JP6945906B1 - γ-based stainless steel wire and its manufacturing method - Google Patents

γ-based stainless steel wire and its manufacturing method Download PDF

Info

Publication number
JP6945906B1
JP6945906B1 JP2021077752A JP2021077752A JP6945906B1 JP 6945906 B1 JP6945906 B1 JP 6945906B1 JP 2021077752 A JP2021077752 A JP 2021077752A JP 2021077752 A JP2021077752 A JP 2021077752A JP 6945906 B1 JP6945906 B1 JP 6945906B1
Authority
JP
Japan
Prior art keywords
stainless steel
based stainless
steel wire
wire
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021077752A
Other languages
Japanese (ja)
Other versions
JP2022171223A (en
Inventor
西村 強
強 西村
西村 貴伸
貴伸 西村
Original Assignee
有限会社 関西エンジニアリング
有限会社 関西エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 関西エンジニアリング, 有限会社 関西エンジニアリング filed Critical 有限会社 関西エンジニアリング
Priority to JP2021077752A priority Critical patent/JP6945906B1/en
Application granted granted Critical
Publication of JP6945906B1 publication Critical patent/JP6945906B1/en
Publication of JP2022171223A publication Critical patent/JP2022171223A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

【課題】仕上金属線に残留するγ量を高い数値に維持して加工性を高めたステンレス鋼線及びその実用的な製造法方法を提供する。【解決手段】質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:8.0〜10.50%、Cr:18.00〜20.00%、残部Feの組成を有し、線径0.08mm以上、2.60mm以下で、引張強度が1550N/mm2以上、3500N/mm2以下であって、かつ、30体積%以上、90体積%以下のγ量を有することを特徴とするγ系ステンレス鋼線。製造方法は、γ系ステンレス鋼母線の伸線加工方向に沿って少なくとも2台の引抜加工治具を前後に配置し、前段の引抜加工治具によるγ系ステンレス鋼母線の伸線加工により発生した加工熱を利用して、後段の引抜加工治具での加熱伸線加工する方法である。【選択図】図4PROBLEM TO BE SOLVED: To provide a stainless steel wire in which the amount of γ remaining in the finished metal wire is maintained at a high value to improve workability, and a practical manufacturing method thereof. SOLUTION: In mass%, C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.030% or less, Ni: It has a composition of 8.0 to 10.50%, Cr: 18.0 to 20.00%, and the balance Fe, has a wire diameter of 0.08 mm or more and 2.60 mm or less, and has a tensile strength of 1550 N / mm 2 or more and 3500 N. A γ-based stainless steel wire having a γ content of 30% by volume or more and 90% by volume or less of / mm2 or less. The manufacturing method was generated by arranging at least two drawing jigs in the front and rear along the drawing direction of the γ-based stainless steel bus, and drawing the γ-stainless steel bus with the drawing jig in the previous stage. This is a method of heat drawing with a drawing jig in the subsequent stage using the processing heat. [Selection diagram] Fig. 4

Description

本発明は、2台の引抜加工治具(ダイス)を伸線方向に配置し,前段の引抜加工治具での引抜で発生する熱を利用して後段の引抜加工治具で伸線加工することにより、オーステナイト組織を残留させたγ系ステンレス鋼線及びその製造方法に関する。 In the present invention, two drawing jigs (dies) are arranged in the drawing direction, and the heat generated by the drawing by the drawing jig in the previous stage is used to draw the wires in the drawing jig in the subsequent stage. The present invention relates to a γ-based stainless steel wire in which an austenite structure remains and a method for producing the same.

ステンレス鋼の伸線加工は、所望する線径を得ることと、所望の強度を得ることを目的として行われる。線径は、伸線加工で使用する治具(ダイス)の穴径により決定される。また、強度は加工の度合いで決まる。加工の度合いは、加工に伴う線径の断面積の減り具合、即ち減面率「(1-(d ÷d ))×100%」と強度との関係図表を予め諸実験によって確保し、実生産に於いてこれを活用する。即ち、強度は減面率によってコントロールされる。 The wire drawing process of stainless steel is performed for the purpose of obtaining a desired wire diameter and obtaining a desired strength. The wire diameter is determined by the hole diameter of the jig (die) used for wire drawing. In addition, the strength is determined by the degree of processing. The degree of processing is determined by various experiments in advance on the relationship between the degree of decrease in the cross-sectional area of the wire diameter due to processing, that is, the surface reduction rate "(1- (d 1 2 ÷ d 2 2)) x 100%" and the strength. Secure and utilize this in actual production. That is, the strength is controlled by the surface reduction rate.

ところで、γ系ステンレス鋼線は、加工を受けるとγ→α´加工変態を生じる。このγ→α´加工変態は、加工を受ける直前の温度に顕著に影響を受け、150℃程度の加熱で強加工(滅面率90%)を受けても常温加工時の30%程度しか変態が進行せず、体積の70%がγ組織として残留し、更なる加工を可能とする。従って、γ系ステンレス鋼線の伸線加工には、150℃程度の加熱状態で強加工するのが好適である。 By the way, when γ-based stainless steel wire is processed, γ → α ′ processing transformation occurs. This γ → α'working transformation is significantly affected by the temperature immediately before being machined, and even if it is subjected to strong machining (cutting surface rate 90%) by heating at about 150 ° C., it is only about 30% of that during normal temperature machining. Does not progress, and 70% of the volume remains as a γ structure, enabling further processing. Therefore, for wire drawing of γ-based stainless steel wire, it is preferable to perform strong processing in a heating state of about 150 ° C.

しかし、ここで実務的に問題となる技術課題は、伸線加工が秒速数mの高速で走行するγ系ステンレス鋼線に対する作業であるため、このγ系ステンレス鋼線を連続伸線機の狭いダイスBOX付近で、いかにして上述の温度に昇温するかが、本発明の伸線加工の課題となる。
高々150℃程度の加熱と云っても、秒速数mの高速で走るγ系ステンレス鋼線を1秒以下の短時間で昇温することはそう簡単ではない。
However, the technical problem that becomes a practical problem here is that the wire drawing process is for a γ-based stainless steel wire that travels at a high speed of several meters per second. How to raise the temperature to the above-mentioned temperature in the vicinity of the die BOX is an issue of the wire drawing process of the present invention.
It is not so easy to heat a γ-based stainless steel wire running at a high speed of several meters per second in a short time of 1 second or less, even if it is heated to about 150 ° C. at most.

本発明者は、ステンレス鋼線を加熱する方法として、先に誘導加熱装置を使った加熱伸線法を提案し、特許が認められた(特許文献1:特許2050506号、なお、その発明内容については公告公報である特公平07-080008号公報を参照してください)。
しかし、この発明を実施するために必須の誘導加熱装置(IH)が1セット600万円と非常に高価で、これを連続伸線機の各釜のダイス前に複数台セツ卜するには余程の実績を示さなければ実用化には踏み切れず、商業的生産への移行には課題が多く在った。
その対応の一つとして、本発明者は、耐熱潤滑油法(特許文献2:特開2012-81502号公報参照)を開発し、耐熱潤滑油を利用した加熱伸線法として出願をした。この方法では、例えば2200N/mmの引張強度のオーステナイト系ステンレス鋼線を得ることができる(段落0022,0024参照)。しかし、特許文献2の発明もまた特許文献1の発明と同様に、実験的には確立したが、長時間、150℃以上の高温に順応出来得る耐熱潤滑油の開発、などの解決すべき要件があり、特許文献1と同様に商業的生産への移行には課題が多く在った。
このような事情から、現時点では、仕上金属線に残留するγ量を高い数値に維持して加工性を高めたステンレス鋼線及びその実用的な製造法方法は得られていないのが現状である。
The present inventor has previously proposed a heating wire drawing method using an induction heating device as a method for heating a stainless steel wire, and a patent has been granted (Patent Document 1: Patent No. 2050506, and the content of the invention). Please refer to the official gazette No. 07-080008).
However, the induction heating device (IH), which is indispensable for carrying out this invention, is very expensive at 6 million yen per set, and it is not enough to set multiple units in front of the die of each pot of the continuous wire drawing machine. Unless it showed a good track record, it could not be put into practical use, and there were many problems in the transition to commercial production.
As one of the measures, the present inventor has developed a heat-resistant lubricating oil method (see Patent Document 2: Japanese Patent Application Laid-Open No. 2012-81502) and filed an application as a heating wire drawing method using heat-resistant lubricating oil. With this method, for example, an austenitic stainless steel wire having a tensile strength of 2200 N / mm can be obtained (see paragraph 0022,0024). However, although the invention of Patent Document 2 has been established experimentally like the invention of Patent Document 1, it is a requirement to be solved such as development of a heat-resistant lubricating oil capable of adapting to a high temperature of 150 ° C. or higher for a long time. As in Patent Document 1, there were many problems in the transition to commercial production.
Under these circumstances, at present, it is not possible to obtain a stainless steel wire in which the amount of γ remaining in the finished metal wire is maintained at a high value to improve workability and a practical manufacturing method thereof. ..

