JP6864291B2 - Deterioration evaluation method for separation membrane equipment - Google Patents
Deterioration evaluation method for separation membrane equipment Download PDFInfo
- Publication number
- JP6864291B2 JP6864291B2 JP2017138433A JP2017138433A JP6864291B2 JP 6864291 B2 JP6864291 B2 JP 6864291B2 JP 2017138433 A JP2017138433 A JP 2017138433A JP 2017138433 A JP2017138433 A JP 2017138433A JP 6864291 B2 JP6864291 B2 JP 6864291B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- separation membrane
- degree
- signal strength
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、分離膜装置の汚損度評価方法に関する。 The present invention relates to a method for evaluating the degree of contamination of a separation membrane device.
分離膜の一例として逆浸透膜を有する分離膜装置が知られている(例えば特許文献1参照)。この分離膜装置では、供給される原水が逆浸透膜を通過することで透過水と濃縮水とに分離される。 As an example of the separation membrane, a separation membrane device having a reverse osmosis membrane is known (see, for example, Patent Document 1). In this separation membrane device, the supplied raw water passes through the reverse osmosis membrane to be separated into permeated water and concentrated water.
分離膜は、原水の性状変動や分離膜の上流での前処理状況に応じて、分離膜自体が汚損される場合がある。このような場合は、分離膜の入口と出口との間の圧力損失や分離膜の出口での透過水量の計測結果から汚損状況を判断し、汚損が確認されれば、逆洗や化学洗浄によって分離膜の性能回復を図っている。 The separation membrane itself may be contaminated depending on changes in the properties of raw water and the pretreatment status upstream of the separation membrane. In such a case, determine the fouling status from the measurement results of the pressure loss between the inlet and outlet of the separation membrane and the amount of permeated water at the outlet of the separation membrane, and if fouling is confirmed, perform backwashing or chemical cleaning. We are trying to recover the performance of the separation membrane.
しかしながら、一つの分離膜装置内には複数の分離膜が取り付けられており、プラント全体としての分離膜数は多数になる。そのため、分離膜毎に圧力計や流速計を取り付けることは困難である。また、仮に取り付けることができたとしても大幅なコストの増加に繋がる。さらに、分離膜の内部の部分的な圧力損失や流速を計測することはできず、各分離膜の部分ごとの汚損を評価することはできない。 However, a plurality of separation membranes are installed in one separation membrane device, and the number of separation membranes in the entire plant is large. Therefore, it is difficult to attach a pressure gauge or a current meter to each separation membrane. Moreover, even if it can be installed, it will lead to a significant increase in cost. Furthermore, it is not possible to measure the partial pressure loss or flow velocity inside the separation membrane, and it is not possible to evaluate the fouling of each part of the separation membrane.
したがって、分離膜の物理的な閉塞や、無機物、有機物の付着による流路阻害といった汚損状況や原因の特定には至らず、汚損の態様に応じた適切な対策が施すことが困難であった。
本発明は上記課題に鑑みてなされたものであって、分離膜の部分的な汚損度を評価することができる分離膜装置の汚損度評価方法を提供することを目的とする。
Therefore, it has not been possible to identify the state and cause of contamination such as physical blockage of the separation membrane and obstruction of the flow path due to adhesion of inorganic substances and organic substances, and it has been difficult to take appropriate measures according to the mode of contamination.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for evaluating the degree of contamination of a separation membrane device capable of evaluating the degree of partial contamination of the separation membrane.
本発明は、上記課題を解決するため、以下の手段を採用している。
即ち、本発明の第一態様に係る分離膜装置の汚損度評価方法は、水が通過する分離膜を有する分離膜装置の汚損度評価方法であって、前記分離膜内の水が存在する部分的な測定領域に静磁場を印加する静磁場印加工程、前記静磁場を印加させた状態で前記測定領域に前記静磁場に直交する高周波磁場パルスを印加する高周波磁場パルス印加工程、及び、前記高周波磁場パルスによる横磁化の信号強度を検出する信号強度検出工程と、を含むデータ取得工程と、前記信号強度に基づく値により、前記分離膜の部分的な汚損度を評価する評価工程と、を含む。
The present invention employs the following means in order to solve the above problems.
That is, the method for evaluating the degree of fouling of the separation membrane device according to the first aspect of the present invention is the method for evaluating the degree of fouling of the separation membrane device having a separation membrane through which water passes, and the portion where water exists in the separation membrane. A static magnetic field application step of applying a static magnetic field to a specific measurement region, a high frequency magnetic field pulse application step of applying a high frequency magnetic field pulse orthogonal to the static magnetic field to the measurement region while the static magnetic field is applied, and the high frequency. A data acquisition step including a signal intensity detection step of detecting the signal intensity of transverse magnetization by a magnetic field pulse, and an evaluation step of evaluating the degree of partial contamination of the separation membrane based on a value based on the signal intensity are included. ..
上記構成によれば、分離膜の特定の測定領域の横磁化の信号強度を取得し、当該信号強度により汚損度を評価することで、分離膜装置の外部から分離膜の局所的な汚損度を評価することができる。 According to the above configuration, by acquiring the signal intensity of the transverse magnetization of a specific measurement region of the separation membrane and evaluating the degree of fouling based on the signal intensity, the degree of local fouling of the separation membrane can be determined from the outside of the separation membrane device. Can be evaluated.
上記の分離膜装置の汚損度評価方法は、前記信号強度の時間変化から、緩和時間を取得する緩和時間取得工程をさらに含み、前記評価工程は、前記緩和時間を指標として、前記分離膜の汚損度を評価する工程であってもよい。 The method for evaluating the degree of contamination of the separation membrane device further includes a relaxation time acquisition step of acquiring a relaxation time from the time change of the signal strength, and the evaluation step further includes a relaxation time acquisition step using the relaxation time as an index to stain the separation membrane. It may be a step of evaluating the degree.
ここで、水分子は水素原子核が磁気モーメントを持つことで水分子全体が磁化される。この水分子の磁化は当該水分子が固体に取り囲まれている程、緩和し易い。
即ち、固体の内方に位置する水(結合水)は、水分子の動きが制限されているため、水素の自由度が小さい。そのため、高周波磁場パルスにより与えられたエネルギーが消失し易い。
したがって、緩和時間の長短は、水分子が汚損物質としての固体に取り囲まれているか否かを判断する材料となる。たとえば多孔質な膜の場合、汚損が進行すると空隙が固定で充填されるため該空隙のサイズが小さくなる。そのため、空隙中の水分子は、周囲を固体に取り囲まれた状態となり、水分子の動きが低下する。その結果、水分子の水素原子核の横緩和時間が短くなる。即ち、緩和時間が長い程、汚損度は低く、横緩和時間が短い程、汚損度は高い。よって、緩和時間を指標とすることで汚損度を評価することができる。
緩和時間としては、信号強度の時系列から得られる緩和曲線の時定数である横緩和時間や、緩和曲線が定常状態に落ち着くまでの時間を採用することができる。
Here, the entire water molecule is magnetized by the hydrogen nucleus having a magnetic moment. The magnetization of the water molecule is easily relaxed as the water molecule is surrounded by the solid.
