JP6858878B2 - 3dモデルの試験対象物への自動アライメント - Google Patents

3dモデルの試験対象物への自動アライメント Download PDF

Info

Publication number
JP6858878B2
JP6858878B2 JP2019545948A JP2019545948A JP6858878B2 JP 6858878 B2 JP6858878 B2 JP 6858878B2 JP 2019545948 A JP2019545948 A JP 2019545948A JP 2019545948 A JP2019545948 A JP 2019545948A JP 6858878 B2 JP6858878 B2 JP 6858878B2
Authority
JP
Japan
Prior art keywords
test object
cad model
coordinates
points
reference plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019545948A
Other languages
English (en)
Other versions
JP2020509370A (ja
JP2020509370A5 (ja
Inventor
エドワード, ティー. ポリドール,
エドワード, ティー. ポリドール,
アッティラ プロカイ,
アッティラ プロカイ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quality Vision International Inc
Original Assignee
Quality Vision International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quality Vision International Inc filed Critical Quality Vision International Inc
Publication of JP2020509370A publication Critical patent/JP2020509370A/ja
Publication of JP2020509370A5 publication Critical patent/JP2020509370A5/ja
Application granted granted Critical
Publication of JP6858878B2 publication Critical patent/JP6858878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/653Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Description

本発明は、マシンビジョンシステム技術の分野に関し、特に、試験対象物のフィーチャを測定するために、3DのCADモデルを試験対象物に自動的にアライメントすることに関する。
マシンビジョンシステムは、ステージに載置された試験対象物の画像をディスプレイ画面に投影する。現在のビジョン測定マシン(vision measuring machines)の多くが、測定対象の部品のビデオ画像に依存して、行うべき測定をユーザが選択できるようにしている。ユーザが測定される部品のある位置から別の位置へと移動すると、追加の測定対象フィーチャの選択に使えるように画質を維持するために、照明と焦点の調整がしばしば必要となる。特に、ビジョンの光軸に沿って深さがある部品の場合、測定点から測定点への焦点の変更には時間がかかる可能性がある。
測定対象の部品のCAD図面が利用可能な場合は、QVI社のZone3等の一部の測定ソフトウェアでは、ユーザが、ディスプレイパネルのモデルウィンドウで、行うべき測定を指示できるようになっている。測定対象の部品のCADモデルをコントローラにロードし、そして、そのCADモデルを、一連のガイドされた手動操作の工程によって、ビデオ画像とアライメントするのである。この手動の設定されたプロセスは時間がかかり、経験の浅いユーザには混乱を招きかねない。
マシンビジョンシステムにおいて、3DのCADモデルを試験対象物にアライメント(位置合わせ)する方法を提供する。1つの形態では、本方法は、測定したい試験対象物のフィーチャに対応するマスタ対象物のフィーチャが露出するように、マシンビジョンシステムのモデルウィンドウにおいて3DのCADモデルを方向づける(orienting)工程と、試験対象物をマシンビジョンシステムの移動ステージ上に、3DのCADモデルの方向(orientation)とほぼマッチングする(合う;一致する)方向に載置する工程と、移動ステージ上の試験対象物の画像をカメラで撮影し、カメラの視軸(viewing axis)に垂直な基準面(datum plane; データム面)における周辺境界(peripheral boundary)を抽出する工程と、対応する基準面における3DのCADモデルのシルエット境界(silhouette boundary)を抽出する工程と、フィッティングアルゴリズムを用いて、対応する基準面における試験対象物の周辺境界とマッチングするように、3DのCADモデルのシルエット境界を相対的に位置づける工程と、3DのCADモデルの点の座標を、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標とマッチングさせる(適合させる、合わせる)工程と、を含む。
本方法は、さらに、CADモデルの3D三角形メッシュの可能性のあるシルエットエッジからの全線分を集める工程と、可能性のあるシルエット線分(silhouette line segments)を、カメラ視線方向(view direction)を用いて2Dに投影する工程と、線分に2Dの候補輪郭点(candidate contour points)を生成する工程と、候補輪郭点と一致する第一位置からシフトした第二位置へと移動可能な試験点(test points)を生成する工程と、シフトした位置にある各試験点が、CADモデルの3D三角形メッシュの隣接面によって覆われているかを判定する工程と、を含んでいてよい。ここで、いかなる隣接面によっても覆われないシフトした第二位置にある試験点に対応する2Dの候補輪郭点が真の輪郭点である。