特公平07−080008号公報Special Fair 07-08008 Gazette 特開2012−81502号公報Japanese Unexamined Patent Publication No. 2012-81502

上記事情に鑑み、本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、加工されるステンレス鋼母線自体の加工発熱を活用してγ→α´加工変態を減少させ、加工性に優れたγ組織を多く残留させて加工限界を最高度に延長して伸線加工を行い、生産性の向上、コストダウン、更には新製品の開発に寄与出来る画期的な発明として 本発明に係るγ組織を多く残留させた「γ系ステンレス鋼線」及び「このγ系ステンレス鋼線を伸線加工により製造する方法」の開発に成功した。以下、本発明について具体的に説明する。 In view of the above circumstances, the present inventors have conducted diligent research to solve the above problems, and as a result, utilize the processing heat generated by the processed stainless steel bus itself to reduce the γ → α'processing transformation and improve the workability. The present invention is an epoch-making invention that can contribute to the improvement of productivity, cost reduction, and the development of new products by performing wire drawing with a large amount of excellent γ structure remaining and extending the processing limit to the maximum. We have succeeded in developing a "γ-based stainless steel wire" in which a large amount of the γ-structure remains and a "method for manufacturing this γ-based stainless steel wire by wire drawing". Hereinafter, the present invention will be specifically described.

まず、本発明に係る「(SUS304の組成を有する)γ系ステンレス鋼線の製造方法」の概要を説明する。
一般に金属は、加工を受けると、金属独自の結晶のすベリ面上を元素が移動して変形が進行して内部応力を蓄積し、同時に転位も集積して不働転位となり、加工を困難にする。更に、γ系ステンレス鋼線はこれらの変形機構以外に組織そのものが加工を受けて、γ→α´加工変態を 生じて硬化が進行する。
この場合の加工変態は、加工を受ける直前の温度の影響を顕著に受け、200℃程度の加熱で殆んど変化は進行せず、強度の向上も少ない。然し、連続伸線機での加工速度は、線速が秒速2〜8mと高速なので、加熱装置を狭い連続伸線機の台場にセットする事は困難である。
First, an outline of "a method for producing a γ-based stainless steel wire (having a composition of SUS304)" according to the present invention will be described.
In general, when a metal is processed, elements move on the sliding surface of the crystal unique to the metal, deformation progresses and internal stress is accumulated, and at the same time, dislocations also accumulate and become inactive dislocations, making processing difficult. do. Furthermore, in addition to these deformation mechanisms, the structure of γ-based stainless steel wire is processed, causing γ → α ′ processing transformation, and hardening proceeds.
In this case, the processing transformation is significantly affected by the temperature immediately before the processing, and the change hardly progresses by heating at about 200 ° C., and the strength is hardly improved. However, since the machining speed of the continuous wire drawing machine is as high as 2 to 8 m / s, it is difficult to set the heating device on the platform of the narrow continuous wire drawing machine.

そこで、これらの対策とは全く別の新しい手法として、本発明方法(以下、本明細書では「ダブルダイス加熱伸線法」と称する)を開発した。
以下、図1の「ダブルダイス加熱伸線法概要図」、図2の「引抜加工とマルテンサイト発生の温度依存性」、及び図3の「加工温度-減免率-引張強度の関係」を参照して、本発明方法に係る「ダブルダイス加熱伸線法」の概要を説明する。
なお、図1は、本発明の理解を容易にするためにその具体例を示した概略図である。図1では、上段に2個のダイスの配置例、下段に加熱温度を数値等に付して示しているが、図1に記載された具体的な数値等に本発明が特定されるという趣旨でないことを念のため指摘する。
また、図2は、加工温度が高い方が、マルテンサイトの発生割合を低く押さ得ることができること示し、図3は、加工温度が高い方が、引張強度の上昇を抑えることができることを示している。
Therefore, as a new method completely different from these countermeasures, the method of the present invention (hereinafter, referred to as "double die heating wire drawing method" in the present specification) has been developed.
Hereinafter, refer to "Overview of the double die heating wire drawing method" in FIG. 1, "Temperature dependence of drawing and martensite generation" in FIG. 2, and "Relationship between machining temperature-reduction rate-tensile strength" in FIG. Then, the outline of the "double die heating wire drawing method" according to the method of the present invention will be described.
Note that FIG. 1 is a schematic view showing a specific example thereof in order to facilitate understanding of the present invention. In FIG. 1, an example of arranging two dice is shown in the upper row, and the heating temperature is attached to a numerical value or the like in the lower row. I will point out that it is not.
Further, FIG. 2 shows that the higher the processing temperature, the lower the rate of martensite generation can be pressed, and FIG. 3 shows that the higher the processing temperature, the more the increase in tensile strength can be suppressed. There is.

図1の記載から明らかなように、2個のダイス(伸線用治具)を、例えば、100mm〜150mm間隔で配置し、前段のNo.1ダイスでの伸線加工によって発生する発熱をそのまま後段のNo.2ダイスに持ち込み、ここで加熱伸線を行う方法、好ましくはNo.1ダイスでの伸線加工の前に予備加熱ゾーンで予備加熱する方法は、まさに理想的な方法と云える。 As is clear from the description in FIG. 1, two dies (wire drawing jigs) are arranged at intervals of, for example, 100 mm to 150 mm, and the heat generated by the wire drawing process with the No. 1 die in the previous stage remains as it is. The method of bringing it to the No. 2 die in the latter stage and performing the heating wire drawing here, preferably the method of preheating in the preheating zone before the wire drawing process with the No. 1 die, can be said to be an ideal method. ..

(予備加熱)
より具体的に説明すれば、前段のNo.1ダイスでの伸線時のγ→α´加工変態を少しでも少なくするために、No.1 ダイスに入る前にγ系ステンレス鋼線を、例えば70℃〜130℃程度に予備加熱し、予備加熱された線をNo.1ダイスに導入すれば、No.1ダイス通過時のγ→α´加工変態は大幅に抑制され、更にNo.1ダイスでの発熱と加算され後段のNo.2ダイスに入る直前の温度を200℃近く迄昇温できればγ→α´加熱変態は激減し、強度向上も半減でき、まさに理想的な加熱伸線が実現できることとなる。
No.1ダイスの前に配置する予備加熱方法には直接加熱(通電、耐熱潤滑油等)、或いは間接加熱(熱風、加熱炉通過等)などが考えられる。予備加熱およびNo.1ダイスとNo.2ダイスを配置した状態をダブルダイスの1セットとすると、これを6セット配置した状態を図4に示す。尚、予備加熱は130℃前後であれば線速が高速であっても充分に昇温は可能である。
(Preheating)
More specifically, in order to reduce the γ → α'working transformation during wire drawing with the No. 1 die in the previous stage, γ-based stainless steel wire is used before entering the No. 1 die, for example. If preheated to about 70 ° C to 130 ° C and the preheated wire is introduced into the No. 1 die, the γ → α'working transformation when passing through the No. 1 die is significantly suppressed, and the No. 1 die is further suppressed. If the temperature just before entering the No. 2 die in the latter stage can be raised to nearly 200 ° C, the γ → α'heating transformation will be drastically reduced, the strength improvement will be halved, and the ideal heating wire drawing will be realized. You will be able to do it.
As the preheating method placed in front of the No. 1 die, direct heating (energization, heat-resistant lubricating oil, etc.) or indirect heating (hot air, passing through a heating furnace, etc.) can be considered. Assuming that the state in which the preheating and the No. 1 die and the No. 2 die are arranged is one set of double dice, the state in which six sets are arranged is shown in FIG. If the preheating is around 130 ° C., the temperature can be sufficiently raised even if the linear velocity is high.