That is, water located inside the solid (bound water) has a small degree of freedom of hydrogen because the movement of water molecules is restricted. Therefore, the energy given by the high-frequency magnetic field pulse is likely to be lost.
Therefore, the length of the relaxation time is a material for determining whether or not the water molecule is surrounded by the solid as a fouling substance. For example, in the case of a porous membrane, the size of the voids becomes smaller because the voids are fixedly filled as the fouling progresses. Therefore, the water molecules in the voids are surrounded by solids, and the movement of the water molecules is reduced. As a result, the lateral relaxation time of hydrogen nuclei of water molecules is shortened. That is, the longer the relaxation time, the lower the degree of fouling, and the shorter the lateral relaxation time, the higher the degree of fouling. Therefore, the degree of fouling can be evaluated by using the relaxation time as an index.
As the relaxation time, a lateral relaxation time, which is a time constant of the relaxation curve obtained from the time series of signal strength, or a time until the relaxation curve settles in a steady state can be adopted.
上記の分離膜装置の汚損度評価方法では、前記データ取得工程は、水の流速がない静止状態と、前記分離膜内で水が流通している流通状態とで同一の前記測定領域で実行され、前記静止状態及び前記流通状態における前記信号強度から、前記静止状態の前記信号強度に対する流通状態の前記信号強度の比である信号強度比を取得する信号強度比取得工程をさらに含み、前記評価工程は、前記信号強度比を指標として、前記分離膜の汚損度を評価する工程であってもよい。 In the above-mentioned method for evaluating the degree of fouling of the separation membrane device, the data acquisition step is executed in the same measurement region in the stationary state where there is no flow velocity of water and in the flow state where water is flowing in the separation membrane. The evaluation step further includes a signal strength ratio acquisition step of acquiring a signal strength ratio which is a ratio of the signal strength in the flow state to the signal strength in the stationary state from the signal strength in the stationary state and the flow state. May be a step of evaluating the degree of contamination of the separation membrane using the signal intensity ratio as an index.
流速のない静止状態では、時間が経過しても測定領域の水はその場に留まる一方、流速のある流通状態では、高周波磁場パルスによって横磁化された水は測定領域から徐々に出ていくことになる。よって、信号強度は、横磁化された水が出ていく分だけ小さくなる。
ここで、流通状態で分離膜の汚損度が低い場合には、分離膜を円滑に水が透過するため、測定領域から横磁化された水が出て行き易い。そのため、信号強度比は比較的小さな値を示す。一方、分離膜の汚損度が高い場合には、分離膜を水が透過し難いため、横磁化された水は出て行きにくい。よって信号強度比は比較的大きな値を示す。したがって、よって、信号強度比を指標とすることで汚損度を評価することができる。
In a stationary state with no flow velocity, the water in the measurement area stays in place over time, while in a flow state with a flow velocity, the water laterally magnetized by the high-frequency magnetic field pulse gradually exits the measurement area. become. Therefore, the signal strength becomes smaller as the transversely magnetized water goes out.
Here, when the degree of contamination of the separation membrane is low in the distribution state, water smoothly permeates through the separation membrane, so that the transversely magnetized water easily goes out from the measurement region. Therefore, the signal strength ratio shows a relatively small value. On the other hand, when the degree of contamination of the separation membrane is high, it is difficult for water to permeate through the separation membrane, so that the transversely magnetized water is difficult to leave. Therefore, the signal strength ratio shows a relatively large value. Therefore, the degree of fouling can be evaluated by using the signal strength ratio as an index.
上記の分離膜装置の汚損度評価方法では、前記データ取得工程は、前記静磁場を印加可能な静磁場印加部及び該静磁場印加部の外方に設けられて前記高周波磁場パルスを印加可能な高周波コイルを備えるとともに、前記測定領域が前記静磁場印加部から見て高周波コイルよりもさらに外方に設定された核磁気共鳴スキャナを用いて行われてもよい。 In the method for evaluating the degree of fouling of the separation membrane device, the data acquisition step is provided outside the static magnetic field application portion to which the static magnetic field can be applied and the static magnetic field application portion, and the high frequency magnetic field pulse can be applied. It may be performed by using a nuclear magnetic resonance scanner provided with a high-frequency coil and in which the measurement region is set further outward than the high-frequency coil when viewed from the static magnetic field application unit.
測定領域が、静磁場印加部から見て高周波コイルの外方に設定されているため、例えば膜分離装置の外部に核磁気共鳴スキャナを設置した場合に、膜分離装置の内部に測定領域を設定できる。これによって、膜分離装置の内部のデータを容易に取得することができる。 Since the measurement area is set outside the high-frequency coil when viewed from the static magnetic field application part, for example, when the nuclear magnetic resonance scanner is installed outside the membrane separation device, the measurement area is set inside the membrane separation device. it can. Thereby, the data inside the membrane separation device can be easily acquired.
本発明によれば、分離膜の部分的な汚損度を評価することができる。 According to the present invention, the degree of partial fouling of the separation membrane can be evaluated.
以下、本発明の第一実施形態に係る逆浸透膜装置1(分離膜装置)の汚損度評価方法について、図1〜8を参照して詳細に説明する。
本実施形態の汚損度評価方法の対象となる逆浸透膜装置1は、分離膜装置の一種であって、供給される原水W1を透過水W2と濃縮水W3とに分離させて排出する装置である。逆浸透膜装置1は、図1及び図2に示すように、ハウジング2、中管6、膜モジュール7を備えている。
Hereinafter, the method for evaluating the degree of fouling of the reverse osmosis membrane device 1 (separation membrane device) according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 8.
The reverse
ハウジング2は、外筒3、第一蓋部4及び第二蓋部5を有している。
外筒3は、水平方向に沿う軸線Oを中心として延びる円筒状をなす部材である。
第一蓋部4は、外筒3の軸線O方向一方側(図1における左側)を閉塞する円盤状をなしている。第一蓋部4の中央には軸線Oを中心して第一蓋部4を軸線O方向に貫通する原水導入孔4aが形成されている。第一蓋部4の原水導入孔4aよりも径方向外側の部分(本実施形態では原水導入孔4aの下方の部分)には、該第一蓋部4を軸線O方向に貫通する透過水排出孔4bが形成されている。
The
The outer cylinder 3 is a cylindrical member extending around an axis O along the horizontal direction.