本方法はさらに、シフトした第二位置において、隣接面によって覆われない試験点上のエッジのセット(集合)を有する、最小全域木を生成する工程を含んでいてよい。
1つの形態において、本方法はさらに、点生成密度(point generation density)よりも長い最小全域木のエッジのサブセットを捨てる工程を含んでいてよい。ここにおいて、最小全域木のエッジの残りのサブセットが3DのCADモデルの真の輪郭線分である。
本方法は、さらに、フィッティングアルゴリズムを用いて、最小全域木のエッジの残りのサブセットを試験対象物の周辺境界にフィッティングさせる(合わせる、適合させる)工程を備えていてよい。
1つの構成において、3DのCADモデルは頂点によって結ばれた線を含み、シルエット境界を抽出する工程は、対応する基準面における3DのCADモデルの境界よりも内側にある線を除去する工程を含む。
本方法はさらに、3DのCADモデル上で測定対象フィーチャを選択する工程と、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標にマッチングする3DのCADモデルの点の座標に基づいて、移動ステージとカメラのうち少なくとも一方を所望の位置に自動的に平行移動させる工程と、3DのCADモデルの選択されたフィーチャに対応する試験対象物のフィーチャを測定する工程と、を備えていてよい。
1つの構成において、本方法はまた、3DのCADモデル上で測定対象フィーチャを選択する工程と、試験対象物上の選択されたフィーチャを測定する前に、3DのCADモデルの選択されたフィーチャの1以上の点の座標に基づいて、カメラを試験対象物に対して自動的に焦点合わせする工程と、を含んでいてよい。
別の形態において、移動ステージ上の試験対象物の画像をカメラで撮影する工程は、ビデオカメラを用いて、(i)静止画像データ、および(ii)ビデオストリームからのフレームの画像データのうちの1つを提供する工程を含む。
本方法はさらに、移動ステージ上の試験対象物の画像をカメラで撮影する前に、試験対象物にバックライトを当てる工程を備えていてよい。
本方法はまた、3DのCADモデル上で測定対象フィーチャを選択する工程と、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標とマッチングする3DのCADモデルの点の座標に基づいて、移動ステージとカメラのうち少なくとも一方を所望の位置に自動的に平行移動させる工程と、カメラを自動的に焦点合わせする工程と、CADモデルの選択されたフィーチャに対応する試験対象物のフィーチャを測定する工程と、を備えていてよい。
さらに別の形態において、3DのCADモデルを参照するマシンビジョンシステムで試験対象物の異なるフィーチャを測定する方法は、ビデオカメラで試験対象物のビデオ画像を撮影する工程と、ビデオカメラの視軸に垂直な基準面における撮影された試験対象物の周辺境界を抽出する工程と、3DのCADモデルのシルエット境界を、対応する基準面において試験対象物の周辺境界とマッチングするように相対的に位置づける工程と、3DのCADモデルの点の座標を、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標にマッチングさせる工程と、モデルウィンドウ内でCADモデルのフィーチャを選択し、同フィーチャの1以上の点の座標を同定する工程と、モデルウィンドウ内で選択されたCADモデルのフィーチャに対応する試験対象物のフィーチャを測定する工程と、を備えている。
本方法はさらに、試験対象物のフィーチャを測定する前に、視軸に沿って参照されるCADモデルの選択されたフィーチャの1以上の点の座標に基づいて、試験対象物に対するビデオカメラの焦点を変える工程を備えていてよい。
本方法はまた、対応する基準面内において視軸に沿って参照されるCADモデルの選択されたフィーチャの1以上の点の座標に基づいて、試験対象物の照明条件を変える工程をさらに備えていてよい。
本方法はまた、ビデオカメラの視野(FOV)を調整して、測定すべき試験対象物のフィーチャが視野(FOV)内に収まるようにする工程を備えていてよい。1つの形態において、ビデオカメラの視野(FOV)は自動的に調整される。
本方法はさらに、ビデオカメラの被写界深度(DOF)を調整して、試験対象物の周辺境界が基準面に近いか否かにかかわらず、試験対象物の周辺境界全体が焦点内にとどまるようにする工程を備えていてよい。1つの形態においては、ビデオカメラの被写界深度(DOF)は自動的に調整される。
別の形態においては、3DのCADモデルを参照するマシンビジョンシステムで試験対象物の異なるフィーチャを測定する方法は、3DのCADモデル上で測定対象フィーチャを選択する工程と、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標とマッチングする3DのCADモデルの点の座標に基づいて、移動ステージとカメラのうち少なくとも一方を所望の位置に自動的に平行移動させる工程と、カメラを自動的に焦点合わせする工程と、CADモデルの選択されたフィーチャに対応する試験対象物のフィーチャを測定する工程と、を備えている。
3DのCADモデルを試験対象物にアライメントするためのマシンビジョンシステムの実施形態を示す概略図である。
マシンビジョンシステムにおいて、3DのCADモデルを試験対象物にアライメントするための方法の工程を示すフローチャートである。
マシンビジョンシステムを用いて、試験対象物の異なるフィーチャを測定するための方法の工程を示すフローチャートである。
3DのCADモデルの三角形メッシュを例示的に示す図である。
候補輪郭点のセット(集合)を例示的に示す図である。
ある点が真の輪郭点であるか否かの判定に用いられる試験点のセットを例示的に示す図である。
真の輪郭点の例示的セットである。
図面を参照すると、図1は、試験対象物20のプロファイル生成に用いられるマシンビジョンシステム10の実施形態を示す。1つの構成例では、マシンビジョンシステム10はトップダウン光学システム(top-down optical system)である。マシンビジョンシステム10は,1つの構成例では、座標測定機であってよい。用いられる座標測定機の一例は、Otical Gaging Products, Inc.社のSmartscope Quest Series Model 650 CMMである。しかし、測定機能およびビデオ機能を備えた他のマシンビジョンシステムを用いてもよいことを、当業者は理解されたい。