(ダブルダイス加熱伸線法)
本発明方法は、伸線加工に於ける操作に関して、従来の「減面率強度コントロール法」から「加熱温度コントロール法」に転換した点に特徴がある。
以下、この点について具体的に説明する。
伸線加工に於ける操作は、タイスと呼ばれる入口が大きく、出口が小さな伸線加工治具の中に線を通して出口の直径に合わせるものである。この操作により、単に線径を所定の径にするだけでなく、加工と同時に、加工による強度の向上を図る事ができる。
この場合の強度の向上を支配する要因は、減面率(1‐(d ÷d ))×100%)で、過去の実験及び実績から通常の常温伸線では25〜20%でこれを繰り返して全滅面率を85%前後まで加工すれば、線材はそれ以上の加工には耐えられず断線する。断線に致らなくても内部亀裂を生じ、欠陥のある製品となる惧れがある。多くのワイヤー製造メーカーでは作業標準として各減面率は20〜25%、全滅面率は80〜82%程度を標準化し、単独伸線機7〜8台を連続して配置し、これを電気的配線駆動化して連続伸線を行っている。
尚、各伸線機で採用する減面率は各伸線機共、同一減面率(パラレルドラフト)を採用するか、引き抜き力を考慮して漸次減少(テーパードラフト)にするかは適宜選択可能である。
その後、光輝焼鈍して軟化し、再度同じ伸線を、繰り返して線径を細くし、強度をアップする。
(Double die heating wire drawing method)
The method of the present invention is characterized in that the operation in the wire drawing process is changed from the conventional "surface reduction rate strength control method" to the "heating temperature control method".
Hereinafter, this point will be specifically described.
The operation in wire drawing is to match the diameter of the outlet by passing a wire through a wire drawing jig called a tie, which has a large entrance and a small outlet. By this operation, it is possible not only to make the wire diameter a predetermined diameter but also to improve the strength by processing at the same time as processing.
Factors governing the increase of the intensity of this case, the area reduction rate (1- (d 1 2 ÷ d 0 2)) × 100%), 25~20% from previous experiments and results in a normal ambient temperature drawing If this is repeated and the total surface rate is processed to around 85%, the wire cannot withstand further processing and the wire breaks. Even if it does not break, internal cracks may occur, resulting in a defective product. In many wire manufacturers, as a work standard, each surface reduction rate is standardized at 20 to 25%, and the total surface rate is standardized at about 80 to 82%. The wiring is driven and continuous wire drawing is performed.
As for the surface reduction rate adopted by each wire drawing machine, it is appropriately selected whether to adopt the same surface reduction rate (parallel draft) for each wire drawing machine or to gradually reduce the surface reduction rate (tapered draft) in consideration of the pulling force. It is possible.
After that, it is brightly annealed and softened, and the same wire drawing is repeated again to reduce the wire diameter and increase the strength.

本発明の伸線加工と対比するために、まず、従来の伸線工程を図5(現状の伸線・焼鈍工程)に示す。
例えば、一例として5.5mmφの圧延ロッド(素材)を使用し、0.90mmφの細線を製造する場合には、図5に示す通り2種類の連続伸線機を使用し、1次伸線と2次伸線との中間に1次焼鈍(1回の光輝焼鈍)を行い、目的の0.90mmφの生産を行なう。図6に、この場合の減面率と強度向上をNi当量21.9注1 について示す。従来のγ系ステンレス線の強度コントロールは全て減面率によってコントロールされており、必要とする強度を生産するには、減面率−強度関係図によりスタートサイズを決め、加工率を算出して製品化を図る。
注1:Ni当量はγ→α´の加工変態の発生状況、即ち、γの安定性について、含有元素の影響を考慮した式で一般には平山の式と呼ばれる式を採用する。Ni当量が大きい程、γは安定している。
平山の式:
Ni当量(%)=Ni(%)+0.65Cr(%)+0.98Mo(%)+1.05Mn(%)+0.35Si(%)+12.6C(%)
一方、γ系ステンレス線のJIS規格には、JIS G 4309(ステンレス鋼線)とJIS G 4314(ばね用ステンレス線)の2つの規格があり、それぞれW1、W2、W1/2HとWPA、WPBの5つの強度規格があり、仲線加工を施す強度規格はW1を除く他の4規格である。サイズ範囲で強度規格を定めている。図7にJIS規格と線径との関係を判り易く図示する。
In order to compare with the wire drawing process of the present invention, first, the conventional wire drawing process is shown in FIG. 5 (current wire drawing / annealing process).
For example, when a 5.5 mmφ rolling rod (material) is used as an example to manufacture a 0.90 mmφ thin wire, two types of continuous wire drawing machines are used as shown in FIG. 5, and a primary wire drawing machine and a secondary wire drawing machine are used. Primary annealing (one bright annealing) is performed in the middle of the wire drawing to produce the desired 0.90 mmφ. FIG. 6 shows the surface reduction rate and strength improvement in this case for Ni equivalent 21.9 Note 1 . All the strength control of conventional γ-based stainless steel wire is controlled by the surface reduction rate, and in order to produce the required strength, the start size is determined by the surface reduction rate-strength relationship diagram, and the processing rate is calculated to produce the product. Aim for conversion.
Note 1: Ni equivalent is a formula that considers the influence of contained elements for the occurrence of processing transformation of γ → α', that is, the stability of γ, and generally adopts the formula called Hirayama's formula. The larger the Ni equivalent, the more stable the γ.
Hirayama's formula:
Ni equivalent (%) = Ni (%) +0.65Cr (%) +0.98Mo (%) + 1.05Mn (%) + 0.35Si (%) + 12.6C (%)
On the other hand, there are two JIS standards for γ-based stainless steel wires, JIS G 4309 (stainless steel wire) and JIS G 4314 (stainless steel wire for springs), which are W1, W2, W1 / 2H and WPA, WPB, respectively. There are five strength standards, and the strength standards for intermediate wire processing are the other four standards except W1. Strength standards are set in the size range. FIG. 7 shows the relationship between the JIS standard and the wire diameter in an easy-to-understand manner.

図6は減面率と強度の関係を示した図である。この図から4規格の強度線を作り出すための減面率を求めると、線径にもよるが、減面率20%前後でW2を、40%前後でW1/2Hを70%前後でWPAを82%前後でWPBの規格品の生産が可能となる。しかし、減面率依存の強度規格品の生産には、緻密な対応が必要で、JIS規格のサイズ(線径)は種類が多く、これを全て満たすスタートサイズと伸線加工は複雑そのものです。 FIG. 6 is a diagram showing the relationship between the surface reduction rate and the strength. When the surface reduction rate for creating the strength lines of 4 standards is obtained from this figure, W2 is calculated at around 20%, W1 / 2H at around 40%, and WPA at around 70%, depending on the wire diameter. WPB standard products can be produced at around 82%. However, the production of strength standard products that depend on the surface reduction rate requires precise support, and there are many types of JIS standard sizes (wire diameters), and the start size and wire drawing that meet all of these are complicated.

本発明方法は、上記の従来技術の課題、すなわち減面率依存の強度規格品の生産には、緻密な対応が必要で、JIS規格のサイズ(線径)は種類が多く、これを全て満たすスタートサイズと伸線加工は複雑となるという課題を解消すべくなされたもので、被加工線自体の加工発熱を利用してγ(オーステナイト組織)→α´(マルテンサイト組織)加工変態を減少させ、加工性に優れたγ組織を多く残留させ、加工限界を最高度に延長させ、生産性の向上、コストダウン、更に新製品の開発に寄与させる画期的な技術及び新製品の開発方法を提案するものである。 The method of the present invention requires precise measures for the above-mentioned problems of the prior art, that is, the production of strength standard products depending on the surface reduction rate, and there are many types of JIS standard sizes (wire diameters), which satisfy all of them. The start size and wire drawing process are designed to solve the problem of complexity, and the processing heat generated by the wire to be processed is used to reduce the processing transformation of γ (austenite structure) → α'(martensite structure). Innovative technology and new product development method that leaves a lot of γ structure with excellent workability, extends the processing limit to the maximum, improves productivity, reduces costs, and contributes to the development of new products. It is a suggestion.