The first lid portion 4 has a disk shape that closes one side (left side in FIG. 1) of the outer cylinder 3 in the axis O direction. A raw water introduction hole 4a is formed in the center of the first lid portion 4 so as to center the axis O and penetrate the first lid portion 4 in the axis O direction. Permeated water discharge that penetrates the first lid portion 4 in the axial direction O direction to the portion radially outside the raw water introduction hole 4a of the first lid portion 4 (the portion below the raw water introduction hole 4a in the present embodiment). The
第二蓋部5は、外筒3の軸線O方向他方側(図1における右側)を閉塞する円盤状をなしている。第二蓋部5の中央には軸線Oを中心して第二蓋部5を軸線O方向に貫通する濃縮水排出孔5aが形成されている。第二蓋部5の濃縮水排出孔5aよりも径方向外側の部分(本実施形態では濃縮水排出孔5aよりも下方の部分)には、該第二蓋部5を軸線O方向に貫通する透過水排出孔5bが形成されている。
The
中管6は、軸線Oを中心として延びる管状の部材である。中管6は、第一蓋部4の原水導入孔4aから第二蓋部5の濃縮水排出孔5aに至るように外筒3の内部に設けられている。中管6には内外を径方向に貫通する孔部6aが、軸線O方向に間隔をあけて複数設けられている。
The
膜モジュール7は、ハウジング2の内部で中管6の外周面に固定されている。膜モジュール7は逆浸透膜7a(分離膜)から構成されている。本実施形態では、膜モジュール7は、逆浸透膜7aを中管6の外周面に順次積層させながら巻き付けたいわゆるスパイラル型のモジュールとされている。
The
上記構成の逆浸透膜装置1では、図示しないポンプによって圧送されることで中管6の軸線O方向一方側の原水導入孔4aに導入された原水W1は、中管6の内部を軸線O方向に流通する。中管6の孔部6aを介して膜モジュール7に接触する原水W1は、膜モジュール7を透過する過程で不純物が取り除かれる。このように膜モジュール7を透過した水は透過水W2として、透過水排出孔4b,5bから逆浸透膜装置1の外部に排出される。一方、原水W1から透過水W2が除かれることで不純物の濃度が増加した濃縮水W3は、中管6の軸線O方向他方側の濃縮水排出孔5aから逆浸透膜装置1の外部に排出される。
In the reverse
このような逆浸透膜装置1では、稼働時間に伴って不純物が膜モジュール7の逆浸透膜7aに付着していく。特に、原水W1の性状変動や上流側での原水W1の前処理状況によっては、このような不純物の付着やファウリングによる逆浸透膜7aの汚損が不用意に進行してしまう。本実施形態の汚損評価方法は、このような逆浸透膜7aの汚損を評価するために行われる。
In such a reverse
本実施形態の汚損評価方法は、図3に示すように、データ取得工程S1、緩和時間取得工程S2及び評価工程S3を含む。
データ取得工程S1は、図1及び図2に示す核磁気共鳴スキャナ10を用いて逆浸透膜装置1の外部から評価に必要なデータを取得する工程である。ここで、核磁気共鳴スキャナ10の構成について、図4及び図5を用いて詳細に説明する。
As shown in FIG. 3, the stain evaluation method of the present embodiment includes a data acquisition step S1, a relaxation time acquisition step S2, and an evaluation step S3.
The data acquisition step S1 is a step of acquiring data necessary for evaluation from the outside of the reverse
図4及び図5に示すように、核磁気共鳴スキャナ10は、いわゆる片側開放型NMRスキャナであって、静磁場印加部20及び高周波磁場パルス印加部30を備えている。
静磁場印加部20は、円筒型永久磁石21と円柱型永久磁石22を有している。
円筒型永久磁石21は、円筒状をなす永久磁石であって、該円筒状の一方の端面である円筒第一端面21aがN極、他方の端面である円筒第二端面21bがS極となるように磁化している。以下では、円筒型永久磁石21の中心軸線に平行な方向であって該円筒型永久磁石21のN極側を+、S極側を−とする軸をZ軸方向とする。また、Z軸方向に直交し、かつ互いに直交する一対の軸をそれぞれX軸方向と、Y軸方向とする。
As shown in FIGS. 4 and 5, the nuclear
The static magnetic
The cylindrical
円柱型永久磁石22は、Z軸方向に延びる円柱状をなしている。円柱型永久磁石22は、円筒型永久磁石21の内側で該円筒型永久磁石21と同軸に配置されている。円柱型永久磁石22は、円筒型永久磁石21の径方向内側に間隔をあけて配置されている。即ち、円柱型永久磁石22の直径は円筒型永久磁石21の内径よりも小さく、円柱型永久磁石22の外周面は、円筒型永久磁石21の外周面と互いに径方向に間隔をあけて配置されている。
The cylindrical
円柱型永久磁石22のZ軸の+側の端面である円柱第一端面22aは、円筒第一端面21aよりもZ軸の−方向に後退して配置されている。円柱型永久磁石22のZ軸の−側の端面である円柱第二端面22bは、円筒第二端面21bよりもZ軸の−方向に後退して配置されている。即ち、円柱第一端面22aは、円筒第一端面21aからZ軸の−側にオフセットして配置されている。円柱第二端面22bは、円筒第二端面21bからZ軸の−側にオフセットして配置されている。
The cylindrical
このような静磁場印加部20によれば、円筒型永久磁石21のN極からS極に向かう磁場、円柱型永久磁石22のN極からS極に向かう磁場の合成磁場が形成される。この合成磁場のうち、円筒型永久磁石21よりもZ軸の+側に離間した箇所には、磁場のX軸方向成分、Y軸方向成分が小さく、Z軸方向成分が大きい領域が形成される。このような領域が核磁気共鳴スキャナ10による測定領域Sとされている。換言すれば、静磁場印加部20から生じる静磁場におけるZ軸方向成分が大きく、X軸方向成分、Y軸方向成分が小さい領域が測定領域Sとして選定されている。なお、上述のように円柱型永久磁石22は円筒型永久磁石21に対してオフセットされているため、これら磁石から離間した位置に、比較的大きなZ軸方向の磁場を所定の幅(Z軸方向に直交する方向の寸法)の範囲で均一にすることができる。
According to such a static magnetic
高周波磁場パルス印加部30は、上記測定領域SにY軸方向の高周波磁場パルスを与えるとともに、測定領域Sから生じる核磁気共鳴信号を検出する役割を有している。高周波磁場パルス印加部30は、第一高周波コイル31と第二高周波コイル32とを有している。
第一高周波コイル31及び第二高周波コイル32は、静磁場印加部20の円筒型永久磁石21からZ軸の+側に離間した箇所に互いに隣接するように配置されている。第一高周波コイル31及び第二高周波コイル32は、Z軸方向から見てX軸方向を長手方向とし、Y軸方向を短手方向とした互いに同様の矩形状をなすように巻回されたコイルである。第一高周波コイル31は、Z軸からY軸の−側にずれた第一コイル軸線O1回りに巻回されている。第二高周波コイル32は、Z軸からY軸の+側にずれた第二コイル軸線O2回りに巻回されている。第一高周波コイル31及び第二高周波コイル32は、Z軸方向から見て互いにY軸方向に隣り合うように配置されており、長手方向に沿う部分がY軸方向に互いに対向している。
The high-frequency magnetic field
The first high-
これら第一高周波コイル31及び第二高周波コイル32には、図示しない電源供給装置によって、パルス状の交流電源が流される。これによって第一高周波コイル31及び第二高周波コイル32には、互いにY軸方向に隣接する部分で同一の方向(X軸方向)に流れる交流電流が生じ、当該交流電流によって高周波磁場パルスが生成される。高周波磁場パルスは、測定領域SではY軸方向の磁場パルス成分が支配的となる。即ち、高周波磁場パルス印加部30によって、測定領域Sには静磁場印加部20による静磁場に直交する高周波磁場パルスが印加される。
また、第一高周波コイル31及び第二高周波コイル32には、電源供給装置による交流電流が非供給の際には、外部磁場の変化(緩和しつつある水素原子核磁化ベクトルの回転運動)により交流電圧が誘起され、これにより生成される交流電流を出力する。
A pulsed AC power source is passed through the first high-
