A. Here, the ends of the first upper straight line portion 63A and the second upper straight line portion 65A are connected to each other so as to extend toward the center line 1311A. The length of each straight portion and the angle with respect to the center line 1311A in the present embodiment can be designed based on the theory of the Chebyshev Multi-section Matching Transformer, thereby increasing the size of the system. On the premise of reducing the size, the optimum matching effect is obtained within the frequency band used.

3.曲率勾配:前記各縮口部(即ち上縮口部及び下縮口部)が円弧である。例えば、本発明の実施形態3(図9に示す)においては、前記各上縮口部が第1上円弧線部63Bであり、且つ該第1上円弧線部63Bが搬送開口131Bの外側に突出していることが好ましく、また、前記各下縮口部が第1下円弧線部64Bであり、且つ該第1下円弧線部64Bが該搬送開口131Bの外側に突出していることが好ましい。 3. 3. Curvature gradient: Each of the contracted portions (that is, the upper contracted portion and the lower contracted portion) is an arc. For example, in the third embodiment (shown in FIG. 9) of the present invention, each upper contraction portion is the first upper arc line portion 63B, and the first upper arc line portion 63B is outside the transport opening 131B. It is preferable that each of the lower contracted openings is a first lower arc line portion 64B, and the first lower arc line portion 64B protrudes to the outside of the transport opening 131B.

4.段差構造:前記各縮口部(即ち上縮口部及び下縮口部)は段差状である。例えば、本発明の実施形態4(図10に示す)においては、前記各上縮口部が上段差部63Cであり、前記各下縮口部が下段差部64Cであり、該上段差部63Cと該下段差部64Cとの間の距離が、搬送開口131Cの中心から離れる方向に向かって減少する。本実施形態における前記各段差部は、いずれも複数の直角部を形成するが、該各段差部は1つの直角部のみを形成してもよい。前記各段差部は、チェビシェフインピーダンスマッチング変換器の理論に基づいて設計することができ、システムの大きさを縮小するという前提において、使用周波数帯域内で最適なマッチング効果を得る。 4. Step structure: Each of the contracted portions (that is, the upper contracted portion and the lower contracted portion) has a stepped shape. For example, in the fourth embodiment of the present invention (shown in FIG. 10), each upper contraction portion is an upper step portion 63C, each lower contraction portion is a lower step portion 64C, and the upper step portion 63C. The distance between the lower step portion 64C and the lower step portion 64C decreases in the direction away from the center of the transport opening 131C. Each of the stepped portions in the present embodiment forms a plurality of right-angled portions, but each of the stepped portions may form only one right-angled portion. Each step portion can be designed based on the theory of the Chebyshev impedance matching converter, and an optimum matching effect can be obtained within the frequency band used on the premise that the size of the system is reduced.

上記の各実施形態において、前記各搬送開口131の上縮口部及び下縮口部の形状及び位置は互いに対称であるが、これに限定されるものではない。 In each of the above embodiments, the shapes and positions of the upper contracted portion and the lower contracted portion of each of the transport openings 131 are symmetrical with each other, but the present invention is not limited thereto.

図3、図5及び図6に示すように、本発明の第1実施形態においては、前記導波管10は複数の導波板対14をさらに有し、該複数の導波板対14は、それぞれ前記各加熱区間11内に設けられる、つまり、前記各搬送開口対13のいずれにも該導波板対14が対応して設けられる。前記各導波板対14の進行波経路における位置は、それぞれ、同一の前記加熱区間11内の搬送開口対13の、進行波経路における位置に対応している。前記各導波板対14は、前記加熱区間11の頂壁113及び底壁114にそれぞれ接続されるとともに、進行波経路に沿って延びる2つの導波板141を備える。前記導波板141の材質は誘電材であり、且つ好ましくはアルミナセラミックであるが、これに限定されるものではなく、アルミナセラミックよりも熱伝導性に優れる窒化アルミニウムセラミック又は窒化ホウ素セラミックであってもよい。前記導波管対14は、前記導波管10内のマイクロ波の進行波モードを調節して、元の基本モードTE10から特定の高次モードに変換することができ、それにより以下の効果を得る。 As shown in FIGS. 3, 5 and 6, in the first embodiment of the present invention, the waveguide 10 further has a plurality of waveguide pairs 14, and the plurality of waveguide pairs 14 are further provided. , Each of which is provided in each of the heating sections 11, that is, the waveguide pair 14 is provided correspondingly to each of the transport opening pairs 13. The positions of each waveguide pair 14 in the traveling wave path correspond to the positions of the transport opening pairs 13 in the same heating section 11 in the traveling wave path. Each waveguide pair 14 is connected to the top wall 113 and the bottom wall 114 of the heating section 11, respectively, and includes two waveguides 141 extending along the traveling wave path. The material of the waveguide 141 is a dielectric material and is preferably alumina ceramic, but is not limited to this, and is an aluminum nitride ceramic or a boron nitride ceramic having better thermal conductivity than the alumina ceramic. May be good. The waveguide pair 14 can adjust the traveling wave mode of the microwave in the waveguide 10 to convert from the original basic mode TE 10 to a specific higher order mode, thereby having the following effects: To get.

1.被加熱物のマイクロ波吸収特性が強い場合でも、前記導波板対14は被加熱物を均一に加熱することができる。 1. 1. Even when the object to be heated has strong microwave absorption characteristics, the waveguide pair 14 can uniformly heat the object to be heated.

2.従来の導波管では、内部に金属物があると、該導波管内のマイクロ波が前記金属物によって全て反射されて発射端に戻ってしまい(即ち抵抗無効)、金属を含有する加熱物を加熱することができなかった。しかし、本実施形態の前記導波管10の内部の被加熱物は、金属物が混在していても、マイクロ波が金属物を通常通り迂回して加熱物を均一に加熱することができる。 2. In a conventional waveguide, if there is a metal object inside, all the microwaves in the waveguide are reflected by the metal object and returned to the firing end (that is, the resistance is invalid), and the heated object containing the metal is removed. Could not heat. However, in the object to be heated inside the waveguide 10 of the present embodiment, even if a metal object is mixed, the microwave can bypass the metal object as usual and uniformly heat the heated object.

本発明は、前記導波板対14を設けることにより、マイクロ波吸収特性が強い材料や、金属物を有する被加熱物を処理することができ、更には、本発明が加熱可能な材料の範囲が拡大する。よって、例えば湿気を含んだ回路基板や、金属成分を含有する各種電子製品、金属を含有する半導体ウェハ、金属ワイヤを含有するソーラーウェハ、金属部品を有する湿気を含んだ衣類といった、従来のマイクロ波加熱装置では処理できなかった高単価の被加熱物を処理することができ、本発明の価値が向上する。 In the present invention, by providing the waveguide pair 14, it is possible to treat a material having strong microwave absorption characteristics and a material to be heated having a metal material, and further, the range of materials that can be heated by the present invention. Expands. Therefore, conventional microwaves such as circuit boards containing moisture, various electronic products containing metal components, semiconductor wafers containing metal, solar wafers containing metal wires, and clothing containing moisture containing metal parts. It is possible to treat a high unit price object to be heated that could not be treated by the heating device, and the value of the present invention is improved.