すなわち、γ系ステンレス線は加工を受けるとγ→α´加工変態を起こす特性を有しているが、この加工変態は、加工直前の温度によって顕著に影響を受け、その温度が200℃前後で加工変態は僅かしか起こらない。言い換えると、本発明は、常温加工の1/10程度しか起こらず、強加工を受けても加工性の優れたγ組織を維持し強度向上も半減することに着目してなされたものである。 That is, the γ-based stainless steel wire has a property of causing a γ → α ′ processing transformation when processed, but this processing transformation is significantly affected by the temperature immediately before processing, and the temperature is around 200 ° C. Only a few processing transformations occur. In other words, the present invention has been made focusing on the fact that only about 1/10 of the normal temperature processing occurs, the γ structure having excellent workability is maintained even when subjected to strong processing, and the strength improvement is halved.

以下、図面を参照して本発明の概要を説明する。なお、ここでの説明は、発明の理解を容易にするために具体的な数値等を提示して説明するが、本件発明がここで説明された具体的な数値、手段等に特定されるものではない。本発明はあくまで特許請求の範囲で特定された発明であり、図面は発明をより具体的に示したものであることを念のため指摘する。 Hereinafter, the outline of the present invention will be described with reference to the drawings. In the description here, specific numerical values and the like are presented to facilitate understanding of the invention, but the present invention is specified by the specific numerical values and means and the like described here. is not it. It is pointed out just in case that the present invention is an invention specified within the scope of claims, and the drawings show the invention more concretely.

本発明に係るダブルダイス伸線法は、通常のダイスボックスを長くし、図1に示す如く、粉末潤滑剤を入れたダイスボックスの中に2個のダイスを、約150mm程度の間隔をあけて設置し、その前に予備加熱ゾーンを配置する。予備加熱(予熱)ゾーンは電熱、潤滑油、熱湯などで加熱を行いダイスボックス内の1個目のダイスに入る線材の温度を50℃〜130℃位まで昇温する。 In the double die wire drawing method according to the present invention, a normal die box is lengthened, and as shown in FIG. 1, two dies are placed in a die box containing a powder lubricant with an interval of about 150 mm. Install and place a preheating zone in front of it. The preheating (preheating) zone heats with electric heat, lubricating oil, hot water, or the like to raise the temperature of the wire entering the first die in the die box to about 50 ° C to 130 ° C.

これにより、伸線加工を行う場合に発生する、γ→α´加工変態を少しでも軽減させ、更に1枚目のダイスでの加工発熱を加算し、線材が130℃〜250℃の加熱をされた状態で2番目のダイスで加熱伸線を実行する。
図8は、1枚目のダイス(No.1ダイス)での減面率と加工発熱温度との関係を示したものである。この図から、No.1ダイスの減面率を適切に制御することにより、所望の加工発熱温度を得ることができる。
As a result, the γ → α'processing transformation that occurs when wire drawing is performed is reduced as much as possible, and the processing heat generated by the first die is added to heat the wire at 130 ° C to 250 ° C. In this state, heat drawing is performed with the second die.
FIG. 8 shows the relationship between the surface reduction rate of the first die (No. 1 die) and the processing heat generation temperature. From this figure, a desired processing heat generation temperature can be obtained by appropriately controlling the surface reduction rate of the No. 1 die.

以上説明したように、本発明方法によれば、伸線加工で生じる加工発熱(自己発熱)で生じる熱をそのまま有効に活用できるので、非常に省エネな加熱伸線方法であると云える。もちろん、耐熱潤滑油の開発が進み150℃程度までの潤滑剤油ができればこれを活用してもよい。予備加熱ゾーンとダブルダイス中での温度予測状態を図1の下段に示す。予備加熱温度が、例えば100℃を越えれば、No.1ダイスで発熱した熱を加算した状態、即ちNo.2ダイスに入る前に200℃程度の線温になっている事が期待できる。 As described above, according to the method of the present invention, the heat generated by the processing heat generation (self-heating) generated by the wire drawing process can be effectively utilized as it is, so that it can be said to be a very energy-saving heating wire drawing method. Of course, if the development of heat-resistant lubricating oil progresses and a lubricating oil up to about 150 ° C. is produced, this may be utilized. The temperature prediction state in the preheating zone and the double die is shown in the lower part of FIG. If the preheating temperature exceeds, for example, 100 ° C., it can be expected that the heat generated by the No. 1 die is added, that is, the linear temperature reaches about 200 ° C. before entering the No. 2 die.

下記表1は、2個ダイスを1つのダイスボックスに組み込んだ、ダイスボックス(例えば、図1に示すダイブルダイスセット)を連続伸線機に配置し、ダブルダイスセットの1つ目のダイスの減面率を20%、2つ目のダイスの減面率を35%とし、連続伸線機(6H)で伸線を行う場合における総減面率の推移を4種類のスタートサイズ(1.00mm,2.00mm,3.00mm及び5.50mm)で示したものである。
In Table 1 below, a die box (for example, the dible die set shown in FIG. 1) in which two dies are incorporated in one die box is arranged in a continuous wire drawing machine, and the first die of the double die set is reduced. The surface ratio is 20%, the surface reduction rate of the second die is 35%, and the transition of the total surface reduction rate when wire drawing is performed with a continuous wire drawing machine (6H) is shown in four types of start sizes (1.00 mm, 1.00 mm, 2.00 mm, 3.00 mm and 5.50 mm).

Figure 0006945906
Figure 0006945906

更に、本発明によれば、伸線加工プロセスに於いて加熱伸線と常温伸線のコンビネーション活用で多くのメリットを得ることができる。すなわち、従来の加工減面率による強度支配から、加熱温度による強度支配への画期的生産技術の転換を図ることができる。
また、図9には表1における5.50mmをスタートサイズとした0.77mmまでの伸線(加熱伸線6Pass)の加熱温度毎の引張強度を示す。この表は全てのダイスボックスでダブルダイス・加熱伸線を行った場合であるが、これを応用すれば、連伸機の途中のPassから通常伸線との組み合わせることにより、1つのスタートサイズの線径から任意の仕上がり線径、引張強度の線材を得ることができる等、応用範囲の広い伸線方法であると云える。
そして、本発明に係るγ系ステンレス鋼の製造方法により、請求項1、2に記載された質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:8.0〜10.50%、Cr:18.00〜20.00%、残部Feの組成(SUS304の組成)を有し、線径0.08mm以上、2.60mm以下で、引張強度が1550N/mm2以上、3500N/mm2以下であって、かつ、30体積%以上、90体積%以下、若しくは40体積%以上、70体積%以下のγ量を有するγ系ステンレス鋼線を製造することができる。
Further, according to the present invention, many merits can be obtained by utilizing the combination of heating wire drawing and room temperature wire drawing in the wire drawing process. That is, it is possible to shift the epoch-making production technology from the conventional strength control by the processing reduction rate to the strength control by the heating temperature.
Further, FIG. 9 shows the tensile strength of each wire drawn up to 0.77 mm (heated wire drawing 6Pass) starting from 5.50 mm in Table 1 for each heating temperature. This table shows the case where double dice and heating wire drawing are performed in all the die boxes, but if this is applied, one start size can be obtained by combining with normal wire drawing from the Pass in the middle of the continuous drawing machine. It can be said that this is a wire drawing method having a wide range of applications, such as being able to obtain a wire rod having an arbitrary finished wire diameter and tensile strength from the wire diameter.
Then, according to the method for producing γ-based stainless steel according to the present invention, C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% in mass% according to claims 1 and 2. Hereinafter, P: 0.045% or less, S: 0.030% or less, Ni: 8.0 to 10.50%, Cr: 18.0 to 20.00%, and the composition of the balance Fe (composition of SUS304). It has a wire diameter of 0.08 mm or more and 2.60 mm or less, a tensile strength of 1550 N / mm2 or more and 3500 N / mm2 or less, and 30% by volume or more, 90% by volume or less, or 40% by volume or more. A γ-based stainless steel wire having a γ content of 70% by volume or less can be produced.