Further, when the AC current by the power supply device is not supplied to the first
以上のように、核磁気共鳴スキャナ10は、静磁場を印加可能な静磁場印加部20と、該静磁場印加部20の外方(Z軸方向)に設けられて高周波磁場パルスを印加可能な第一高周波コイル31及び第二高周波コイル32を備えている。さらに、測定領域Sが静磁磁場印加部から見て第一高周波コイル31及び第二高周波コイル32よりもさらに外方に設定されている。
なお、静磁場印加部20及び高周波磁場パルス印加部30は、図1及び2に示すように、例えば非磁性体からなるケース40内に収容されている。核磁気共鳴スキャナ10は、当該ケース40におけるZ軸の+側を向く面が、測定面とされている。
As described above, the nuclear
As shown in FIGS. 1 and 2, the static magnetic
次に上記核磁気共鳴スキャナ10を用いて行われるデータ取得工程S1の詳細を説明する。データ取得工程S1は、静磁場印加工程S11、高周波磁場パルス印加工程S12、信号強度検出工程S13の3つのステップを含む。
Next, the details of the data acquisition step S1 performed by using the nuclear
まず静磁場印加工程S11を実行する。静磁場印加工程S11では、核磁気共鳴スキャナ10の測定面を図1に示すように逆浸透膜装置1の外筒3の外周面に押し当てる。これによって、図2に示すように、逆浸透膜装置1の内部における膜モジュール7内の一部に、測定領域Sが設定される。
First, the static magnetic field application step S11 is executed. In the static magnetic field application step S11, the measurement surface of the nuclear
次に高周波磁場パルス印加工程S12を実行する。高周波磁場パルス印加工程S12では、測定領域Sに静磁場印加工程S11による静磁場を印加させた状態で、該静磁場に直交する高周波磁場パルスを測定領域Sに印加する。
具体的には、核磁気共鳴スキャナ10における高周波磁場パルス印加部30の第一高周波コイル31及び第二高周波コイル32にパルス状の交流電流が供給する。これにより、第一高周波コイル31及び第二高周波コイル32から、測定領域Sに対してY軸方向の高周波磁場パルスが印加される。なお、高周波磁場パルスとしては、ラジオ波磁場パルス(RFパルス)が印加される。また、高周波磁場パルスの周波数、即ち、交流電流の周波数は、水素原子(プロトン)の歳差運動周波数(ラーモア周波数)と一致する値とする。
なお、高周波磁場パルスの印加手法としては、例えば例えば、Solid Echo法、CPMG(Curr Purcel Meiboom Gill)法及びHahn Echo法等の既知の手法を用いることができる。
Next, the high-frequency magnetic field pulse application step S12 is executed. In the high-frequency magnetic field pulse application step S12, a high-frequency magnetic field pulse orthogonal to the static magnetic field is applied to the measurement region S in a state where the static magnetic field according to the static magnetic field application step S11 is applied to the measurement region S.
Specifically, a pulsed alternating current is supplied to the first high-
As the method of applying the high-frequency magnetic field pulse, for example, known methods such as the Solid Echo method, the CPMG (Curr Purcel Meiboom Gil) method, and the Han Echo method can be used.
続いて、信号強度検出工程S13を実行する。信号強度検出工程S13では、高周波磁場パルスによる測定領域Sの横磁化の信号強度を検出する。
即ち、高周波磁場パルスを測定領域Sに印加すると、測定領域Sの水に基づくプロトンのZ軸方向の磁化がY軸方向に例えば90°フリップ角をなして倒れる。そして、高周波磁場パルスの印加が停止されると、プロトンの磁化は元の状態、即ち、Z軸方向の静磁場にみによって磁化された状態に戻っていく。信号強度検出工程S13では、この際に放出されるエネルギーを検出する。具体的には、プロトンの回転磁界により第一高周波コイル31、第二高周波コイル32に誘起された交流電圧に基づく交流電流を、横磁化(Z軸方向に直交するY軸方向の磁化)の信号強度として検出する。即ち、第一高周波コイル31及び第二高周波コイル32は、高周波磁場パルスを印加する役割に加えて、当該高周波磁場パルスによって生じる核磁気共鳴信号の信号強度を検出する役割といった、励起及び検出の二つの役割を有する。
Subsequently, the signal strength detection step S13 is executed. In the signal intensity detection step S13, the signal intensity of the transverse magnetization of the measurement region S due to the high-frequency magnetic field pulse is detected.
That is, when a high-frequency magnetic field pulse is applied to the measurement region S, the magnetization of the water-based protons in the measurement region S in the Z-axis direction collapses in the Y-axis direction with, for example, a 90 ° flip angle. Then, when the application of the high-frequency magnetic field pulse is stopped, the magnetization of the proton returns to the original state, that is, the state magnetized only by the static magnetic field in the Z-axis direction. In the signal strength detection step S13, the energy released at this time is detected. Specifically, a signal of transverse magnetization (magnetization in the Y-axis direction orthogonal to the Z-axis direction) is applied to an AC current based on the AC voltage induced in the first high-
以上のようにデータ取得工程S1では、静磁場印加工程S11、高周波磁場パルス印加工程S12、信号強度検出工程S13を経ることで、測定領域Sにおける横磁化の信号強度を得ることができる。本実施形態では、このデータ取得工程S1の後に、緩和時間取得工程S2を実行する。 As described above, in the data acquisition step S1, the signal intensity of the transverse magnetization in the measurement region S can be obtained by going through the static magnetic field application step S11, the high frequency magnetic field pulse application step S12, and the signal intensity detection step S13. In the present embodiment, the relaxation time acquisition step S2 is executed after the data acquisition step S1.