マシンビジョンシステム10は、一般的には、光学撮像システム30、可動ステージ40、およびバックライト照明器50を含む。システム10はさらに、コンピュータ等の処理装置60を含む。この処理装置は、1以上のプロセッサ、メモリ、データベース、グラフィックスカード等を含むとともに、通常のパーソナルコンピュータのモニタ等のディスプレイパネル70、およびキーボードやマウス等のユーザ入力装置80を含む。システムはさらに、プリンタおよび追加のディスプレイパネル(図示せず)を含んでいてよい。処理装置60は、データ記憶媒体に記憶されたデータとしておよび/または処理装置60への信号入力として入力されたプログラミング命令に従って動作するように、プログラムされている。
可動ステージ40は、試験対象物20を位置決めおよび移動するために、平行移動の3つの直交する軸X、Y、Zを有する多軸ステージを含んでいてよい。しかし、ステージ40はより少ない数の平行移動軸を含んでもよく、まったく移動不能であってもよいことを理解されたい。ステージ40は手動制御によって調節してよく、コントローラ130およびモータ、アクチュエータ等の自動位置決め手段により自動的に調節ししてよい。
マシンビジョンシステム10は可動ステージを有していなくてもよい。光学撮像システム30がX軸、Y軸およびZ軸に沿って移動してもよい。ある構成では、可動ステージ40がY軸に沿ってのみ移動され、光学撮像システム30がX軸およびZ軸に沿って移動される。あるシステムでは、ステージが移動不能で、光学撮像システム30がZ軸に沿って移動され、ユーザが手動で部品をX軸およびY軸に沿って移動しなければならない。光学撮像システム30と可動ステージ40の位置が分かる限り、マシンビジョンシステム10に対する測定点の相対的位置を定義する、測定点のマシン座標を定めることができる。
マシンビジョンシステム10の光学撮像システム30は、ビデオカメラ90を含んでいてよい。ビデオカメラ90は試験対象物20のビデオ画像をビューイング画面100に投影してもよい。しかし、スチールカメラ、レーザー3Dスキャナーや他のあらゆる装置を用いてもよいことを理解されたい。これら装置は、試験対象物20の画像データを取得し、この画像データを試験対象物データインターフェース110を介してマシンビジョンシステム10に送るように構成されている。1つの構成において、ビデオカメラ90は、試験対象物20のビデオ画像をビューイング画面100に投影する代わりに、またはそれに加えて、試験対象物20のビデオ画像をディスプレイパネル70に投影することを理解されたい。好ましくは、ビデオカメラ90は比較的大きな視野(FOV)を有する。視野が大きいため、試験部品20の境界を抽出(extract)するための所要時間を減らすことができる。ビデオカメラ90はまた、好ましくは、比較的大きな被写界深度(DOF)を有する。これにより、試験部品20の境界全体(基準面に近くない試験部品20のフィーチャを含む)で良好に焦点が合う。ある実施形態における光学的構成では、視野は100mm、使用可能な被写界深度は75mmである。
ある構成では、試験対象物20はバックライト(プロファイル)照明器50によって背後から照らされる。バックライト照明器50は照明ビームを出力する光源である。この光源は、発光ダイオード(LED)、白熱電球、アーク灯、および照明ビームを作る光学部品等であってよい。ある構成では、ステージ40は検出領域(図示せず)を有する。照明光はこの検出領域を通り、試験対象物を背後から照らす。例えば、検出領域は1以上の開口部、及び/又は透明なガラス製の円形の領域を含んでいてよい。
試験対象物20はいかなるワークピースであってもよく、特に、ユーザが測定を所望するフィーチャを有するワークピースであってよい。測定を必要とする試験対象物20のあるフィーチャの位置情報を生成するための情報は、好ましくは、試験対象物20のデザイン仕様を含む、デジタルマシンで読み取り可能な1以上のファイル120によりもたらされる。デジタルマシンで読み取り可能なファイルは、コンピュータ支援設計(CAD)システムによって生成された試験対象物の3Dモデルであってよい。本明細書において、「3D」は三次元を意味し、「2D」は二次元を意味する。ユーザは予め存在する試験対象物20のデジタルマシンで読み取り可能なファイルを取得し、それを測定ソフトウェアのモデルウィンドウにロードする。
ある構成において、デジタルファイル120は3DのCADモデルを含んでいてよい。それは様々な方法で表現することができ、試験対象物20の製造をガイドするためのトポロジーおよびフィーチャの描写を有するワイヤフレームモデル、サーフェスモデル、またはソリッドモデルを含む。好ましくは、3Dモデルの各サーフェスのワイヤフレームポリラインまたは3D境界ポリライン、例えば、STEPファイルが用いられる。しかし、ワイヤフレームは要件ではないことを当業者は理解されたい。メッシュのみのモデル、例えばSTLファイルを用いてもよい。デジタルファイル120が読み込まれると、試験対象物の3Dモデル(ここでは時にCADモデルと呼ぶ)が、ユーザによって基準面(datum plane;データム面)とアライメントされ、これにより、以下に詳述するように、上から見た時の測定対象のフィーチャが示される。基準面は、ビデオカメラの光軸と垂直であり、ステージ40の表面と平行である。従って、測定対象フィーチャの軸を光軸とほぼ平行にアライメントする必要がある。例えば、ユーザが、試験対象物20の表面に垂直に穿設された穴の直径および深さを測定したい場合には、ユーザは、測定対象の穴の軸が基準面とほぼ垂直になり、光軸とほぼ平行になるように、3Dモデルをアライメントする。同様に、試験対象物20を概ね同じ向き(orientation)にアライメントする。すなわち、試験対象物の穴の軸が光軸とほぼ平行で、ステージ40と基準面が光軸に垂直になるようにする。
制御ユニット130は、コントローラであり、マシンビジョンシステム10のディスプレイパネルと可動ステージ40と光学撮像システム30を制御し、試験対象物20のビデオ画像を分析する。ユーザ入力/出力装置80も制御ユニット130に接続されている。
