JP6896968B2 - Absorption heat exchange system - Google Patents

Absorption heat exchange system Download PDF

Info

Publication number
JP6896968B2
JP6896968B2 JP2017158910A JP2017158910A JP6896968B2 JP 6896968 B2 JP6896968 B2 JP 6896968B2 JP 2017158910 A JP2017158910 A JP 2017158910A JP 2017158910 A JP2017158910 A JP 2017158910A JP 6896968 B2 JP6896968 B2 JP 6896968B2
Authority
JP
Japan
Prior art keywords
fluid
heat
temperature
heating source
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017158910A
Other languages
Japanese (ja)
Other versions
JP2019035561A (en
Inventor
與四郎 竹村
與四郎 竹村
青山 淳
淳 青山
甲介 平田
甲介 平田
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2017158910A priority Critical patent/JP6896968B2/en
Priority to CN201821279725.9U priority patent/CN208817757U/en
Priority to CN201810902236.2A priority patent/CN109425143A/en
Publication of JP2019035561A publication Critical patent/JP2019035561A/en
Application granted granted Critical
Publication of JP6896968B2 publication Critical patent/JP6896968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式熱交換システムに関し、特に装置構成を簡便にした吸収式熱交換システムに関する。 The present invention relates to an absorption heat exchange system, and more particularly to an absorption heat exchange system having a simplified apparatus configuration.

低温の熱源から熱を汲み上げて加熱対象の媒体を加熱する機器であるヒートポンプのうち、熱駆動のものとして、吸収ヒートポンプが知られている。吸収ヒートポンプの活用例として、発生器と蒸発器と凝縮器と吸収器とを有する温水用吸収式ヒートポンプと、水−水熱交換器と、発生器、水−水熱交換器、蒸発器を順に通過する一次熱供給ネットワーク管路と、吸収器及び凝縮器並びに水−水熱交換器を通過する二次熱供給ネットワーク管路とを含む熱交換装置がある(例えば、特許文献1参照。)。 Among heat pumps, which are devices that draw heat from a low-temperature heat source to heat a medium to be heated, an absorption heat pump is known as a heat-driven one. As an example of utilization of the absorption heat pump, an absorption heat pump for hot water having a generator, an evaporator, a condenser and an absorber, a water-water heat exchanger, a generator, a water-water heat exchanger, and an evaporator are used in this order. There is a heat exchanger including a passing primary heat supply network conduit and a secondary heat supply network conduit passing through an absorber and a condenser and a water-water heat exchanger (see, eg, Patent Document 1).

特許第5194122号公報Japanese Patent No. 5194122

特許文献1に記載の熱交換装置は、温水用吸収式ヒートポンプの他に水−水熱交換器を備えているため、装置全体が大型になってしまっていた。 Since the heat exchange device described in Patent Document 1 includes a water-water heat exchanger in addition to the absorption heat pump for hot water, the entire device has become large.

本発明は上述の課題に鑑み、装置構成を簡便にした吸収式熱交換システムを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an absorption heat exchange system having a simplified apparatus configuration.

上記目的を達成するために、本発明の第1の態様に係る吸収式熱交換システムは、例えば図1に示すように、冷媒の蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱によって被加熱流体TSの温度を上昇させる凝縮部40と;凝縮部40から冷媒液Vfを導入し、導入した冷媒液Vfが蒸発して冷媒蒸気Veとなる際に必要な蒸発潜熱を第1の加熱源流体TPから奪うことで第1の加熱源流体TPの温度を低下させる蒸発部20と;蒸発部20から冷媒蒸気Veを導入し、導入した冷媒蒸気Veを吸収液Saが吸収して濃度が低下した希溶液Swとなる際に放出した吸収熱によって被加熱流体TSの温度を上昇させる吸収部10と;吸収部10から希溶液Swを導入し、導入した希溶液Swを加熱し希溶液Swから冷媒Vgを離脱させて濃度が上昇した濃溶液Saとするのに必要な熱を、第2の加熱源流体HPから奪うことで第2の加熱源流体HPの温度を低下させる再生部30とを備え;吸収液Sa、Swと冷媒Ve、Vf、Vgとの吸収ヒートポンプサイクルによって、吸収部10は再生部30よりも内部の圧力及び温度が低くなり、蒸発部20は凝縮部40よりも内部の圧力及び温度が低くなるように構成され;凝縮部40及び吸収部10に導入される前の被加熱流体TAから分岐された一部の被加熱流体を第1の加熱源流体TPとして蒸発部20に導入するように構成されている。 In order to achieve the above object, in the absorption type heat exchange system according to the first aspect of the present invention, for example, as shown in FIG. 1, the condensation released when the vapor Vg of the refrigerant condenses into the refrigerant liquid Vf. The condensing unit 40 that raises the temperature of the fluid TS to be heated by heat; the refrigerant liquid Vf is introduced from the condensing unit 40, and the latent heat of evaporation required when the introduced refrigerant liquid Vf evaporates to become the refrigerant steam Ve is the first. The evaporation unit 20 lowers the temperature of the first heating source fluid TP by depriving the heating source fluid TP of the above; the refrigerant steam Ve is introduced from the evaporation unit 20, and the introduced refrigerant vapor Ve is absorbed by the absorbing liquid Sa. With the absorption unit 10 that raises the temperature of the fluid TS to be heated by the absorption heat released when the concentration becomes the rare solution Sw; the rare solution Sw is introduced from the absorption unit 10 and the introduced rare solution Sw is heated to make it rare. A regeneration unit that lowers the temperature of the second heating source fluid HP by removing the heat required to separate the refrigerant Vg from the solution Sw to obtain a concentrated solution Sa having an increased concentration from the second heating source fluid HP. 30; due to the absorption heat pump cycle of the absorbent Sa, Sw and the refrigerants Ve, Vf, Vg, the absorption section 10 has a lower internal pressure and temperature than the regeneration section 30, and the evaporation section 20 is lower than the condensing section 40. Is also configured to lower the internal pressure and temperature; a part of the heated fluid branched from the heated fluid TA before being introduced into the condensing section 40 and the absorbing section 10 is used as the first heating source fluid TP. It is configured to be introduced into the evaporation unit 20.

このように構成すると、凝縮部及び吸収部に導入される前の被加熱流体から分岐された一部の被加熱流体を第1の加熱源流体として蒸発部に導入するので、蒸発部から流出する第1の加熱源流体の温度を凝縮部及び吸収部に導入される前の被加熱流体の温度よりも低くして吸収式熱交換システムにおいて交換する熱量を増大させることができ、第1の加熱源流体用の熱交換器で第1の加熱源流体の温度を下げなくて済み、第1の加熱源流体用の熱交換器を省略して装置構成を簡便にすることができる。 With this configuration, a part of the heated fluid branched from the heated fluid before being introduced into the condensing portion and the absorbing portion is introduced into the evaporating portion as the first heating source fluid, so that it flows out from the evaporating portion. The temperature of the first heating source fluid can be made lower than the temperature of the fluid to be heated before being introduced into the condensing part and the absorbing part to increase the amount of heat exchanged in the absorption type heat exchange system, and the first heating can be performed. The heat exchanger for the source fluid does not have to lower the temperature of the first heating source fluid, and the heat exchanger for the first heating source fluid can be omitted to simplify the device configuration.

また、本発明の第2の態様に係る吸収式熱交換システムは、例えば図1を参照して示すと、上記本発明の第1の態様に係る吸収式熱交換システム1において、再生部30から流出した第2の加熱源流体HPの少なくとも一部が、凝縮部40及び吸収部10の少なくとも一方から流出した被加熱流体TSと混合するように構成されている。 Further, the absorption heat exchange system according to the second aspect of the present invention can be seen from the regeneration unit 30 in the absorption heat exchange system 1 according to the first aspect of the present invention, for example, with reference to FIG. At least a part of the second heating source fluid HP that has flowed out is configured to be mixed with the fluid TS to be heated that has flowed out from at least one of the condensing unit 40 and the absorbing unit 10.

このように構成すると、システム構成を簡単にしつつ、再生部において熱源として利用した後の第2の加熱源流体が保有する熱を有効に利用することができる。 With this configuration, the heat held by the second heat source fluid after being used as a heat source in the regeneration unit can be effectively used while simplifying the system configuration.

また、本発明の第3の態様に係る吸収式熱交換システムは、例えば図1を参照して示すと、上記本発明の第2の態様に係る吸収式熱交換システム1において、再生部30から流出した第2の加熱源流体HPの少なくとも一部と凝縮部40及び吸収部10の少なくとも一方から流出した被加熱流体TSとが混合した混合被加熱流体TAの温度が所定の温度になるように、凝縮部40及び吸収部10に流入する被加熱流体TSの流量と、第1の加熱源流体として蒸発部20に流入する被加熱流体TPの流量との比が設定できるように構成されている。 Further, the absorption type heat exchange system according to the third aspect of the present invention is shown by referring to FIG. 1, for example, in the absorption type heat exchange system 1 according to the second aspect of the present invention, from the regeneration unit 30. The temperature of the mixed heated fluid TA in which at least a part of the second heated source fluid HP that has flowed out and the heated fluid TS that has flowed out from at least one of the condensing unit 40 and the absorbing unit 10 is set to a predetermined temperature. The ratio of the flow rate of the heated fluid TS flowing into the condensing unit 40 and the absorbing unit 10 to the flow rate of the heated fluid TP flowing into the evaporating unit 20 as the first heating source fluid can be set. ..

このように構成すると、混合被加熱流体の温度を調節することができる。 With this configuration, the temperature of the mixed fluid to be heated can be adjusted.

また、本発明の第4の態様に係る吸収式熱交換システムは、例えば図5に示すように、上記本発明の第2の態様又は第3の態様に係る吸収式熱交換システム5において、凝縮部40及び吸収部10の少なくとも一方から流出した被加熱流体TSと混合する前の第2の加熱源流体HPから分岐された一部の第2の加熱源流体HPと、分岐された後の残りの第2の加熱源流体HPと凝縮部40及び吸収部10の少なくとも一方から流出した被加熱流体TSとが混合した流体TAとが、別々に吸収式熱交換システム5から流出するように構成されている。 Further, the absorption heat exchange system according to the fourth aspect of the present invention is condensed in the absorption heat exchange system 5 according to the second or third aspect of the present invention, for example, as shown in FIG. A part of the second heating source fluid HP branched from the second heating source fluid HP before mixing with the heated fluid TS flowing out from at least one of the portion 40 and the absorbing portion 10, and the rest after the branching. The fluid TA, which is a mixture of the second heating source fluid HP and the heated fluid TS that has flowed out from at least one of the condensing unit 40 and the absorbing unit 10, is configured to separately flow out from the absorption type heat exchange system 5. ing.

このように構成すると、複数の場所に熱を供給することができる。 With this configuration, heat can be supplied to a plurality of locations.

また、本発明の第5の態様に係る吸収式熱交換システムは、例えば図2に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収式熱交換システム2において、再生部30から流出した第2の加熱源流体HPから分岐された一部の第2の加熱源流体HPを、蒸発部20に導入される前の第1の加熱源流体TPに合流させる部分加熱源流体バイパス流路28を備える。 Further, the absorption heat exchange system according to the fifth aspect of the present invention is, for example, as shown in FIG. 2, the absorption heat according to any one of the first to fourth aspects of the present invention. In the exchange system 2, a part of the second heat source fluid HP branched from the second heat source fluid HP flowing out from the regeneration unit 30 is introduced into the evaporation unit 20 before the first heat source fluid TP. A partial heating source fluid bypass flow path 28 is provided.

このように構成すると、蒸発部から流出した第1の加熱源流体の温度を調節することができる。 With this configuration, the temperature of the first heating source fluid flowing out of the evaporation unit can be adjusted.