本実施形態の緩和時間取得工程S2では、信号強度の時間変化から横緩和時間T2を取得する。即ち、信号強度検出工程S13で、第一高周波コイル31及び第二高周波コイル32により検出される信号強度を時間とともに記録すると、図6に示すように、時間とともに減衰する波形(自由誘導減衰:FID)を得られる。このような波形に基づいて、例えば波形のピークを通るカーブを横磁化の緩和曲線として取得することができる。そして、この緩和曲線の時定数を横緩和時間(スピン‐スピン緩和時間)T2として取得する。
In the relaxation time acquisition step S2 of the present embodiment, the lateral relaxation time T2 is acquired from the time change of the signal strength. That is, when the signal strength detected by the first
なお、高周波磁場パルス印加工程S12、信号強度検出工程S13及び緩和時間取得工程S2をSolid Echo法に基づいて行う場合には、以下の手順で実行する。まず、高周波磁場パルスとしてプロトンのフリップ角が90°となる90°パルスを一定間隔で2回、測定領域Sに与えた後の信号強度を取得する。そして、当該信号強度から自由誘導減衰の波形を取得し、緩和曲線及び横緩和時間T2を取得する。
一方、CPMG法で行う場合には、90°パルスを与えた後に、プロトンのフリップ角が180°になる180°パルスを与える。その後、180°パルスを繰り返し与え、その度に横磁化の信号強度の最大値を記録する。これによって得られた信号強度の減衰から緩和曲線を取得し、続いて横緩和時間T2を取得する。
When the high-frequency magnetic field pulse application step S12, the signal strength detection step S13, and the relaxation time acquisition step S2 are performed based on the Solid Echo method, the procedure is as follows. First, as a high-frequency magnetic field pulse, a 90 ° pulse having a proton flip angle of 90 ° is applied twice at regular intervals to the measurement region S, and then the signal strength is acquired. Then, the waveform of free induction decay is acquired from the signal strength, and the relaxation curve and the lateral relaxation time T2 are acquired.
On the other hand, in the case of the CPMG method, after giving a 90 ° pulse, a 180 ° pulse at which the flip angle of the proton becomes 180 ° is given. After that, 180 ° pulses are repeatedly applied, and the maximum value of the signal intensity of the transverse magnetization is recorded each time. A relaxation curve is obtained from the attenuation of the signal strength thus obtained, and then the lateral relaxation time T2 is obtained.
続いて評価工程S3を行う。評価工程S3では、本実施形態では、横緩和時間T2を汚染度を評価する指標である緩和時間として、逆浸透膜7aの汚損度を評価する。
ここで、逆浸透膜7aの水が汚損している程、測定領域Sの横緩和時間T2は小さくなる傾向がある。水分子は水素原子(プロトン)が磁気モーメントを持つことで水分子全体が磁化される。この水分子の磁化は当該水分子が固体に取り囲まれている程、緩和し易い。
よって、固体の内方に位置する水(結合水)は、水分子の動きが制限されているため、水素の自由度が小さい。そのため、高周波磁場パルスにより与えられたエネルギーが消失し易い。一方で、固体の外部に位置する自由水は、水分子の動きが制限されないため、水素の自由度が大きく、エネルギーが消失し難い。
Subsequently, the evaluation step S3 is performed. In the evaluation step S3, in the present embodiment, the degree of contamination of the
Here, the more the water in the
Therefore, the water (bonded water) located inside the solid has a small degree of freedom of hydrogen because the movement of water molecules is restricted. Therefore, the energy given by the high-frequency magnetic field pulse is likely to be lost. On the other hand, free water located outside the solid has a large degree of freedom of hydrogen because the movement of water molecules is not restricted, and energy is hard to be lost.
したがって、横緩和時間T2の長短は、水分子が汚損物質としての固体に取り囲まれているか否かを判断する指標となる。即ち、横緩和時間T2が長い程、汚損度は低く、横緩和時間T2が短い程、汚損度は高い。よって、横緩和時間T2を指標とすることで汚損度を評価することができる。例えば、図7に示すように、汚損度が低い測定領域Sの緩和曲線は、実線に示すように初期の信号強度は比較的大きく、緩やかに緩和していく(時定数が大きい)。一方、汚染度が高い測定領域Sの緩和曲線は、破線に示すように初期の信号強度が比較的小さく、急激に緩和していく(時定数が小さい)。
即ち、汚損度が高いと測定領域Sの中にゴミが溜まり、体積含水率が低下する。そのため、信号強度も低下する。そして、空隙サイズが小さくなるので、横緩和時間T2も短くなる。
Therefore, the length of the lateral relaxation time T2 is an index for determining whether or not the water molecule is surrounded by the solid as a fouling substance. That is, the longer the lateral relaxation time T2, the lower the degree of fouling, and the shorter the lateral relaxation time T2, the higher the degree of fouling. Therefore, the degree of fouling can be evaluated by using the lateral relaxation time T2 as an index. For example, as shown in FIG. 7, the relaxation curve of the measurement region S having a low degree of fouling has a relatively large initial signal strength and gradually relaxes (the time constant is large) as shown by the solid line. On the other hand, in the relaxation curve of the measurement region S having a high degree of pollution, the initial signal strength is relatively small as shown by the broken line, and the relaxation curve is rapidly relaxed (the time constant is small).
That is, if the degree of fouling is high, dust accumulates in the measurement area S, and the volume moisture content decreases. Therefore, the signal strength also decreases. Then, since the void size becomes smaller, the lateral relaxation time T2 also becomes shorter.
なお、具体的な評価手法としては、例えば予め取得した汚損度と横緩和時間T2と相関関係に、上記工程により取得した横緩和時間T2を照らし合わせることで、測定領域Sでの汚損度を評価することができる。したがって、逆浸透膜装置1の膜モジュール7の部分的な汚損度を評価することができる。
As a specific evaluation method, for example, the degree of fouling in the measurement area S is evaluated by comparing the degree of fouling acquired in advance with the lateral relaxation time T2 with the lateral relaxation time T2 acquired in the above step. can do. Therefore, the degree of partial contamination of the
また、例えば、膜モジュール7における中管6の上流側の部分(入口部)と下流側の部分(出口部)とで横緩和時間T2を取得し、図8に示すように横軸を横緩和時間T2、縦軸を度数とした度数分布で表すことで、膜モジュール7の異なる箇所での汚損度を相対評価してもよい。
Further, for example, the lateral relaxation time T2 is acquired at the upstream portion (inlet portion) and the downstream side portion (exit portion) of the
ここで第一実施形態の変形例について説明する。当該変形例では、核磁気共鳴スキャナ10の測定領域Sの横幅(水の流通方向に直交する方向の寸法、本実施形態ではZ軸に直交する方向)は、任意の値に設定されている。一方、当該測定領域Sの縦幅X(水の流通方向の寸法、本実施形態ではZ軸方向)は、以下の(1)式のように設定されている。
測定領域Sの縦幅X≒透過水W2の流速V×高周波磁場パルス印加後に測定領域からの信号強度が定常状態になるまでの時間T …(1)
Here, a modified example of the first embodiment will be described. In the modification, the width of the measurement area S of the nuclear magnetic resonance scanner 10 (dimensions in the direction orthogonal to the water flow direction, in the present embodiment, directions orthogonal to the Z axis) is set to an arbitrary value. On the other hand, the vertical width X (dimension in the water flow direction, Z-axis direction in the present embodiment) of the measurement area S is set as shown in the following equation (1).