ここで図1と図2を参照する。図2は、ある実施形態において、3DのCADモデルを試験対象物のビデオ画像に自動的にアライメントし、それによって試験対象物20そのものにアライメントするプロセスを示している。このプロセス200は、ステップ202にしたがい、ユーザが最初に、マシンビジョンシステム10の測定ソフトウェアのモデルウィンドウに、3Dモデルをロードする工程から開始してよい。次に、このプロセスは、ステップ204にしたがい上述したように3DのCADモデルを方向づけする工程を含む。試験対象物20の測定対象となるフィーチャに対応するCADモデルのフィーチャが露出される(exposed; さらされる)。例えば、ユーザは、測定対象フィーチャの軸が基準面とほぼ垂直になり、光軸とほぼ平行になるように、3Dモデルをアライメントしてよい。測定対象の試験部品のフィーチャに関する数字情報を、ユーザは一切知る必要がないことを理解されたい。次にユーザはステップ206にしたがい、試験対象物20をマシンビジョンシステム10の移動ステージ40に、3DのCADモデルの向きとほぼ一致する向きに載せる。移動ステージ40は、試験部品20の角度方向を3DのCADモデルの向きとマッチングするようアライメントするために、いかなる平面で移動させてもよい。
あるいは、最初のステップとして、ユーザが試験対象物20をマシンビジョンシステム10の移動ステージ40に載置し、次にユーザがモデルウィンドウ内で3DのCADモデルを試験対象物の向きにほぼマッチングするように方向づけても良いことを、当業者は理解すべきである。ここで「マッチング(適合;一致)」とは、3DのCADモデルと試験対象物20が、x軸、y軸およびz軸に対してほぼ同じ位置に位置し、同一の対象フィーチャが視軸(viewing axis)に露出していることを意味する。しかし、3DのCADモデルと試験対象物20は厳密に方向付ける必要はないことを理解されたい。
ビデオ画像を撮る前に、ステージ40上に載置された試験対象物20にビデオカメラ90を向ける。このビデオカメラ90の向き(orientation)はマシンビジョンシステム10によって捉えられ、自動的に輪郭生成アルゴリズムに入力される。以下に述べる自動輪郭測定は前面照明では困難であり、背面照明の方が困難でない。そのため、ステージの下にあるバックライト50が用いられる。理想的には、ビデオカメラ90は試験対象物20の上方で垂直に向けられる。試験対象物20はその中央をビデオカメラ90の下方に位置合わせする必要がないことを、当業者は理解されたい。
ステップ208では、ビデオカメラ90の視軸に垂直な基準面において移動ステージ40に置かれた試験対象物20のビデオ画像を、ビデオカメラ90で撮影する。ある構成では、このビデオ画像は静止画像データを含む。別の構成では、ビデオ画像はビデオストリームからのフレームの画像データである。ユーザのコマンドにより、ステップ210では、周辺境界抽出手段140により試験対象物20の周辺境界を抽出する。すなわち、ある構成では、システム10はビデオ画像を用いて、二次元における試験対象物20の境界を測定する。試験対象物20の輪郭は、当該技術分野に公知のソフトウェアを用いて測定される。生成された試験対象物20の輪郭は、ユーザによる試験対象物20のおおよそのアライメントとカメラ90の現在の向きに基づく。
プロセス200はまた、以下に詳述するとおり、ステップ212にしたがい、シルエット境界抽出手段150により、対応する基準面における3DのCADモデルのシルエット境界を抽出する。ある構成では、シルエット境界を測定する前に基準面において3DのCADモデルを2Dに圧縮する。3Dモデルのシルエット境界は、平面図としてユーザに呈示されてよい。マッチングモジュール170は、フィッティングアルゴリズム160を用いて、3DのCADモデルのシルエット境界を、対応する基準面における試験対象物20の周辺境界にマッチングさせる。ある構成では、ステップ214において、公知の最小二乗アルゴリズムが用いられる。試験対象物20、3DのCADモデル、およびx軸、y軸、z軸のマシン座標がリンクされ、座標割り当て手段180によって同じ共通の2D(二次元)の参照フレームにおける座標が割り当てられる。3DのCADモデルからの2D基準面は、測定機のZ基準点(Z=0)と同じ位置を割り当てられる。こうして、ステップ216では、3DのCADモデルの点の座標を、対応する基準面で視軸に沿って参照される試験対象物20の座標と同一視する(equate;結び付ける)。試験対象物20の測定された座標は3DのCADモデルの公称座標と完全にはマッチングしないことがあることを理解されたい。すなわち、最小二乗フィットは完全なアライメント(alignment;位置合わせ)を提供しないことがある。試験対象物20の測定された座標は、公称座標におおむねマッチングしている。ユーザは、ディスプレイパネル70のモデルから測定する点を選択することができる。ビデオカメラ90は、異なるz座標を有するフィーチャを測定するために、速やかに再フォーカスすることができる。おおよそのz座標が3Dモデルで分かっているからである。ある構成では、ユーザはまた、試験部品20の測定対象フィーチャのために照明を変える必要がない。この方向付け(orientation)の過程により、ディスプレイパネル70のモデルウィンドウで3DのCADモデルからフィーチャを選択するだけで、マシンビジョンシステム10を自動的に動かして、試験部品20の3Dフィーチャを測定することが可能になる。
3DのCADモデルの仮想輪郭エッジ(ここでは、シルエットエッジとも称する)の生成は、三角形エッジに関する三角形隣接情報に基づく。より具体的には、3Dモデルにおける各サーフェスの3D境界ポリラインを集める。ここで、各ポリラインは、頂点とこれら頂点間の線分の集合である。すなわち、ワイヤフレームポリラインからの全ての線分を集める。次に、3Dメッシュのシルエットエッジの全ての線分を集める。ある構成では、CADモデルのメッシュは、例えば図4に示すCADモデルボウルのような、CADモデルの表面を表わす三角形メッシュ400であり、各三角形は3つの点とその間の3つの線分の集まりである。各三角形エッジに関する三角形隣接情報を用いて、可能性のあるシルエットエッジを認識する。2つの隣接する三角形について以下が真であれば、三角形エッジは可能性のあるシルエットエッジ410である。(i)隣接する三角形の1つ(符号402で示す三角形A)の法線ベクトルがカメラ視線方向(camera view direction)40
4からやや離れた方向を向いている。(ii)隣接する三角形の他方(例えば符号406
で示す三角形B)の法線ベクトルがカメラ視線方向404とやや同じ方向を向いている。