また、本発明の第6の態様に係る吸収式熱交換システムは、例えば図2を参照して示すと、上記本発明の第5の態様に係る吸収式熱交換システム2において、再生部30から流出した第2の加熱源流体HPの少なくとも一部と凝縮部40及び吸収部10の少なくとも一方から流出した被加熱流体TSとが混合した混合被加熱流体TAの温度が所定の温度になるように、再生部30から流出した第2の加熱源流体HPの、部分加熱源流体バイパス流路28に流入しない流量と、部分加熱源流体バイパス流路28を流れる流量との比が設定できるように構成されている。 Further, the absorption type heat exchange system according to the sixth aspect of the present invention is shown by referring to FIG. 2, for example, in the absorption type heat exchange system 2 according to the fifth aspect of the present invention, from the regeneration unit 30. The temperature of the mixed heated fluid TA in which at least a part of the second heated source fluid HP that has flowed out and the heated fluid TS that has flowed out from at least one of the condensing unit 40 and the absorbing unit 10 is set to a predetermined temperature. , The ratio of the flow rate of the second heating source fluid HP flowing out of the regeneration unit 30 that does not flow into the partial heating source fluid bypass flow path 28 and the flow rate that flows through the partial heating source fluid bypass flow path 28 can be set. Has been done.

このように構成すると、混合被加熱流体の温度及び流量のバランスを調節することができる。 With this configuration, the balance between the temperature and flow rate of the mixed fluid to be heated can be adjusted.

また、本発明の第7の態様に係る吸収式熱交換システムは、例えば図4に示すように、上記本発明の第5の態様又は第6の態様に係る吸収式熱交換システム4において、部分加熱源流体バイパス流路28を流れる第2の加熱源流体HPを、熱利用されて温度が低下した後に、蒸発部20に導入される前の第1の加熱源流体TPに合流させるように構成されている。 Further, the absorption heat exchange system according to the seventh aspect of the present invention is, for example, as shown in FIG. 4, in the absorption heat exchange system 4 according to the fifth or sixth aspect of the present invention. The second heat source fluid HP flowing through the heat source fluid bypass flow path 28 is configured to join the first heat source fluid TP before being introduced into the evaporation unit 20 after the temperature is lowered by heat utilization. Has been done.

このように構成すると、凝縮部又は吸収部から流出した被加熱流体が保有する熱の他に部分加熱源流体バイパス流路を流れる第2の加熱源流体が保有する熱を吸収式熱交換システムの外部に供給することができる。 With this configuration, in addition to the heat held by the heated fluid flowing out from the condensing section or the absorbing section, the heat held by the second heating source fluid flowing through the partial heating source fluid bypass flow path is absorbed in the heat exchange system. It can be supplied to the outside.

また、本発明の第8の態様に係る吸収式熱交換システムは、例えば図3に示すように、上記本発明の第1の態様に係る吸収式熱交換システム3において、再生部30から流出した第2の加熱源流体HPの少なくとも一部と、凝縮部40から流出した被加熱流体TSとが、別々に吸収式熱交換システム3から流出するように構成されている。 Further, as shown in FIG. 3, for example, the absorption heat exchange system according to the eighth aspect of the present invention has flowed out from the regeneration unit 30 in the absorption heat exchange system 3 according to the first aspect of the present invention. At least a part of the second heating source fluid HP and the heated fluid TS flowing out from the condensing portion 40 are configured to separately flow out from the absorption heat exchange system 3.

このように構成すると、複数の場所に熱を供給することができる。 With this configuration, heat can be supplied to a plurality of locations.

本発明によれば、凝縮部及び吸収部に導入される前の被加熱流体から分岐された一部の被加熱流体を第1の加熱源流体として蒸発部に導入するので、蒸発部から流出する第1の加熱源流体の温度を凝縮部及び吸収部に導入される前の被加熱流体の温度よりも低くして吸収式熱交換システムにおいて交換する熱量を増大させることができ、第1の加熱源流体用の熱交換器で第1の加熱源流体の温度を下げなくて済み、第1の加熱源流体用の熱交換器を省略して装置構成を簡便にすることができる。 According to the present invention, a part of the heated fluid branched from the heated fluid before being introduced into the condensing portion and the absorbing portion is introduced into the evaporating portion as the first heating source fluid, so that it flows out from the evaporating portion. The temperature of the first heating source fluid can be made lower than the temperature of the fluid to be heated before being introduced into the condensing part and the absorbing part to increase the amount of heat exchanged in the absorption type heat exchange system, and the first heating can be performed. The heat exchanger for the source fluid does not have to lower the temperature of the first heating source fluid, and the heat exchanger for the first heating source fluid can be omitted to simplify the device configuration.

本発明の第1の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 4th Embodiment of this invention. 本発明の第5の実施の形態に係る吸収式熱交換システムの模式的系統図である。It is a schematic system diagram of the absorption type heat exchange system which concerns on 5th Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicate description will be omitted.

まず図1を参照して、本発明の第1の実施の形態に係る吸収式熱交換システム1を説明する。図1は、吸収式熱交換システム1の模式的系統図である。吸収式熱交換システム1は、吸収液と冷媒との吸収ヒートポンプサイクルを利用して、熱源設備HSFに対して流出入する流体から熱利用設備HCFに対して流出入する流体へ熱移動させるシステムである。吸収式熱交換システム1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備えている。吸収器10、蒸発器20、再生器30、凝縮器40は、それぞれ、吸収部、蒸発部、再生部、凝縮部に相当する。 First, the absorption heat exchange system 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat exchange system 1. The absorption type heat exchange system 1 is a system that uses an absorption heat pump cycle of an absorbing liquid and a refrigerant to transfer heat from a fluid flowing in and out of a heat source equipment HSF to a fluid flowing in and out of a heat utilization equipment HCF. is there. The absorption heat exchange system 1 comprises an absorber 10, an evaporator 20, and a regenerator 30 that constitute a main device in which an absorption heat pump cycle of an absorption liquid S (Sa, Sw) and a refrigerant V (Ve, Vg, Vf) is performed. , And a condenser 40. The absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 correspond to an absorption unit, an evaporation unit, a regeneration unit, and a condensing unit, respectively.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。 In the present specification, in order to facilitate the distinction of the absorbed liquid on the heat pump cycle, it is referred to as "rare solution Sw" or "concentrated solution Sa" depending on the properties and the position on the heat pump cycle. Etc. are collectively referred to as "absorbent solution S". Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, "evaporator refrigerant vapor Ve", "regenerator refrigerant vapor Vg", "refrigerant liquid Vf", etc., depending on the properties and the position on the heat pump cycle, etc. However, when the properties and the like are unquestioned, they are collectively referred to as "refrigerant V". In the present embodiment, a LiBr aqueous solution is used as the absorbing liquid S (mixture of the absorbing agent and the refrigerant V), and water (H 2 O) is used as the refrigerant V.

吸収器10は、増熱対象流体TSの流路を構成する伝熱管12と、濃溶液Saを伝熱管12の表面に供給する濃溶液供給装置13とを内部に有している。伝熱管12は、一端に増熱流体導入管51が接続され、他端に増熱流体連絡管15が接続されている。増熱流体導入管51は、増熱対象流体TSを伝熱管12に導く流路を構成する管である。増熱流体導入管51には、内部を流れる増熱対象流体TSの流量を調節する増熱流体弁51vが設けられている。増熱流体連絡管15は、吸収器10で加熱された増熱対象流体TSを凝縮器40へ導く流路を構成する管である。吸収器10は、濃溶液供給装置13から濃溶液Saが伝熱管12の表面に供給され、濃溶液Saが蒸発器冷媒蒸気Veを吸収して希溶液Swとなる際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる増熱対象流体TSが受熱して、増熱対象流体TSが加熱されるように構成されている。 The absorber 10 has a heat transfer tube 12 that constitutes a flow path of the fluid TS to be heated, and a concentrated solution supply device 13 that supplies the concentrated solution Sa to the surface of the heat transfer tube 12. The heat transfer tube 12 has a heat-increasing fluid introduction pipe 51 connected to one end and a heat-increasing fluid connecting pipe 15 connected to the other end. The heat-increasing fluid introduction pipe 51 is a pipe that constitutes a flow path that guides the heat-increasing fluid TS to the heat transfer tube 12. The heating fluid introduction pipe 51 is provided with a heating fluid valve 51v for adjusting the flow rate of the heating target fluid TS flowing inside. The heating fluid connecting pipe 15 is a pipe forming a flow path for guiding the heating target fluid TS heated by the absorber 10 to the condenser 40. The absorber 10 generates heat of absorption when the concentrated solution Sa is supplied from the concentrated solution supply device 13 to the surface of the heat transfer tube 12 and the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve to become a dilute solution Sw. The heat absorption target fluid TS flowing through the heat transfer tube 12 receives the absorbed heat, and the heat heating target fluid TS is heated.

蒸発器20は、中温熱源流体TPの流路を構成する熱源管22と、冷媒液Vfを熱源管22の表面に供給する冷媒液供給装置23とを、蒸発器缶胴21の内部に有している。熱源管22の一端には、中温熱源導入管52が接続されている。中温熱源導入管52は、中温熱源流体TPを熱源管22に導く流路を構成する管である。中温熱源導入管52には、内部を流れる中温熱源流体TPの流量を調節する中温熱源弁52vが設けられている。中温熱源導入管52の他端は、増熱流体導入管51の他端と共に、混合流体流入管55に接続されている。混合流体流入管55は、混合流体TAが流れる流路を構成する管である。混合流体流入管55を流れる混合流体TAは、分流して、増熱流体導入管51と中温熱源導入管52とに流入するように構成されている。つまり、増熱対象流体TSは、混合流体TAのうちの増熱流体導入管51に流入したものであり、中温熱源流体TPは、混合流体TAのうちの中温熱源導入管52に流入したものである。熱源管22の中温熱源導入管52が接続された端部とは反対側の端部には、中温熱源流出管29が接続されている。中温熱源流出管29は、中温熱源流体TPを蒸発器20の外へ導く流路を構成する管である。蒸発器20は、冷媒液供給装置23から冷媒液Vfが熱源管22の表面に供給され、熱源管22周辺の冷媒液Vfが熱源管22内を流れる中温熱源流体TPの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。中温熱源流体TPは、第1の加熱源流体に相当する。 The evaporator 20 has a heat source pipe 22 forming a flow path of the medium-temperature heat source fluid TP and a refrigerant liquid supply device 23 for supplying the refrigerant liquid Vf to the surface of the heat source pipe 22 inside the evaporator can body 21. doing. A medium-temperature heat source introduction pipe 52 is connected to one end of the heat source pipe 22. The medium-temperature heat source introduction pipe 52 is a pipe that constitutes a flow path that guides the medium-temperature heat source fluid TP to the heat source pipe 22. The medium-temperature heat source introduction pipe 52 is provided with a medium-temperature heat source valve 52v that regulates the flow rate of the medium-temperature heat source fluid TP flowing inside. The other end of the medium temperature heat source introduction pipe 52 is connected to the mixed fluid inflow pipe 55 together with the other end of the heating fluid introduction pipe 51. The mixed fluid inflow pipe 55 is a pipe that constitutes a flow path through which the mixed fluid TA flows. The mixed fluid TA flowing through the mixed fluid inflow pipe 55 is configured to split and flow into the heating fluid introduction pipe 51 and the medium temperature heat source introduction pipe 52. That is, the heat-enhancing target fluid TS flowed into the heating fluid introduction pipe 51 of the mixed fluid TA, and the medium-temperature heat source fluid TP flowed into the medium-temperature heat source introduction pipe 52 of the mixed fluid TA. It is a thing. A medium-temperature heat source outflow pipe 29 is connected to an end opposite to the end to which the medium-temperature heat source introduction pipe 52 of the heat source pipe 22 is connected. The medium-temperature heat source outflow pipe 29 is a pipe that constitutes a flow path that guides the medium-temperature heat source fluid TP to the outside of the evaporator 20. In the evaporator 20, the refrigerant liquid Vf is supplied from the refrigerant liquid supply device 23 to the surface of the heat source pipe 22, and the refrigerant liquid Vf around the heat source pipe 22 is evaporated by the heat of the medium-temperature heat source fluid TP flowing in the heat source pipe 22. The evaporator is configured to generate the refrigerant steam Ve. The medium temperature heat source fluid TP corresponds to the first heat source fluid.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。 The absorber 10 and the evaporator 20 communicate with each other. By communicating the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する高温熱源流体HPを内部に流す熱源管32と、希溶液Swを熱源管32の表面に供給する希溶液供給装置33とを有している。熱源管32の一端には、高温熱源流体HPを熱源管32に導く流路を構成する高温熱源導入管57が接続されている。熱源管32の他端には、再生器30から流出した高温熱源流体HPを流す流路を構成する高温熱源流出管39の一端が接続されている。再生器30は、希溶液供給装置33から供給された希溶液Swが高温熱源流体HPに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。高温熱源流体HPは、第2の加熱源流体に相当する。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。 The regenerator 30 has a heat source tube 32 for flowing a high-temperature heat source fluid HP for heating the dilute solution Sw inside, and a dilute solution supply device 33 for supplying the dilute solution Sw to the surface of the heat source tube 32. A high-temperature heat source introduction pipe 57 constituting a flow path for guiding the high-temperature heat source fluid HP to the heat source pipe 32 is connected to one end of the heat source pipe 32. One end of the high-temperature heat source outflow pipe 39 forming a flow path through which the high-temperature heat source fluid HP flowing out of the regenerator 30 flows is connected to the other end of the heat source pipe 32. In the regenerator 30, the dilute solution Sw supplied from the dilute solution supply device 33 is heated by the high-temperature heat source fluid HP, so that the refrigerant V evaporates from the dilute solution Sw to generate a concentrated solution Sa having an increased concentration. It is configured as follows. The high temperature heat source fluid HP corresponds to the second heat source fluid. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as the regenerator refrigerant vapor Vg.