以下、本発明の実施例(実施例1〜6)を説明する。
以下に詳述するが、実施例1は、同一母線、同一ダブルダイスセット連伸機、同じ減面率の加工プロセスで加熱温度だけを変えて任意のJIS規格強度線の生産方法に関する実施例である。
実施例2は、同一母線、同一ダブルダイスセット連伸機、同じ減面率加工プロセスで、任意のダブルダイスセットで加熱温度を選択して任意の強度JIS規格品の生産方法である。
実施例3は、高加工減面率化によるワンオペレーション化(熱処理省略、伸線機釜数減少)の実施例である。
実施例4は、加熱伸線法を活用してピアノ線級の高強度線をSUS304で生産する方法の実施例である。
実施例5は、耐疲労強度線の製造方法の実施例である。
そして、実施例6は、引張強度が1,600N/mm以上でγ量が30%以上のSUS304線の製造方法の実施例である。
Hereinafter, examples of the present invention (Examples 1 to 6) will be described.
As described in detail below, Example 1 is an example relating to a method for producing an arbitrary JIS standard strength wire by changing only the heating temperature in a machining process of the same bus, the same double die set continuous drawing machine, and the same surface reduction rate. be.
The second embodiment is a production method of an arbitrary strength JIS standard product by selecting a heating temperature with an arbitrary double die set in the same bus, the same double die set continuous drawing machine, and the same surface reduction rate processing process.
Example 3 is an example of one operation (heat treatment omitted, reduction in the number of wire drawing machine hooks) by increasing the processing reduction rate.
Example 4 is an example of a method of producing a piano wire-grade high-strength wire with SUS304 by utilizing the heating wire drawing method.
Example 5 is an example of a method for manufacturing a fatigue resistant strength wire.
Example 6 is an example of a method for producing a SUS304 wire having a tensile strength of 1,600 N / mm 2 or more and a γ content of 30% or more.

実施例1:同一母線、同一ダブルダイスセット連伸機、同じ減面率の加工プロセスで加熱温度だけを変えて任意のJIS規格強度線の生産方法
ダブルダイス連続伸線機(6釜)を使用し、伸線加工を行った場合の各減面率と加熱温度、引張強度の上昇状況の例を図10に示す。実験結果は、200℃、140℃、80℃の実験結果を示す。
このグラフの右側に線径毎の引張強度の規格値を引張強さの目盛りを一致させている。図10を見るとダブルダイスのセットでの各規格値に適用すべき加熱伸線の温度が判る。今一つの例として、仕上がり線径0.77mmをダブルダイス連伸機6セットで伸線を行う場合を考えてみる。
表1よりスタートサイズは5.50mmを準備する必要がある。図10より0.77mmの4つの規格強度の範囲を読み取り、JIS規格と対比させてそれぞれに適した加熱温度を選択すればよい。この場合の0.77mmのW1/2Hは加熱温度200℃で伸線した場合、WPAは140℃で伸線した場合、WPBは80℃で、伸線すれば3強度規格を全く同じプロセスで伸線したにも拘らず満足させることができる事が可能となる。
この事から分かるように、本発明は、従来から今日なお踏習されている減面率コントロール方式から本発明に係る加熱温度コントリール方式への転換と云える。
Example 1: Same bus wire, same double die set continuous wire drawing machine, arbitrary JIS standard strength wire production method by changing only the heating temperature in the processing process with the same surface reduction rate Double die continuous wire drawing machine (6 kettles) is used. FIG. 10 shows an example of each surface reduction rate, heating temperature, and increase in tensile strength when wire drawing is performed. The experimental results show the experimental results at 200 ° C., 140 ° C., and 80 ° C.
On the right side of this graph, the standard value of tensile strength for each wire diameter is matched with the scale of tensile strength. Looking at FIG. 10, the temperature of the heating wire to be applied to each standard value in the set of double dies can be found. As another example, consider the case where the finished wire diameter of 0.77 mm is drawn with 6 sets of double die continuous drawing machines.
From Table 1, it is necessary to prepare a start size of 5.50 mm. From FIG. 10, the range of four standard strengths of 0.77 mm may be read, and the heating temperature suitable for each may be selected by comparing with the JIS standard. In this case, 0.77 mm W1 / 2H is drawn at a heating temperature of 200 ° C, WPA is drawn at 140 ° C, WPB is drawn at 80 ° C, and if it is drawn, the three strength standards are drawn in exactly the same process. Nevertheless, it is possible to be satisfied.
As can be seen from this, the present invention can be said to be a conversion from the surface reduction rate control method, which has been practiced today, to the heating temperature control reel method according to the present invention.

実施例2:同一母線、同一ダブルダイスセット連伸機、同じ減面率加工プロセスで、任意のダブルダイスセットで加熱温度を選択して任意の強度JIS規格品の生産方法
この生産方法は、図11に示す通り、ダブルダイスセットのNo.毎に加熱温度を選別して目標とする強度を確保する方法である。例えば、W1/2Hを確保する場合には、200℃の加熱伸線を6セット全て採用して伸線、WPBを生産する場合には、200℃の加熱伸線をNo.4のダブルダイスセットまで採用してその後のNo.5〜No.6のダブルダイスセットは常温伸線を行う。この場合にはダブルダイスの後のダイスのみを使用し、減面率20%程度の加工で強度の確保を行ってもよい。同じく140℃の加熱伸線をダブルダイスセットNo,5まで採用し、その後は常温伸線を採用してもWPBの生産ができる。
Example 2: The same bus, the same double die set continuous drawing machine, the same surface reduction rate machining process, the heating temperature is selected with any double die set, and the production method of any strength JIS standard product. This production method is shown in the figure. As shown in No. 11, it is a method of selecting the heating temperature for each No. of the double die set to secure the target strength. For example, in order to secure W1 / 2H, all 6 sets of heated wire drawing at 200 ° C. are adopted for wire drawing, and in the case of producing WPB, heating wire drawing at 200 ° C. is No. Adopted up to 4 double die sets and then No. 5-No. The double die set of 6 is drawn at room temperature. In this case, only the die after the double die may be used, and the strength may be secured by processing with a surface reduction rate of about 20%. Similarly, WPB can be produced by adopting heating wire drawing at 140 ° C. up to double die set No. 5, and then adopting normal temperature wire drawing.