本実施形態において、前記導波板対14と前記搬送開口対13の位置は互いに対応しており、具体的には、前記各加熱区間11内の各導波板141の質量中心と、該各搬送開口131の形状中心が、いずれも同一平面上に位置しているが、これに限定されず、該導波板141の位置と該搬送開口131の位置がほぼ同じであり、該導波板141が前記導波管10のインピーダンスマッチングを調整することができ、且つ該導波管10を通過する被加熱物を均一に加熱できればよい。 In the present embodiment, the positions of the waveguide pair 14 and the transfer opening pair 13 correspond to each other. Specifically, the mass center of each waveguide 141 in each heating section 11 and each of the waveguide openings 141. The shape centers of the transfer openings 131 are all located on the same plane, but the position is not limited to this, and the position of the waveguide 141 and the position of the transfer opening 131 are substantially the same, and the waveguide plate is located. It suffices that 141 can adjust the impedance matching of the waveguide 10 and can uniformly heat the object to be heated passing through the waveguide 10.

具体的には、進行波式加熱法であって、加熱材内のマイクロ波エネルギーの進行方向の大きさは、

Figure 0006964715
であり、マイクロ波の進行方向に沿って、単位距離内で材料がエネルギーを吸収する大きさは、
Figure 0006964715
である。ここで、
Figure 0006964715
は初期入射エネルギーであり、
Figure 0006964715
は減衰係数であり、
Figure 0006964715
値は、材料の誘電率および誘電損失だけでなく、進行波の周波数および使用されるモードによっても決定される。 Specifically, it is a traveling wave heating method, and the magnitude of the microwave energy in the heating material in the traveling direction is
Figure 0006964715
And the magnitude of the material absorbing energy within a unit distance along the direction of microwave travel is
Figure 0006964715
Is. here,
Figure 0006964715
Is the initial incident energy,
Figure 0006964715
Is the damping coefficient
Figure 0006964715
The value is determined not only by the dielectric constant and dielectric loss of the material, but also by the frequency of the traveling wave and the mode used.

図5、図15及び図16に示すように、前記導波管10内に誘電材で製造された前記導波板対14を追加することにより、該導波板対14は、進行波モードを元の基本モードTE10からTEモードにおける1つの高次モードの平行電界モードに変換し、該平行電界モードでは、マイクロ波電界方向が前記搬送方向Dに平行である。具体的には、前記導波板対14の2つの導波板141間の進行波モードが、基本モードTE10から図15に示すTEモードに完全に変換され、それに対応するインピーダンスマッチングの反射S11パラメータ(即ち反射係数)と周波数との関係図は、図16に示すとおりである。なお、図16の横軸の単位はギガヘルツ(Ghz)、縦軸の単位はdBである。また、図17に示すように、基本モードTE10から図15のTEモードへの変換に対応するインピーダンスマッチングの透過S21パラメータ(即ち透過係数)と周波数との関係図においては、全周波数帯域においていずれも0dBである。 As shown in FIGS. 5, 15 and 16, by adding the waveguide pair 14 made of a dielectric material into the waveguide 10, the waveguide pair 14 is set to the traveling wave mode. The original basic mode TE 10 is converted into a parallel electric field mode of one higher order mode in the TE mode, and in the parallel electric field mode, the waveguide electric field direction is parallel to the transport direction D. Specifically, the traveling wave mode between the two waveguides 141 of the waveguide pair 14 is completely converted from the basic mode TE 10 to the TE mode shown in FIG. 15, and the corresponding impedance matching reflection S11 The relationship diagram between the parameter (that is, the reflection coefficient) and the frequency is as shown in FIG. The unit on the horizontal axis of FIG. 16 is gigahertz (Ghz), and the unit on the vertical axis is dB. Further, as shown in FIG. 17, in the relationship diagram between the transmission S21 parameter (that is, the transmission coefficient) of impedance matching corresponding to the conversion from the basic mode TE 10 to the TE mode of FIG. 15 and the frequency, any of them will occur in all frequency bands. Is also 0 dB.

進行波モードを元の基本モードTE10から前記平行電界モードに変換することの利点は、減衰係数の調整が可能なことによって、被加熱物のマイクロ波吸収特性が強い場合でも、前記導波板対14は被加熱物を均一に加熱することができ、従来のマイクロ波加熱装置が被加熱物の両端や前縁部しか加熱できないという問題を改善できる点にあり、また、前記平行電界モードによって、マイクロ波が金属物を迂回することができるため、被加熱物に金属物が混在していても、マイクロ波は金属物を迂回して通常どおり被加熱物を均一に加熱できる点にある。 The advantage of converting the traveling wave mode from the original basic mode TE 10 to the parallel electric field mode is that the attenuation coefficient can be adjusted, so that the waveguide plate has strong microwave absorption characteristics of the object to be heated. The pair 14 is capable of uniformly heating the object to be heated, and can improve the problem that the conventional microwave heating device can heat only both ends and the front edge of the object to be heated, and the parallel electric field mode can be used. Since the microwave can bypass the metal object, even if the metal object is mixed with the object to be heated, the microwave can bypass the metal object and uniformly heat the object to be heated as usual.

また、本実施形態における前記各導波板141の対向する両端の板体の厚みが該導波板141の中心から離れる方向に減少することにより、インピーダンスマッチングがさらに向上し、さらに、インピーダンスマッチングを調整するために、該導波板141の対向する両端の板体の厚みは、前記搬送開口131の対向する両端のように、以下の4種類の形式で変化する。 Further, by reducing the thickness of the plate bodies at both ends of the waveguides 141 facing each other in the present embodiment in a direction away from the center of the waveguides 141, impedance matching is further improved, and impedance matching is further performed. In order to adjust, the thickness of the plate bodies at both ends of the waveguide 141 facing each other changes in the following four types, such as the facing ends of the transport opening 131.

1.線形勾配:前記各導波板141の対向する両端の具体的な形状は以下のとおり(図6に示すとおり)である。すなわち、前記導波板141の前記導波管10に接続される側に、進行波経路に沿って伸びる密着平面71を有し、該導波板141の他方側に、進行波経路に沿って伸びるとともに、進行波経路に沿った長さが該密着平面71の進行波経路に沿った長さよりも短い本体面72と、それぞれ該本体面72の対向する両側から該密着平面71まで延びることによって該導波板141の進行波経路に沿って対向する2つの端縁を形成する2つの第1斜面73を有する。本実施形態において、前記搬送方向Dから見たときの前記導波板141の形状は、等脚台形である。 1. 1. Linear gradient: The specific shapes of the opposite ends of each waveguide 141 are as follows (as shown in FIG. 6). That is, the side of the waveguide 141 connected to the waveguide 10 has a close contact plane 71 extending along the traveling wave path, and the other side of the waveguide 141 is along the traveling wave path. By extending and extending from the main body surface 72 whose length along the traveling wave path is shorter than the length along the traveling wave path of the close contact plane 71 and from both opposite sides of the main body surface 72 to the close contact plane 71, respectively. It has two first slopes 73 that form two opposite edges along the traveling wave path of the waveguide 141. In the present embodiment, the shape of the waveguide 141 when viewed from the transport direction D is an isosceles trapezoid.