凝縮器40は、増熱対象流体TSが流れる伝熱管42を凝縮器缶胴41の内部に有している。伝熱管42を流れる増熱対象流体TSは、吸収器10の伝熱管12を流れた後の増熱対象流体TSとなっている。吸収器10の伝熱管12と凝縮器40の伝熱管42とは、増熱対象流体TSを流す増熱流体連絡管15で接続されている。凝縮器40の伝熱管42の増熱流体連絡管15が接続された端部とは反対側の端部には、増熱流体流出管49が接続されている。増熱流体流出管49は、増熱対象流体TSを凝縮器40の外へ導く流路を構成する管である。増熱流体流出管49の他端は、高温熱源流出管39の他端と共に、混合流体流出管59に接続されている。混合流体流出管59は、高温熱源流出管39を流れる高温熱源流体HPと、増熱流体流出管49を流れる増熱対象流体TSと、が合流した混合流体TAが流れる流路を構成する管である。混合流体TAは、混合被加熱流体に相当する。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これが凝縮して冷媒液Vfとなる際に放出した凝縮熱を、伝熱管42内を流れる増熱対象流体TSが受熱して、増熱対象流体TSが加熱されるように構成されている。増熱対象流体TSは、被加熱流体に相当する。再生器30と凝縮器40とは、相互に連通するように、再生器30の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。 The condenser 40 has a heat transfer tube 42 through which the fluid TS to be heated flows flows inside the condenser can body 41. The heat-increasing target fluid TS flowing through the heat transfer tube 42 is the heat-increasing target fluid TS after flowing through the heat transfer tube 12 of the absorber 10. The heat transfer tube 12 of the absorber 10 and the heat transfer tube 42 of the condenser 40 are connected by a heat-increasing fluid connecting tube 15 through which the fluid TS to be heated is passed. A heating fluid outflow pipe 49 is connected to an end of the heat transfer tube 42 of the condenser 40 opposite to the end to which the heating fluid connecting pipe 15 is connected. The heating fluid outflow pipe 49 is a pipe forming a flow path that guides the heating target fluid TS to the outside of the condenser 40. The other end of the heating fluid outflow pipe 49 is connected to the mixed fluid outflow pipe 59 together with the other end of the high temperature heat source outflow pipe 39. The mixed fluid outflow pipe 59 is a pipe constituting a flow path through which the mixed fluid TA in which the high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe 39 and the heat-increasing target fluid TS flowing through the heating fluid outflow pipe 49 merge. is there. The mixed fluid TA corresponds to the mixed fluid to be heated. The condenser 40 introduces the regenerator refrigerant steam Vg generated in the regenerator 30, and the heat of condensation released when this is condensed into the refrigerant liquid Vf is received by the heat-increasing target fluid TS flowing in the heat transfer tube 42. Then, the fluid TS to be heated is configured to be heated. The fluid TS to be heated corresponds to the fluid to be heated. The regenerator 30 and the condenser 40 are integrally formed with the can body of the regenerator 30 and the condenser can body 41 so as to communicate with each other. By communicating the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液供給装置13とは、濃溶液Saを流す濃溶液管35で接続されている。吸収器10の希溶液Swが貯留される部分と希溶液供給装置33とは、希溶液Swを流す希溶液管36で接続されている。希溶液管36には、希溶液Swを圧送する溶液ポンプ36pが配設されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と冷媒液供給装置23とは、冷媒液Vfを流す冷媒液管45で接続されている。 The portion of the regenerator 30 in which the concentrated solution Sa is stored and the concentrated solution supply device 13 of the absorber 10 are connected by a concentrated solution tube 35 through which the concentrated solution Sa flows. The portion of the absorber 10 in which the dilute solution Sw is stored and the dilute solution supply device 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. A solution pump 36p for pumping the dilute solution Sw is provided in the dilute solution tube 36. A solution heat exchanger 38 for exchanging heat between the concentrated solution Sa and the dilute solution Sw is provided in the concentrated solution tube 35 and the dilute solution tube 36. The portion of the condenser 40 in which the refrigerant liquid Vf is stored and the refrigerant liquid supply device 23 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows.

吸収式熱交換システム1は、定常運転中、吸収器10の内部の圧力及び温度は再生器30の内部の圧力及び温度よりも低くなり、蒸発器20の内部の圧力及び温度は凝縮器40の内部の圧力及び温度よりも低くなる。吸収式熱交換システム1は、吸収器10、蒸発器20、再生器30、凝縮器40が、第1種吸収ヒートポンプの構成となっている。 In the absorption type heat exchange system 1, during steady operation, the pressure and temperature inside the absorber 10 are lower than the pressure and temperature inside the regenerator 30, and the pressure and temperature inside the evaporator 20 are the pressure and temperature inside the condenser 40. It will be lower than the internal pressure and temperature. In the absorption heat exchange system 1, the absorber 10, the evaporator 20, the regenerator 30, and the condenser 40 are configured as a first-class absorption heat pump.

高温熱源導入管57及び中温熱源流出管29は、本実施の形態では、熱源設備HSFに接続されている。熱源設備HSFは、例えば昇温型のヒートポンプである。熱源設備HSFは、本実施の形態では、中温熱源流出管29から取り入れた中温熱源流体TPを加熱し温度を上昇させて高温熱源流体HPとして高温熱源導入管57に供給するものである。混合流体流出管59及び混合流体流入管55は、本実施の形態では、熱利用設備HCFに接続されている。熱利用設備HCFは、例えば導入した熱を暖房用に利用するものである。熱利用設備HCFは、本実施の形態では、混合流体流出管59から導入した混合流体TAが保有する熱を利用し、混合流体TAから熱を奪って温度が低下した混合流体TAを混合流体流入管55に流出するものである。 The high-temperature heat source introduction pipe 57 and the medium-temperature heat source outflow pipe 29 are connected to the heat source equipment HSF in the present embodiment. The heat source equipment HSF is, for example, a temperature rise type heat pump. In the present embodiment, the heat source equipment HSF heats the medium temperature heat source fluid TP taken in from the medium temperature heat source outflow pipe 29 to raise the temperature and supplies the high temperature heat source fluid HP to the high temperature heat source introduction pipe 57. The mixed fluid outflow pipe 59 and the mixed fluid inflow pipe 55 are connected to the heat utilization facility HCF in this embodiment. The heat utilization equipment HCF uses, for example, the introduced heat for heating. In the present embodiment, the heat utilization facility HCF utilizes the heat possessed by the mixed fluid TA introduced from the mixed fluid outflow pipe 59, and takes heat from the mixed fluid TA to allow the mixed fluid TA whose temperature has dropped to flow into the mixed fluid TA. It flows out to the pipe 55.

引き続き図1を参照して、吸収式熱交換システム1の作用を説明する。まず、溶液側の吸収ヒートポンプサイクルを説明する。吸収器10では、濃溶液Saが濃溶液供給装置13から供給され、この供給された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる増熱対象流体TSが加熱され、増熱対象流体TSの温度が上昇する。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、溶液ポンプ36pに圧送されて再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が上昇して、再生器30に至る。 Subsequently, with reference to FIG. 1, the operation of the absorption heat exchange system 1 will be described. First, the absorption heat pump cycle on the solution side will be described. In the absorber 10, the concentrated solution Sa is supplied from the concentrated solution supply device 13, and the supplied concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve decreases to become a dilute solution Sw. In the absorber 10, absorption heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The absorbed heat heats the heat-increasing target fluid TS flowing through the heat transfer tube 12, and the temperature of the heat-increasing target fluid TS rises. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve in the absorber 10 decreases to become a dilute solution Sw, which is stored in the lower part of the absorber 10. The stored dilute solution Sw is pumped to the solution pump 36p, flows through the dilute solution tube 36 toward the regenerator 30, and exchanges heat with the concentrated solution Sa in the solution heat exchanger 38 to raise the temperature, and the regenerator Up to 30.

再生器30に送られた希溶液Swは、希溶液供給装置33から供給され、熱源管32を流れる高温熱源流体HPによって加熱され、供給された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。このとき、高温熱源流体HPは、希溶液Swに熱を奪われて温度が低下する。希溶液Swから蒸発した冷媒Vは、再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、再生器30と吸収器10との内圧の差により、濃溶液管35を介して吸収器10の濃溶液供給装置13に至る。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が低下してから吸収器10に流入し、濃溶液供給装置13から供給され、以降、上述の吸収液Sのサイクルを繰り返す。 The dilute solution Sw sent to the regenerator 30 is supplied from the dilute solution supply device 33, heated by the high-temperature heat source fluid HP flowing through the heat source tube 32, and the refrigerant in the supplied dilute solution Sw evaporates to concentrate the concentrated solution Sa. And is stored in the lower part of the regenerator 30. At this time, the temperature of the high-temperature heat source fluid HP is lowered by being deprived of heat by the dilute solution Sw. The refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as the regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 reaches the concentrated solution supply device 13 of the absorber 10 via the concentrated solution pipe 35 due to the difference in internal pressure between the regenerator 30 and the absorber 10. The concentrated solution Sa flowing through the concentrated solution tube 35 exchanges heat with the dilute solution Sw in the solution heat exchanger 38, flows into the absorber 10 after the temperature drops, is supplied from the concentrated solution supply device 13, and thereafter described above. The cycle of the absorbing solution S of is repeated.