候補となる輪郭線分は、3D境界のポリラインの線分であり、カメラ視線方向404を用いて2Dに投影された(平らになされた)シルエット線分の可能性がある。候補となる輪郭線分の全てが輪郭の一部を成す訳ではない。集められた候補の2D輪郭線分が真の輪郭線分であるか否かを判定するために、その線分上に所定の点生成密度で2Dの点を生成し、所定のカメラの方向と位置を用いて、3Dメッシュ三角形を2Dに投影し、いずれかの2D三角形によって覆われた2D点は除去する。線分上に生成された2D点間の距離は3DのCADモデルの最小のフィーチャよりも小さいことを理解されたい。2D点は、2D三角形領域内にあれば、輪郭だけを残して、2D三角形によって「覆われている」と見なされる。すなわち、3DのCADモデルの境界の内側にあるは、除去される。
より具体的には、図5〜図7に示すように、線分502に沿って候補の2D輪郭点500の集合を生成する。この時点では、どの点が三角形エッジ上に生成され、どの点が2D三角形領域内に生成されたものであるかを判定するのは困難である。そのため、各点500について、図6に示すシフト試験を行なうことができる。一例では、候補点500から試験点512、514、516、518、520、522、524、526を生成する。試験点512、514、516、518、520、522、524、526をシフトして、試験点512、514、516、518、520、522、524、526が候補点500の位置からシフトされたときに隣接面によって覆われるか否かを判定する。例えば、「A面」のエッジにある点512、514をそれぞれ位置513、515にシフトさせた時、点512、514はいずれの隣接面によっても覆われることはない。同様に、「B面」のエッジにある点518、520をそれぞれ位置519、521にシフトさせた時、点518、520はいずれの隣接面によっても覆われることはない。したがって、2D点518、520は「真の」輪郭点であると判定される。「A」面と「B」面の境界にある点522、524、526をそれぞれ位置528、530、532、または位置534、536、538にシフトさせた時、それぞれ「B」面および「A」面によって覆われる。これらの2D点522、524、526は隣接面によって覆われるため、2D点522、524および526は「真の」輪郭点であるとは見なされない。図7に示すとおり、いかなる隣接面によっても覆われることのないシフトされた点は「真の」輪郭点506として示される(図7において若干大きく示す)。「A」面および「B」面と境界を成す点516が位置517にシフトされた時、点516は隣接面によって覆われることはない。したがって、この2D点516は「真の」輪郭点であると判定される。
残った2D点に基づいて最小全域木(minimum spanning tree)を生成する。この最小全域木は、エッジウェイトの合計が可能な限り最小となる全域木(spanning tree)である。この最小全域木は、残った2D点に基づいて、公知の最小全域木アルゴリズム(例えば、Prims、Kruskall、Boruvka)のいずれかを用いて構築される。点生成密度よりも長いグラフエッジを全域木から捨てる。残りのグラフエッジは、3DのCADモデルの真の輪郭線の線分であり、それは、フィッティングアルゴリズム160を用いて、試験対象物20の周辺境界に適合(フィッティング)させることができる。
図3は、本発明の別の態様であって、3DのCADモデルへの参照を有するマシンビジョンシステム10を用いて、試験対象物20の異なるフィーチャを測定するためのプロセスを示す。このプロセス300は、ステップ302に従って、ユーザがビデオカメラ90で試験対象物20のビデオ画像を撮影するステップから始めることができる。このプロセス300は、さらに、ステップ304に従って、ビデオカメラ90の視軸に垂直な基準面における撮像された試験対象物20の周辺境界を、周辺境界抽出手段140により抽出する工程を含む。上述のように、シルエット境界抽出手段150によって、3DのCADモデルのシルエット境界を取得する。ステップ306に従って、マッチングモジュール170により、3DのCADモデルのシルエット境界を、対応する基準面における試験対象物の周辺境界とマッチングするように相対的に位置付ける。ステップ308に記述するように、座標割り当て手段180により、3DのCADモデルの点の座標を、対応する基準面内で視軸に沿って参照される試験対象物の対応する点の座標とマッチングさせる。これにより、ユーザは、ステップ310に従って、ディスプレイパネル70のモデルウィンドウ内でCADモデルのフィーチャを選択し、測定すべきフィーチャの1以上の点の座標を同定することができる。ステップ312に記述するように、次に、モデルウィンドウ内で選択されたCADモデルのフィーチャに対応する試験対象物20のフィーチャを選択し、システム10は、試験対象物20の選択されたフィーチャの測定に移行する。典型的には、比較的大きな視野(FOV)および比較的大きな被写界深度(DOF)が用いられ、これにより、基準面に近くない試験部品20のフィーチャを含んで、部品の境界に焦点が合わされるようになされている。例えば、Quality Vision International, Inc.社で販売しているフュージョン(Fusion)大視野のマルチセンサ測定システムの低倍率光路は、FOV100mm、利用可能DOF75mmに設定することができる。低倍率光路を用いて試験部品20の境界を取得してから、ユーザはフュージョン大視野マルチセンサ測定システムの高倍率f/5の光路を用いて、試験部品のフィーチャの測定を行うことができる。実施形態においては、FOVとDOFは自動的に設定される。
しかし、必要であれば、視軸に沿って参照されるCADモデルの選択されたフィーチャの1以上の点の座標に基づいて、試験対象物20に対するビデオカメラ90の焦点を変えてもよい。試験対象物の照明条件も、測定すべきCADモデルのフィーチャの点の座標に基づいて、変えてよい。例えば、前面照明器190またはバックライト照明器50を選択してよい。しかし、測定対象の試験対象物20を照らすために、照明器の他の位置を用いかつ選択してもよいことを理解されたい。
本発明は、数々の変更および改変がなされることが想定されている。したがって、システムの現在好ましい形態を示し、および描写し、いくつかの改変例および代替例について述べてきたが、本発明の範囲を逸脱することなく、さらに様々な変更および改変がなされてもよいことが、当業者には容易に理解されよう。本発明の範囲は、以下の特許請求の範囲によって定義され識別される。

Claims (17)

  1. カメラの視軸を含む座標軸を有するマシンビジョンシステムにおいて3DのCADモデルを試験対象物にアライメントする方法であって、