実施例3:高加工減面率化によるワンオペレーション化(熱処理省略、伸線機釜数減少)
一般の伸線作業は入り口が大きく出口が小さい円錐状の穴を有するダイスと呼ばれる治具の中に線を通して引き抜き出口の穴の直径が線製品の径になると同時に金属の加工硬化による強度の向上を計る。この場合、加工の程度を表すために、線の断面積の減少具合を各減面率と呼び(1‐(d ÷d ))×100%)で表わし、これを連続して7〜8回繰り返して連続伸線を行う。スタートサイズと仕上がり径との断面積減少率を全減面率と呼び、(1‐(d ÷d ))×100%)で表す。
各減面率や全減面率を何%にするかは、線とダイスの摩擦の問題、材質、伸線機の構造など、複雑な要因があり、各メーカーの秘密事項ではあるが、一般的には概ね各減面率は20〜25%、全減面率は80〜85%程度で、更に細く伸線を必要とする場合には中間焼鈍を行って、軟化させた後再度伸線を行う。
本発明に係るダブルダイス加熱伸線法では、2枚のダイスをセットするダブルダイスセットのNo.1ダイスの減面率を20%程度、No.2ダイスを35%としての6H連続伸線機のPassスケジュールの一例を表1に示す。ダブルダイス加熱伸線法の場合、表1に示す通り、ダブルダイス1セットで計48%の減面率で加工でき、これを3セット設置(計6Pass)すれば85%、5セット設置(計10Pass)すれば96%程度となり、通常の常温伸線の場合の各減免率21%での16ブロックでの連続伸線、連伸機2機種の加工に相当する強加工ができる事になり、しかも、中間焼鈍なしで引き続き伸線できることから、顕著な生産の合理化とコストダウンが可能となる。しかも、被加工線自体の加工発熱を利用することより、誘導加熱装置の活用と比較しても、比較にならない省エネとコストダウンが期待できる
Example 3: One operation by increasing the processing reduction rate (heat treatment omitted, number of wire drawing machine hooks reduced)
In general wire drawing work, a wire is passed through a jig called a jig that has a conical hole with a large entrance and a small exit. To measure. In this case, in order to represent the degree of processing, it represents the reduction degree of the cross-sectional area of the line at the call with each reduction of area (1- (d 1 2 ÷ d 0 2)) × 100%), which was continuously Repeat 7 to 8 times to perform continuous wire drawing. Start size and cross-sectional area reduction rate of the finished diameter is referred to as a total reduction of area, expressed by (1- (d 0 2 ÷ d 8 2)) × 100%).
What percentage of each surface reduction rate and total surface reduction rate should be determined by complicated factors such as the problem of friction between the wire and the die, the material, and the structure of the wire drawing machine, which is a secret matter of each manufacturer, but in general. Generally, each surface reduction rate is about 20 to 25%, and the total surface reduction rate is about 80 to 85%. If finer wire drawing is required, intermediate annealing is performed to soften the wire, and then the wire is drawn again. I do.
In the double die heating wire drawing method according to the present invention, the surface reduction rate of the No. 1 die of the double die set in which two dies are set is set to about 20%. Table 1 shows an example of the Pass schedule of the 6H continuous wire drawing machine with 2 dice as 35%. In the case of the double die heating wire drawing method, as shown in Table 1, one set of double dies can be processed with a total surface reduction rate of 48%, and if three sets are installed (total 6 Pass), 85% and five sets are installed (total). If it is 10Pass), it will be about 96%, and it will be possible to perform continuous wire drawing in 16 blocks at each exemption rate of 21% in the case of normal room temperature wire drawing, and strong processing equivalent to the processing of two continuous drawing machines. Moreover, since the wire can be continuously drawn without intermediate annealing, it is possible to significantly rationalize production and reduce costs. Moreover, by utilizing the processing heat generated by the wire to be processed itself, it is expected that energy saving and cost reduction will be incomparable even when compared with the utilization of an induction heating device.

実施例4:加熱伸線法を活用してピアノ線級の高強度線をSUS304で生産する方法。
γ系ステンレス鋼線は前述している通り、加工誘起マルテンサイトが加工とともに増加するので強加工はできない。現状ではピアノ線並みの強度をステンレス鋼線で確保するためには、Mnなどの量を増したり、Niの量を減じたりして含有元素を変更しての対処しかできていない。そこで、純粋のSUS304でピアノ線並みの強度を得るために本発明に係る加熱伸線法を活用する。
今、加熱温度を140℃でダブルダイス5セットを用い、伸線加工、96%の全減面率を加えて加工すると引張強度は1,700N/mm程度しか得られないが、残留しているγの量は全体の70%以上もあり、更なる強加工に充分耐え得る状態にある。140℃で96%の全減面率を加えた中間線を再度ダブルダイス伸線機で加工を加えると、図12に示す如く、2回目の伸線で引張強度は2,600N/mm以上を得ることができる。
即ち、従来のSUS304ではせいぜい2,400N/mm迄に対して、本発明を適用することにより更なる強度向上が可能であり、2回目の伸線で得られる2,600N/mmという引張強度の値はピアノ線(WPA)種に充分に匹敵する値である。
このプロセスはほんの一例であり、本発明を適用することにより、加熱伸線と常温伸線の組み合わせ等によってピアノ線以上の強度の確保の可能性は十分に存在する。
Example 4: A method of producing a piano wire-grade high-strength wire with SUS304 by utilizing the heating wire drawing method.
As described above, the γ-based stainless steel wire cannot be strongly machined because the work-induced martensite increases with the work. At present, in order to secure the strength equivalent to that of piano wire with stainless steel wire, only measures can be taken by changing the contained elements by increasing the amount of Mn or the like or decreasing the amount of Ni. Therefore, in order to obtain the strength equivalent to that of a piano wire with pure SUS304, the heating wire drawing method according to the present invention is utilized.
Now, when the heating temperature is 140 ° C. using 5 sets of double dies, wire drawing, and processing with a total surface reduction rate of 96%, the tensile strength is only about 1,700 N / mm 2, but it remains. The amount of γ is more than 70% of the total, and it is in a state where it can sufficiently withstand further strong machining. When the intermediate line with a total surface reduction rate of 96% at 140 ° C. is processed again with a double die wire drawing machine, the tensile strength is 2,600 N / mm 2 or more at the second wire drawing as shown in FIG. Can be obtained.
That is, in the conventional SUS304 against most up 2,400N / mm 2, is capable of further improvement in strength by applying the present invention, the tensile referred 2,600N / mm 2 obtained in the second wire drawing The intensity value is well comparable to the piano wire (WPA) species.
This process is only an example, and by applying the present invention, there is a sufficient possibility of ensuring strength higher than that of piano wire by combining heating wire drawing and room temperature wire drawing.

実施例5:耐疲労強度線の製造
ばね用ステンレス鋼線を生産する場合にγ組織を多量に含有した状態、即ち、加熱伸線を140℃〜250℃に加熱して伸線した線は疲労試験に於ける疲労強度が2倍以上もあることが確認された。これを図13に示す。疲労試験に於ける疲労強度が2倍以上もある理由は、疲労破壊を生じる際、亀裂が発生し、その先端が伝播する際に先端部分の応力によってγ→α´変態が生じて硬化し、更なる伝播を防止し、疲労破壊を防ぐためと考えられる。
疲労破壊テストに於ける実験データーによると、常温伸線と140℃の加熱伸線材を比較してみると、常温伸線は引張強度も線径も大きいのに、疲労試験結果では図13に示される通り、加熱伸線材が2倍近くも優れていることが判る。この実施例から、本発明に係る加製伸線材の製法により耐疲労強度線を製造することができることが確認された。
Example 5: Manufacture of fatigue-resistant strength wire When producing a stainless steel wire for a spring, a state in which a large amount of γ structure is contained, that is, a wire drawn by heating a heated wire to 140 ° C. to 250 ° C. is fatigued. It was confirmed that the fatigue strength in the test was more than doubled. This is shown in FIG. The reason why the fatigue strength in the fatigue test is more than double is that cracks occur when fatigue fracture occurs, and when the tip propagates, the stress at the tip causes γ → α'transformation and hardens. It is considered to prevent further propagation and prevent fatigue fracture.
According to the experimental data in the fatigue fracture test, when comparing the room temperature wire drawing and the heated wire drawing material at 140 ° C., the room temperature wire drawing has a large tensile strength and wire diameter, but the fatigue test result shows in FIG. As you can see, it can be seen that the heated wire drawing material is nearly twice as good. From this example, it was confirmed that the fatigue-resistant strength wire can be manufactured by the manufacturing method of the additional wire drawing material according to the present invention.