次に冷媒側の吸収ヒートポンプサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、伝熱管42を流れる増熱対象流体TSによって再生器冷媒蒸気Vgが冷却されて凝縮し、冷媒液Vfとなる。このとき、増熱対象流体TSは、再生器冷媒蒸気Vgが凝縮する際に放出した凝縮熱によって温度が上昇する。伝熱管42を流れる増熱対象流体TSは、吸収器10の伝熱管12を通過してきたものである。凝縮した冷媒液Vfは、凝縮器40と蒸発器20との内圧の差により冷媒液管45を流れて蒸発器20に至る。蒸発器20に送られた冷媒液Vfは、冷媒液供給装置23から供給され、熱源管22内を流れる中温熱源流体TPによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。このとき、中温熱源流体TPは、冷媒液Vfに熱を奪われて温度が低下する。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動し、以降、同様のサイクルを繰り返す。 Next, the absorption heat pump cycle on the refrigerant side will be described. The condenser 40 receives the regenerator refrigerant vapor Vg evaporated by the regenerator 30, and the regenerator refrigerant vapor Vg is cooled and condensed by the heat-increasing target fluid TS flowing through the heat transfer tube 42 to become the refrigerant liquid Vf. At this time, the temperature of the heat-increasing target fluid TS rises due to the heat of condensation released when the regenerator refrigerant vapor Vg condenses. The heat-increasing target fluid TS flowing through the heat transfer tube 42 has passed through the heat transfer tube 12 of the absorber 10. The condensed refrigerant liquid Vf flows through the refrigerant liquid pipe 45 due to the difference in internal pressure between the condenser 40 and the evaporator 20 and reaches the evaporator 20. The refrigerant liquid Vf sent to the evaporator 20 is supplied from the refrigerant liquid supply device 23, is heated by the medium-temperature heat source fluid TP flowing in the heat source pipe 22, and evaporates to become the evaporator refrigerant steam Ve. At this time, the temperature of the medium-temperature heat source fluid TP is lowered by being deprived of heat by the refrigerant liquid Vf. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 communicating with the evaporator 20, and thereafter, the same cycle is repeated.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程における、被加熱流体及び加熱源流体の温度の変化を、具体例を挙げて説明する。熱利用設備HCFから流出して混合流体流入管55を流れる40℃の混合流体TAは、分流した増熱対象流体TS及び中温熱源流体TPがそれぞれ40℃である。増熱流体導入管51を流れる40℃の増熱対象流体TSは、吸収器10の伝熱管12を流れた際に、濃溶液Saが蒸発器冷媒蒸気Veを吸収して発生した吸収熱を得て、増熱流体連絡管15に至ると45℃に温度が上昇する。その後、増熱流体連絡管15を流れる増熱対象流体TSは、凝縮器40の伝熱管42を流れた際に、再生器冷媒蒸気Vgが凝縮して冷媒液Vfとなる際に放出した凝縮熱を得て、増熱流体流出管49に至ると50℃に温度が上昇する。 Changes in temperature of the fluid to be heated and the fluid to be heated in the process in which the absorption liquid S and the refrigerant V perform the absorption heat pump cycle as described above will be described with reference to specific examples. In the mixed fluid TA at 40 ° C., which flows out of the heat utilization equipment HCF and flows through the mixed fluid inflow pipe 55, the separated heat-enhancing target fluid TS and medium-temperature heat source fluid TP are each at 40 ° C. The 40 ° C. heat-increasing target fluid TS flowing through the heat-increasing fluid introduction tube 51 obtains absorbed heat generated by the concentrated solution Sa absorbing the evaporator refrigerant vapor Ve when flowing through the heat transfer tube 12 of the absorber 10. Then, when the heating fluid connecting pipe 15 is reached, the temperature rises to 45 ° C. After that, the heat-increasing target fluid TS flowing through the heat-increasing fluid connecting tube 15 is the condensed heat released when the regenerator refrigerant vapor Vg condenses into the refrigerant liquid Vf when flowing through the heat transfer tube 42 of the condenser 40. When the heat-increasing fluid outflow pipe 49 is reached, the temperature rises to 50 ° C.

他方、中温熱源導入管52を流れる中温熱源流体TPは、蒸発器20の熱源管22を流れた際に冷媒液Vfに熱を奪われて、中温熱源流出管29に至ると30℃に温度が低下する。中温熱源流出管29を流れる30℃の中温熱源流体TPは、熱源設備HSFに流入して加熱されて温度が上昇する。熱源設備HSFで加熱されて温度が上昇した流体は、100℃の高温熱源流体HPとして高温熱源導入管57に流出する。高温熱源導入管57を流れる100℃の高温熱源流体HPは、再生器30の熱源管32を流れた際に希溶液Swに熱を奪われて、高温熱源流出管39に至ると90℃に温度が低下する。 On the other hand, the medium temperature heat source fluid TP flowing through the medium temperature heat source introduction pipe 52 is deprived of heat by the refrigerant liquid Vf when flowing through the heat source pipe 22 of the evaporator 20, and reaches 30 ° C. when reaching the medium temperature heat source outflow pipe 29. The temperature drops. The medium-temperature heat source fluid TP at 30 ° C. flowing through the medium-temperature heat source outflow pipe 29 flows into the heat source equipment HSF and is heated to raise the temperature. The fluid whose temperature has risen due to being heated by the heat source equipment HSF flows out to the high temperature heat source introduction pipe 57 as a high temperature heat source fluid HP at 100 ° C. The 100 ° C. high-temperature heat source fluid HP flowing through the high-temperature heat source introduction pipe 57 is deprived of heat by the rare solution Sw when flowing through the heat source pipe 32 of the regenerator 30, and reaches 90 ° C. when reaching the high-temperature heat source outflow pipe 39. Decreases.

高温熱源流出管39を流れる90℃の高温熱源流体HPは、増熱流体流出管49を流れる50℃の増熱対象流体TSと混合し、60℃の混合流体TAとなって混合流体流出管59を流れる。本実施の形態では、高温熱源流出管39の高温熱源流体HPと増熱流体流出管49の増熱対象流体TSとを混合することで、吸収式熱交換システム1に出入りする被加熱流体及び熱源流体の流量バランスを図っている。混合流体流出管59を流れる60℃の混合流体TAは、熱利用設備HCFに流入して熱が利用されて温度が低下する。熱利用設備HCFで温度が低下した混合流体TAは、40℃で混合流体流入管55に流出し、以降、上述の流れを繰り返す。 The 90 ° C. high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe 39 is mixed with the 50 ° C. target fluid TS flowing through the heating fluid outflow pipe 49 to form a 60 ° C. mixed fluid TA, and the mixed fluid outflow pipe 59. Flow. In the present embodiment, the heated fluid and the heat source that enter and exit the absorption type heat exchange system 1 by mixing the high temperature heat source fluid HP of the high temperature heat source outflow pipe 39 and the heat heating target fluid TS of the heating fluid outflow pipe 49. The flow rate of the fluid is balanced. The 60 ° C. mixed fluid TA flowing through the mixed fluid outflow pipe 59 flows into the heat utilization equipment HCF and heat is utilized to lower the temperature. The mixed fluid TA whose temperature has dropped in the heat utilization equipment HCF flows out to the mixed fluid inflow pipe 55 at 40 ° C., and thereafter, the above flow is repeated.

吸収式熱交換システム1では、上述のような温度関係を成り立たせて、混合流体流出管59を流れる混合流体TAの温度が所定の温度(熱利用設備HCFにおける利用に適した温度であって本実施の形態では60℃)になるように、増熱流体導入管51を流れる増熱対象流体TSの流量と、中温熱源導入管52を流れる中温熱源流体TPの流量と、の比を決定している。本実施の形態では、増熱対象流体TSと中温熱源流体TPとの流量比を概ね5:2としている。なお、相対的に、増熱対象流体TSの流量を少なくすれば増熱対象流体TSの温度は高くなり、増熱対象流体TSの流量を多くすれば増熱対象流体TSの温度は低くなる。ここで、増熱流体導入管51を流れる増熱対象流体TSと中温熱源導入管52を流れる中温熱源流体TPとの流量比は、制御装置(不図示)に設けられた記憶装置(不図示)にあらかじめ設定しておいてもよいし、制御装置に設けられた入力装置(不図示)により随時設定が可能な構成としてもよい。本実施の形態では、増熱対象流体TSと中温熱源流体TPとの流量比の調節を、増熱流体弁51v及び中温熱源弁52vの開度を調節することで行うこととしている。増熱流体弁51v及び中温熱源弁52vの開度の調節は、典型的には上述した制御装置に設定された流量比に基づいて制御装置からの信号によって自動で行われるが、制御装置によらずに手動で開度を調節することとしてもよい。なお、増熱流体弁51v及び中温熱源弁52vに代えて、増熱流体導入管51と中温熱源導入管52と混合流体流入管55との接続部に三方弁を設けることとしてもよい。 In the absorption type heat exchange system 1, the temperature of the mixed fluid TA flowing through the mixed fluid outflow pipe 59 is a predetermined temperature (a temperature suitable for use in the heat utilization equipment HCF) by establishing the above-mentioned temperature relationship. In the embodiment, the ratio of the flow rate of the heat-increasing target fluid TS flowing through the heat-increasing fluid introduction tube 51 and the flow rate of the medium-temperature heat source fluid TP flowing through the medium-temperature heat source introduction tube 52 is determined so as to be 60 ° C.). doing. In the present embodiment, the flow rate ratio of the heat-increasing target fluid TS and the medium-temperature heat source fluid TP is approximately 5: 2. If the flow rate of the fluid TS to be heated is relatively reduced, the temperature of the fluid TS to be heated is increased, and if the flow rate of the fluid TS to be heated is increased, the temperature of the fluid TS to be heated is decreased. Here, the flow ratio of the heat-increasing target fluid TS flowing through the heating fluid introduction pipe 51 and the medium-temperature heat source fluid TP flowing through the medium-temperature heat source introduction pipe 52 is a storage device (not shown) provided in the control device (not shown). It may be set in advance in (not shown), or it may be set at any time by an input device (not shown) provided in the control device. In the present embodiment, the flow rate ratio of the heat-increasing target fluid TS and the medium-temperature heat source fluid TP is adjusted by adjusting the opening degrees of the heat-increasing fluid valve 51v and the medium-temperature heat source valve 52v. The opening degree of the heating fluid valve 51v and the medium temperature heat source valve 52v is typically adjusted automatically by a signal from the control device based on the flow rate ratio set in the control device described above. Instead, the opening may be adjusted manually. Instead of the heating fluid valve 51v and the medium temperature heat source valve 52v, a three-way valve may be provided at the connection portion between the heating fluid introduction pipe 51, the medium temperature heat source introduction pipe 52, and the mixed fluid inflow pipe 55.

これまで説明した、吸収式熱交換システム1に対して入出する、加熱源流体(高温熱源流体HP、中温熱源流体TP)と被加熱流体(混合流体TA)との流れを概観すると、吸収式熱交換システム1において、熱源設備HSFから流出して吸収式熱交換システム1に100℃で流入した高温熱源流体HPは吸収式熱交換システム1から30℃で流出して熱源設備HSFに流入しており、熱利用設備HCFから流出して吸収式熱交換システム1に40℃で流入した混合流体TAは吸収式熱交換システム1から60℃で流出して熱利用設備HCFに流入している。これを、熱源設備HSFに対して流出入する高温熱源流体HP及び中温熱源流体TPを加熱源流体、熱利用機器HCFに対して流出入する混合流体TAを被加熱流体としてみると、吸収式熱交換システム1は、加熱源流体と被加熱流体との間で熱交換作用をしているものとみることができ、被加熱流体が、流入する加熱源流体の温度から被加熱流体の温度よりも低い温度まで冷却するだけの熱量を加熱源流体から奪った後に流出する熱交換システムとみることができる。吸収式熱交換システム1から流出する加熱源流体(中温熱源流体TP)の温度が低い程、吸収式熱交換システム1において熱交換する熱量が増大し、被加熱流体(混合流体TA)の流量を増大できる。さらに、吸収式熱交換システム1から流出して熱源設備HSFに流入する中温熱源流体TPの流量と熱源設備HSFから流出して吸収式熱交換システム1に流入する高温熱源流体HPの流量を等しいものとし、吸収式熱交換システム1から流出して熱利用機器HCFに流入する混合流体TAの流量と熱利用機器HCFから流出して吸収式熱交換システム1に流入する混合流体TAの流量を等しいものとした場合には、加熱源流体と被加熱流体の両流体が吸収式熱交換システム1内で区画された独立した系統として吸収式熱交換システム1に流入出しているものとみることができ、吸収式熱交換システム1を熱交換器としてみることがより明瞭になる。本実施の形態に示したように、吸収式熱交換システム1から流出した中温熱源流体TPが熱源設備HSF内を通過して加熱された後に高温熱源流体HPとして吸収式熱交換システム1に戻り、吸収式熱交換システム1から流出した混合流体TAが熱利用機器HCFを通過して熱を消費された後に吸収式熱交換システム1に戻るように構成すると好適である。 An overview of the flow of the heating source fluid (high temperature heat source fluid HP, medium temperature heat source fluid TP) and the heated fluid (mixed fluid TA) entering and exiting the absorption type heat exchange system 1 described so far is an absorption type. In the heat exchange system 1, the high temperature heat source fluid HP that flows out from the heat source equipment HSF and flows into the absorption type heat exchange system 1 at 100 ° C. flows out from the absorption type heat exchange system 1 at 30 ° C. and flows into the heat source equipment HSF. The mixed fluid TA that flows out of the heat utilization facility HCF and flows into the absorption type heat exchange system 1 at 40 ° C. flows out from the absorption type heat exchange system 1 at 60 ° C. and flows into the heat utilization facility HCF. If the high-temperature heat source fluid HP and the medium-temperature heat source fluid TP that flow in and out of the heat source equipment HSF are used as the heat source fluid, and the mixed fluid TA that flows in and out of the heat utilization equipment HCF is used as the heated fluid, it is an absorption type. The heat exchange system 1 can be regarded as having a heat exchange action between the heating source fluid and the heated fluid, and the temperature of the heated source fluid into which the heated fluid flows is higher than the temperature of the heated fluid. It can be regarded as a heat exchange system that flows out after depriving the heating source fluid of the amount of heat required to cool it to a low temperature. The lower the temperature of the heat source fluid (medium temperature heat source fluid TP) flowing out from the absorption heat exchange system 1, the more heat is exchanged in the absorption heat exchange system 1, and the flow rate of the fluid to be heated (mixed fluid TA). Can be increased. Further, the flow rate of the medium temperature heat source fluid TP flowing out of the absorption heat exchange system 1 and flowing into the heat source equipment HSF is equal to the flow rate of the high temperature heat source fluid HP flowing out of the heat source equipment HSF and flowing into the absorption heat exchange system 1. The flow rate of the mixed fluid TA flowing out of the absorption heat exchange system 1 and flowing into the heat utilization device HCF is equal to the flow rate of the mixed fluid TA flowing out of the heat utilization device HCF and flowing into the absorption heat exchange system 1. In this case, it can be considered that both the heating source fluid and the heated fluid flow into and out of the absorption heat exchange system 1 as an independent system partitioned in the absorption heat exchange system 1. , It becomes clearer to see the absorption type heat exchange system 1 as a heat exchanger. As shown in the present embodiment, the medium-temperature heat source fluid TP flowing out of the absorption-type heat exchange system 1 passes through the heat source equipment HSF and is heated, and then returns to the absorption-type heat exchange system 1 as the high-temperature heat source fluid HP. It is preferable that the mixed fluid TA flowing out of the absorption heat exchange system 1 is configured to return to the absorption heat exchange system 1 after passing through the heat utilization device HCF and consuming heat.