    測定したい試験対象物のフィーチャに対応するCADモデルのフィーチャを露出させるように、前記マシンビジョンシステムのモデルウィンドウにおいて前記3DのCADモデルを方向付ける工程と、
    前記試験対象物を前記マシンビジョンシステムのステージ上に、前記3DのCADモデルの方向とほぼ一致する方向に載置する工程と、
    前記ステージ上の試験対象物の画像を前記カメラで撮影し、前記カメラの視軸に垂直な基準面における周辺境界を抽出する工程と、
    対応する基準面における前記3DのCADモデルのシルエット境界を抽出する工程と、
    フィッティングアルゴリズムを用いて、前記3DのCADモデルの前記シルエット境界を、前記対応する基準面において前記試験対象物の前記周辺境界とマッチングするように、相対的に位置決めする工程と、
    前記3DのCADモデルにおける点の座標を、前記対応する基準面内で前記視軸に沿って参照された前記試験対象物の対応する点の座標とマッチングさせる工程と、
    を備え、
    前記対応する基準面における前記3DのCADモデルのシルエット境界を抽出する工程が、さらに、
    前記CADモデルの3Dの三角形メッシュのうちの可能性を有するシルエットエッジから、全線分を集める工程と、
    前記可能性を有するシルエットの線分を、前記カメラの視線方向を用いて2Dに投影する工程と、
    前記線分に2Dの候補輪郭点を生成する工程と、
    前記候補輪郭点と一致する第一位置から、第二のシフト位置へと移動可能な試験点を生成する工程と、
    前記シフト位置にある各試験点が、前記CADモデルの三角形メッシュの他の面によって覆われているか否かを判定し、前記第二のシフト位置にある試験点がいずれの他の面によっても覆われていない2Dの候補輪郭点を、真の輪郭点であるとする工程と、
    を備えた方法。
  2. 前記シフトした第二位置において、いずれの他の面によっても覆われていない試験点上のエッジのセットを有する、最小全域木を生成する工程をさらに備えたことを特徴とする請求項に記載の方法。
  3. 点生成密度よりも長い前記最小全域木のエッジのサブセットを捨てる工程をさらに備え、前記最小全域木のエッジの残りのサブセットが、前記3DのCADモデルの真の輪郭の線分であることを特徴とする請求項に記載の方法。
  4. フィッティングアルゴリズムを用いて、前記最小全域木のエッジの残りのサブセットを前記試験対象物の周辺境界にフィットさせる工程、をさらに備えたことを特徴とする請求項に記載の方法。
  5. 前記3DのCADモデルが頂点によって結ばれた線を含み、前記シルエット境界を抽出する工程が、前記対応する基準面における前記3DのCADモデルの境界よりも内側にある線を除去する工程を含むことを特徴とする請求項1に記載の方法。
  6. 前記3DのCADモデル上で測定対象のフィーチャを選択する工程と、
    前記対応する基準面内で視軸に沿って参照される前記試験対象物の対応する点の座標とマッチングする前記3DのCADモデルの点の座標に基づいて、前記ステージと前記カメラのうち少なくとも一方を所望の位置に自動的に平行移動させる工程と、
    前記CADモデルの選択されたフィーチャに対応する試験対象物のフィーチャを測定する工程と、
    をさらに備えたことを特徴とする請求項1に記載の方法。
  7. 前記3DのCADモデル上で測定対象フィーチャを選択する工程と、
    前記試験対象物の選択されたフィーチャを測定する前に、前記CADモデルの選択されたフィーチャの1以上の点の座標に基づいて、前記カメラを前記試験対象物に対して自動的に焦点合わせする工程と、
    をさらに備えたことを特徴とする請求項1に記載の方法。
  8. 前記ステージ上の試験対象物の画像を前記カメラで撮影する工程は、ビデオカメラを用いて、(i)静止画像データ、および(ii)ビデオストリームからのフレームの画像データのうちの1つを提供する工程を含むことを特徴とする請求項1に記載の方法。
  9. 前記ステージ上の前記試験対象物の画像を前記カメラで撮影する前に、前記試験対象物に背後から照明を当てる工程をさらに備えたことを特徴とする請求項1に記載の方法。
  10. 前記3DのCADモデル上で測定対象フィーチャを選択する工程と、
    前記対応する基準面内で視軸に沿って参照される前記試験対象物の対応する点の座標とマッチングする前記3DのCADモデルの点の座標に基づいて、前記ステージと前記カメラのうち少なくとも一方を所望の位置に自動的に平行移動させる工程と、
    前記カメラを自動的に焦点合わせする工程と、
    前記CADモデルの前記選択されたフィーチャに対応する試験対象物のフィーチャを測定する工程と、
    をさらに備えたことを特徴とする請求項1に記載の方法。
  11. 3DのCADモデルを参照しマシンビジョンシステムで試験対象物の異なるフィーチャを測定する方法であって、
    前記3DのCADモデルをモデルウィンドウにおいて方向付ける工程と、
    ビデオカメラで前記試験対象物のビデオ画像を取得する工程と、
    前記ビデオカメラの視軸に垂直な基準面における撮像された試験対象物の周辺境界を抽出する工程と、
    3DのCADモデルのシルエット境界を、対応する基準面において前記試験対象物の周辺境界とマッチングするように相対的に位置決めする工程と、
    前記3DのCADモデルにおける点の座標を、前記対応する基準面内で前記視軸に沿って参照される前記試験対象物の対応する点の座標と、マッチングさせる工程と、
    モデルウィンドウ内で前記CADモデルのフィーチャを選択し、前記フィーチャの1以上の点の座標を同定する工程と、
    前記モデルウィンドウ内で選択されたCADモデルのフィーチャに対応する試験対象物のフィーチャを測定する工程と、
    を備えた方法。
  12. 前記試験対象物のフィーチャを測定する前に、前記視軸に沿って参照される前記CADモデルの選択されたフィーチャの1以上の点の座標に基づいて、前記試験対象物に対する前記ビデオカメラの焦点を変える工程をさらに備えたことを特徴とする請求項11に記載の方法。
  13. 前記対応する基準面内において前記視軸に沿って参照される前記CADモデルの選択されたフィーチャの1以上の点の座標に基づいて、前記試験対象物の照明条件を変える工程をさらに備えたことを特徴とする請求項11に記載の方法。
  14. 前記ビデオカメラの視野(FOV)を調節して、測定すべき前記試験対象物の前記フィーチャが視野(FOV)内に収まるようにする工程を、さらに備えたことを特徴とする請求項11に記載の方法。