Vertical width X of measurement area S ≈ flow velocity V of permeated water W2 × time until the signal intensity from the measurement area becomes steady after applying a high-frequency magnetic field pulse T ... (1)
「透過水W2の流速V」とは、膜モジュール7の逆浸透膜装置1に汚損がないと仮定し、予め定めた稼働条件で原水W1を導入した場合における設計値である。また、「高周波磁場パルス印加後に測定領域からの信号強度が定常状態になるまでの時間T」とは、膜モジュール7の逆浸透膜装置1に汚損がなく、流速Vで透過水W2が流通している際に、高周波磁場パスルを測定領域Sに印加してから後述する信号強度が定常状態になるまでの時間(緩和時間)である。ここで、上記信号強度は、時間の経過とともに小さくなるが、ノイズの影響のため0にはならず、最終的にはある定常的な値に落ち着くことになる。即ち、信号強度が定常状態になるとは、測定領域内で横磁化された水が、全て測定領域から出ていることを意味している。
The “flow velocity V of the permeated water W2” is a design value when the raw water W1 is introduced under predetermined operating conditions on the assumption that the reverse
実施形態では汚損度の指標となる緩和時間として、時定数である横緩和時間T2を用いた例について説明した。一方、当該変形例では、緩和曲線の信号強度が定常状態になるまでの時間を緩和時間として用いて汚損度を評価する。
本変形例では測定領域Sの縦幅が上記(1)式の関係で設定されている。汚損度が0の場合には、特定の時間経過後には測定領域Sの全ての横磁化された水が出ていく。一方、汚損後が高い場合には、水が逆浸透膜7aを透過し難くなる結果、特定の時間経過後であっても横磁化された水が存在する。したがって、この場合、信号強度が定常状態になるまでの時間は大きくなる。この関係を利用することで、信号強度が定常状態になるまでの時間を横緩和時間T2として、上記同様、汚損度を評価することができる。即ち、当該緩和時間を指標とすることで、横磁化の緩和と測定領域Sからの流出との双方を加味した評価を行うことができる。
In the embodiment, an example in which the lateral relaxation time T2, which is a time constant, is used as the relaxation time as an index of the degree of fouling has been described. On the other hand, in the modified example, the degree of fouling is evaluated by using the time until the signal strength of the relaxation curve becomes a steady state as the relaxation time.
In this modification, the vertical width of the measurement area S is set in relation to the above equation (1). When the degree of fouling is 0, all the transversely magnetized water in the measurement region S is discharged after a lapse of a specific time. On the other hand, when the post-staining is high, it becomes difficult for water to permeate the
なお、核磁気共鳴スキャナ10によるデータ取得工程S1は、図1に示すように、当該核磁気共鳴スキャナ10を逆浸透膜装置1の外筒3の外面を連続的にスライドさせることによって行われる。これによって、測定領域Sを膜モジュール7内で任意に設定することができ、膜モジュール7内の部分的な汚損度を評価することができる。
The data acquisition step S1 by the nuclear
即ち、本実施形態では上記核磁気共鳴スキャナ10を用いることで、逆浸透膜7aの部位や設置場所を選ばないデータ取得を行うことが可能となる。これによって、汚損されている逆浸透膜7aの特定や汚損部位の判別が可能となり、全面的な汚損や物理閉塞の際の膜交換作業や部分汚損時に洗浄作業の選定を容易に行うことができる。
That is, in the present embodiment, by using the nuclear
さらに、水の挙動を把握することによって、逆浸透膜7a内での汚損状況(物理的な閉塞や無機物、有機物の付着による流路阻害)やその原因の特定が可能となり、汚損、劣化モードに応じた適切な対策を実施することができる。また、対策後の逆浸透膜7aを再計測することで、性能回復の度合いを定量的に評価することもできる。
Furthermore, by grasping the behavior of water, it is possible to identify the pollution status (physical blockage and flow path obstruction due to adhesion of inorganic substances and organic substances) in the
次に本発明の第二実施形態について、図9〜図11を参照して説明する。第二実施形態では第一実施形態と同一の構成要素には同一の符号を付して詳細な説明を省略する。
第二実施形態の逆浸透膜装置1の評価方法は、図9に示すように、異なる状態でのデータ取得工程S1A,S1B、信号強度比取得工程S20及び評価工程S30を含む。
Next, the second embodiment of the present invention will be described with reference to FIGS. 9 to 11. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
As shown in FIG. 9, the evaluation method of the reverse
本実施形態のデータ取得工程S1A,S1Bは、同一の測定領域Sで、水が流通していない静止状態、水が流通している流通状態の2つの状態で行われる。静止状態とは、ポンプによる逆浸透膜装置1への原水W1のストップを停止した状態であって、逆浸透膜7aには圧力がかかっていないため、水が透過することはない。そのため、水の流通量は0となる。一方、流通状態とは、ポンプによる逆浸透膜装置1への原水W1の供給を行っている状態である。当該ポンプでの原水W1の供給は、逆浸透膜7aが汚染されていない状態で、膜モジュール7内で水が当初設定した平均流速で流通するように行われる。
そして、データ取得工程S1A,S1Bでは、第一実施形態同様の静磁場印加工程S11、高周波磁場パルス印加工程S12及び信号強度検出工程S13を行うことで、各状態における横磁化の信号強度を取得する。
The data acquisition steps S1A and S1B of the present embodiment are performed in the same measurement area S in two states, a stationary state in which water is not flowing and a distribution state in which water is flowing. The stationary state is a state in which the stop of the raw water W1 on the reverse
Then, in the data acquisition steps S1A and S1B, the signal strength of the transverse magnetization in each state is acquired by performing the static magnetic field application step S11, the high frequency magnetic field pulse application step S12, and the signal strength detection step S13 as in the first embodiment. ..
次に信号強度比取得工程S20を実行する。静止状態の信号強度に対する流通状態の信号強度の比である信号強度比を取得する信号強度比(=流通状態の信号強度/静止状態の信号強度)を取得する。
静止状態の信号強度、流通状態の信号強度は、図6に示す波形と同様に減衰する。よって緩和曲線は時間とともに徐々に減衰するカーブとなる。信号強度比を取得する際に用いる静止状態及び流通状態の信号強度は、それぞれ高周波磁場パルスを印加後、同一の時間が経過した時点における信号強度を採用することが好ましい。
Next, the signal intensity ratio acquisition step S20 is executed. Acquires the signal strength ratio (= signal strength in the distribution state / signal strength in the stationary state) for acquiring the signal strength ratio, which is the ratio of the signal strength in the distribution state to the signal strength in the stationary state.
The signal strength in the stationary state and the signal strength in the distribution state are attenuated in the same manner as the waveform shown in FIG. Therefore, the relaxation curve becomes a curve that gradually decays with time. As the signal strength in the stationary state and the flow state used when acquiring the signal strength ratio, it is preferable to adopt the signal strength at the time when the same time elapses after applying the high-frequency magnetic field pulse.