なお、仮に、熱利用設備HCFに対して流出入する流体(被加熱流体)を、熱源設備HSFに対して流出入する流体(加熱源流体)に対して分流及び合流させずに、再生器30の熱源管32を流れた高温熱源流体HPを蒸発器20の熱源管22に流すように独立した系統とする場合は、再生器30の熱源管32を流れた高温熱源流体HPを蒸発器20の熱源管22に流入させる前に、吸収器10及び凝縮器40から流出した増熱対象流体TSと熱交換して冷却し温度低下させる熱交換器が必要になる。これに対し、本実施の形態のように、熱利用設備HCFに対して流出入する流体(被加熱流体)を熱源設備HSFに対して流出入する流体(加熱源流体)に対して分流及び合流させると、上記仮定の場合に設ける熱交換器が不要となり、システム構成を簡単にすることができる。上記仮定の場合に設ける熱交換器が不要となることにより、熱交換器からの放熱損失と熱交換温度効率が1より小さいことによる被加熱流体の温度低下を回避して、熱交換器による熱効率の低下を解消することができる。さらに、熱交換器の設置スペース、熱交換器に流体が出入するための配管、熱交換器の保守点検作業をも省くこともできる。さらに、本実施の形態に係る吸収式熱交換システム1では、熱源設備HSFから導入する流体(加熱源流体)よりも低い温度の流体(被加熱流体)を熱利用設備HCFに流出しつつ、熱利用設備HCFから導入する流体(被加熱流体)よりも低い温度の流体(加熱源流体)を熱源設備HSFに流出することができ、熱の有効利用を図ることができて吸収式熱交換システム1の出力を増大させることができる。 It should be noted that the regenerator 30 does not allow the fluid flowing in and out of the heat utilization facility HCF (heated fluid) to flow and merge with the fluid flowing in and out of the heat source facility HSF (heating source fluid). When the high temperature heat source fluid HP flowing through the heat source tube 32 of the above is used as an independent system so as to flow through the heat source tube 22 of the evaporator 20, the high temperature heat source fluid HP flowing through the heat source tube 32 of the regenerator 30 is used in the evaporator 20. Before flowing into the heat source tube 22, a heat exchanger that exchanges heat with the heat-increasing target fluid TS flowing out from the absorber 10 and the condenser 40 to cool and lower the temperature is required. On the other hand, as in the present embodiment, the fluid flowing in and out of the heat utilization facility HCF (heated fluid) is split and merged with the fluid flowing in and out of the heat source facility HSF (heating source fluid). Then, the heat exchanger provided in the case of the above assumption becomes unnecessary, and the system configuration can be simplified. By eliminating the need for the heat exchanger provided in the above assumption, it is possible to avoid the temperature drop of the fluid to be heated due to the heat dissipation loss from the heat exchanger and the heat exchange temperature efficiency of less than 1, and the heat efficiency of the heat exchanger. Can be eliminated. Further, the installation space of the heat exchanger, the piping for the fluid to enter and exit the heat exchanger, and the maintenance and inspection work of the heat exchanger can be omitted. Further, in the absorption type heat exchange system 1 according to the present embodiment, heat is generated while flowing out a fluid (heated fluid) having a temperature lower than the fluid (heat source fluid) introduced from the heat source equipment HSF to the heat utilization equipment HCF. A fluid with a temperature lower than the fluid introduced from the equipment HCF (fluid to be heated) (heat source fluid) can flow out to the heat source equipment HSF, and heat can be effectively used. Absorption-type heat exchange system 1 The output of can be increased.

以上で説明したように、本実施の形態に係る吸収式熱交換システム1によれば、導入した高温熱源流体HPの温度を、導入した混合流体TAよりも低い温度まで冷却して、熱を消費した中温熱源流体TPとして流出でき、吸収式熱交換システム1が熱交換する熱量、すなわち、熱交換器としての熱出力を増大させることができる。また、蒸発器20で加熱される中温熱源流体TPを、流入した混合流体TAから分岐すると共に、再生器30で熱を消費した高温熱源流体HPを、吸収器10及び凝縮器40を通過した増熱対象流体TSに合流させているので、高温熱源流体HPと増熱対象流体TSとで熱交換させることなく、すなわち大型の熱交換器を設けることなく装置構成を簡単にして、導入する混合流体TAの温度より低い温度の中温熱源流体TPを流出することができる。また、吸収式熱交換システム1に流入する高温熱源流体HPと流出する中温熱源流体TPの入出口温度差よりも、吸収式熱交換システム1に入出する混合流体TAの出入口温度差を小さくして、温度差が小さい分だけ熱利用設備HCFに供給できる混合流体TAの流量を増大することができて混合流体TAの供給範囲を拡大することができる。 As described above, according to the absorption type heat exchange system 1 according to the present embodiment, the temperature of the introduced high-temperature heat source fluid HP is cooled to a temperature lower than that of the introduced mixed fluid TA, and heat is consumed. It can flow out as a medium-temperature heat source fluid TP, and the amount of heat exchanged by the absorption-type heat exchange system 1, that is, the heat output as a heat exchanger can be increased. Further, the medium-temperature heat source fluid TP heated by the evaporator 20 is branched from the inflowing mixed fluid TA, and the high-temperature heat source fluid HP that has consumed heat by the regenerator 30 has passed through the absorber 10 and the condenser 40. Since it is merged with the heat-increasing target fluid TS, the device configuration is simplified and introduced without heat exchange between the high-temperature heat source fluid HP and the heat-heating target fluid TS, that is, without providing a large heat exchanger. A medium temperature heat source fluid TP having a temperature lower than the temperature of the fluid TA can flow out. Further, the inlet / outlet temperature difference of the mixed fluid TA entering / exiting the absorption heat exchange system 1 is made smaller than the inlet / outlet temperature difference between the high temperature heat source fluid HP flowing into the absorption heat exchange system 1 and the medium temperature heat source fluid TP flowing out. Therefore, the flow rate of the mixed fluid TA that can be supplied to the heat utilization facility HCF can be increased by the amount that the temperature difference is small, and the supply range of the mixed fluid TA can be expanded.

次に図2を参照して、本発明の第2の実施の形態に係る吸収式熱交換システム2を説明する。図2は、吸収式熱交換システム2の模式的系統図である。吸収式熱交換システム2は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム2は、高温熱源流出管39と中温熱源導入管52とを連絡する高温熱源バイパス管28が設けられている。高温熱源バイパス管28は、再生器30から流出して高温熱源流出管39を流れる高温熱源流体HPの一部を、蒸発器20に流入する前の中温熱源導入管52を流れる中温熱源流体TPに合流させる管であり、部分加熱源流体バイパス流路に相当する。高温熱源バイパス管28には、内部を流れる高温熱源流体HPの流量を調節する高温熱源バイパス弁28vが設けられている。他方、高温熱源バイパス管28との接続部よりも下流側の高温熱源流出管39には、内部を流れる高温熱源流体HPの流量を調節する高温熱源弁39vが設けられている。なお、高温熱源バイパス弁28v及び高温熱源弁39vに代えて、高温熱源流出管39と高温熱源バイパス管28との接続部に三方弁を設けることとしてもよい。吸収式熱交換システム2の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, the absorption heat exchange system 2 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic system diagram of the absorption heat exchange system 2. The absorption heat exchange system 2 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 2 is provided with a high-temperature heat source bypass pipe 28 that connects the high-temperature heat source outflow pipe 39 and the medium-temperature heat source introduction pipe 52. The high-temperature heat source bypass pipe 28 is a medium-temperature heat source fluid that flows through the medium-temperature heat source introduction pipe 52 before the part of the high-temperature heat source fluid HP that flows out of the regenerator 30 and flows through the high-temperature heat source outflow pipe 39 flows into the evaporator 20. It is a pipe that joins the TP and corresponds to a partial heat source fluid bypass flow path. The high-temperature heat source bypass pipe 28 is provided with a high-temperature heat source bypass valve 28v that regulates the flow rate of the high-temperature heat source fluid HP flowing inside. On the other hand, the high-temperature heat source outflow pipe 39 on the downstream side of the connection with the high-temperature heat source bypass pipe 28 is provided with a high-temperature heat source valve 39v for adjusting the flow rate of the high-temperature heat source fluid HP flowing inside. Instead of the high temperature heat source bypass valve 28v and the high temperature heat source valve 39v, a three-way valve may be provided at the connection portion between the high temperature heat source outflow pipe 39 and the high temperature heat source bypass pipe 28. The configuration of the absorption heat exchange system 2 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム2は、吸収式熱交換システム1(図1参照)の作用に加えて、高温熱源バイパス弁28v及び高温熱源弁39vの開度を調節して、再生器30から流出した高温熱源流体HPの一部を、蒸発器20に流入する前の中温熱源流体TPに混合させている。高温熱源バイパス弁28v及び高温熱源弁39vの開度の調節は、典型的には吸収式熱交換システム1と同様に制御装置(不図示)に設定された流量比に基づいて制御装置からの信号によって自動で行われるが、制御装置によらずに手動で開度を調節することとしてもよい。中温熱源流体TPに混合させる高温熱源流体HPの流量を調節することで、中温流体流出管29を流れる中温熱源流体TPの温度及び流量を調節することができる。また、中温熱源流体TPに混合させる高温熱源流体HPの流量を調節することで、増熱対象流体TSに混合させる高温熱源流体HPの流量を調節することとなり、混合流体流出管59を流れる混合流体TAの温度及び流量を調節することができる。本実施の形態では、混合流体流出管59を流れる混合流体TAの温度が所定の温度になるように、高温熱源バイパス管28を流れる高温熱源流体HPの流量と、混合流体流出管59に向けて高温熱源流出管39を流れる高温熱源流体HPの流量と、の比を決定している。なお、相対的に、高温熱源バイパス管28を流れる高温熱源流体HPの流量を多くすれば、中温熱源流出管29を流れる中温熱源流体TPの温度が上がって流量が増加すると共に、増熱対象流体TSに混合する高温熱源流体HPの流量が減少して混合流体流出管59を流れる混合流体TAの温度が下がって流量が減少する。他方、相対的に、高温熱源バイパス管28を流れる高温熱源流体HPの流量を少なくすれば、中温熱源流出管29を流れる中温熱源流体TP温度が下がって流量が減少すると共に、増熱対象流体TSに混合する高温熱源流体HPの流量が増加して混合流体流出管59を流れる混合流体TAの温度が上がって流量が増加する。このように、高温熱源バイパス管28を流れる高温熱源流体HPの流量を調節することで、混合流体流出管59を流れる混合流体TAの温度及び流量、並びに中温熱源流出管29を流れる中温熱源流体TPの温度及び流量を調節することができる。 The absorption heat exchange system 2 configured as described above adjusts the opening degrees of the high temperature heat source bypass valve 28v and the high temperature heat source valve 39v in addition to the action of the absorption heat exchange system 1 (see FIG. 1). A part of the high temperature heat source fluid HP flowing out of the regenerator 30 is mixed with the medium temperature heat source fluid TP before flowing into the evaporator 20. The adjustment of the opening degree of the high temperature heat source bypass valve 28v and the high temperature heat source valve 39v is typically a signal from the control device based on the flow rate ratio set in the control device (not shown) as in the absorption heat exchange system 1. Although it is automatically performed by the above, the opening degree may be adjusted manually without depending on the control device. By adjusting the flow rate of the high temperature heat source fluid HP to be mixed with the medium temperature heat source fluid TP, the temperature and flow rate of the medium temperature heat source fluid TP flowing through the medium temperature fluid outflow pipe 29 can be adjusted. Further, by adjusting the flow rate of the high-temperature heat source fluid HP to be mixed with the medium-temperature heat source fluid TP, the flow rate of the high-temperature heat source fluid HP to be mixed with the heat-increasing target fluid TS is adjusted, and the mixing flowing through the mixing fluid outflow pipe 59 is performed. The temperature and flow rate of the fluid TA can be adjusted. In the present embodiment, the flow rate of the high-temperature heat source fluid HP flowing through the high-temperature heat source bypass pipe 28 and the flow rate toward the mixed fluid outflow pipe 59 so that the temperature of the mixed fluid TA flowing through the mixed fluid outflow pipe 59 becomes a predetermined temperature. The ratio with the flow rate of the high-temperature heat source fluid HP flowing through the high-temperature heat source outflow pipe 39 is determined. If the flow rate of the high-temperature heat source fluid HP flowing through the high-temperature heat source bypass tube 28 is relatively increased, the temperature of the medium-temperature heat source fluid TP flowing through the medium-temperature heat source outflow tube 29 rises, the flow rate increases, and the heat increases. The flow rate of the high-temperature heat source fluid HP mixed with the target fluid TS decreases, the temperature of the mixed fluid TA flowing through the mixed fluid outflow pipe 59 decreases, and the flow rate decreases. On the other hand, if the flow rate of the high-temperature heat source fluid HP flowing through the high-temperature heat source bypass tube 28 is relatively reduced, the medium-temperature heat source fluid TP temperature flowing through the medium-temperature heat source outflow tube 29 decreases, the flow rate decreases, and the heat is increased. The flow rate of the high-temperature heat source fluid HP mixed with the fluid TS increases, the temperature of the mixed fluid TA flowing through the mixed fluid outflow pipe 59 rises, and the flow rate increases. By adjusting the flow rate of the high-temperature heat source fluid HP flowing through the high-temperature heat source bypass pipe 28 in this way, the temperature and flow rate of the mixed fluid TA flowing through the mixed fluid outflow pipe 59 and the medium-temperature heat source flowing through the medium-temperature heat source outflow pipe 29 The temperature and flow rate of the fluid TP can be adjusted.