  15. 前記ビデオカメラの被写界深度(DOF)を調節して、試験対象物の周辺境界が基準面に近いか否かにかかわらず、前記試験対象物の周辺境界全体が焦点内にとどまるようにする工程を、さらに備えたことを特徴とする請求項11に記載の方法。
  16. 前記ビデオカメラの前記視野(FOV)を調節する工程が自動的に行われることを特徴とする請求項14に記載の方法。
  17. 前記ビデオカメラの前記被写界深度(DOF)を調節する工程が自動的に行われることを特徴とする請求項15に記載の方法。
JP2019545948A 2017-02-28 2018-02-07 3dモデルの試験対象物への自動アライメント Active JP6858878B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762464620P 2017-02-28 2017-02-28
US62/464,620 2017-02-28
PCT/US2018/017191 WO2018160326A1 (en) 2017-02-28 2018-02-07 Automatic alignment of a 3d model to a test object

Publications (3)

Publication Number Publication Date
JP2020509370A JP2020509370A (ja) 2020-03-26
JP2020509370A5 JP2020509370A5 (ja) 2020-05-07
JP6858878B2 true JP6858878B2 (ja) 2021-04-14

Family

ID=61244787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545948A Active JP6858878B2 (ja) 2017-02-28 2018-02-07 3dモデルの試験対象物への自動アライメント

Country Status (4)

Country Link
US (1) US10579890B2 (ja)
JP (1) JP6858878B2 (ja)
CN (1) CN110753952A (ja)
WO (1) WO2018160326A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019241809A1 (de) * 2018-06-21 2019-12-26 Fill Gesellschaft M.B.H. Verfahren zum speichern von realdaten einer körperkontur eines körpers
JP2020187626A (ja) * 2019-05-16 2020-11-19 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN110363801B (zh) * 2019-07-04 2023-04-18 陕西丝路机器人智能制造研究院有限公司 工件实物与工件三维cad模型的对应点匹配方法
EP4029927A4 (en) * 2019-09-10 2023-09-13 Nikon Corporation IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD AND PROGRAM
US11625843B2 (en) 2020-06-24 2023-04-11 Bluebeam, Inc. Systems and methods for automatic alignment of drawings
CN114882103A (zh) * 2022-04-20 2022-08-09 南昌龙旗信息技术有限公司 手写笔螺母对位方法、装置、设备及存储介质
CN118574004B (zh) * 2024-07-31 2024-10-01 广州乐庚信息科技有限公司 基于空间分布的多双目数据采集设备协同数据采集方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064759A (en) * 1996-11-08 2000-05-16 Buckley; B. Shawn Computer aided inspection machine
CA2369845A1 (en) * 2002-01-31 2003-07-31 Braintech, Inc. Method and apparatus for single camera 3d vision guided robotics
US20040223053A1 (en) * 2003-05-07 2004-11-11 Mitutoyo Corporation Machine vision inspection system and method having improved operations for increased precision inspection throughput
US20050031191A1 (en) * 2003-08-04 2005-02-10 Mitutoyo Corporation Methods and apparatus for inspection of lines embedded in highly textured material
US7324682B2 (en) * 2004-03-25 2008-01-29 Mitutoyo Corporation System and method for excluding extraneous features from inspection operations performed by a machine vision inspection system
US7590276B2 (en) * 2004-12-20 2009-09-15 Mitutoyo Corporation System and method for programming interrupting operations during moving image acquisition sequences in a vision system
US8396329B2 (en) * 2004-12-23 2013-03-12 General Electric Company System and method for object measurement