2.多角構造:図7及び図8に示すように、本発明の第2実施形態において、両端が多角構造である導波板141Aと、両端の線形が傾斜した前記導波板141の構造とはほぼ同じであり、相違点は以下のとおりである。すなわち、該導波板141Aが2つの第2斜面74Aをさらに有し、該各第2斜面74Aは、前記第1斜面73Aのうちの1つと本体面72Aとの間に位置し、前記密着平面71Aに対する該各導波板141Aの第2斜面74Aの傾斜度は、該密着平面71Aに対する前記第1斜面73Aの傾斜度よりも小さい、つまり、該第2斜面74Aの法線と該密着平面71Aの法線との夾角θは、該第1斜面73Aの法線と該密着平面71Aの法線との夾角θよりも小さい。また、他の好ましい実施形態において、前記第1斜面73Aと前記本体面72Aとの間に、複数の傾斜度合いの異なる斜面を接続して、本実施形態の前記導波板141Aの縁に複数の角を形成してもよい。また、各斜面の寸法は、チェビシェフインピーダンスマッチング変換器の理論に基づいて設計することができ、それによって最適なマッチング効果を得る。 2. Polygonal structure: As shown in FIGS. 7 and 8, in the second embodiment of the present invention, the structure of the waveguide 141A having a polygonal structure at both ends and the structure of the waveguide 141 having slanted linearity at both ends are substantially the same. It is the same, and the differences are as follows. That is, the waveguide 141A further has two second slopes 74A, and each of the second slopes 74A is located between one of the first slopes 73A and the main body surface 72A, and the close contact plane. The inclination of the second slope 74A of each waveguide 141A with respect to 71A is smaller than the inclination of the first slope 73A with respect to the contact plane 71A, that is, the normal line of the second slope 74A and the contact plane 71A. The angle θ 3 with the normal line of the above is smaller than the angle θ 4 between the normal line of the first slope 73A and the normal line of the close contact plane 71A. Further, in another preferred embodiment, a plurality of slopes having different degrees of inclination are connected between the first slope 73A and the main body surface 72A, and a plurality of slopes having different degrees of inclination are connected to the edge of the waveguide 141A of the present embodiment. Corners may be formed. In addition, the dimensions of each slope can be designed based on the theory of the Chebyshev impedance matching transducer, thereby obtaining the optimum matching effect.

3.曲率勾配:図9に示すように、本発明の実施形態3において、両端の曲率が徐々に変化する導波板141Bと、両端の線形が徐々に変化する前記導波板141の構造とはほぼ同じであり、相違点は以下のとおりである。すなわち、2つの円弧面73Bは、それぞれ本体面72Bの進行波経路に沿って対向する両側に位置し、該2つの円弧面73Bは、それぞれ本体体面72Bの対向する両側から密着平面71Bまで延びて、前記導波板141Bの進行波経路に沿って対向する2つの端縁を形成する。前記円弧面73Bは、前記導波板141Bの外側に向かって突出していることが好ましい。 3. 3. Curvature gradient: As shown in FIG. 9, in the third embodiment of the present invention, the structure of the waveguide 141B in which the curvature at both ends gradually changes and the structure of the waveguide 141 in which the alignment at both ends gradually changes are substantially the same. It is the same, and the differences are as follows. That is, the two arcuate surfaces 73B are located on both sides facing each other along the traveling wave path of the main body surface 72B, and the two arcuate surfaces 73B extend from both opposite sides of the main body surface 72B to the close contact plane 71B, respectively. , Two opposite edges are formed along the traveling wave path of the waveguide 141B. The arcuate surface 73B preferably protrudes toward the outside of the waveguide 141B.

4.段差構造:図10に示すように、本発明の実施例形態4において、両端の段差構造が徐々に変化する導波板141Cと、両端の線形が徐々に変化する前記導波板141の構造とはほぼ同じであり、相違点は以下のとおりである。すなわち、2つの段差面73Cが、それぞれ本体面72Cの進行波経路に沿って対向する両側に位置し、該2つの段差面73Cは、それぞれ該本体面72Cの対向する両側から密着平面71Cまで延び、前記導波板141Cの進行波経路に沿って対向する2つの端縁を形成する。本実施形態における前記各段差面73Cは、いずれも複数の直角部を形成しているが、該各段差面73Cは、1つの直角部のみを形成してもよい。前記各段差面73Cの寸法は、チェビシェフインピーダンスマッチング変換器の理論に基づいて設計することができ、それによって最適なマッチング効果を得る。 4. Step structure: As shown in FIG. 10, in the fourth embodiment of the present invention, the structure of the waveguide 141C in which the step structure at both ends gradually changes and the structure of the waveguide 141 in which the alignment at both ends gradually changes. Are almost the same, and the differences are as follows. That is, the two stepped surfaces 73C are located on both sides facing each other along the traveling wave path of the main body surface 72C, and the two stepped surfaces 73C extend from both opposite sides of the main body surface 72C to the close contact plane 71C, respectively. , Two opposite edges are formed along the traveling wave path of the waveguide 141C. Each of the stepped surfaces 73C in the present embodiment forms a plurality of right-angled portions, but each of the stepped surfaces 73C may form only one right-angled portion. The dimensions of each stepped surface 73C can be designed based on the theory of the Chebyshev impedance matching transducer, thereby obtaining the optimum matching effect.

図1、図2及び図5に示すように、前記抽気モジュール40は、前記導波管10の内部空間に連通し、湿気を含んだ被加熱物を加熱することで放出される水蒸気を除去し、パイプユニット41、加熱層42及び集水タンク43を備え、該パイプユニット41は、該導波管10の上方に設けられるとともに該導波管10の内部空間に連通し、該加熱層42は、該パイプユニット41の外側を被覆することによって、水蒸気が凝結して該導波管10内に逆流することを回避し、該集水タンク43は、該パイプユニット41における該導波管10とは反対の一端に接続されることにより、該導波管10からの水蒸気が凝結してできた水分を収集する。 As shown in FIGS. 1, 2 and 5, the bleeding module 40 communicates with the internal space of the waveguide 10 and removes water vapor released by heating a moist object to be heated. The pipe unit 41, the heating layer 42, and the water collecting tank 43 are provided, and the pipe unit 41 is provided above the waveguide 10 and communicates with the internal space of the waveguide 10, and the heating layer 42 is provided. By covering the outside of the pipe unit 41, it is possible to prevent water vapor from condensing and flowing back into the waveguide 10, and the water collecting tank 43 is connected to the waveguide 10 in the pipe unit 41. Is connected to the opposite end to collect the moisture formed by the condensation of water vapor from the waveguide 10.

図1、図5及び図11に示すように、前記マイクロ波隔離モジュール50は、2つのベース体51、複数のマイクロ波抑制部材52及び複数の隔離フランジ53を有し、該2つのベース体51は、それぞれ前記導波管10の搬送方向Dに沿って対向する両側の前記加熱区間11に接続され、且つ通路511を形成し、該通路511は、前記搬送モジュール30の外側を取り囲むとともに、互いに接続された該加熱区間11の、外に向いた前記搬送開口131に連通する。前記マイクロ波抑制部材52は、前記ベース体51の上面に穿設され、該各マイクロ波抑制部材52は管体であり、且つ該マイクロ波抑制部材52の両端は、それぞれ、該ベース体51の上面から突出する開放端522と、前記通路511内に位置する閉鎖端521となっている。該マイクロ波抑制部材52は、前記通路511におけるマイクロ波の透過を制限することができ、さらには前記導波管10のマイクロ波が前記搬送開口131から外部に漏れないようにすることができる。前記マイクロ波抑制部材52は、前記ベース体51の上面に穿設されることに限定されず、該ベース体51の任意の外側面に穿設されてもよい。前記複数の隔離フランジ53は、それぞれ、隣接する前記2つの加熱区間11の間に接続され、該隔離フランジ53の対向する2つの開口は、それぞれ、該2つの加熱区間11の向かい合う前記搬送開口131に連通し、それによってマイクロ波が漏れるのを防止する。 As shown in FIGS. 1, 5 and 11, the microwave isolation module 50 has two base bodies 51, a plurality of microwave suppression members 52 and a plurality of isolation flanges 53, and the two base bodies 51. Are connected to the heating sections 11 on both sides facing each other along the transport direction D of the waveguide 10 and form a passage 511, which surrounds the outside of the transport module 30 and mutually. It communicates with the outward-facing transport opening 131 of the connected heating section 11. The microwave suppression member 52 is bored on the upper surface of the base body 51, each microwave suppression member 52 is a tube body, and both ends of the microwave suppression member 52 are of the base body 51, respectively. It has an open end 522 protruding from the upper surface and a closed end 521 located in the passage 511. The microwave suppression member 52 can limit the transmission of microwaves in the passage 511, and can prevent the microwaves of the waveguide 10 from leaking to the outside from the transport opening 131. The microwave suppression member 52 is not limited to being bored on the upper surface of the base body 51, and may be bored on any outer surface of the base body 51. The plurality of isolation flanges 53 are each connected between the two adjacent heating sections 11, and the two opposing openings of the isolation flange 53 are the transfer openings 131 facing each other of the two heating sections 11. To prevent microwaves from leaking.