次に図3を参照して、本発明の第3の実施の形態に係る吸収式熱交換システム3を説明する。図3は、吸収式熱交換システム3の模式的系統図である。吸収式熱交換システム3は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム3は、別体の2つの熱利用設備HCF1、HCF2に流体を供給するシステムになっている。吸収式熱交換システム3は、高温熱源流出管39が増熱流体流出管49に接続されておらず、混合流体流出管59(図1参照)が設けられていない。増熱流体流出管49は熱利用設備HCF1に接続されており、吸収器10及び凝縮器40で加熱された増熱対象流体TSを熱利用設備HCF1に供給するように構成されている。熱利用設備HCF1には、熱消費済流体管56の一端が接続されている。熱消費済流体管56は、熱利用設備HCF1で熱が消費されて温度が低下した増熱対象流体TSを流す流路を構成する管である。熱消費済流体管56の他端は、中温熱源導入管52及び分流後流体管53が接続されている。分流後流体管53は、分流流体TLを流す流路を構成する管である。分流流体TLは、熱消費済流体管56を流れる増熱対象流体TSから、中温熱源導入管52に分流した中温熱源流体TPを除いた残りの流体である。分流後流体管53には、内部を流れる流体の流量を調節する分流後流体弁53vが設けられている。増熱流体弁51v(図1参照)は設けられていない。分流後流体管53の他端は、増熱流体導入管51及び熱消費済流体管54それぞれの端部に接続されている。高温熱源流出管39は熱利用設備HCF2に接続されており、再生器30から流出した高温熱源流体HPを熱利用設備HCF2に供給するように構成されている。熱利用設備HCF2には、熱消費済流体管54の一端が接続されている。熱消費済流体管54は、熱利用設備HCF2で熱が消費されて温度が低下した増熱対象流体TSを流す流路を構成する管である。熱消費済流体管54の他端は、増熱流体導入管51及び分流後流体管53それぞれの端部に接続されている。吸収式熱交換システム3では、増熱流体導入管51に、分流後流体管53を流れる分流流体TLと熱消費済流体管54を流れる高温熱源流体HPとが混合した増熱対象流体TSが流れるようになっている。吸収式熱交換システム3の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。 Next, the absorption heat exchange system 3 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic system diagram of the absorption heat exchange system 3. The absorption heat exchange system 3 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 3 is a system that supplies fluid to two separate heat utilization facilities HCF1 and HCF2. In the absorption type heat exchange system 3, the high temperature heat source outflow pipe 39 is not connected to the heating fluid outflow pipe 49, and the mixed fluid outflow pipe 59 (see FIG. 1) is not provided. The heat-increasing fluid outflow pipe 49 is connected to the heat utilization facility HCF1 and is configured to supply the heat-enhancing target fluid TS heated by the absorber 10 and the condenser 40 to the heat utilization facility HCF1. One end of the heat-consumed fluid pipe 56 is connected to the heat utilization equipment HCF1. The heat-consumed fluid pipe 56 is a pipe that constitutes a flow path through which the heat-increasing target fluid TS whose temperature has dropped due to heat consumption in the heat utilization facility HCF1 flows. The other end of the heat-consumed fluid pipe 56 is connected to the medium-temperature heat source introduction pipe 52 and the post-split fluid pipe 53. The post-dividing fluid pipe 53 is a pipe that constitutes a flow path through which the split fluid TL flows. The split fluid TL is the remaining fluid obtained by removing the medium temperature heat source fluid TP that has been split into the medium temperature heat source introduction pipe 52 from the heat-increasing target fluid TS flowing through the heat-consumed fluid pipe 56. The post-dividing fluid pipe 53 is provided with a post-dividing fluid valve 53v that regulates the flow rate of the fluid flowing inside. The heating fluid valve 51v (see FIG. 1) is not provided. The other end of the flow-dividing fluid pipe 53 is connected to the ends of the heat-increasing fluid introduction pipe 51 and the heat-consumed fluid pipe 54, respectively. The high-temperature heat source outflow pipe 39 is connected to the heat utilization facility HCF2, and is configured to supply the high-temperature heat source fluid HP flowing out from the regenerator 30 to the heat utilization facility HCF2. One end of the heat-consumed fluid pipe 54 is connected to the heat utilization equipment HCF2. The heat-consumed fluid pipe 54 is a pipe that constitutes a flow path through which the heat-increasing target fluid TS whose temperature has dropped due to heat consumption in the heat utilization facility HCF2 flows. The other end of the heat-consumed fluid pipe 54 is connected to the ends of the heating fluid introduction pipe 51 and the flow-dividing fluid pipe 53, respectively. In the absorption type heat exchange system 3, the heat-increasing target fluid TS, which is a mixture of the diversion fluid TL flowing through the fluid pipe 53 after splitting and the high-temperature heat source fluid HP flowing through the heat-consumed fluid pipe 54, flows through the heating fluid introduction pipe 51. It has become like. The configuration of the absorption heat exchange system 3 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1).

上述のように構成された吸収式熱交換システム3では、別体の熱利用設備HCF1、2のそれぞれに、熱を供給することができる。吸収器10及び凝縮器40で加熱された増熱対象流体TSは、熱利用設備HCF1に供給され、熱利用設備HCF1で熱が利用されて温度が低下した後に、熱消費済流体管56に流出する。他方、再生器30から流出した高温熱源流体HPは、熱利用設備HCF2に供給され、熱利用設備HCF2で熱が利用されて温度が低下した後に、熱消費済流体管54に流出する。熱利用設備HCF1から熱消費済流体管56に流出した増熱対象流体TSは、中温熱源導入管52を流れる中温熱源流体TPと、分流後流体管53を流れる分流流体TLとに分流する。中温熱源導入管52を流れる中温熱源流体TPは、蒸発器20に流入して冷媒液Vfを加熱して自身は温度が低下した後に、中温熱源流出管29を介して熱源設備HSFに流入する。他方、分流後流体管53を流れる分流流体TLは、熱利用設備HCF2を流出して熱消費済流体管54を流れる高温熱源流体HPが合流して増熱対象流体TSとなる。増熱対象流体TSは、増熱流体導入管51を介して吸収器10に流入して加熱される。吸収式熱交換システム3では、増熱流体流出管49を流れる増熱対象流体TSが所定の温度となるように中温熱源弁52v及び分流後流体弁53vの開度を調節している。吸収式熱交換システム3において、熱利用設備HCF1から流出した増熱対象流体TSの温度が熱利用設備HCF2から流出した高温熱源流体HPの温度より低い場合には、蒸発器20に流入する中温熱源流体TPの温度が低くなって好適である。このようにすると、再生器30から流出した高温熱源流体HPと吸収器10及び凝縮器40で加熱された増熱対象流体TSの2流体をそれぞれ異なる熱利用設備HCF2、HCF1で利用することができる。高温熱源流体HPを導入する熱利用設備HCF2は比較的高温用途、増熱対象流体TSを導入する熱利用設備HCF1は比較的低温用途がよい。 In the absorption heat exchange system 3 configured as described above, heat can be supplied to each of the separate heat utilization facilities HCF1 and HCF2. The heat-enhancing target fluid TS heated by the absorber 10 and the condenser 40 is supplied to the heat utilization facility HCF1, and after the heat is used by the heat utilization facility HCF1 to lower the temperature, it flows out to the heat-consumed fluid tube 56. To do. On the other hand, the high-temperature heat source fluid HP flowing out of the regenerator 30 is supplied to the heat utilization facility HCF2, and after the heat is used by the heat utilization facility HCF2 to lower the temperature, it flows out to the heat-consumed fluid tube 54. The heat-increasing target fluid TS flowing out from the heat utilization facility HCF1 to the heat-consumed fluid pipe 56 is divided into a medium-temperature heat source fluid TP flowing through the medium-temperature heat source introduction pipe 52 and a split fluid TL flowing through the fluid pipe 53 after splitting. .. The medium-temperature heat source fluid TP flowing through the medium-temperature heat source introduction pipe 52 flows into the evaporator 20 to heat the refrigerant liquid Vf, and after its own temperature drops, it enters the heat source equipment HSF via the medium-temperature heat source outflow pipe 29. Inflow. On the other hand, the split fluid TL flowing through the fluid pipe 53 after splitting flows out of the heat utilization equipment HCF2, and the high-temperature heat source fluid HP flowing through the heat-consumed fluid pipe 54 merges to become the heat-increasing target fluid TS. The heat-increasing target fluid TS flows into the absorber 10 via the heat-increasing fluid introduction pipe 51 and is heated. In the absorption heat exchange system 3, the opening degrees of the medium-temperature heat source valve 52v and the post-dividing fluid valve 53v are adjusted so that the heat-enhancing target fluid TS flowing through the heat-increasing fluid outflow pipe 49 has a predetermined temperature. In the absorption type heat exchange system 3, when the temperature of the heat-increasing target fluid TS flowing out from the heat utilization facility HCF1 is lower than the temperature of the high-temperature heat source fluid HP flowing out from the heat utilization facility HCF2, the medium-temperature heat flowing into the evaporator 20 It is preferable that the temperature of the source fluid TP is low. In this way, the two fluids of the high-temperature heat source fluid HP flowing out of the regenerator 30 and the heat-increasing target fluid TS heated by the absorber 10 and the condenser 40 can be used in different heat utilization facilities HCF2 and HCF1, respectively. .. The heat utilization equipment HCF2 for introducing the high-temperature heat source fluid HP is suitable for relatively high temperature applications, and the heat utilization equipment HCF1 for introducing the heat-increasing target fluid TS is suitable for relatively low-temperature applications.