実施例6:引張強度が1,600N/mm以上でγ量が30%以上のSUS304線の製造
全減面率50%以上の加工を常温で受けるとSUS304の場合、図14に示すように、組織は全体積の80%以上がα´マルテンサイトで占める。これを強度の点から見ると、図15に示すように、1,500N/mm前後を示す。
即ち、1,600N/mm以上では常温伸線の場合、α´マルテンサイトの量は80%以上、オーステナイト量は20%以下である。これに対し、加熱伸線を行えば、140℃の場合、減面率96%で漸く1,600N/mmに達するが、γの残留は75%以上でα´は25%以下である。
即ち、1,600N/mm以上の高強度でγが75%含有しているのは加熱伸線法により加工した製品であると云うことができる。
なお、表2は、SUS304に含まれる元素を示すが、SUS304は表2に記載された成分以外にも多くの元素を含んでおり、これらの元素はγ→α´加工変態、即ち、γの安定性に影響を与える。更に、各元素の含有量にはそれぞれ許容範囲があり複雑にγ→α´加工変態に影響する。γの安定性に関しては多くの研究があるが、最も一般式として活用されているのが平山の式と呼ばれている。
参考までにこのNi当量の加熱伸線の影響を図16および図17に示す。この図からもわかる通り、常温伸線に於いては明らかにNi当量が加工変態への影響が存在するが、加熱伸線の場合には200℃近傍では、その影響は少なくなり100N/mm程度しかない。また、マルテンサイトも10%程度に抑えることができる。
Example 6: Manufacture of SUS304 wire having a tensile strength of 1,600 N / mm 2 or more and a γ content of 30% or more.
When SUS304 is processed at room temperature with a total surface reduction rate of 50% or more, as shown in FIG. 14, 80% or more of the total volume of the structure is α'martensite. Looking at this from the viewpoint of strength, as shown in FIG. 15, it shows around 1,500 N / mm 2.
That is, at 1,600 N / mm 2 or more, the amount of α'martensite is 80% or more and the amount of austenite is 20% or less in the case of normal temperature wire drawing. On the other hand, when the wire is drawn by heating, at 140 ° C., the surface reduction rate reaches 1,600 N / mm 2 at 96%, but the residual γ is 75% or more and α'is 25% or less.
That is, it can be said that a product processed by the heat drawing method has a high strength of 1,600 N / mm 2 or more and contains 75% of γ.
Table 2 shows the elements contained in SUS304, but SUS304 contains many elements other than the components listed in Table 2, and these elements are γ → α'work transformation, that is, γ. Affects stability. Furthermore, the content of each element has an allowable range, which intricately affects the γ → α ′ processing transformation. There are many studies on the stability of γ, but the most commonly used formula is called the Hirayama formula.
For reference, the effects of the heating wire drawing of this Ni equivalent are shown in FIGS. 16 and 17. As can be seen from this figure, the Ni equivalent clearly has an effect on the machining transformation in the room temperature wire drawing, but in the case of the heating wire drawing, the effect becomes small at around 200 ° C. and 100 N / mm 2 There is only a degree. In addition, martensite can be suppressed to about 10%.

Figure 0006945906
Figure 0006945906

本発明によれば、γ→α´加工変態を減少させ、加工性に優れたγ組織を多く残留させて加工限界を最高度に延長して伸線加工を行い、生産性の向上、コストダウン、更には新製品の開発に寄与することができるオーステナイトステンレス鋼線の製造方法を提供することができる。
According to the present invention, the γ → α'working transformation is reduced, a large amount of γ structure having excellent workability remains, the processing limit is extended to the maximum degree, and wire drawing is performed to improve productivity and reduce costs. Furthermore, it is possible to provide a method for manufacturing an austenitic stainless steel wire that can contribute to the development of a new product.

ダブルダイス加熱伸線法概要図Double die heating wire drawing method schematic diagram 引抜加工とマルテンサイト発生の温度依存性を示す図Diagram showing the temperature dependence of drawing and martensite generation 加熱温度、引張強度、減免率の関係を示す図Diagram showing the relationship between heating temperature, tensile strength, and exemption rate ダブルダイス加熱伸線プロセスを示す図The figure which shows the double die heating wire drawing process 現状の伸線・焼鈍工程を示す図Diagram showing the current wire drawing / annealing process 減免率と強度との関係を示す図Diagram showing the relationship between exemption rate and strength JIS規格による線径と強度の関係を示す図Diagram showing the relationship between wire diameter and strength according to JIS standards No.1ダイスでの減面率と加工加熱温度との関係を示す図The figure which shows the relationship between the surface reduction rate with the No. 1 die and the processing heating temperature. 加熱温度、引張強度、減免率の関係を示す図Diagram showing the relationship between heating temperature, tensile strength, and exemption rate 同一母線、同一ダブルダイスセット連伸機、同じ減免率の加工プロセスで加熱温度だけを変えてJIS規格強度線の生産例を示す図The figure which shows the production example of the JIS standard strength wire by changing only the heating temperature in the processing process of the same bus, the same double die set continuous drawing machine, and the same exemption rate. 同一母線、同一ダブルダイスセット連伸機、同じ減免率の加工プロセスで任意のダブルダイスセットの加熱温度を選択して任意のJIS規格強度規格線の生産例を示す図The figure which shows the production example of the arbitrary JIS standard strength standard line by selecting the heating temperature of an arbitrary double die set in the processing process of the same bus, the same double die set continuous drawing machine, and the same exemption rate. 高強度ステンレス線の生産の一例を示す図Diagram showing an example of production of high-strength stainless steel wire S-N曲線(通常伸線と加熱伸線)を示す図The figure which shows the S-N curve (normal wire drawing and heating wire drawing) 減免率とマルテンサイト量の関係を示す図Diagram showing the relationship between the exemption rate and the amount of martensite 加熱温度、減免率、引張強度の関係を示す図Diagram showing the relationship between heating temperature, reduction / exemption rate, and tensile strength Ni当量の加熱伸線の影響を示す図(その1)Figure showing the effect of heating wire drawing of Ni equivalent (No. 1) Ni当量の加熱伸線の影響を示す図(その2)Figure showing the effect of heating wire drawing of Ni equivalent (Part 2)

Claims (12)