最後に、図12から図14に示すように、本発明の実施形態5において、導波管10Dは、2つのブロック体15Dが組み合わされた直線型の管体であり、その両端は、それぞれ前記マイクロ波発射モジュール20が取り付けられる取付端部16Dであり、該導波管10Dには、多角構造の導波板対14Dが設けられ、該導波板対14Dの各導波板141Dは、第1斜面73D及び第2斜面74Dを有する。各搬送開口131Dの外側周縁は、さらに外側に突出してガイドリング壁17Dを形成し、ガイドリング壁17Dは該搬送開口131Dを取り囲むとともに、該搬送開口131Dの相対する両端を遮蔽する遮蔽面171Dが形成され、それによってマイクロ波の漏えいを低減させる。 Finally, as shown in FIGS. 12 to 14, in the fifth embodiment of the present invention, the waveguide 10D is a linear tube in which two block bodies 15D are combined, and both ends thereof are described above. It is a mounting end portion 16D to which the microwave emission module 20 is mounted, and the waveguide 10D is provided with a waveguide pair 14D having a polygonal structure, and each waveguide 141D of the waveguide pair 14D is a first. It has one slope 73D and a second slope 74D. The outer peripheral edge of each transport opening 131D projects further outward to form a guide ring wall 17D, and the guide ring wall 17D surrounds the transport opening 131D and has a shielding surface 171D that shields both ends of the transport opening 131D. It is formed, thereby reducing microwave leakage.

図1及び図5に示すように、本発明は、使用時に被加熱物を前記搬送モジュール30の一端に置き、該搬送モジュール30が被加熱物を搬送方向Dに沿って移動させて、被加熱物を前記搬送開口131から前記導波管10内に送り込むとともに、該導波管10内において被加熱物にマイクロ波エネルギーを吸収させて加熱する。本発明は、湿気を含んだ被加熱物を加熱脱水する際に、前記抽気モジュール40が、被加熱物から放出された水蒸気を取り出して前記集水タンク43内に貯蔵する。 As shown in FIGS. 1 and 5, in the present invention, the object to be heated is placed at one end of the waveguide module 30 at the time of use, and the transfer module 30 moves the object to be heated along the waveguide direction D to be heated. An object is sent into the waveguide 10 through the transport opening 131, and the object to be heated absorbs microwave energy in the waveguide 10 to heat the object. In the present invention, when the object to be heated containing moisture is heated and dehydrated, the bleed air module 40 takes out the water vapor released from the object to be heated and stores it in the water collecting tank 43.

以上のように、本発明は、前記導波管10の対向する両端にマイクロ波発射モジュール20を1つずつ設置することより、高マイクロ波吸収材の該導波管10内における加熱の均一度を向上させるとともに、高単価の被加熱物を加熱処理することができる。 As described above, in the present invention, by installing one microwave emission module 20 at each opposite end of the waveguide 10, the uniformity of heating of the high microwave absorber in the waveguide 10 It is possible to heat-treat a high-priced object to be heated.

以上の説明は、本発明の好ましい実施形態に過ぎず、本発明に対して何ら形式上の限定を行うものではない。本発明は好ましい実施形態によって上記のように開示されているが、それは本発明を限定するためのものではなく、すべての当業者が、本発明の技術構想を逸脱しない範囲において、上記に開示する技術内容を用いて変更及び修飾を行った等価の実施形態で、且つ本発明の技術構想の内容を逸脱しないものは、本発明の技術的本質に基づいて上記の実施形態に対して行われたいかなる簡単な修正、等価の変更及び修飾も、依然としてすべて本発明の技術構想の範囲内にある。 The above description is merely a preferred embodiment of the present invention and does not impose any formal limitation on the present invention. Although the present invention is disclosed as described above by a preferred embodiment, it is not intended to limit the present invention and is disclosed above to the extent that all skilled workers do not deviate from the technical concept of the present invention. Equivalent embodiments modified and modified using the technical contents and which do not deviate from the contents of the technical concept of the present invention were carried out for the above embodiments based on the technical essence of the present invention. Any simple modifications, equivalent changes and modifications are still within the technical concept of the present invention.

10 導波管
11 加熱区間
111 前開口壁
112 後ろ開口壁
113 頂壁
114 底壁
12 連通区間
13 搬送開口対
131 搬送開口
1311 中心線
1312 頂部側周縁
1313 底部側周縁
61 頂部本体部
62 底部本体部
63 第1上直線部
64 第1下直線部
14 導波板対
141 導波板
71 密着平面
72 本体面
73 第1斜面
20 マイクロ波発射モジュール
21 マイクロ波源
22 サーキュレータ
23 方向性結合器
24 水負荷器
30 搬送モジュール
40 抽気モジュール
41 パイプユニット
42 加熱層
43 集水タンク
50 隔離モジュール
51 ベース体
511 通路
52 マイクロ波抑制部材
521 閉鎖端
522 開放端
53 隔離フランジ
D 搬送方向
131C 搬送開口
1311A 中心線
61A 頂部本体部
62A 底部本体部
63A 第1上直線部
64A 第1下直線部
65A 第2上直線部
66A 第2下直線部
141A 導波板
71A 密着平面
72A 本体面
73A 第1斜面
74A 第2斜面
131B 搬送開口
63B 第1上円弧線部
64B 第1下円弧線部
141B 導波板
71B 密着平面
72B 本体面
73B 円弧面
63C 上段差部
64C 下段差部
141C 導波板
71C 密着平面
72C 本体面
73C 段差面
10D 導波管
131D 搬送開口
14D 導波板対
141D 導波板
73D 第1斜面
74D 第2斜面
15D ブロック体
16D 取付端部
17D ガイドリング壁
171D 遮蔽面
θ 夾角
θ 夾角
θ 夾角
θ 夾角