続いて、評価工程S30を行う。この評価工程S30では、信号強度比を指標として、分離膜の汚損度を評価する。
ここで、図10に異なる汚損度における流速と信号強度比との関係のグラフを示す。当該グラフからわかるように、汚損度が小さい場合には、流速が大きくなるにしたがって信号強度比は大きく低下するのに対して、汚損度が大きい場合には、流速の増加による信号強度比の低下は小さい。
Subsequently, the evaluation step S30 is performed. In this evaluation step S30, the degree of contamination of the separation membrane is evaluated using the signal intensity ratio as an index.
Here, FIG. 10 shows a graph of the relationship between the flow velocity and the signal intensity ratio at different pollution degrees. As can be seen from the graph, when the degree of fouling is small, the signal intensity ratio decreases significantly as the flow velocity increases, whereas when the degree of fouling is large, the signal intensity ratio decreases due to the increase in the flow velocity. Is small.
即ち、汚損度が小さい場合には、高周波磁場パルスを与えた後に円滑に水が透過するため、測定領域S内の横磁化された水分量が大きく減少する。そのため、信号強度比は小さくなる。一方、汚損度が大きい場合には、原水W1に起因するファウリングによって水の透過性が低下している。そのため、測定領域Sには特定の時間経過後も、高周波磁場パルスによって横磁化された水分が存在する。そのため、信号強度比の低下は小さい。
よって、信号強度比と汚損度には、図11に示すように互いに相関関係がある。そのため、信号強度比を指標として膜モジュール7の汚損度を評価することができる。
以上から、第二実施形態の評価方法も第一実施形態同様、膜モジュール7の部分的な汚損度を評価することが可能となる。
That is, when the degree of fouling is small, water permeates smoothly after applying a high-frequency magnetic field pulse, so that the amount of laterally magnetized water in the measurement region S is greatly reduced. Therefore, the signal strength ratio becomes small. On the other hand, when the degree of fouling is large, the water permeability is lowered due to fouling caused by the raw water W1. Therefore, even after a lapse of a specific time, the water content laterally magnetized by the high-frequency magnetic field pulse exists in the measurement region S. Therefore, the decrease in the signal strength ratio is small.
Therefore, the signal intensity ratio and the degree of fouling have a correlation with each other as shown in FIG. Therefore, the degree of contamination of the
From the above, the evaluation method of the second embodiment can also evaluate the degree of partial contamination of the
以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば図12に示すように、変形例の核磁気共鳴スキャナ10Aとして、長尺状をなすファイバの先端11に、実施形態と同様の静磁場印加部20及び高周波磁場パルス印加部30を設けたものを採用してもよい。この場合、ファイバの先端11を狭い場所に挿入することで、逆浸透膜7aのより部分的なデータを取得することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately modified without departing from the technical idea of the invention.
For example, as shown in FIG. 12, as a modified nuclear magnetic resonance scanner 10A, a static magnetic
また、例えば医療用のNMR装置のように、ドーム状又はアーチ状の核磁気共鳴スキャナ10を採用してもよい。ドーム状の場合には、円形の平膜を測定することが可能となり、アーチ状の場合には、円筒形の逆浸透膜7aの測定を行うことができる。また、測定対象物のサイズに応じて、磁場の大きさ、コイルの要領、サイズを最適化することで、対象物内部の詳細な水挙動データを取得することができる。さらに、膜モジュール7の輪切り断面計測が可能となり、汚損状況の三次元マッピングを作成することもできる。
Further, a dome-shaped or arch-shaped nuclear
なお、実施形態では、分離膜として逆浸透膜7aを例に説明したが、これに限定されることはなく、他の分離膜を本発明に係る評価方法の評価対象としてもよい。例えば、分離膜として、ろ過膜やイオン交換膜等を採用してもよい。
In the embodiment, the
実施形態では、測定領域Sを軸線Oに直交する断面で矩形状に設定したが、例えば、軸線を含む断面で矩形状にしてもよい。この場合、水の流通方向を測定領域Sの縦幅Xとすることが好ましい。
また、実施形態では、測定領域Sを膜モジュール7内に設定したが、例えば、該膜モジュール7を通過した水が流れる領域、即ち、外筒3の内周面と膜モジュール7の外周面との間の領域に設定してもよい。この場合、測定領域Sは逆浸透膜装置1の外部から比較的近接した位置となる。そのために測定領域Sを形成する静磁場印加部20の磁力を小さくすることができる。よって、例えば静磁場印加部20を構成する永久磁石の小型化を図れるといったメリットがある。
In the embodiment, the measurement area S is set to have a rectangular shape with a cross section orthogonal to the axis O, but for example, the measurement region S may have a rectangular shape with a cross section including the axis. In this case, it is preferable that the water flow direction is the vertical width X of the measurement area S.
Further, in the embodiment, the measurement region S is set in the
また、実施形態では静磁場印加部20として永久磁石を用いた例を説明したが、静磁場を発生させる電磁石を用いてもよい。実施形態では、第一高周波コイル31及び第二高周波コイル32の二つのコイルを用いた例を説明したが、Y軸方向から磁場を印加可能であれば、単一の高周波コイルのみを用いてもよい。
また、膜モジュール7はいわゆるスパイラル状に限られず、他の形態のものであってもよい。
Further, in the embodiment, an example in which a permanent magnet is used as the static magnetic
Further, the
1 逆浸透膜装置(分離膜装置)
2 ハウジング
3 外筒
4 第一蓋部
4a 原水導入孔
4b 透過水排出孔
5 第二蓋部
5a 濃縮水排出孔
5b 透過水排出孔
6 中管
6a 孔部
7 膜モジュール
7a 逆浸透膜(分離膜)
10 核磁気共鳴スキャナ
10A 核磁気共鳴スキャナ
11 ファイバの先端
20 静磁場印加部
21 円筒型永久磁石
21a 円筒第一端面
21b 円筒第二端面
22 円柱型永久磁石
22a 円柱第一端面
22b 円柱第二端面
30 高周波磁場パルス印加部
31 第一高周波コイル
32 第二高周波コイル
40 ケース
S1 データ取得工程
S1A データ取得工程
S1B データ取得工程
S11 静磁場印加工程
S12 高周波磁場パルス印加工程
S13 信号強度検出工程
S2 緩和時間取得工程
S20 信号強度比取得工程
S3 評価工程
S30 評価工程
W1 原水
W2 透過水
W3 濃縮水
S 測定領域
O 軸線
O1 第一コイル軸線
O2 第二コイル軸線
T2 横緩和時間
1 Reverse osmosis membrane device (separation membrane device)
2 Housing 3 Outer cylinder 4 First lid 4a Raw
10 Nuclear magnetic resonance scanner 10A Nuclear
Claims (4)
前記分離膜装置における前記水が存在する部分的な測定領域に静磁場を印加する静磁場印加工程、前記静磁場を印加させた状態で前記測定領域に前記静磁場に直交する高周波磁場パルスを印加する高周波磁場パルス印加工程、及び、前記高周波磁場パルスによる横磁化の信号強度を検出する信号強度検出工程と、を含むデータ取得工程と、
前記信号強度に基づく値により、前記分離膜装置の部分的な汚損度を評価する評価工程と、
を含む分離膜装置の汚損度評価方法。 It is a method for evaluating the degree of fouling of a separation membrane device having a separation membrane through which water passes.