質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:8.0〜10.50%、Cr:18.00〜20.00%、残部Feの組成を有し、線径0.08mm以上、2.60mm以下で、引張強度が1550N/mm以上、3500N/mm以下であって、かつ、オーステナイト組織と、加工誘起マルテンサイト組織を有し、オーステナイト組織は30体積%以上、90体積%以下であることを特徴とするγ系ステンレス鋼線。 By mass%, C: 0.08% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.030% or less, Ni: 8.0 to 10.50%, Cr: 18.0 to 20.00%, balance Fe composition, wire diameter 0.08 mm or more and 2.60 mm or less, tensile strength 1550 N / mm 2 or more, 3500 N / mm 2 A γ-based stainless steel wire having an austenite structure and a work-induced martensite structure, wherein the austenite structure is 30% by volume or more and 90% by volume or less. 40体積%以上、70体積%以下のオーステナイト組織を有することを特徴とする請求項1記載のγ系ステンレス鋼線。 The γ-based stainless steel wire according to claim 1, which has an austenite structure of 40% by volume or more and 70% by volume or less. γ系ステンレス鋼母線の伸線加工方向に沿って少なくとも2台の引抜加工治具を前後に配置し、γ系ステンレス鋼線を前段の引抜加工治具に通して伸線加工した後、後段の引抜加工治具で予め設定した所定の加熱温度で加熱伸線加工する工程を複数工程行って請求項1又は2に記載のγ系ステンレス鋼線を製造する方法であって、
後段の引抜加工治具での加熱伸線加工は、前段の引抜加工治具によるγ系ステンレス鋼線の伸線加工により発生した加工熱を利用して、上記所定の加熱温度で伸線加工することを特徴とする請求項1又は2に記載のγ系ステンレス鋼線の製造方法。
At least two drawing jigs are arranged in the front-rear direction along the drawing direction of the γ-based stainless steel bus, and the γ-based stainless steel wire is passed through the drawing jig in the previous stage to draw the wire, and then the rear stage. The method for producing a γ-based stainless steel wire according to claim 1 or 2, wherein a plurality of steps of heat drawing are performed at a predetermined heating temperature set in advance with a drawing jig.
The heating wire drawing with the drawing jig in the latter stage is performed at the above-mentioned predetermined heating temperature by utilizing the processing heat generated by the drawing processing of the γ-based stainless steel wire with the drawing jig in the previous stage. The method for producing a γ-based stainless steel wire according to claim 1 or 2, wherein the γ-based stainless steel wire is produced.
前段の引抜加工治具による伸線加工により、γ系ステンレス鋼線の温度を前段の引抜加工治具による伸線加工前の温度より100℃〜250℃昇温することを特徴とする請求項3に記載のγ系ステンレス鋼線の製造方法。 3. The third aspect of the present invention is that the temperature of the γ-based stainless steel wire is raised by 100 ° C. to 250 ° C. from the temperature before the wire drawing process by the drawing process jig in the previous stage by the wire drawing process by the drawing process jig in the previous stage. The method for manufacturing a γ-based stainless steel wire according to. γ系ステンレス鋼母線の伸線加工方向に沿って少なくとも2台の引抜加工治具を前後に配置し、前記γ系ステンレス鋼線を前段の引抜加工治具に通して伸線加工した後、後段の引抜加工治具で予め設定した所定の加熱温度で加熱伸線加工する工程を複数工程行う際に、少なくとも一部の工程はγ系ステンレス鋼線を前段の引抜加工治具に通す前に、γ系ステンレス鋼線を予備加熱する工程を有することを特徴とする請求項3又は4記載のγ系ステンレス鋼線の製造方法。 At least two drawing jigs are arranged in the front-rear direction along the drawing direction of the γ-based stainless steel bus, and the γ-based stainless steel wire is passed through the drawing jig in the front stage to draw the wire, and then the rear stage. When performing multiple steps of heat drawing at a predetermined heating temperature set in advance with the drawing jig, at least some of the steps are performed before passing the γ-based stainless steel wire through the drawing jig in the previous stage. The method for producing a γ-based stainless steel wire according to claim 3 or 4, wherein the step of preheating the γ-based stainless steel wire is provided. 前記予備加熱する工程は、γ系ステンレス鋼母線を50℃以上昇温する工程であることを特徴とする請求項5記載のγ系ステンレス鋼線の製造方法。 The method for producing a γ-based stainless steel wire according to claim 5, wherein the preheating step is a step of raising the temperature of the γ-based stainless steel bus by 50 ° C. or higher. 前記予備加熱する工程は、γ系ステンレス鋼母線を50℃〜200℃昇温する工程であることを特徴とする請求項6記載のγ系ステンレス鋼線の製造方法。 The method for producing a γ-based stainless steel wire according to claim 6, wherein the preheating step is a step of raising the temperature of the γ-based stainless steel bus by 50 ° C. to 200 ° C. 予備加熱する工程で加熱されたγ系ステンレス鋼母線を前記前段の引抜加工治具に通して前段の引抜加工治具による伸線加工前の温度より100℃〜250℃昇温し、この加熱状態でγ系ステンレス鋼母線を後段の引抜加工治具に所定の加熱温度で通して加熱伸線加工を行うことを特徴とする請求項5〜7のいずれか1項に記載のγ系ステンレス鋼線の製造方法。 The γ-based stainless steel bus heated in the preheating step is passed through the drawing jig in the previous stage, and the temperature is raised by 100 ° C to 250 ° C from the temperature before drawing by the drawing jig in the previous stage. The γ-based stainless steel wire according to any one of claims 5 to 7, wherein the γ-based stainless steel bus is passed through a drawing jig in the subsequent stage at a predetermined heating temperature to perform heat drawing. Manufacturing method. 請求項3〜8の何れか1項に記載のγ系ステンレス鋼線の製造方法に適用される引抜加工治具を収納したダイスボックスであって、伸線加工されるγ系ステンレス鋼母線の入口側から出口側にかけて順に前段の引抜加工治具と後段の引抜加工治具を設置していることを特徴とするダイスボックス。 A die box containing a drawing jig applied to the method for manufacturing a γ-based stainless steel wire according to any one of claims 3 to 8, and is an inlet of a γ-based stainless steel bus wire to be drawn. A die box characterized in that a drawing jig in the front stage and a drawing jig in the rear stage are installed in order from the side to the outlet side. 請求項5〜8の何れか1項に記載のγ系ステンレス鋼線の製造方法に適用される引抜加工治具を収納したダイスボックスであって、伸線加工されるγ系ステンレス母鋼線の入口側から出口側にかけて順に予備加熱手段、前段の引抜加工治具及び後段の引抜加工治具を設置していることを特徴とするダイスボックス。 A die box containing a drawing jig applied to the method for manufacturing a γ-based stainless steel wire according to any one of claims 5 to 8, wherein the γ-based stainless steel wire is drawn. A die box characterized in that a preheating means, a drawing jig in the front stage, and a drawing jig in the rear stage are installed in order from the inlet side to the outlet side. 予備加熱手段は、直接加熱手段及び/又は間接加熱手段の一種又は二種以上であることを特徴とする請求項10に記載のダイスボックス。 The dice box according to claim 10, wherein the preheating means is one or more of the direct heating means and / or the indirect heating means. 前段の引抜加工治具を設置した領域及び後段の引抜加工治具を設置した領域に粉末潤滑剤を充填していることを特徴とする請求項9〜11のいずれか1項に記載のダイスボックス。 The die box according to any one of claims 9 to 11, wherein the area in which the drawing jig in the first stage is installed and the area in which the drawing jig in the second stage is installed are filled with a powder lubricant. ..
JP2021077752A 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method Active JP6945906B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021077752A JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021077752A JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6945906B1 true JP6945906B1 (en) 2021-10-06
JP2022171223A JP2022171223A (en) 2022-11-11

Family

ID=77915191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021077752A Active JP6945906B1 (en) 2021-04-30 2021-04-30 γ-based stainless steel wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6945906B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463562A (en) * 2023-03-10 2023-07-21 无锡熠卿锋金属科技有限公司 Low-carbon steel wire for high-cleaning-strength electrophoretic paint and production process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589715B2 (en) * 1987-11-30 1997-03-12 日本発条株式会社 Method and apparatus for manufacturing high-strength spring material
JP4245457B2 (en) * 2003-10-29 2009-03-25 住友電工スチールワイヤー株式会社 Stainless steel wire, spring, and spring manufacturing method
SE531305C2 (en) * 2005-11-16 2009-02-17 Sandvik Intellectual Property Strings for musical instruments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463562A (en) * 2023-03-10 2023-07-21 无锡熠卿锋金属科技有限公司 Low-carbon steel wire for high-cleaning-strength electrophoretic paint and production process thereof
CN116463562B (en) * 2023-03-10 2024-08-06 无锡熠卿锋金属科技有限公司 Low-carbon steel wire for high-cleanliness electrophoretic paint and production process thereof

Also Published As

Publication number Publication date
JP2022171223A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
CN106702119B (en) A kind of spring steel bar production method without full decarburization
CN101983247B (en) Steel material, process for producing steel material, and apparatus for producing steel material
CN100564549C (en) Be used for the method that the steel heat machine is handled
CN104278201A (en) Preparation method of high carbon steel with good cold mouldability
CN104668820A (en) Production method of heat-resistant steel welding wire
JP6945906B1 (en) γ-based stainless steel wire and its manufacturing method
JP2012125838A (en) Method for producing hot-forged product for case hardened steel
CN107841606A (en) A kind of method for improving diamond wire bus Fracture Force and intensity
JP4714828B2 (en) Metal wire with large strain introduced by warm controlled rolling, and manufacturing method and manufacturing apparatus thereof
JPWO2012043374A1 (en) Blade material manufacturing method and blade material manufacturing apparatus
CN104745787B (en) Production method of tool steel capable of being directly cold rolled
CN104099517B (en) A kind of manufacture method of 225MPa ranks low-yield building aseismicity steel
JP2017115186A (en) Manufacturing method of high strength stainless ultrafine wire
CN104532139A (en) High-strength and high-toughness steel ball and production method thereof
WO2004092424A1 (en) Heat treating method for steel wire
CN104630652B (en) A kind of low-alloy heat-resistant high-strength steel, steel beam column and preparation method thereof
CN109689238B (en) On-line manufacturing method of steel pipe
JP6286627B1 (en) Manufacturing method of highly ductile hardened steel wire
JP2009522452A (en) Method and apparatus for adjusting desired property combinations in the case of multiphase steels
JP5327949B2 (en) Patenting method for high carbon steel wire rod
KR20100048256A (en) Manufacturing method for wire rod dispensing with heat treatment, dies and dies arrangement for manufacturing the wire rod
JP2016084506A (en) Hot rolled steel sheet excellent in cold workability and production method therefor
JP7269696B2 (en) Highly formable dual phase steel
RU2346778C1 (en) Method for manufacture of compression springs
JP2015172234A (en) Slow cooling method for steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6945906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150