10 Waveguide 11 Heating section 111 Front opening wall 112 Rear opening wall 113 Top wall 114 Bottom wall 12 Communication section 13 Transport opening pair 131 Transport opening 1311 Center line 1312 Top side peripheral edge 1313 Bottom side peripheral edge 61 Top body 62 Bottom body 63 1st upper straight part 64 1st lower straight part 14 Waveguide plate pair 141 Waveguide plate 71 Adhesion plane 72 Main body surface 73 1st slope 20 Microwave emission module 21 Microwave source 22 Circulator 23 Directional coupler 24 Water loader 30 Conveyance module 40 Air extraction module 41 Pipe unit 42 Heating layer 43 Water collection tank 50 Isolation module 51 Base body 511 Passage 52 Waveguide suppression member 521 Closed end 522 Open end 53 Isolation flange D Conveyance direction 131C Conveyance opening 1311A Center line 61A Top body Part 62A Bottom main body 63A 1st upper straight part 64A 1st lower straight part 65A 2nd upper straight part 66A 2nd lower straight part 141A Waveguide plate 71A Adhesion plane 72A Main body surface 73A 1st slope 74A 2nd slope 131B Conveyance opening 63B 1st upper arc line part 64B 1st lower arc line part 141B Waveguide plate 71B Adhesion plane 72B Main body surface 73B Arc surface 63C Upper step part 64C Lower step part 141C Waveguide plate 71C Adhesion plane 72C Main body surface 73C Step surface 10D Waveguide 131D Guided opening 14D Waveguide vs. 141D Waveguide 73D First slope 74D Second slope 15D Block 16D Mounting end 17D Guide ring wall 171D Shielding surface θ 1 Waveguide θ 2 Waveguide θ 3 Waveguide θ 4 Waveguide


Claims (27)