次に図4を参照して、本発明の第4の実施の形態に係る吸収式熱交換システム4を説明する。図4は、吸収式熱交換システム4の模式的系統図である。吸収式熱交換システム4は、主として以下の点で吸収式熱交換システム2(図2参照)と異なっている。吸収式熱交換システム4は、高温熱源流出管39から高温熱源バイパス管28に流入した一部の高温熱源流体HPが、そのまま中温熱源導入管52を流れる中温熱源流体TPに合流するのではなく、追加熱利用設備HCFAで熱が利用されて温度が低下した後に中温熱源導入管52を流れる中温熱源流体TPに合流するように構成されている。吸収式熱交換システム4では、高温熱源バイパス管28が、追加熱利用設備HCFAよりも上流側の高温熱源バイパス管28Aと、追加熱利用設備HCFAよりも下流側の高温熱源バイパス管28Bとに分かれている。吸収式熱交換システム4の上記以外の構成は、吸収式熱交換システム2(図2参照)と同様である。このように構成された吸収式熱交換システム4は、複数の熱利用設備HCF、HCFAに熱を供給することができ、通常、吸収式熱交換システム2(図2参照)の場合よりも、中温熱源導入管52に流入する高温熱源流体HPの温度が低くなり、蒸発器20から流出する中温熱源流体TPの温度も低くなるため、より多くの熱交換ができることとなる。さらに、追加熱利用設備HCFAを流出した高温熱源流体HPの温度が熱利用設備HCFを流出した増熱対象流体TSの温度より低い場合には、吸収式熱交換システム1(図1参照)よりも蒸発器20に流入する中温熱源流体TPの温度を低くでき、熱利用を促進できて好適である。 Next, the absorption heat exchange system 4 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic system diagram of the absorption heat exchange system 4. The absorption heat exchange system 4 differs from the absorption heat exchange system 2 (see FIG. 2) mainly in the following points. In the absorption type heat exchange system 4, a part of the high temperature heat source fluid HP flowing from the high temperature heat source outflow pipe 39 into the high temperature heat source bypass pipe 28 may join the medium temperature heat source fluid TP flowing through the medium temperature heat source introduction pipe 52 as it is. Instead, it is configured to join the medium-temperature heat source fluid TP flowing through the medium-temperature heat source introduction pipe 52 after the heat is utilized by the additional heat utilization facility HCFA and the temperature drops. In the absorption heat exchange system 4, the high-temperature heat source bypass pipe 28 is divided into a high-temperature heat source bypass pipe 28A on the upstream side of the additional heat utilization equipment HCFA and a high-temperature heat source bypass pipe 28B on the downstream side of the additional heat utilization equipment HCFA. ing. The configuration of the absorption heat exchange system 4 other than the above is the same as that of the absorption heat exchange system 2 (see FIG. 2). The absorption type heat exchange system 4 configured in this way can supply heat to a plurality of heat utilization facilities HCF and HCFA, and is usually in the middle as compared with the case of the absorption type heat exchange system 2 (see FIG. 2). Since the temperature of the high-temperature heat source fluid HP flowing into the heat source introduction pipe 52 becomes low and the temperature of the medium-temperature heat source fluid TP flowing out of the evaporator 20 also becomes low, more heat exchange can be performed. Further, when the temperature of the high-temperature heat source fluid HP that has flowed out of the additional heat utilization facility HCFA is lower than the temperature of the heat-increasing target fluid TS that has flowed out of the heat utilization facility HCF, it is higher than that of the absorption type heat exchange system 1 (see FIG. 1). It is preferable that the temperature of the medium-temperature heat source fluid TP flowing into the evaporator 20 can be lowered and heat utilization can be promoted.

次に図5を参照して、本発明の第5の実施の形態に係る吸収式熱交換システム5を説明する。図5は、吸収式熱交換システム5の模式的系統図である。吸収式熱交換システム5は、主として以下の点で吸収式熱交換システム1(図1参照)と異なっている。吸収式熱交換システム5は、熱利用設備HCFとは別に、追加熱利用設備HCFAに流体を供給するシステムになっている。吸収式熱交換システム5は、高温熱源流出管39を流れる高温熱源流体HPの一部を追加熱利用設備HCFAに導く追加熱源導入管58Aが設けられている。追加熱源導入管58Aには、内部を流れる流体の流量を調節する追加熱源弁58vが設けられている。追加熱源導入管58Aとの接続部よりも下流側の高温熱源流出管39には、内部を流れる流体の流量を調節する高温熱源弁39vが設けられている。追加熱利用設備HCFAには、追加熱利用設備HCFAで熱が利用されて温度が低下した高温熱源流体HPを流す追加熱源流出管58Bの一端が接続されている。追加熱源流出管58Bの他端は、増熱流体弁51vよりも下流側の増熱流体導入管51に接続されており、追加熱利用設備HCFAから流出した高温熱源流体HPを、増熱流体導入管51を流れる増熱対象流体TSに合流させるように構成されている。吸収式熱交換システム5の上記以外の構成は、吸収式熱交換システム1(図1参照)と同様である。このように構成された吸収式熱交換システム5は、複数の熱利用設備HCF、HCFAに熱を供給することができる。なお、熱利用設備HCFから流出した混合流体TAの温度が、追加熱利用設備HCFAから流出した高温熱源流体HPの温度よりも低い場合には、蒸発器20に流入する中温熱源流体TPの温度が低くでき、熱利用が促進できるため好ましい。高温熱源流体HPを導入する熱利用設備HCFAは比較的高温用途、混合流体TAを導入する熱利用設備HCFは比較的低温用途がよい。 Next, with reference to FIG. 5, the absorption heat exchange system 5 according to the fifth embodiment of the present invention will be described. FIG. 5 is a schematic system diagram of the absorption heat exchange system 5. The absorption heat exchange system 5 differs from the absorption heat exchange system 1 (see FIG. 1) mainly in the following points. The absorption heat exchange system 5 is a system that supplies fluid to the additional heat utilization equipment HCFA separately from the heat utilization equipment HCF. The absorption type heat exchange system 5 is provided with an additional heat source introduction pipe 58A that guides a part of the high temperature heat source fluid HP flowing through the high temperature heat source outflow pipe 39 to the additional heat utilization facility HCFA. The additional heat source introduction pipe 58A is provided with an additional heat source valve 58v that regulates the flow rate of the fluid flowing inside. The high-temperature heat source outflow pipe 39 on the downstream side of the connection with the additional heat source introduction pipe 58A is provided with a high-temperature heat source valve 39v that regulates the flow rate of the fluid flowing inside. One end of the additional heat source outflow pipe 58B through which the high-temperature heat source fluid HP whose temperature has dropped due to heat being used by the additional heat utilization facility HCFA is connected to the additional heat utilization facility HCFA. The other end of the additional heat source outflow pipe 58B is connected to the heating fluid introduction pipe 51 on the downstream side of the heating fluid valve 51v, and the high temperature heat source fluid HP flowing out from the additional heat utilization facility HCFA is introduced into the heating fluid. It is configured to join the heat-increasing target fluid TS flowing through the pipe 51. The configuration of the absorption heat exchange system 5 other than the above is the same as that of the absorption heat exchange system 1 (see FIG. 1). The absorption heat exchange system 5 configured in this way can supply heat to a plurality of heat utilization facilities HCF and HCFA. When the temperature of the mixed fluid TA flowing out from the heat utilization facility HCF is lower than the temperature of the high temperature heat source fluid HP flowing out from the additional heat utilization facility HCFA, the temperature of the medium temperature heat source fluid TP flowing into the evaporator 20. Is preferable because the temperature can be lowered and heat utilization can be promoted. The heat utilization equipment HCFA for introducing the high temperature heat source fluid HP is suitable for relatively high temperature applications, and the heat utilization equipment HCF for introducing the mixed fluid TA is suitable for relatively low temperature applications.

以上の説明では、増熱対象流体TSが、吸収器10から凝縮器40へ直列に流れることとしたが、凝縮器40から吸収器10へ直列に流れることとしてもよく、吸収器10及び凝縮器40へ並列に流れることとしてもよい。 In the above description, the fluid TS to be heated flows from the absorber 10 to the condenser 40 in series, but it may also flow from the condenser 40 to the absorber 10 in series, and the absorber 10 and the condenser It may flow in parallel to 40.

以上の説明において、加熱源流体(高温熱源流体HP、中温熱源流体TP)と被加熱流体(混合流体TA、増熱対象流体TS)とは、分流及び合流を行うので同種の流体となる。適用する流体には温水の他に熱媒用液体や化学液体であってもよい。特に、水より沸点が高い熱媒用液体や化学液体を採用すると、流体の沸騰を抑制するために流体に高い圧力を作用させることなく高い温度域迄適用できてよい。 In the above description, the heating source fluid (high temperature heat source fluid HP, medium temperature heat source fluid TP) and the fluid to be heated (mixed fluid TA, fluid to be heated) are separated and merged, so that they are the same type of fluid. The fluid to be applied may be a heat medium liquid or a chemical liquid in addition to hot water. In particular, when a heat medium liquid or a chemical liquid having a boiling point higher than that of water is adopted, it may be applied up to a high temperature range without applying a high pressure to the fluid in order to suppress boiling of the fluid.

1、2、3、4、5 吸収式熱交換システム
10 吸収器
20 蒸発器
28 高温熱源バイパス管
30 再生器
40 凝縮器
Sa 濃溶液
Sw 希溶液
HP 高温熱源流体
TP 中温熱源流体
TS 増熱対象流体
Ve 蒸発器冷媒蒸気
Vf 冷媒液
Vg 再生器冷媒蒸気
1, 2, 3, 4, 5 Absorption heat exchange system 10 Absorber 20 Evaporator 28 High temperature heat source bypass tube 30 Regenerator 40 Condenser Sa Concentrated solution Sw Rare solution HP High temperature heat source fluid TP Medium temperature heat source fluid TS Heat heating target Fluid Ve Evaporator Refrigerator Steam Vf Refrigerator Liquid Vg Regenerator Refrigerator Steam

Claims (9)