US7580560B2 (en) * 2005-07-18 2009-08-25 Mitutoyo Corporation System and method for fast template matching by adaptive template decomposition
US8311311B2 (en) * 2005-10-31 2012-11-13 Mitutoyo Corporation Optical aberration correction for machine vision inspection systems
JP5013961B2 (ja) * 2007-05-21 2012-08-29 キヤノン株式会社 位置姿勢計測装置及びその制御方法
US8248417B1 (en) 2008-08-28 2012-08-21 Adobe Systems Incorporated Flattening 3D images
US8442304B2 (en) * 2008-12-29 2013-05-14 Cognex Corporation System and method for three-dimensional alignment of objects using machine vision
US8526705B2 (en) * 2009-06-10 2013-09-03 Apple Inc. Driven scanning alignment for complex shapes
JP5597056B2 (ja) * 2010-08-02 2014-10-01 株式会社キーエンス 画像測定装置、画像測定方法及び画像測定装置用のプログラム
US9582934B2 (en) * 2010-09-20 2017-02-28 Siemens Healthcare Gmbh Method and system for efficient extraction of a silhouette of a 3D mesh
KR101706092B1 (ko) * 2010-09-29 2017-02-14 삼성전자주식회사 3차원 물체 추적 방법 및 장치
JP5679560B2 (ja) 2011-02-01 2015-03-04 株式会社キーエンス 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
CN103196370B (zh) * 2013-04-01 2015-05-27 北京理工大学 一种导管接头空间位姿参数的测量方法和装置
WO2014204628A1 (en) * 2013-06-17 2014-12-24 Hexagon Metrology, Inc. Method and apparatus of measuring objects using selective imaging
US9489765B2 (en) 2013-11-18 2016-11-08 Nant Holdings Ip, Llc Silhouette-based object and texture alignment, systems and methods
JP5911934B2 (ja) * 2014-09-18 2016-04-27 ファナック株式会社 輪郭線計測装置およびロボットシステム
JP6594129B2 (ja) * 2014-11-28 2019-10-23 キヤノン株式会社 情報処理装置、情報処理方法、プログラム

Also Published As

Publication number Publication date
US20180247147A1 (en) 2018-08-30
CN110753952A (zh) 2020-02-04
US10579890B2 (en) 2020-03-03
WO2018160326A1 (en) 2018-09-07
JP2020509370A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6858878B2 (ja) 3dモデルの試験対象物への自動アライメント
US8773526B2 (en) Edge detection using structured illumination
JP5911934B2 (ja) 輪郭線計測装置およびロボットシステム
JP5679560B2 (ja) 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
CN113870172A (zh) 指示用于训练的缺陷图像的数目的工件检查和缺陷检测系统
WO2013061976A1 (ja) 形状検査方法およびその装置
JP6663807B2 (ja) 画像測定装置
JP2010060494A (ja) 姿勢計測装置
JP2020509370A5 (ja)
JP5913903B2 (ja) 形状検査方法およびその装置
JP2021193400A (ja) アーチファクトを測定するための方法
CN113008789B (zh) 具有透明工件表面模式的计量系统
JP6621351B2 (ja) レーザー加工用の画像処理装置及び画像処理方法
JP6797638B2 (ja) 画像測定装置
US8689127B1 (en) Edge measurement video tool parameter-setting user interface
JP2011095131A (ja) 画像処理方法
JP6958142B2 (ja) 検査方法、検査プログラム及び検査装置
JPH11271033A (ja) 三次元形状物体撮像装置
WO2022168617A1 (ja) ワーク検出装置、ワーク検出方法、ワーク検出システム及びワーク検出プログラム
US20240212117A1 (en) Method and device for measuring a physical object
WO2021261302A1 (ja) 欠陥検査装置
Kuo Inspection and measurement of a DWDM core with two stacked glass objects
JPS5965705A (ja) 加工部品の寸法測定装置
JP2018072269A (ja) 画像測定装置
JPH07104935B2 (ja) 3次元物体認識装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250