導波管(10,10D)と、2つのマイクロ波発射モジュール(20)と、搬送モジュール(30)を備え、
該導波管(10,10D)は、進行波経路を形成するとともに、少なくとも1つの加熱区間(11)と、少なくとも1つの搬送開口対(13)と、少なくとも1つの導波板対(14,14D)を有し、
前記少なくとも1つの加熱区間(11)は、前開口壁(111)と、該前開口壁(111)とともに搬送方向に間隔を置いて設けられた後ろ開口壁(112)と、該前開口壁(111)及び該後ろ開口壁(112)に接続される頂壁(113)と、該前開口壁(111)及び該後ろ開口壁(112)に接続されるとともに、該頂壁(113)と対向するように設けられた底壁(114)を有し、
前記少なくとも1つの搬送開口対(13)は、前記少なくとも1つの加熱区間(11)の前開口壁(111)と後ろ開口壁(112)にそれぞれ形成された2つの搬送開口(131,131B,131C,131D)を有し、
前記少なくとも1つの導波板対(14,14D)は、前記少なくとも1つの加熱区間(11)内に設けられるとともに、前記進行波経路における位置が、前記少なくとも1つの搬送開口対(13)の該進行波経路における位置に対応し、さらに、該少なくとも1つの加熱区間(11)の頂壁(113)及び底壁(114)にそれぞれ接続されるとともに該進行波経路に沿って延びる、いずれもアルミナセラミック、窒化アルミニウムセラミック、又は窒化ホウ素セラミック製作された2つの導波板(141、141A、141B、141C、141D)を備え、
前記2つのマイクロ波発射モジュール(20)は、それぞれ、前記導波管の進行波経路に沿って対向する両端に設けられ、
前記搬送モジュール(30)は、前記導波管(10,10D)の少なくとも1つの搬送開口対(13)を前記搬送方向(D)に貫通している
ことを特徴とする、マイクロ波加熱装置。
It is equipped with a waveguide (10, 10D) , two microwave emission modules (20), and a transfer module (30) .
The waveguides (10, 10D) form a traveling wave path, with at least one heating section (11) , at least one transport opening pair (13) , and at least one waveguide pair (14, 14D)
Wherein the at least one heating section (11), before and aperture wall (111), a front aperture wall (111) with the rear aperture wall provided at intervals in the conveying direction (112), front aperture wall ( The top wall (113) connected to the 111) and the rear opening wall (112) , connected to the front opening wall (111) and the rear opening wall (112) , and opposed to the top wall (113). Has a bottom wall (114) provided to
The at least one transport opening pair (13) has two transport openings (131, 131B, 131C ) formed in the front opening wall (111) and the rear opening wall (112) of the at least one heating section (11), respectively. , 131D)
The at least one waveguide pair (14, 14D) is provided in the at least one heating section (11) , and the position in the traveling wave path is the said of the at least one transport opening pair (13) . Corresponding to the position in the traveling wave path, further connected to the top wall (113) and bottom wall (114) of the at least one heating section (11) and extending along the traveling wave path, both of which are alumina. With two waveguides (141, 141A, 141B, 141C, 141D) made of ceramic, aluminum nitride ceramic, or boron nitride ceramic .
The two microwave emission modules (20) are provided at both ends facing each other along the traveling wave path of the waveguide.
The microwave heating device is characterized in that the transfer module (30) penetrates at least one transfer opening pair (13) of the waveguide (10, 10D) in the transfer direction (D).
前記導波管の各搬送開口は、頂部側周縁と底部側周縁を有し、該頂部側周縁と該底部側周縁との距離は、該搬送開口の開口幅と定義され、該各搬送開口の前記進行波経路に沿って対向する両端の開口幅がいずれも縮小する
ことを特徴とする、請求項1に記載のマイクロ波加熱装置。
Each transport opening of the waveguide has a top-side peripheral edge and a bottom-side peripheral edge, and the distance between the top-side peripheral edge and the bottom-side peripheral edge is defined as the opening width of the transport opening, and the distance between the top-side peripheral edges and the bottom-side peripheral edge is defined as the opening width of the transport openings. The microwave heating device according to claim 1, wherein the opening widths at both ends facing each other along the traveling wave path are reduced.
前記導波管の各搬送開口は、中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上直線部を有し、
前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下直線部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上直線部と前記第1下直線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上直線部と該第1下直線部の末端同士が接続される
ことを特徴とする、請求項2に記載のマイクロ波加熱装置。
Each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening are formed on both sides of the center line, respectively.
The top peripheral edge of each transport opening extends along the traveling wave path, and two first upper straight portions located on both sides of the top body facing each other along the traveling wave path. Have and
The bottom side peripheral edge of each transport opening has a bottom main body extending along the traveling wave path and two first lower straight lines located on both sides of the bottom main body facing each other along the traveling wave path. Have and
The first upper straight line portion and the first lower straight line portion at either one end of both ends facing the traveling wave path of each of the transport openings extend toward the center line and the first upper straight portion, respectively. The traveling wave heating device according to claim 2, wherein the straight portion and the ends of the first lower straight portion are connected to each other.
前記各搬送開口の頂部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1上直線部と前記頂部本体部との間に位置する第2上直線部がさらに形成され、
前記各搬送開口の底部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1下直線部と前記底部本体部との間に位置する第2下直線部がさらに形成され、
前記第1上直線部と前記中心線との夾角は、前記第2上直線部の延伸線と該中心線との夾角よりも大きく、
前記第1下直線部と前記中心線との夾角は、前記第2下直線部の延伸線と該中心線との夾角よりも大きい
ことを特徴とする、請求項3に記載のマイクロ波加熱装置。
The top peripheral edge of each transport opening is further formed with a second upper straight portion located between the corresponding first upper straight portion and the top main body portion at both opposite ends of the transport opening.
On the bottom peripheral edge of each transport opening, a second lower straight portion located between the corresponding first lower straight portion and the bottom main body portion is further formed at both ends of the transport opening facing each other.
The angle between the first upper straight line portion and the center line is larger than the angle between the extension line of the second upper straight line portion and the center line.
The microwave heating apparatus according to claim 3, wherein the angle between the first lower straight line portion and the center line is larger than the angle between the extension line of the second lower straight line portion and the center line. ..
前記導波管の各搬送開口は、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上円弧線部を有し、
前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下円弧線部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上円弧線部と前記第1下円弧線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上円弧線部と該第1下円弧線部の末端同士が接続される
ことを特徴とする、請求項2に記載のマイクロ波加熱装置。
Each of the waveguide openings of the waveguide has a center line, and the top edge and the bottom edge of each of the waveguides are formed on both sides of the center line, respectively.
The top peripheral edge of each of the transport openings extends along the traveling wave path, and two first upper arc lines located on both sides of the top body facing each other along the traveling wave path. Have,
The bottom side peripheral edge of each of the transport openings extends along the traveling wave path, and two first lower arc line portions located on both sides of the bottom body portion facing each other along the traveling wave path. Have,
The first upper arc line portion and the first lower arc line portion at either one end of both ends facing the traveling wave path of each of the transport openings extend toward the center line and the first 1 The microwave heating device according to claim 2, wherein the upper arc line portion and the ends of the first lower arc line portion are connected to each other.
前記導波管の各搬送開口は、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの上段差部を有し、
前記各搬送開口の底部側周縁が、前記頂部本体部に対応して設けられた底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの下段差部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記上段差部と前記下段差部が、それぞれ、前記中心線に向かって延びるとともに、該上段差部と該下段差部の末端同士が接続される
ことを特徴とする、請求項2に記載のマイクロ波加熱装置。
Each of the waveguide openings of the waveguide has a center line, and the top edge and the bottom edge of each of the waveguides are formed on both sides of the center line, respectively.
The top peripheral edge of each transport opening has a top body extending along the traveling wave path and two upper steps located on both sides of the top body facing the traveling wave path, respectively. ,
The bottom peripheral edge of each of the transport openings is a bottom main body provided corresponding to the top main body, and two lower step portions located on both sides of the bottom main body facing each other along the traveling wave path. Have,
The upper step portion and the lower step portion at either end of both ends facing the traveling wave path of each of the transport openings extend toward the center line, and the upper step portion and the lower step portion, respectively. The microwave heating device according to claim 2, wherein the ends of the portions are connected to each other.
前記少なくとも1つの導波板対の各導波板の対向する両端の板の厚みが減少する
ことを特徴とする、請求項1に記載のマイクロ波加熱装置。
The microwave heating apparatus according to claim 1, wherein the thickness of the plates at both ends of the respective waveguides of the at least one waveguide pair is reduced.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの第1斜面を有する
ことを特徴とする、請求項7に記載のマイクロ波加熱装置。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path, and the main body surfaces are opposed to each other. 7. The seventh aspect of the invention, wherein the waveguide has two first slopes that form two opposite edges along the traveling wave path of the waveguide by extending from both sides to the close contact plane. Microwave heating device.
前記各導波板が2つの第2斜面をさらに有し、該各第2斜面は、前記第1斜面のうちの1つと前記本体面との間に位置し、
前記密着平面に対する前記各導波板の第2斜面の傾斜度は、該密着平面に対する前記第1斜面の傾斜度よりも小さい
ことを特徴とする、請求項8に記載のマイクロ波加熱装置。
Each waveguide further comprises two second slopes, each of which is located between one of the first slopes and the body surface.
The microwave heating device according to claim 8, wherein the inclination of the second slope of each waveguide with respect to the close contact plane is smaller than the inclination of the first slope with respect to the close contact plane.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路に沿った長さが該密着平面の該進行波経路に沿った長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの円弧面を有する
ことを特徴とする、請求項7に記載のマイクロ波加熱装置。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface having a length along the traveling wave path shorter than the length along the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path. 7. Claim 7 is characterized by having two arcuate surfaces that form two opposite edges along the traveling wave path of the waveguide by extending from both opposite sides of the main body surface to the close contact plane. The waveguide described in.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの段差面を有する
ことを特徴とする、請求項7に記載のマイクロ波加熱装置。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path, and the main body surfaces are opposed to each other. The micro according to claim 7, wherein the director has two stepped surfaces that form two opposite edges along the traveling wave path of the waveguide by extending from both sides to the contact plane. Waveguide.
前記導波管の内部空間に連通するとともに、外側が加熱層に覆われている抽気モジュールをさらに有する
ことを特徴とする、請求項1から11のいずれか一項に記載のマイクロ波加熱装置。
The microwave heating device according to any one of claims 1 to 11, further comprising an bleeding module whose outside is covered with a heating layer while communicating with the internal space of the waveguide.
前記抽気モジュールが、集水タンクを有する
ことを特徴とする、請求項12に記載のマイクロ波加熱装置。
The microwave heating device according to claim 12, wherein the bleed air module has a water collecting tank.
少なくとも1つのマイクロ波隔離モジュールをさらに有し、該マイクロ波隔離モジュールは、ベース体と複数のマイクロ波抑制部材を有し、
前記ベース体は、前記導波管に接続され、且つ、前記搬送モジュールの外側を取り囲むとともに該導波管の搬送開口のうちの1つに連通する通路を形成し、
前記複数のマイクロ波抑制部材は、前記ベース体の外側面に穿設され、管体であり、且つ該マイクロ波抑制部材の両端は、それぞれ、該ベース体の外に突出する開放端と、前記通路内に位置する閉鎖端となっている
ことを特徴とする、請求項1から11のいずれか一項に記載のマイクロ波加熱装置。
It further comprises at least one microwave isolation module, the microwave isolation module having a base body and a plurality of microwave suppression members.
The base body is connected to the waveguide and forms a passage that surrounds the outside of the waveguide and communicates with one of the transport openings of the waveguide.
The plurality of microwave suppression members are bored on the outer surface of the base body and are tubular bodies, and both ends of the microwave suppression member are an open end projecting to the outside of the base body and the said. The microwave heating device according to any one of claims 1 to 11, wherein the microwave heating device has a closed end located in a passage.
前記少なくとも1つの導波板対の2つの導波板間におけるマイクロ波電界方向が、前記搬送方向に平行である
ことを特徴とする、請求項1から11のいずれか一項に記載のマイクロ波加熱装置。
The microwave according to any one of claims 1 to 11, wherein the microwave electric field direction between the two waveguides of the at least one waveguide pair is parallel to the transport direction. Heating device.
少なくとも1つの加熱区間(11)と、少なくとも1つの搬送開口対(13)と、少なくとも1つの導波板対(14,14D)を有し、
前記少なくとも1つの加熱区間(11)は、前開口壁(111)と、該前開口壁(111)とともに搬送方向(D)に間隔を置いて設けられた後ろ開口壁(112)と、該前開口壁(111)及び該後ろ開口壁(112)に接続される頂壁(113)と、該前開口壁(111)及び該後ろ開口壁(112)に接続されるとともに、該頂壁(113)と対向するように設けられた底壁(114)を有し、
前記少なくとも1つの搬送開口対(13)は、進行波経路に沿って伸びる細長い2つの搬送開口(131,131B,131C,131D)を有し、該2つの搬送開口(131,131B,131C,131D)は、前記少なくとも1つの加熱区間(11)の前開口壁(111)と後ろ開口壁(112)にそれぞれ形成され、
前記少なくとも1つの導波板対(14,14D)は、導波管(10,10D)内に設けられるとともに、該導波管(10,10D)の長手方向における位置が、前記少なくとも1つの搬送開口対(13)の、該導波管(10,10D)の長手方向における位置に対応し、さらに、前記少なくとも1つの加熱区間(11)の頂壁(113)及び底壁(114)に接続されるとともに前記進行波経路に沿って延びる、いずれもアルミナセラミック、窒化アルミニウムセラミック、又は窒化ホウ素セラミックで製作された2つの導波板(141、141A、141B、141C、141D)を有する
ことを特徴とする、マイクロ波加熱装置の導波管。
It has at least one heating section (11) , at least one transport opening pair (13) , and at least one waveguide pair (14, 14D) .
Wherein the at least one heating section (11), before and aperture wall (111), a front aperture wall (111) behind spaced apart in the conveying direction (D) an opening wall (112), front a top wall (113) connected to the aperture wall (111) and rear filter aperture wall (112) is connected to the front aperture wall (111) and rear filter aperture wall (112), said top wall (113 ), And has a bottom wall (114) provided so as to face the
The at least one transport opening pair (13) has two elongated transport openings (131, 131B, 131C, 131D) extending along the traveling wave path, and the two transport openings (131, 131B, 131C, 131D). ) Are formed on the front opening wall (111) and the back opening wall (112) of the at least one heating section (11), respectively.
The at least one waveguide pair (14, 14D) is provided in the waveguide (10, 10D) , and the position of the waveguide (10, 10D) in the longitudinal direction is the at least one transport. Corresponds to the longitudinal position of the waveguide (10, 10D) of the aperture pair (13) and is further connected to the top wall (113) and bottom wall (114) of the at least one heating section (11). It is characterized by having two waveguides (141, 141A, 141B, 141C, 141D) , each of which is made of alumina ceramic, aluminum nitride ceramic, or boron nitride ceramic, which extends along the traveling wave path. The waveguide of the microwave heating device.
前記導波管の各搬送開口は、頂部側周縁と底部側周縁を有し、該頂部側周縁と該底部側周縁との距離は、該搬送開口の開口幅と定義され、該各搬送開口の前記進行波経路に沿って対向する両端の開口幅がいずれも縮小する
ことを特徴とする、請求項16に記載のマイクロ波加熱装置の導波管。
Each transport opening of the waveguide has a top-side peripheral edge and a bottom-side peripheral edge, and the distance between the top-side peripheral edge and the bottom-side peripheral edge is defined as the opening width of the transport opening, and the distance between the top-side peripheral edges and the bottom-side peripheral edge is defined as the opening width of the transport openings. The waveguide of the microwave heating device according to claim 16, wherein the opening widths at both ends facing each other along the traveling wave path are reduced.
前記導波管の各搬送開口は、中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上直線部を有し、
前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下直線部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上直線部と前記第1下直線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上直線部と該第1下直線部の末端同士が接続される
ことを特徴とする、請求項17に記載のマイクロ波加熱装置の導波管。
Each transport opening of the waveguide has a center line, and the top side peripheral edge and the bottom side peripheral edge of each transport opening are formed on both sides of the center line, respectively.
The top peripheral edge of each transport opening extends along the traveling wave path, and two first upper straight portions located on both sides of the top body facing each other along the traveling wave path. Have and
The bottom side peripheral edge of each transport opening has a bottom main body extending along the traveling wave path and two first lower straight lines located on both sides of the bottom main body facing each other along the traveling wave path. Have and
The first upper straight line portion and the first lower straight line portion at either one end of both ends facing the traveling wave path of each of the transport openings extend toward the center line and the first upper straight portion, respectively. The waveguide of the traveling wave heating device according to claim 17, wherein the straight portion and the ends of the first lower straight portion are connected to each other.
前記各搬送開口の頂部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1上直線部と前記頂部本体部との間に位置する第2上直線部がさらに形成され、
前記各搬送開口の底部側周縁は、該搬送開口の対向する両端において、それぞれ、対応する前記第1下直線部と前記底部本体部との間に位置する第2下直線部がさらに形成され、
前記第1上直線部と前記中心線との夾角は、前記第2上直線部の延伸線と該中心線との夾角よりも大きく、
前記第1下直線部と前記中心線との夾角は、前記第2下直線部の延伸線と該中心線との夾角よりも大きい
ことを特徴とする、請求項18に記載のマイクロ波加熱装置の導波管。
The top peripheral edge of each transport opening is further formed with a second upper straight portion located between the corresponding first upper straight portion and the top main body portion at both opposite ends of the transport opening.
On the bottom peripheral edge of each transport opening, a second lower straight portion located between the corresponding first lower straight portion and the bottom main body portion is further formed at both ends of the transport opening facing each other.
The angle between the first upper straight line portion and the center line is larger than the angle between the extension line of the second upper straight line portion and the center line.
The microwave heating apparatus according to claim 18, wherein the angle between the first lower straight line portion and the center line is larger than the angle between the extension line of the second lower straight line portion and the center line. Waveguide.
前記導波管の各搬送開口は、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの第1上円弧線部を有し、
前記各搬送開口の底部側周縁が、前記進行波経路に沿って延びる底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの第1下円弧線部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記第1上円弧線部と前記第1下円弧線部が、それぞれ、前記中心線に向かって延びるとともに、該第1上円弧線部と該第1下円弧線部の末端同士が接続される
ことを特徴とする、請求項17に記載のマイクロ波加熱装置の導波管。
Each of the waveguide openings of the waveguide has a center line, and the top edge and the bottom edge of each of the waveguides are formed on both sides of the center line, respectively.
The top peripheral edge of each of the transport openings extends along the traveling wave path, and two first upper arc lines located on both sides of the top body facing each other along the traveling wave path. Have,
The bottom side peripheral edge of each of the transport openings extends along the traveling wave path, and two first lower arc line portions located on both sides of the bottom body portion facing each other along the traveling wave path. Have,
The first upper arc line portion and the first lower arc line portion at either one end of both ends facing the traveling wave path of each of the transport openings extend toward the center line and the first 1. The waveguide of the microwave heating device according to claim 17, wherein the upper arc line portion and the ends of the first lower arc line portion are connected to each other.
前記導波管の各搬送開口は、それぞれ中心線を有するとともに、該各搬送開口の頂部側周縁及び底部側周縁は、それぞれ、該中心線の両側に形成され、
前記各搬送開口の頂部側周縁が、前記進行波経路に沿って延びる頂部本体部と、それぞれ該頂部本体部の該進行波経路に沿って対向する両側に位置する2つの上段差部を有し、
前記各搬送開口の底部側周縁が、前記頂部本体部に対応して設けられた底部本体部と、それぞれ該底部本体部の該進行波経路に沿って対向する両側に位置する2つの下段差部を有し、
前記各搬送開口の前記進行波経路に沿って対向する両端のいずれか一端における前記上段差部と前記下段差部が、それぞれ、前記中心線に向かって延びるとともに、該上段差部と該下段差部の末端同士が接続される
ことを特徴とする、請求項17に記載のマイクロ波加熱装置の導波管。
Each of the waveguide openings of the waveguide has a center line, and the top edge and the bottom edge of each of the waveguides are formed on both sides of the center line, respectively.
The top peripheral edge of each transport opening has a top body extending along the traveling wave path and two upper steps located on both sides of the top body facing the traveling wave path, respectively. ,
The bottom peripheral edge of each of the transport openings is a bottom main body provided corresponding to the top main body, and two lower step portions located on both sides of the bottom main body facing each other along the traveling wave path. Have,
The upper step portion and the lower step portion at either end of both ends facing the traveling wave path of each of the transport openings extend toward the center line, and the upper step portion and the lower step portion, respectively. The waveguide of the microwave heating device according to claim 17, wherein the ends of the portions are connected to each other.
前記少なくとも1つの導波板対の各導波板の対向する両端の板の厚みが減少する
ことを特徴とする、請求項16に記載のマイクロ波加熱装置の導波管。
The waveguide of a microwave heating device according to claim 16, wherein the thickness of the plates at both ends of the respective waveguides of the at least one waveguide pair is reduced.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から前記密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの第1斜面を有する
ことを特徴とする、請求項22に記載のマイクロ波加熱装置の導波管。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path, and the main body surfaces are opposed to each other. 22. Waveguide for microwave heating equipment.
前記各導波板が2つの第2斜面をさらに有し、該各第2斜面は、前記第1斜面のうちの1つと前記本体面との間に位置し、
前記密着平面に対する前記各導波板の第2斜面の傾斜度は、該密着平面に対する前記第1斜面の傾斜度よりも小さい
ことを特徴とする、請求項23に記載のマイクロ波加熱装置の導波管。
Each waveguide further comprises two second slopes, each of which is located between one of the first slopes and the body surface.
23. The induction of the microwave heating device according to claim 23, wherein the inclination of the second slope of each waveguide with respect to the close contact plane is smaller than the inclination of the first slope with respect to the close contact plane. Waveguide.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路に沿った長さが該密着平面の該進行波経路に沿った長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの円弧面を有する
ことを特徴とする、請求項22に記載のマイクロ波加熱装置の導波管。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface having a length along the traveling wave path shorter than the length along the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path. 22. The waveguide of the microwave heating device according to.
前記各導波板の前記導波管に接続される側に、前記進行波経路に沿って伸びる密着平面を有し、該導波板の他方側に、該進行波経路に沿って伸びるとともに、該進行波経路における長さが該密着平面の該進行波経路における長さよりも短い本体面と、それぞれ該本体面の該進行波経路に沿って対向する両側に位置し、それぞれ該本体面の対向する両側から該密着平面まで延びることによって該導波板の該進行波経路に沿って対向する2つの端縁を形成する2つの段差面を有する
ことを特徴とする、請求項22に記載のマイクロ波加熱装置の導波管。
Each waveguide has a close contact plane extending along the traveling wave path on the side connected to the waveguide, and extends along the traveling wave path on the other side of the waveguide. The main body surface whose length in the traveling wave path is shorter than the length in the traveling wave path of the close contact plane is located on both sides of the main body surface facing each other along the traveling wave path, and the main body surfaces are opposed to each other. 22. The micro according to claim 22, wherein the director has two stepped surfaces that form two opposite edges along the traveling wave path of the waveguide by extending from both sides to the contact plane. Waveguide for wave heating equipment.
前記少なくとも1つの導波板対の2つの導波板間におけるマイクロ波電界方向が、前記搬送方向に平行である
ことを特徴とする、請求項17から26のいずれか一項に記載のマイクロ波加熱装置の導波管。
The microwave according to any one of claims 17 to 26, wherein the direction of the microwave electric field between the two waveguides of the at least one waveguide pair is parallel to the transport direction. Waveguide of the heating device.
JP2020090890A 2020-05-25 2020-05-25 Waveguide of microwave heating device and microwave heating device Active JP6964715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090890A JP6964715B1 (en) 2020-05-25 2020-05-25 Waveguide of microwave heating device and microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090890A JP6964715B1 (en) 2020-05-25 2020-05-25 Waveguide of microwave heating device and microwave heating device

Publications (2)

Publication Number Publication Date
JP6964715B1 true JP6964715B1 (en) 2021-11-10
JP2021190174A JP2021190174A (en) 2021-12-13

Family

ID=78466204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090890A Active JP6964715B1 (en) 2020-05-25 2020-05-25 Waveguide of microwave heating device and microwave heating device

Country Status (1)

Country Link
JP (1) JP6964715B1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910376B1 (en) * 1970-11-14 1974-03-09
US3710064A (en) * 1971-06-03 1973-01-09 Mac Millan Bloedel Ltd Microwave drying system
US3765425A (en) * 1971-09-02 1973-10-16 Brown & Williamson Tobacco Puffing of tobacco
JPS58952Y2 (en) * 1976-12-01 1983-01-08 日本電気ホームエレクトロニクス株式会社 High frequency heating device
US4227063A (en) * 1978-01-25 1980-10-07 Raytheon Company Microwave apparatus seal
US4405850A (en) * 1978-10-06 1983-09-20 Raytheon Company Combination microwave heating apparatus
US4488027A (en) * 1983-06-06 1984-12-11 Raytheon Company Leakage suppression tunnel for conveyorized microwave oven
JPS60240094A (en) * 1984-05-12 1985-11-28 ミクロ電子株式会社 Method of continuously heating slender dielectric unit
JPH0743996Y2 (en) * 1989-08-30 1995-10-09 新日本無線株式会社 Microwave heating device
US5298707A (en) * 1991-06-07 1994-03-29 Tgtbt, Ltd. Apparatus for preparing fat free snack chips
US6259077B1 (en) * 1999-07-12 2001-07-10 Industrial Microwave Systems, Inc. Method and apparatus for electromagnetic exposure of planar or other materials
JP4073380B2 (en) * 2003-08-22 2008-04-09 株式会社ピアエンジニアリング Moisture removal device
US7368692B1 (en) * 2007-01-26 2008-05-06 Industrial Microwave Systems, L.L.C. Ridged serpentine waveguide applicator
JP2009181900A (en) * 2008-01-31 2009-08-13 Fuji Denpa Koki Kk Microwave heating device
JP5918441B2 (en) * 2012-05-14 2016-05-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute Microwave heating device for uniform heating of an object to be heated based on conditions near the cutoff value
CN208623940U (en) * 2018-08-09 2019-03-19 南京三乐微波技术发展有限公司 A kind of archipelago type micro-wave suppressor

Also Published As

Publication number Publication date
JP2021190174A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US4176266A (en) Microwave heating apparatus
KR102170082B1 (en) Open type dryer
TW201934947A (en) Microwave drying device capable of effectively increasing the drying efficiency for a work piece
JP6964715B1 (en) Waveguide of microwave heating device and microwave heating device
US4176267A (en) Microwave energy trap
TWI764108B (en) Waveguide of microwave heating device and microwave heating device
KR102300717B1 (en) Microwave heating device and microwave guiding tube thereof
EP3883344B1 (en) Microwave heating device and microwave guiding tube thereof
US11558938B2 (en) Microwave heating device and microwave guiding tube thereof
CN113597038B (en) Microwave surface wave uniform heating device for microwave oven
CN115734413A (en) High-energy-efficiency stepped metal corrugated microwave uniform heating device
CN114007292B (en) Microwave heating film device and system
US3754111A (en) Access tunnel and attenuator for microwave ovens
RU95114165A (en) UNIVERSAL SUPER HIGH FREQUENCY DRYING UNIT (OPTIONS)
JPS6155236B2 (en)
CN107275173B (en) Confocal waveguide ceramics open annular column microwave absorbing device
RU2325739C2 (en) Strip load
US3634783A (en) Waveguide load
JPS5836474B2 (en) High frequency heating device
CN113543395A (en) Leakage coaxial device for uniformly heating solid material
US3235701A (en) Microwave oven
KR20200030266A (en) Heating apparatus using microwave
CN215268782U (en) Choke device and microwave protection device
JPS58952Y2 (en) High frequency heating device
CN117596738A (en) TM mode traveling wave heating reaction device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250