吸収式熱交換システムであって;
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を第1の加熱源流体から奪うことで前記第1の加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を、第2の加熱源流体から奪うことで前記第2の加熱源流体の温度を低下させる再生部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が低くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が低くなるように構成され;
前記凝縮部及び前記吸収部に導入される前の前記被加熱流体から分岐された一部の前記被加熱流体を前記第1の加熱源流体として前記蒸発部に導入するように構成され;
前記蒸発部で温度が低下した前記第1の加熱源流体は、前記吸収式熱交換システム外の熱源設備へ流出し、前記熱源設備から流出した流体が前記第2の加熱源流体として前記再生部に流入するように構成された;
吸収式熱交換システム。
Absorption heat exchange system;
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
The temperature of the first heating source fluid is obtained by introducing the refrigerant liquid from the condensing portion and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the first heating source fluid. With the evaporative part that reduces
An absorption unit that introduces the refrigerant vapor from the evaporation unit and raises the temperature of the fluid to be heated by the absorbed heat released when the absorbing liquid absorbs the introduced refrigerant vapor to form a dilute solution having a reduced concentration.
The heat required to introduce the dilute solution from the absorption unit, heat the introduced dilute solution, remove the refrigerant from the dilute solution, and obtain a concentrated solution having an increased concentration is generated from the second heating source fluid. It is equipped with a regeneration unit that lowers the temperature of the second heating source fluid by robbing it;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are lower than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are lower than those of the condensing unit. Consists of;
A part of the heated fluid branched from the heated fluid before being introduced into the condensing part and the absorbing part is introduced into the evaporation part as the first heating source fluid ;
The first heating source fluid whose temperature has dropped in the evaporation section flows out to a heat source facility outside the absorption type heat exchange system, and the fluid flowing out from the heat source facility flows out as the second heating source fluid in the regeneration section. Was configured to flow into;
Absorption heat exchange system.
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を第1の加熱源流体から奪うことで前記第1の加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を、第2の加熱源流体から奪うことで前記第2の加熱源流体の温度を低下させる再生部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が低くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が低くなるように構成され;
前記凝縮部及び前記吸収部に導入される前の前記被加熱流体から分岐された一部の前記被加熱流体を前記第1の加熱源流体として前記蒸発部に導入するように構成され;
前記再生部から流出した前記第2の加熱源流体の少なくとも一部が、前記凝縮部及び前記吸収部の少なくとも一方から流出した前記被加熱流体と混合するように構成された;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
The temperature of the first heating source fluid is obtained by introducing the refrigerant liquid from the condensing portion and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the first heating source fluid. With the evaporative part that reduces
An absorption unit that introduces the refrigerant vapor from the evaporation unit and raises the temperature of the fluid to be heated by the absorbed heat released when the absorbing liquid absorbs the introduced refrigerant vapor to form a dilute solution having a reduced concentration.
The heat required to introduce the dilute solution from the absorption unit, heat the introduced dilute solution, remove the refrigerant from the dilute solution, and obtain a concentrated solution having an increased concentration is generated from the second heating source fluid. It is equipped with a regeneration unit that lowers the temperature of the second heating source fluid by robbing it;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are lower than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are lower than those of the condensing unit. Consists of;
A part of the heated fluid branched from the heated fluid before being introduced into the condensing part and the absorbing part is introduced into the evaporation part as the first heating source fluid ;
At least a part of the second heating source fluid flowing out of the regenerating section is configured to mix with the heated fluid flowing out of at least one of the condensing section and the absorbing section;
Absorption heat exchange system.
前記再生部から流出した前記第2の加熱源流体の少なくとも一部と前記凝縮部及び前記吸収部の少なくとも一方から流出した前記被加熱流体とが混合した混合被加熱流体の温度が所定の温度になるように、前記凝縮部及び前記吸収部に流入する前記被加熱流体の流量と、前記第1の加熱源流体として前記蒸発部に流入する前記被加熱流体の流量との比が設定できるように構成された;
請求項2に記載の吸収式熱交換システム。
The temperature of the mixed heated fluid in which at least a part of the second heating source fluid flowing out from the regenerating portion and the heated fluid flowing out from at least one of the condensing portion and the absorbing portion is brought to a predetermined temperature. Therefore, the ratio of the flow rate of the heated fluid flowing into the condensing portion and the absorbing portion to the flow rate of the heated fluid flowing into the evaporating portion as the first heating source fluid can be set. Constructed;
The absorption heat exchange system according to claim 2.
前記凝縮部及び前記吸収部の少なくとも一方から流出した前記被加熱流体と混合する前の前記第2の加熱源流体から分岐された一部の前記第2の加熱源流体と、前記分岐された後の残りの前記第2の加熱源流体と前記凝縮部及び前記吸収部の少なくとも一方から流出した前記被加熱流体とが混合した流体とが、別々に前記吸収式熱交換システムから流出するように構成された;
請求項2又は請求項3に記載の吸収式熱交換システム。
A part of the second heating source fluid branched from the second heating source fluid before mixing with the heated fluid flowing out from at least one of the condensing portion and the absorbing portion, and after the branching. A fluid obtained by mixing the remaining second heating source fluid and the fluid to be heated that has flowed out from at least one of the condensing part and the absorbing part is separately discharged from the absorbing heat exchange system. Was done;
The absorption heat exchange system according to claim 2 or 3.
前記再生部から流出した前記第2の加熱源流体から分岐された一部の前記第2の加熱源流体を、前記蒸発部に導入される前の前記第1の加熱源流体に合流させる部分加熱源流体バイパス流路を備える;
請求項1乃至請求項4のいずれか1項に記載の吸収式熱交換システム。
Partial heating that merges a part of the second heating source fluid branched from the second heating source fluid flowing out of the regeneration section with the first heating source fluid before being introduced into the evaporation section. It has a source fluid bypass flow path;
The absorption heat exchange system according to any one of claims 1 to 4.
冷媒の蒸気が凝縮して冷媒液となる際に放出した凝縮熱によって被加熱流体の温度を上昇させる凝縮部と;
前記凝縮部から前記冷媒液を導入し、導入した前記冷媒液が蒸発して冷媒蒸気となる際に必要な蒸発潜熱を第1の加熱源流体から奪うことで前記第1の加熱源流体の温度を低下させる蒸発部と;
前記蒸発部から前記冷媒蒸気を導入し、導入した前記冷媒蒸気を吸収液が吸収して濃度が低下した希溶液となる際に放出した吸収熱によって被加熱流体の温度を上昇させる吸収部と;
前記吸収部から前記希溶液を導入し、導入した前記希溶液を加熱し前記希溶液から冷媒を離脱させて濃度が上昇した濃溶液とするのに必要な熱を、第2の加熱源流体から奪うことで前記第2の加熱源流体の温度を低下させる再生部とを備え;
前記吸収液と前記冷媒との吸収ヒートポンプサイクルによって、前記吸収部は前記再生部よりも内部の圧力及び温度が低くなり、前記蒸発部は前記凝縮部よりも内部の圧力及び温度が低くなるように構成され;
前記凝縮部及び前記吸収部に導入される前の前記被加熱流体から分岐された一部の前記被加熱流体を前記第1の加熱源流体として前記蒸発部に導入するように構成され;
前記再生部から流出した前記第2の加熱源流体から分岐された一部の前記第2の加熱源流体を、前記蒸発部に導入される前の前記第1の加熱源流体に合流させる部分加熱源流体バイパス流路を備える;
吸収式熱交換システム。
A condensing part that raises the temperature of the fluid to be heated by the heat of condensation released when the vapor of the refrigerant condenses into a refrigerant liquid;
The temperature of the first heating source fluid is obtained by introducing the refrigerant liquid from the condensing portion and removing the latent heat of vaporization required when the introduced refrigerant liquid evaporates to become refrigerant vapor from the first heating source fluid. With the evaporative part that reduces
An absorption unit that introduces the refrigerant vapor from the evaporation unit and raises the temperature of the fluid to be heated by the absorbed heat released when the absorbing liquid absorbs the introduced refrigerant vapor to form a dilute solution having a reduced concentration.
The heat required to introduce the dilute solution from the absorption unit, heat the introduced dilute solution, remove the refrigerant from the dilute solution, and obtain a concentrated solution having an increased concentration is generated from the second heating source fluid. It is equipped with a regeneration unit that lowers the temperature of the second heating source fluid by robbing it;
Due to the absorption heat pump cycle of the absorption liquid and the refrigerant, the internal pressure and temperature of the absorption unit are lower than those of the regeneration unit, and the internal pressure and temperature of the evaporation unit are lower than those of the condensing unit. Consists of;
A part of the heated fluid branched from the heated fluid before being introduced into the condensing part and the absorbing part is introduced into the evaporation part as the first heating source fluid ;
Partial heating that merges a part of the second heating source fluid branched from the second heating source fluid flowing out of the regeneration section with the first heating source fluid before being introduced into the evaporation section. It has a source fluid bypass flow path;
Absorption heat exchange system.
前記再生部から流出した前記第2の加熱源流体の少なくとも一部と前記凝縮部及び前記吸収部の少なくとも一方から流出した前記被加熱流体とが混合した混合被加熱流体の温度が所定の温度になるように、前記再生部から流出した前記第2の加熱源流体の、前記部分加熱源流体バイパス流路に流入しない流量と、前記部分加熱源流体バイパス流路を流れる流量との比が設定できるように構成された;
請求項5又は請求項6に記載の吸収式熱交換システム。
The temperature of the mixed heated fluid in which at least a part of the second heating source fluid flowing out from the regenerating portion and the heated fluid flowing out from at least one of the condensing portion and the absorbing portion becomes a predetermined temperature. Therefore, the ratio of the flow rate of the second heating source fluid flowing out of the regenerating section to the flow rate of the second heating source fluid not flowing into the partial heating source fluid bypass flow path and the flow rate flowing through the partial heating source fluid bypass flow path can be set. It was configured as;
The absorption heat exchange system according to claim 5 or 6.
前記部分加熱源流体バイパス流路を流れる前記第2の加熱源流体を、熱利用されて温度が低下した後に、前記蒸発部に導入される前の前記第1の加熱源流体に合流させるように構成された;
請求項5乃至請求項7のいずれか1項に記載の吸収式熱交換システム。
The second heating source fluid flowing through the partial heating source fluid bypass flow path is merged with the first heating source fluid before being introduced into the evaporation section after the temperature is lowered by heat utilization. Constructed;
Absorption heat exchange system according to any one of claims 5 to 7.
前記再生部から流出した前記第2の加熱源流体の少なくとも一部と、前記凝縮部から流出した前記被加熱流体とが、別々に前記吸収式熱交換システムから流出するように構成された;
請求項1に記載の吸収式熱交換システム。
At least a part of the second heating source fluid flowing out of the regenerating section and the heated fluid flowing out of the condensing section are configured to separately flow out of the absorption heat exchange system;
The absorption heat exchange system according to claim 1.
JP2017158910A 2017-08-21 2017-08-21 Absorption heat exchange system Active JP6896968B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017158910A JP6896968B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system
CN201821279725.9U CN208817757U (en) 2017-08-21 2018-08-09 Absorption type heat exchange system
CN201810902236.2A CN109425143A (en) 2017-08-21 2018-08-09 Absorption type heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158910A JP6896968B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system

Publications (2)

Publication Number Publication Date
JP2019035561A JP2019035561A (en) 2019-03-07
JP6896968B2 true JP6896968B2 (en) 2021-06-30

Family

ID=65514469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158910A Active JP6896968B2 (en) 2017-08-21 2017-08-21 Absorption heat exchange system

Country Status (2)

Country Link
JP (1) JP6896968B2 (en)
CN (2) CN208817757U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140444A (en) 2019-02-28 2020-09-03 セイコーエプソン株式会社 Maintenance support system and terminal used for the same
CN113531704B (en) * 2021-07-06 2022-07-12 北京建筑大学 Low-temperature area heat and cold supply system and operation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606255B2 (en) * 2005-06-09 2011-01-05 三洋電機株式会社 Operation method of single double effect absorption refrigerator
CN101629733B (en) * 2009-08-18 2011-06-29 清华大学 Method for reducing return water temperature of heat supply pipeline
CN203704109U (en) * 2014-02-28 2014-07-09 烟台荏原空调设备有限公司 Absorption type heat exchange unit
JP6297377B2 (en) * 2014-03-25 2018-03-20 荏原冷熱システム株式会社 Absorption heat pump
KR101616516B1 (en) * 2014-07-18 2016-04-29 주식회사 성지테크 Free cooling system with absorption chiller
CN104848331B (en) * 2015-04-24 2017-05-24 珠海格力电器股份有限公司 heating system
CN104832970B (en) * 2015-04-24 2018-07-10 珠海格力电器股份有限公司 Absorption type heat exchanger unit

Also Published As

Publication number Publication date
CN109425143A (en) 2019-03-05
JP2019035561A (en) 2019-03-07
CN208817757U (en) 2019-05-03

Similar Documents

Publication Publication Date Title
KR101710072B1 (en) Triple effect absorption chiller using heat source
JP6896968B2 (en) Absorption heat exchange system
KR101702952B1 (en) Triple effect absorption chiller
CN108180670B (en) Absorption heat exchange system
JP2006177570A (en) Absorption heat pump
JP7015671B2 (en) Absorption heat exchange system
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP6903852B2 (en) Absorption heat exchange system
CN105444467A (en) Absorption type heat pump
CN104180555A (en) Cool double-effect lithium bromide spray absorption type refrigeration cycle system
JP6907438B2 (en) Absorption heat exchange system
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
CN110234941B (en) Absorption refrigerator
KR20080094985A (en) Hot-water using absorption chiller
JP6364238B2 (en) Absorption type water heater
CN109974329A (en) Absorption type heat exchange system
JP7080001B2 (en) Absorption chiller
KR101164360B1 (en) Heat pump apparatus comprising vapor injection compressor
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
CN117366907A (en) Lithium bromide air conditioning system
JP3858655B2 (en) Absorption refrigeration system
JP2004011928A (en) Absorption refrigerator
JP2006170611A (en) Absorption type refrigerator
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
CN108534393A (en) The solution series type lithium bromide absorption type refrigeration heat pump unit of variable effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6896968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250