A step of applying a static magnetic field in which a static magnetic field is applied to a partial measurement region where water exists in the separation membrane device, and a high-frequency magnetic field pulse orthogonal to the static magnetic field is applied to the measurement region while the static magnetic field is applied. A data acquisition step including a high-frequency magnetic field pulse application step and a signal strength detection step of detecting the signal strength of transverse magnetization by the high-frequency magnetic field pulse.
An evaluation step for evaluating the degree of partial contamination of the separation membrane device based on the value based on the signal strength, and an evaluation step.
A method for evaluating the degree of contamination of a separation membrane device including.
前記評価工程は、前記緩和時間を指標として、前記分離膜の汚損度を評価する請求項1に記載の分離膜装置の汚損度評価方法。 The relaxation time acquisition step of acquiring the relaxation time from the time change of the signal strength is further included.
The evaluation step is the method for evaluating the degree of contamination of the separation membrane device according to claim 1, wherein the degree of contamination of the separation membrane is evaluated using the relaxation time as an index.
前記静止状態の前記信号強度に対する前記流通状態の前記信号強度の比である信号強度比を取得する信号強度比取得工程をさらに含み、
前記評価工程は、前記信号強度比を指標として、前記分離膜の汚損度を評価する請求項1に記載の分離膜装置の汚損度評価方法。 The data acquisition step is executed in the same measurement region in the stationary state where there is no flow velocity of water in the separation membrane and in the distribution state where water is flowing in the separation membrane.
Further including a signal strength ratio acquisition step of acquiring a signal strength ratio which is a ratio of the signal strength in the flow state to the signal strength in the stationary state.
The evaluation step is the method for evaluating the degree of contamination of the separation membrane device according to claim 1, wherein the degree of contamination of the separation membrane is evaluated using the signal intensity ratio as an index.
前記静磁場を印加可能な静磁場印加部及び該静磁場印加部の外方に設けられて前記高周波磁場パルスを印加可能な高周波コイルを備えるとともに、前記測定領域が前記静磁場印加部から見て高周波コイルよりもさらに外方に設定された核磁気共鳴スキャナを用いて行われる請求項1から3のいずれか一項に記載の分離膜装置の汚損度評価方法。 The data acquisition process is
A static magnetic field application unit to which the static magnetic field can be applied and a high-frequency coil provided outside the static magnetic field application unit to which the high-frequency magnetic field pulse can be applied are provided, and the measurement region is viewed from the static magnetic field application unit. The method for evaluating the degree of fouling of a separation film device according to any one of claims 1 to 3, which is performed using a nuclear magnetic resonance scanner set further outside than a high-frequency coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017138433A JP6864291B2 (en) | 2017-07-14 | 2017-07-14 | Deterioration evaluation method for separation membrane equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017138433A JP6864291B2 (en) | 2017-07-14 | 2017-07-14 | Deterioration evaluation method for separation membrane equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019018148A JP2019018148A (en) | 2019-02-07 |
JP6864291B2 true JP6864291B2 (en) | 2021-04-28 |
Family
ID=65353483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017138433A Active JP6864291B2 (en) | 2017-07-14 | 2017-07-14 | Deterioration evaluation method for separation membrane equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6864291B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000342938A (en) * | 1999-06-04 | 2000-12-12 | Toyobo Co Ltd | Method for detecting air bubble in hollow fiber membrane module |
JP2006153520A (en) * | 2004-11-25 | 2006-06-15 | Kao Corp | State analyzing method of solvent-containing composition |
JP5114831B2 (en) * | 2005-07-07 | 2013-01-09 | 栗田工業株式会社 | Method for diagnosing contamination state of membrane separator and cleaning method for membrane separator |
AU2006284832B2 (en) * | 2005-08-31 | 2011-06-02 | T2 Biosystems Inc. | NMR device for detection of analytes involving magnetic particles |
JP4798350B2 (en) * | 2005-10-26 | 2011-10-19 | 学校法人慶應義塾 | Measuring apparatus, measuring method and program for measuring distribution of behavior of protic solvent in sample using magnetic resonance method |
JP5170686B2 (en) * | 2006-09-29 | 2013-03-27 | 学校法人慶應義塾 | Measuring apparatus and measuring method using nuclear magnetic resonance method |
-
2017
- 2017-07-14 JP JP2017138433A patent/JP6864291B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019018148A (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102501069B1 (en) | Flaw measurement method, defect measurement device and inspection probe | |
US10705171B2 (en) | Flowmeter with a measuring device implementing a tomographic measuring principle | |
US9551769B2 (en) | Magnetic resonance examination of porous samples | |
US7667462B2 (en) | Nuclear magnetic resonance module | |
EP1655617B1 (en) | Methods and apparatus for measuring capillary pressure in a sample | |
AU2009333506B2 (en) | Apparatus and methods for estimating downhole field compositions | |
AU731220B2 (en) | Detecting tool motion effects on nuclear magnetic resonance measurements | |
JP6489855B2 (en) | Nuclear magnetic flow meter and method for operating a nuclear magnetic flow meter | |
US20160272506A1 (en) | Method of and a system for determining a quality parameter in an aqueous fluid and a method of controlling a quality parameter | |
US7038444B2 (en) | System and method for in-line stress measurement by continuous Barkhausen method | |
KR102501065B1 (en) | Flaw measurement method, defect measurement device and inspection probe | |
JPH07151715A (en) | Method and device for executing nmr measurement | |
CN113418950B (en) | Nuclear magnetic resonance online displacement fluid saturation measuring device and method | |
GB2291198A (en) | NMR or ESR mass-flow-rate meter for multi-component flow | |
WO2012123863A2 (en) | Examining porous samples | |
US20170212063A1 (en) | Composite FID-CPMG Process for Fast Relaxing Media Determination | |
US9316515B2 (en) | Magnet module for a nuclear magnetic flow meter | |
Chen et al. | Quantitative NMR imaging of multiphase flow in porous media | |
JP6864291B2 (en) | Deterioration evaluation method for separation membrane equipment | |
Buchau et al. | Inductive detection and concentration measurement of nano sized zero valent iron in the subsurface | |
Green et al. | Oil/water imbibition and drainage capillary pressure determined by MRI on a wide sampling of rocks | |
Li et al. | Monitoring oil displacement processes with k‐t accelerated spin echo SPI | |
Xu et al. | Flow in porous metallic materials: A magnetic resonance imaging study | |
WO2005095943A1 (en) | System and method for in-line stress measurement by continuous barkhausen technique | |
JP2005283378A (en) | Method and device for analyzing fluid characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170718 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6864291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |