JP6842170B2 - Manufacturing method of biological tissue adhesive and biological tissue adhesive - Google Patents

Manufacturing method of biological tissue adhesive and biological tissue adhesive Download PDF

Info

Publication number
JP6842170B2
JP6842170B2 JP2017188999A JP2017188999A JP6842170B2 JP 6842170 B2 JP6842170 B2 JP 6842170B2 JP 2017188999 A JP2017188999 A JP 2017188999A JP 2017188999 A JP2017188999 A JP 2017188999A JP 6842170 B2 JP6842170 B2 JP 6842170B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
biological tissue
tissue adhesive
producing
apatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188999A
Other languages
Japanese (ja)
Other versions
JP2019063016A (en
Inventor
松本 卓也
卓也 松本
正弘 岡田
正弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2017188999A priority Critical patent/JP6842170B2/en
Publication of JP2019063016A publication Critical patent/JP2019063016A/en
Application granted granted Critical
Publication of JP6842170B2 publication Critical patent/JP6842170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

本発明は、生体組織接着剤の製造方法及び生体組織接着剤に関するものである。 The present invention relates to a method for producing a biological tissue adhesive and a biological tissue adhesive.

医療現場では、医療行為として接着剤を用いた生体組織の接着が行われている。ここで使用される接着剤としては、シアノアクリレート系、ゼラチン-アルデヒド系、フィブリングルー系等に大別される(例えば、特許文献1〜3参照。)。 In the medical field, living tissue is adhered using an adhesive as a medical practice. The adhesive used here is roughly classified into a cyanoacrylate type, a gelatin-aldehyde type, a fibring loop type and the like (see, for example, Patent Documents 1 to 3).

このうち、シアノアクリレート系及びゼラチン-アルデヒド系の接着剤は、接着強度が高い一方で、接着剤の反応・分解の際にアルデヒド化合物が関与するために、このアルデヒド化合物によって疾患部位の治癒等を阻害するおそれがあることが知られている。 Of these, cyanoacrylate-based and gelatin-aldehyde-based adhesives have high adhesive strength, but aldehyde compounds are involved in the reaction and decomposition of the adhesives. Therefore, these aldehyde compounds cure diseased areas. It is known that it may interfere.

一方、フィブリングルー系の接着剤は、血液凝固過程を用いる接着剤であるため毒性が低く、人体に優しい接着剤ではあるが、接着強度が比較的弱いということが欠点として知られている。 On the other hand, the fibrin loop adhesive has low toxicity because it uses a blood coagulation process, and is gentle on the human body, but it is known to have a drawback that the adhesive strength is relatively weak.

特表2012−509880号公報Special Table 2012-509880 特開2012−095769号公報Japanese Unexamined Patent Publication No. 2012-095769 特表2001−511431号公報Japanese Patent Application Laid-Open No. 2001-511431

本発明者らは、シアノアクリレート系及びゼラチン-アルデヒド系の接着剤よりも人体への影響が弱く、かつフィブリングルー系の接着剤よりも接着強度が強い接着剤を開発すべく研究を行い、本発明を成すに至ったものである。 The present inventors have conducted research to develop an adhesive that has a weaker effect on the human body than cyanoacrylate-based and gelatin-aldehyde-based adhesives and has stronger adhesive strength than fibring-ru-based adhesives. It led to the invention.

本発明の生体組織接着剤の製造方法は、リン酸カルシウムを主成分とする生体組織接着剤の製造方法であって、所定温度に加熱したカルシウムイオンを含有している液に、同じ温度に加熱したリン酸イオンを含有している液を混合した混合液からリン酸カルシウム粒子を生じさせる工程と、混合液からリン酸カルシウム粒子を分離して所定の溶液に分散させて分散液とする工程とを有するものである。 The method for producing a biological tissue adhesive of the present invention is a method for producing a biological tissue adhesive containing calcium phosphate as a main component, in which phosphorus is heated to the same temperature in a solution containing calcium ions heated to a predetermined temperature. It has a step of generating calcium phosphate particles from a mixed solution in which a solution containing an acid ion is mixed, and a step of separating calcium phosphate particles from the mixed solution and dispersing them in a predetermined solution to obtain a dispersion solution.

さらに、本発明の生体組織接着剤の製造方法では、以下の点にも特徴を有するものである。
(1)分散液を乾燥させてリン酸カルシウム粒子を凝集させることで凝集体を生成する工程を有すること。
(2)凝集体を粉砕して粉末状とする工程を有すること。
(3)所定形状とした高分子基体を分散液に浸漬させて、高分子基体の表面にリン酸カルシウム粒子を付着させる工程を有すること。
(4)所定形状とした高分子基体を混合液に浸漬させて、高分子基体の表面にリン酸カルシウム粒子を付着させる工程を有すること。
(5)リン酸カルシウム粒子の大きさを、混合液の加熱温度で調整すること。
(6)リン酸カルシウム粒子が、ハイドロキシアパタイト、カルシウム欠損型アパタイト、βリン酸三カルシウム、αリン酸カルシウム、リン酸八カルシウム、アモルファスリン酸カルシウム、第二リン酸カルシウムのいずれかであること。
(7)リン酸カルシウムにおけるCaの一部が、Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Alの少なくともいずれか一種で置換され、及び/またはリン酸カルシウムにおけるPO4の一部が、CO3, SiO4, SO4, AsO4, VO4, F, Clの少なくともいずれか一種で置換されていること。
(8)高分子基体が、ポリエチレン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレン、シリコーン、ポリメタクリル酸メチル、ポリ乳酸、ポリグリコール酸、ポリカプロラクトンあるいはこれらの共重合体のいずれかであること。
(9)リン酸カルシウムに機能性因子を吸着させていること。
Furthermore, the method for producing a biological tissue adhesive of the present invention is also characterized in the following points.
(1) Having a step of forming an agglomerate by drying the dispersion liquid and aggregating the calcium phosphate particles.
(2) Having a step of crushing the agglomerate into a powder.
(3) A step of immersing a polymer substrate having a predetermined shape in a dispersion liquid to attach calcium phosphate particles to the surface of the polymer substrate.
(4) A step of immersing a polymer substrate having a predetermined shape in a mixed solution to attach calcium phosphate particles to the surface of the polymer substrate.
(5) Adjust the size of the calcium phosphate particles by the heating temperature of the mixed solution.
(6) The calcium phosphate particles are any one of hydroxyapatite, calcium-deficient apatite, β-tricalcium phosphate, α-calcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and dibasic calcium phosphate.
(7) Part of Ca in calcium phosphate is replaced with at least one of Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Al and / or PO 4 in calcium phosphate. Part of is replaced with at least one of CO 3 , SiO 4 , SO 4 , AsO 4 , VO 4, F, Cl.
(8) The polymer substrate is any one of polyethylene, polypropylene, polyester, polytetrafluoroethylene, silicone, polymethylmethacrylate, polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof.
(9) The functional factor is adsorbed on calcium phosphate.

また、本発明の生体組織接着剤は、所定形状とした高分子基体の表面にリン酸カルシウム粒子を付着させた生体組織接着剤である。 Further, the biological tissue adhesive of the present invention is a biological tissue adhesive in which calcium phosphate particles are adhered to the surface of a polymer substrate having a predetermined shape.

さらに、本発明の生体組織接着剤では、以下の点にも特徴を有するものである。
(1)リン酸カルシウム粒子が、ハイドロキシアパタイト、カルシウム欠損型アパタイト、βリン酸三カルシウム、αリン酸カルシウム、リン酸八カルシウム、アモルファスリン酸カルシウム、第二リン酸カルシウムのいずれかであること。
(2)リン酸カルシウムにおけるCaの一部が、Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Alの少なくともいずれか一種で置換され、及び/またはリン酸カルシウムにおけるPO4の一部が、CO3, SiO4, SO4, AsO4, VO4, F, Clの少なくともいずれか一種で置換されていること。
(3)高分子基体が、ポリエチレン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレン、シリコーン、ポリメタクリル酸メチル、ポリ乳酸、ポリグリコール酸、ポリカプロラクトンあるいはこれらの共重合体のいずれかであること。
Furthermore, the biological tissue adhesive of the present invention is also characterized in the following points.
(1) The calcium phosphate particles are any one of hydroxyapatite, calcium-deficient apatite, β-tricalcium phosphate, α-calcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and dibasic calcium phosphate.
(2) Part of Ca in calcium phosphate is replaced with at least one of Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Al and / or PO 4 in calcium phosphate. Part of is replaced with at least one of CO 3 , SiO 4 , SO 4 , AsO 4 , VO 4, F, Cl.
(3) The polymer substrate is any one of polyethylene, polypropylene, polyester, polytetrafluoroethylene, silicone, polymethylmethacrylate, polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof.

本発明の生体組織接着剤の製造方法及び生体組織接着剤によれば、シアノアクリレート系及びゼラチン-アルデヒド系の接着剤よりも人体への影響が弱く、かつフィブリングルー系の接着剤よりも接着強度が強い生体組織用の接着剤を提供できる。 According to the method for producing a biological tissue adhesive and the biological tissue adhesive of the present invention, the effect on the human body is weaker than that of cyanoacrylate-based and gelatin-aldehyde-based adhesives, and the adhesive strength is weaker than that of fibring-ru-based adhesives. Can provide an adhesive for strong biological tissues.

アパタイトのナノ粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of apatite nanoparticles. 引張試験機による試験状態の説明図である。It is explanatory drawing of the test state by a tensile tester. 引張試験機による試験結果のグラフである。It is a graph of the test result by the tensile tester. Sphere、Short rod、Long rodのそれぞれのアパタイトのナノ粒子で濃度を変えながら計測したせん断接着強さの計測結果のグラフである。It is a graph of the measurement result of the shear adhesion strength measured while changing the concentration of the nanoparticles of each apatite of Sphere, Short rod, and Long rod. アパタイトナノ粒子分散液を乾燥させて作成した成形体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a molded body prepared by drying an apatite nanoparticle dispersion liquid. Sphere、Short rod、Long rodのそれぞれのアパタイト成形体でのせん断接着強さの計測結果のグラフである。It is a graph of the measurement result of the shear adhesion strength in each apatite molded body of Sphere, Short rod, and Long rod. Sphereのアパタイトナノ成形体を用いてマウスの筋組織、脾臓、肺、腎臓、心臓、肝臓に対する接着性を確認した写真である。It is a photograph which confirmed the adhesion to the muscle tissue, the spleen, the lung, the kidney, the heart, and the liver of the mouse using the apatite nanomold of Sphere. マウスの皮膚組織を用いてSphereのアパタイトナノ成形体のせん断接着強さの計測結果のグラフである。It is a graph of the measurement result of the shear adhesion strength of the apatite nanomold of Sphere using the skin tissue of a mouse. パタイトナノ粒子成形体(Sphere)を粉砕して得られたアパタイト粉末であって、粒径の異なるアパタイト粉末でのせん断接着強さの計測結果のグラフである。It is a graph of the measurement result of the shear adhesion strength in the apatite powder which is the apatite powder obtained by pulverizing the patite nanoparticle compact (Sphere), and has different particle diameters. ポリ乳酸フィルムの表面にアパタイト結晶を成長させて作成したアパタイト複合体の走査型電子顕微鏡写真である。It is a scanning electron micrograph of an apatite composite prepared by growing an apatite crystal on the surface of a polylactic acid film. アパタイト複合体でのせん断接着強さの計測結果のグラフである。It is a graph of the measurement result of the shear adhesive strength in the apatite complex. ニワトリ胸部から採取した筋組織を用いてShort rodのアパタイト複合体の引っ張り接着強さの計測結果のグラフである。It is a graph of the measurement result of the tensile adhesive strength of the apatite complex of the short rod using the muscle tissue collected from the chicken chest.

本発明の生体組織接着剤の製造方法及び生体組織接着剤では、人体を構成している物質の一種であるリン酸カルシウムが生体組織の接着作用を有していることを利用するものである。 The method for producing a biological tissue adhesive and the biological tissue adhesive of the present invention utilize the fact that calcium phosphate, which is one of the substances constituting the human body, has an adhesive action on biological tissues.

人体中に存在しているリン酸カルシウムの一種としてハイドロキシアパタイトがよく知られているが、ハイドロキシアパタイトに限定するものではなく、カルシウム欠損型アパタイト、βリン酸三カルシウム、αリン酸カルシウム、リン酸八カルシウム、アモルファスリン酸カルシウム、第二リン酸カルシウムのいずれかであってもよい。 Hydroxyapatite is well known as a type of calcium phosphate present in the human body, but it is not limited to hydroxyapatite, and calcium-deficient apatite, β-tricalcium phosphate, α-calcium phosphate, octacalcium phosphate, and amorphous. It may be either calcium phosphate or dicalcium phosphate.

また、ハイドロキシアパタイトは、Ca10(PO4)6(OH)2の組成を有しているが、このうち、リン酸カルシウムにおけるCaの一部が、Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Alの少なくともいずれか一種で置換され、及び/またはリン酸カルシウムにおけるPO4の一部が、CO3, SiO4, SO4, AsO4, VO4, F, Clの少なくともいずれか一種で置換されたアパタイトも含む。 Hydroxyapatite has a composition of Ca 10 (PO 4 ) 6 (OH) 2 , and among them, a part of Ca in calcium phosphate is Mg, Sr, Ba, Mn, Fe, Zn, Cd. , Pb, H, Na, K, Al, and / or part of PO 4 in calcium phosphate of CO 3 , SiO 4 , SO 4 , AsO 4 , VO 4 , F, Cl It also includes apatite substituted with at least one of them.

さらには、リン酸カルシウムに機能性因子を吸着させていてもよく、機能性因子とは、サイトカイン、線維芽細胞成長因子、血管内皮細胞成長因子、血小板由来成長因子、胎盤成長因子、上皮細胞成長因子、神経成長因子、あるいは骨形成タンパク質等が挙げられるれる。これらの機能性因子は、後述するリン酸カルシウム粒子の作製後に、適宜の工程によって吸着させている。 Furthermore, functional factors may be adsorbed on calcium phosphate, and the functional factors include cytokines, fibroblast growth factors, vascular endothelial cell growth factors, platelet-derived growth factors, placenta growth factors, epithelial cell growth factors, and the like. Examples thereof include nerve growth factor and bone morphogenetic protein. These functional factors are adsorbed by an appropriate step after the calcium phosphate particles described later are prepared.

このように、人体を構成している物質の一種であるリン酸カルシウムを生体組織接着剤の主成分とすることで、優れた生体適合性を示し、かつ、後述するように既存のフィブリングルー系の接着剤よりも強い接着強度を有する生体組織接着剤を提供できる。 In this way, by using calcium phosphate, which is one of the substances constituting the human body, as the main component of the biological tissue adhesive, excellent biocompatibility is exhibited, and as will be described later, the existing fibring loop adhesive is adhered. It is possible to provide a biotissue adhesive having a stronger adhesive strength than the agent.

リン酸カルシウムは、所定温度に加熱したカルシウムイオンを含有している液に、同じ温度に加熱したリン酸イオンを含有している液を混合することで混合液とし、この混合液中で反応が生じることで作製でき、混合液中に生成されたリン酸カルシウム粒子を分離して所定の溶液に分散させて分散液とすることで生体組織接着剤として使用できる。混合液からのリン酸カルシウム粒子の分離は、遠心分離等によって容易に行うことができる。 Calcium phosphate is a mixed solution by mixing a solution containing calcium ions heated to a predetermined temperature with a solution containing phosphate ions heated to the same temperature, and a reaction occurs in this mixed solution. It can be used as a biological tissue adhesive by separating the calcium phosphate particles generated in the mixed solution and dispersing them in a predetermined solution to prepare a dispersion. Separation of calcium phosphate particles from the mixed solution can be easily performed by centrifugation or the like.

リン酸カルシウムに機能性因子を吸着させる場合には、リン酸カルシウム粒子を分散させている分散液と、適宜の機能性因子とを反応させて吸着させている。 When a functional factor is adsorbed on calcium phosphate, a dispersion liquid in which calcium phosphate particles are dispersed is reacted with an appropriate functional factor to be adsorbed.

分散液を乾燥させることでリン酸カルシウム粒子の凝集を生じさせてリン酸カルシウム粒子の凝集体を作製し、この凝集体を生体組織接着剤として使用することもでき、さらには、この凝集体を粉砕して粉末状とし、この粉末状としたリン酸カルシウムを生体組織接着剤として使用することもできる。 By drying the dispersion, agglomeration of calcium phosphate particles is generated to prepare an agglomerate of calcium phosphate particles, and this agglomerate can be used as a biological tissue adhesive. Furthermore, the agglomerate is crushed into a powder. The powdered calcium phosphate can also be used as a biological tissue adhesive.

あるいは、所定形状とした高分子基体を用い、この高分子基体をリン酸カルシウム粒子の分散液に浸漬させることで高分子基体の表面にリン酸カルシウム粒子を付着させた複合体を作製し、この複合体を生体組織接着剤として使用することもできる。 Alternatively, a polymer substrate having a predetermined shape is used, and the polymer substrate is immersed in a dispersion of calcium phosphate particles to prepare a composite in which calcium phosphate particles are adhered to the surface of the polymer substrate, and this composite is used as a living body. It can also be used as a tissue adhesive.

なお、高分子基体をリン酸カルシウム粒子の分散液に浸漬させるのではなく、混合液に浸漬させることで高分子基体の表面にリン酸カルシウム粒子を付着させた複合体を作製してもよく、この複合体を生体組織接着剤として使用することもできる。 It should be noted that the polymer substrate may be immersed in a mixed solution instead of being immersed in a dispersion of calcium phosphate particles to prepare a composite in which calcium phosphate particles are adhered to the surface of the polymer substrate. It can also be used as a biological tissue adhesive.

高分子基体としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレン、シリコーン、ポリメタクリル酸メチル、ポリ乳酸、ポリグリコール酸、ポリカプロラクトンあるいはこれらの共重合体とすることができる。 The polymer substrate can be polyethylene, polypropylene, polyester, polytetrafluoroethylene, silicone, polymethylmethacrylate, polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof.

また、高分子基体は、必要な形状としてよく、例えば、フィルム状、繊維状、所定形状のブロック体、あるいは多孔質体や不織布のような特殊形状としてもよく、高分子基体の基材とリン酸カルシウム粒子と混合した混合体としてもよい。 Further, the polymer substrate may have a required shape, for example, a film-like, fibrous, block-shaped body having a predetermined shape, or a special shape such as a porous body or a non-woven fabric, and the base material of the polymer substrate and calcium phosphate. It may be a mixture mixed with particles.

以下において、ハイドロキシアパタイトを用いた場合の具体例を説明する。なお、以下の説明においては、単に「アパタイト」と呼ぶこととする。 Hereinafter, a specific example when hydroxyapatite is used will be described. In the following description, it will be simply referred to as "apatite".

<アパタイトのナノ粒子の分散液の作成>
まず、42mMとした硝酸カルシウム水溶液 800mLをpH10に調整して加熱することで第1加熱溶液とし、さらに、100mMとしたリン酸水素二アンモニウム水溶液であって、加熱したリン酸水素二アンモニウム水溶液200mLを第2加熱溶液としている。そして、この第1加熱溶液と第2加熱溶液とを混合することで混合液を作成し、この混合液中で反応を生じさせることでアパタイトのナノ粒子を生成している。なお、第1加熱溶液と第2加熱溶液とは、それぞれ同程度の温度に加熱していることが望ましいが、多少の温度差は許容可能であり、適宜の加温装置で混合液を所定の加熱温度に維持することが望ましい。
<Creation of dispersion of apatite nanoparticles>
First, 800 mL of a 42 mM calcium nitrate aqueous solution was adjusted to pH 10 and heated to obtain a first heated solution, and then 200 mL of a 100 mM diammonium hydrogen phosphate aqueous solution, which was heated, was added. It is a second heating solution. Then, a mixed solution is prepared by mixing the first heated solution and the second heated solution, and apatite nanoparticles are produced by causing a reaction in the mixed solution. It is desirable that the first heating solution and the second heating solution are heated to the same temperature, but a slight temperature difference is acceptable, and a predetermined heating device is used to prepare the mixed solution. It is desirable to maintain the heating temperature.

混合液の加熱温度を30℃とした場合には、図1に示すように、アパタイトのナノ粒子は、粒子径17 nmの球状粒子(図1の「Sphere」)となり、混合液の加熱温度を50℃とした場合には、図1に示すように、アパタイトのナノ粒子は、長径154 nmで短径13 nmのロッド状粒子(図1の「Short rod」)となり、混合液の加熱温度を80℃とした場合には、図1に示すように、アパタイトのナノ粒子は、長径585 nmで短径43 nmのロッド状粒子(図1の「Long rod」)となった。なお、X線回折測定(RINT2500HF; Rigaku Corp., Tokyo, Japan)を行い、いずれの粒子もハイドロキシアパタイトであることを確認した。 When the heating temperature of the mixed solution is 30 ° C., as shown in FIG. 1, the nanoparticles of apatite become spherical particles having a particle diameter of 17 nm (“Sphere” in FIG. 1), and the heating temperature of the mixed solution is adjusted. At 50 ° C, as shown in FIG. 1, the nanoparticles of apatite become rod-shaped particles having a major axis of 154 nm and a minor axis of 13 nm (“Short rod” in FIG. 1), and the heating temperature of the mixed solution is adjusted. At 80 ° C., as shown in FIG. 1, the nanoparticles of apatite became rod-shaped particles having a major axis of 585 nm and a minor axis of 43 nm (“Long rod” in FIG. 1). In addition, X-ray diffraction measurement (RINT2500HF; Rigaku Corp., Tokyo, Japan) was performed, and it was confirmed that all the particles were hydroxyapatite.

以下において、説明の便宜上、「Sphere」は混合液の加熱温度を30℃としてアパタイトのナノ粒子を作成した場合であり、「Short rod」は混合液の加熱温度を50℃としてアパタイトのナノ粒子を作成した場合であり、「Long rod」は混合液の加熱温度を80℃としてアパタイトのナノ粒子を作成した場合であることとする。 In the following, for convenience of explanation, "Sphere" is a case where apatite nanoparticles are prepared by setting the heating temperature of the mixed solution to 30 ° C, and "Short rod" is a case where apatite nanoparticles are prepared by setting the heating temperature of the mixed solution to 50 ° C. It is assumed that the “Long rod” is the case where the nanoparticles of apatite are prepared by setting the heating temperature of the mixed solution to 80 ° C.

アパタイトのナノ粒子の作成後、遠心分離処理によって混合液からアパタイトのナノ粒子を分離するとともに洗浄を行い、アパタイトのナノ粒子を0.01〜6wt%の濃度とした分散液を作製した。ここで、分散液は水溶液としているが、水以外の溶液を使用してもよい。 After preparing the apatite nanoparticles, the apatite nanoparticles were separated from the mixed solution by centrifugation and washed to prepare a dispersion having a concentration of 0.01 to 6 wt% of the apatite nanoparticles. Here, the dispersion liquid is an aqueous solution, but a solution other than water may be used.

この分散液中のリン酸カルシウムと適宜の機能性因子とを反応させることで、リン酸カルシウムに機能性因子を吸着させることができる。機能性因子を吸着することで、後述するリン酸カルシウムの吸着能に種々の機能を付加することができ、より高機能な生体組織吸着剤とすることができる。 By reacting calcium phosphate in this dispersion with an appropriate functional factor, the functional factor can be adsorbed on calcium phosphate. By adsorbing a functional factor, various functions can be added to the adsorption ability of calcium phosphate, which will be described later, and a more highly functional biological tissue adsorbent can be obtained.

<ポリジメチルアクリルアミドハイドロゲルを用いた荷重試験の方法>
アパタイトのナノ粒子の分散液による接着強度を試験するために、ポリジメチルアクリルアミドハイドロゲル同士を接合して、引張試験を行った。
<Method of load test using polydimethylacrylamide hydrogel>
In order to test the adhesive strength of apatite nanoparticles with a dispersion liquid, polydimethylacrylamide hydrogels were bonded to each other and a tensile test was performed.

ポリジメチルアクリルアミドハイドロゲルは、dimethylacrylamide (DMA)をモノマーとして用い、N,N’-methylene bisacrylamide (MBA)を架橋剤として用い、Potassium persulphate (KPS)を重合開始剤として用い、N,N,N’,N’-tetramethylethylenediamine (TEMED)を重合触媒として用いて、含水率70 wt%としてW100mm × H100mm × T2mmのモールド中にて室温で20時間かけて作製した。ここでモノマーMBA/架橋剤DMAモル比は0.001とした。 Polydimethylacrylamide hydrogel uses dimethylacrylamide (DMA) as a monomer, N, N'-methylene bisacrylamide (MBA) as a cross-linking agent, Potassium persulphate (KPS) as a polymerization initiator, and N, N, N'. , N'-tetramethylethylenediamine (TEMED) was used as a polymerization catalyst and prepared in a mold of W100 mm × H100 mm × T2 mm with a water content of 70 wt% over 20 hours at room temperature. Here, the monomer MBA / cross-linking agent DMA molar ratio was set to 0.001.

作製後、W5mm × H100mm × T2mmの大きさの短冊状の試験片として切り出し、一方の端部表面の5mm × 5mmのエリアを接合面として、アパタイトのナノ粒子の分散液を塗布し、2つの試験片を接合した。この接合の際には、2つの試験片をガラス板で挟んだ状態として、300gの重りを30秒間載せて確実に接合させた。 After production, it is cut out as a strip-shaped test piece with a size of W5 mm × H100 mm × T2 mm, and a dispersion of apatite nanoparticles is applied with the area of 5 mm × 5 mm on the surface of one end as the joint surface, and two tests are performed. The pieces were joined. At the time of this joining, a weight of 300 g was placed for 30 seconds with the two test pieces sandwiched between glass plates to ensure the joining.

その後、図2に示すように、引張試験機(Ez-test; Shimadzu, Kyoto, Japan)に、接合した試験片の両端部分をそれぞれ固定して、150 mm/minの速度で引張することでせん断応力を加え、図3に示すように、その際の荷重と伸びを計測した。 After that, as shown in FIG. 2, both ends of the joined test piece are fixed to a tensile tester (Ez-test; Shimadzu, Kyoto, Japan) and pulled at a speed of 150 mm / min for shearing. Stress was applied and the load and elongation at that time were measured as shown in FIG.

アパタイトのナノ粒子の分散液におけるアパタイトのナノ粒子の濃度を変えながらSphere、Short rod、Long rodのそれぞれの場合のせん断接着強さを計測した。ここで、せん断接着強さは、上記試験における最大荷重を接着面積で除して算出した。試験繰り返し数は4回とした。図4に示すように、2wt%以上の各アパタイトナノ粒子分散液を塗布することで、ハイドロゲルの接着強さが向上した。 The shear adhesion strength of each of Sphere, Short rod, and Long rod was measured while changing the concentration of apatite nanoparticles in the dispersion of apatite nanoparticles. Here, the shear bond strength was calculated by dividing the maximum load in the above test by the bond area. The number of repeated tests was four. As shown in FIG. 4, the adhesive strength of the hydrogel was improved by applying each apatite nanoparticle dispersion liquid of 2 wt% or more.

<アパタイトのナノ粒子の成形体>
上述した作製方法で作成したアパタイトナノ粒子分散液は、乾燥させることで水分を除去して成形体とすることができる。
<Apatite nanoparticle molding>
The apatite nanoparticle dispersion liquid prepared by the above-mentioned production method can be dried to remove water to form a molded product.

図5は、上述した作製方法で作成したアパタイトナノ粒子分散液をモールド中で60℃にて12時間乾燥させることで作成した成形体の走査型電子顕微鏡写真である。ここで、各成形体は、W5mm × H5mm × T0.5mmの大きさとした。 FIG. 5 is a scanning electron micrograph of a molded product prepared by drying the apatite nanoparticle dispersion liquid prepared by the above-mentioned manufacturing method in a mold at 60 ° C. for 12 hours. Here, each molded product has a size of W5 mm × H5 mm × T0.5 mm.

この成形体を用いて上述したポリジメチルアクリルアミドハイドロゲルを用いたせん断接着試験を、アパタイトのナノ粒子の分散液の場合と同様に行った。試験結果を図6に示す。コントロールは、水を用いた場合である。図6に示すように、接着強さが、アパタイトのナノ粒子の分散液の場合と比較して向上していることが分かる。 Using this molded product, a shear adhesion test using the polydimethylacrylamide hydrogel described above was carried out in the same manner as in the case of a dispersion of apatite nanoparticles. The test results are shown in FIG. The control is when water is used. As shown in FIG. 6, it can be seen that the adhesive strength is improved as compared with the case of the dispersion liquid of the nanoparticles of apatite.

また、Sphereのアパタイトナノ粒子の分散液から作成した成形体を用い、マウスの筋組織、脾臓、肺、腎臓、心臓、肝臓に対する接着性を確認した結果を図7に示す。図7に示すように、いずれの臓器・組織においても接着性を示すことが確認できた。 In addition, FIG. 7 shows the results of confirming the adhesiveness to the muscle tissue, spleen, lung, kidney, heart, and liver of mice using a molded body prepared from a dispersion of Sphere apatite nanoparticles. As shown in FIG. 7, it was confirmed that all the organs and tissues showed adhesiveness.

さらに、ポリジメチルアクリルアミドハイドロゲルではなく、マウス背部から採取した皮膚組織を用いて、上述した引張試験を行った。皮膚組織は、5 mm × 40 mmとして切り出し、Sphereのアパタイトナノ粒子の分散液から作成した成形体を用いて2つの皮膚組織を接着して、引張試験機(Ez-test; Shimadzu, Kyoto, Japan)を用いて150 mm/minの速度で引張した。引張試験機で引張した際の荷重と伸びを計測し、引張り試験における最大荷重を接着面積で除してせん断接着強さを算出した。 Furthermore, the above-mentioned tensile test was performed using the skin tissue collected from the back of the mouse instead of the polydimethylacrylamide hydrogel. The skin tissue was cut out as 5 mm × 40 mm, and two skin tissues were adhered using a molded product prepared from a dispersion of apatite nanoparticles of Sphere, and a tensile tester (Ez-test; Shimadzu, Kyoto, Japan) was used. ) Was used to pull at a rate of 150 mm / min. The load and elongation when pulled by a tensile tester were measured, and the maximum load in the tensile test was divided by the adhesive area to calculate the shear adhesion strength.

マウスの皮膚組織を用いた場合の引張試験の結果を図8に示す。なお、繰り返し試験数は4回とした。図8において、コントロールは水を用いた場合であり、また、比較用として市販の医療用フィブリングルー系接着剤(Beriplast(登録商標) P Combi-Set;CSL Behring LLC, PA, USA)を用いた場合を合わせて示している。図8から明らかなように、アパタイトナノ粒子成形体(Sphere)を用いることで、市販の医療用フィブリングルー系接着剤よりも高い接着強さが得られた。 The results of the tensile test when using mouse skin tissue are shown in FIG. The number of repeated tests was set to 4. In FIG. 8, water was used as the control, and a commercially available medical fibrin loop adhesive (Beriplast® P Combi-Set; CSL Behring LLC, PA, USA) was used for comparison. The case is also shown. As is clear from FIG. 8, by using the apatite nanoparticle molded body (Sphere), a higher adhesive strength than that of a commercially available medical fibrin loop adhesive was obtained.

<アパタイト粉末>
上述したアパタイトナノ粒子成形体(Sphere)を乳鉢乳棒で粉砕することで、アパタイト粉末を作成した。ここで、乳鉢乳棒での粉砕後、フルイを用いて「250μm以下」、「250-425μm」、「425−710μm」、「710-1000μm」に分級した。
<Apatite powder>
Apatite powder was prepared by crushing the above-mentioned apatite nanoparticle molded article (Sphere) with a mortar and pestle. Here, after crushing with a mortar and pestle, it was classified into "250 μm or less", "250-425 μm", "425-710 μm", and "710-1000 μm" using a mortar.

各大きさのアパタイト粉末を用いて、上述したポリジメチルアクリルアミドハイドロゲルを用いたせん断接着試験を、アパタイトのナノ粒子の分散液の場合と同様に行った。試験結果を図9に示す。図9に示すように、すべてのアパタイト粉末において高い接着強さを示すことが確認された。 Using the apatite powder of each size, the shear adhesion test using the polydimethylacrylamide hydrogel described above was carried out in the same manner as in the case of the dispersion liquid of the nanoparticles of apatite. The test results are shown in FIG. As shown in FIG. 9, it was confirmed that all apatite powders showed high adhesive strength.

<アパタイト複合体>
上述したアパタイト粉末は高い接着強さを示すが、粉末のままでは取り扱いに煩雑さがあることから、ポリ乳酸フィルムを用いて複合化することを検討した。すなわち、ポリ乳酸フィルムの表面にアパタイト結晶を成長させることで複合化した。
<Apatite complex>
Although the above-mentioned apatite powder exhibits high adhesive strength, it is complicated to handle as it is, so it was examined to combine it with a polylactic acid film. That is, it was composited by growing apatite crystals on the surface of the polylactic acid film.

まず、分子量100,000のポリ乳酸をジクロロメタンに溶解し、所定のモールドにキャストすることで厚さ約20μmのポリ乳酸フィルムを作成した。次いで、このポリ乳酸フィルムの両面をプラズマ処理(10 Pa in Ar;20 mA;5分)することで親水化して親水化ポリ乳酸フィルムとした。 First, polylactic acid having a molecular weight of 100,000 was dissolved in dichloromethane and cast into a predetermined mold to prepare a polylactic acid film having a thickness of about 20 μm. Next, both sides of this polylactic acid film were subjected to plasma treatment (10 Pa in Ar; 20 mA; 5 minutes) to make it hydrophilic to obtain a hydrophilic polylactic acid film.

次いで、上述したアパタイトナノ粒子の分散液を用い、この分散液に親水化ポリ乳酸フィルムを浸漬させることで、親水化ポリ乳酸フィルムの表面をアパタイトナノ粒子でコーティングした。ここで、アパタイトナノ粒子の分散液のアパタイトナノ粒子はSphereであって、2 wt%の濃度とした。 Next, the surface of the hydrophilic polylactic acid film was coated with the apatite nanoparticles by immersing the hydrophilic polylactic acid film in the dispersion using the above-mentioned dispersion of apatite nanoparticles. Here, the apatite nanoparticles in the dispersion liquid of the apatite nanoparticles were Sphere, and the concentration was set to 2 wt%.

次いで、アパタイトナノ粒子でコーティングされた親水化ポリ乳酸フィルムを硝酸カルシウム水溶液(42 mM, 160 mL)中に浸漬させて、所定の温度とpHの条件下においてリン酸水素二アンモニウム(100 mM;40 mL)を5時間かけて滴下することで、親水化ポリ乳酸フィルムの表面に結合しているアパタイト結晶を成長させ、アパタイト複合体とした。 The hydrophilized polylactic acid film coated with apatite nanoparticles was then immersed in an aqueous solution of calcium nitrate (42 mM, 160 mL) and diammonium hydrogen phosphate (100 mM; 40 mL) under predetermined temperature and pH conditions. mL) was added dropwise over 5 hours to grow apatite crystals bonded to the surface of the hydrophilized polylactic acid film to form an apatite complex.

特に、親水化ポリ乳酸フィルムを硝酸カルシウム水溶液に浸漬させた際に、硝酸カルシウム水溶液の温度とpHを調整することで、親水化ポリ乳酸フィルムの表面に成長するアパタイト結晶の粒子径を調整することができ、本実施形態では、図10に示すように、液温を37℃とした場合には粒子径65nmの球状のアパタイト、液温を50℃とした場合には長径120nmで短径21nmのロッド状のアパタイト、液温を80℃とした場合には長径341nmで短径27nmのロッド状アパタイトとすることができた。 In particular, when the hydrophilic polylactic acid film is immersed in the calcium nitrate aqueous solution, the particle size of the apatite crystals growing on the surface of the hydrophilic polylactic acid film is adjusted by adjusting the temperature and pH of the calcium nitrate aqueous solution. In the present embodiment, as shown in FIG. 10, when the liquid temperature is 37 ° C, a spherical apatite having a particle diameter of 65 nm is formed, and when the liquid temperature is 50 ° C, the major axis is 120 nm and the minor axis is 21 nm. When the liquid temperature was 80 ° C, it was possible to obtain rod-shaped apatite with a major axis of 341 nm and a minor axis of 27 nm.

上述したアパタイトのナノ粒子の場合と同様に、粒子径65nmの球状のアパタイトを「Sphere」と呼び、長径120nmで短径21nmのロッド状のアパタイトを「Short rod」と呼び、長径341 nmで短径27nmのロッド状のアパタイトを「Long rod」と呼ぶ。 Similar to the case of the apatite nanoparticles described above, the spherical apatite with a particle diameter of 65 nm is called "Sphere", and the rod-shaped apatite with a major axis of 120 nm and a minor axis of 21 nm is called a "Short rod". A rod-shaped apatite with a diameter of 27 nm is called a "Long rod".

作成した各アパタイト複合体は5mm × 5mmの大きさとしており、上述したポリジメチルアクリルアミドハイドロゲルを用いたせん断接着試験を行った。試験結果を図11に示す。図11に示すように、アパタイト複合体としていないポリ乳酸フィルムと比較して、アパタイト複合体とすることでせん断接着強さは増加し、特に、Short rodおよびLong rodの場合には、高いせん断接着強さが得られた。 Each apatite complex prepared had a size of 5 mm × 5 mm, and a shear adhesion test was conducted using the above-mentioned polydimethylacrylamide hydrogel. The test results are shown in FIG. As shown in FIG. 11, the shear adhesion strength is increased by using the apatite composite as compared with the polylactic acid film which is not the apatite composite, and especially in the case of the short rod and the long rod, the shear adhesion is high. Strength was gained.

また、Long rodとしたアパタイト複合体を用い、ニワトリ胸部から採取した筋組織(5mm × 5mm × 40mm)に対する接着強さを計測してみた。上述した引張試験機(Ez-test; Shimadzu, Kyoto, Japan)を用い、Long rodのアパタイト複合体を介して接着された筋組織を150mm/minの速度で引張し、その際の荷重と伸びを計測して引張り試験における最大荷重を接着面積で除して接着強さを算出した。比較試験として、医療用フィブリングルー系接着剤(Beriplast(登録商標) P Combi-Set;CSL Behring LLC, PA, USA)を用い、同様の試験を行った。 In addition, using an apatite complex as a long rod, we measured the adhesive strength to muscle tissue (5 mm x 5 mm x 40 mm) collected from the chest of chickens. Using the above-mentioned tensile tester (Ez-test; Shimadzu, Kyoto, Japan), the muscle tissue adhered via the long rod apatite complex is pulled at a speed of 150 mm / min, and the load and elongation at that time are applied. The adhesive strength was calculated by measuring and dividing the maximum load in the tensile test by the adhesive area. As a comparative test, a similar test was conducted using a medical fibrin loop adhesive (Beriplast (registered trademark) P Combi-Set; CSL Behring LLC, PA, USA).

図12に試験結果を示す。図12に示すように、Long rodのアパタイト複合体は、市販の医療用フィブリングルー系接着剤よりも高い接着強さを示すことが分かる。 FIG. 12 shows the test results. As shown in FIG. 12, it can be seen that the long rod apatite complex exhibits higher adhesive strength than the commercially available medical fibrin loop adhesive.

Claims (14)

リン酸カルシウムを主成分とする生体組織接着剤の製造方法であって、
所定温度に加熱したカルシウムイオンを含有している液に、同じ温度に加熱したリン酸イオンを含有している液を混合した混合液からリン酸カルシウム粒子を生じさせる工程と、
前記混合液から前記リン酸カルシウム粒子を分離して所定の溶液に分散させて分散液とする工程と
を有する生体組織接着剤の製造方法。
A method for producing a biological tissue adhesive containing calcium phosphate as a main component.
A step of generating calcium phosphate particles from a mixed solution obtained by mixing a solution containing calcium ions heated to a predetermined temperature with a solution containing phosphate ions heated to the same temperature.
A method for producing a biological tissue adhesive, which comprises a step of separating the calcium phosphate particles from the mixed solution and dispersing them in a predetermined solution to form a dispersion.
前記分散液を乾燥させて前記リン酸カルシウム粒子を凝集させることで凝集体を生成する工程を有する請求項1に記載の生体組織接着剤の製造方法。 The method for producing a biological tissue adhesive according to claim 1, further comprising a step of forming an agglomerate by drying the dispersion liquid and aggregating the calcium phosphate particles. 前記凝集体を粉砕して粉末状とする工程を有する請求項2に記載の生体組織接着剤の製造方法。 The method for producing a biological tissue adhesive according to claim 2, further comprising a step of crushing the aggregate into a powder. 所定形状とした高分子基体を前記分散液に浸漬させて、前記高分子基体の表面に前記リン酸カルシウム粒子を付着させる工程を有する請求項1に記載の生体組織接着剤の製造方法。 The method for producing a biological tissue adhesive according to claim 1, further comprising a step of immersing a polymer substrate having a predetermined shape in the dispersion liquid to attach the calcium phosphate particles to the surface of the polymer substrate. リン酸カルシウムを主成分とする生体組織接着剤の製造方法であって、
所定温度に加熱したカルシウムイオンを含有している液に、同じ温度に加熱したリン酸イオンを含有している液を混合した混合液からリン酸カルシウム粒子を生じさせる工程と、
所定形状とした高分子基体を前記混合液に浸漬させて、前記高分子基体の表面に前記リン酸カルシウム粒子を付着させる工程を有する生体組織接着剤の製造方法。
A method for producing a biological tissue adhesive containing calcium phosphate as a main component.
A step of generating calcium phosphate particles from a mixed solution obtained by mixing a solution containing calcium ions heated to a predetermined temperature with a solution containing phosphate ions heated to the same temperature.
The predetermined shape and the polymer base is immersed in the mixed solution, the production method of living body tissue adhesives that have a step of depositing said calcium phosphate particles to the surface of the polymer base.
前記リン酸カルシウム粒子の大きさを、前記混合液の加熱温度で調整する請求項1〜5のいずれか1項に記載の生体組織接着剤の製造方法。 The method for producing a biological tissue adhesive according to any one of claims 1 to 5, wherein the size of the calcium phosphate particles is adjusted by the heating temperature of the mixed solution. 前記リン酸カルシウム粒子が、ハイドロキシアパタイト、カルシウム欠損型アパタイト、βリン酸三カルシウム、αリン酸カルシウム、リン酸八カルシウム、アモルファスリン酸カルシウム、第二リン酸カルシウムのいずれかである請求項1〜6のいずれか1項に記載の生体組織接着剤の製造方法。 The invention according to any one of claims 1 to 6, wherein the calcium phosphate particles are any one of hydroxyapatite, calcium-deficient apatite, β-tricalcium phosphate, α-calcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and secondary calcium phosphate. Method for producing biological tissue adhesive. 前記リン酸カルシウムにおけるCaの一部が、Mg,Sr,Ba,Mn,Fe,Zn,Cd,Pb,H,Na,K,Alの少なくともいずれか一種で置換され、及び/または前記リン酸カルシウムにおけるPOの一部が、CO,SiO,SO,AsO,VO,F,Clの少なくともいずれか一種で置換されている請求項7に記載の生体組織接着剤の製造方法。 A part of Ca in the calcium phosphate is replaced with at least one of Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Al and / or PO 4 in the calcium phosphate. The method for producing a biological tissue adhesive according to claim 7, wherein a part thereof is substituted with at least one of CO 3 , SiO 4 , SO 4 , AsO 4 , VO 4, F, and Cl. 前記高分子基体が、ポリエチレン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレン、シリコーン、ポリメタクリル酸メチル、ポリ乳酸、ポリグリコール酸、ポリカプロラクトンあるいはこれらの共重合体のいずれかである請求項4に記載の生体組織接着剤の製造方法。 The fourth aspect of claim 4, wherein the polymer substrate is any one of polyethylene, polypropylene, polyester, polytetrafluoroethylene, silicone, polymethylmethacrylate, polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof. A method for producing a biological tissue adhesive. 前記リン酸カルシウムに機能性因子を吸着させている請求項1〜9のいずれか1項に記載の生体組織接着剤の製造方法。 The method for producing a biological tissue adhesive according to any one of claims 1 to 9, wherein a functional factor is adsorbed on the calcium phosphate. 所定形状とした高分子基体の表面にリン酸カルシウム粒子を付着させた生体組織接着剤。 A biological tissue adhesive in which calcium phosphate particles are attached to the surface of a polymer substrate having a predetermined shape. 前記リン酸カルシウム粒子が、ハイドロキシアパタイト、カルシウム欠損型アパタイト、βリン酸三カルシウム、αリン酸カルシウム、リン酸八カルシウム、アモルファスリン酸カルシウム、第二リン酸カルシウムのいずれかである請求項11に記載の生体組織接着剤。 The biological tissue adhesive according to claim 11 , wherein the calcium phosphate particles are any one of hydroxyapatite, calcium-deficient apatite, β-tricalcium phosphate, α-calcium phosphate, octacalcium phosphate, amorphous calcium phosphate, and secondary calcium phosphate. 前記リン酸カルシウムにおけるCaの一部が、Mg,Sr,Ba,Mn,Fe,Zn,Cd,Pb,H,Na,K,Alの少なくともいずれか一種で置換され、及び/または前記リン酸カルシウムにおけるPOの一部が、CO,SiO,SO,AsO,VO,F,Clの少なくともいずれか一種で置換されている請求項11または12に記載の生体組織接着剤。 A part of Ca in the calcium phosphate is replaced with at least one of Mg, Sr, Ba, Mn, Fe, Zn, Cd, Pb, H, Na, K, Al and / or PO 4 in the calcium phosphate. The biotissue adhesive according to claim 11 or 12 , wherein a part thereof is substituted with at least one of CO 3 , SiO 4 , SO 4 , AsO 4 , VO 4, F, Cl. 前記高分子基体が、ポリエチレン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレン、シリコーン、ポリメタクリル酸メチル、ポリ乳酸、ポリグリコール酸、ポリカプロラクトンあるいはこれらの共重合体のいずれかである請求項11〜13のいずれか1項に記載の生体組織接着剤。
13. Of claims 11 to 13, the polymer substrate is any one of polyethylene, polypropylene, polyester, polytetrafluoroethylene, silicone, polymethylmethacrylate, polylactic acid, polyglycolic acid, polycaprolactone, or a copolymer thereof. The biological tissue adhesive according to any one item.
JP2017188999A 2017-09-28 2017-09-28 Manufacturing method of biological tissue adhesive and biological tissue adhesive Active JP6842170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188999A JP6842170B2 (en) 2017-09-28 2017-09-28 Manufacturing method of biological tissue adhesive and biological tissue adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188999A JP6842170B2 (en) 2017-09-28 2017-09-28 Manufacturing method of biological tissue adhesive and biological tissue adhesive

Publications (2)

Publication Number Publication Date
JP2019063016A JP2019063016A (en) 2019-04-25
JP6842170B2 true JP6842170B2 (en) 2021-03-17

Family

ID=66338532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188999A Active JP6842170B2 (en) 2017-09-28 2017-09-28 Manufacturing method of biological tissue adhesive and biological tissue adhesive

Country Status (1)

Country Link
JP (1) JP6842170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093000B1 (en) * 2019-02-21 2022-08-26 Bertrand Perrin surgical adhesives based on monomers comprising a phosphate function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781183A (en) * 1986-08-27 1988-11-01 American Cyanamid Company Surgical prosthesis
DE3826915A1 (en) * 1988-08-09 1990-02-15 Henkel Kgaa NEW MATERIALS FOR BONE REPLACEMENT AND BONE OR PROSTHESIS COMPOSITION
US5939039A (en) * 1997-01-16 1999-08-17 Orthovita, Inc. Methods for production of calcium phosphate
JPH10298435A (en) * 1997-04-24 1998-11-10 Dainippon Ink & Chem Inc Biodegradable molding, biodegradable material and their production
JP4920964B2 (en) * 2005-12-16 2012-04-18 光則 石本 Dental materials and composite dental materials formed using hydroxyapatite
JP5363744B2 (en) * 2008-02-21 2013-12-11 クラレノリタケデンタル株式会社 Calcium phosphate composition and method for producing the same

Also Published As

Publication number Publication date
JP2019063016A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
Lee et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies
Ghosh et al. Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications
Dorozhkin Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications
Kim et al. Colloidal mesoporous silica nanoparticles as strong adhesives for hydrogels and biological tissues
CA2865540C (en) Bone cement composition comprising a particle having radiopacity coated with titanium dioxide
Pramanik et al. Fabrication and characterization of dendrimer-functionalized mesoporous hydroxyapatite
Li et al. Controllable synthesis of biomimetic hydroxyapatite nanorods with high osteogenic bioactivity
Tas Preparation of porous apatite granules from calcium phosphate cement
Li et al. Fabrication and properties of Ca-P bioceramic spherical granules with interconnected porous structure
Pramanik et al. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol)(EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications
JPH021285A (en) Fixable dental and medical granular bone filler, fixing method thereof and bone prosthetic material
Iqbal et al. Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties
Pham Minh et al. One-step synthesis of calcium hydroxyapatite from calcium carbonate and orthophosphoric acid under moderate conditions
Sheikh et al. Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery
JP2002137910A (en) Hydroxy-apatite nano particle and its manufacturing method
DE10355992A1 (en) Bioresorbable composite material
Huang et al. Role of molecular chemistry of degradable pHEMA hydrogels in three-dimensional biomimetic mineralization
Tithito et al. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly (methyl methacrylate) for bone tissue engineering
JP6842170B2 (en) Manufacturing method of biological tissue adhesive and biological tissue adhesive
WO2014142132A1 (en) Adhesive bone filler and adhesive bone filler kit
KR101516754B1 (en) Organic inorganic hybrid drug delivery system and manufacturing method thereof
Vahabzadeh et al. Tricalcium phosphate and tricalcium phosphate/polycaprolactone particulate composite for controlled release of protein
RU2554811C1 (en) Method of obtaining porous chitosan calcium phosphate-containing sponges for filling bone defects
KR20150112349A (en) biodegradable composites for bone fixation using polylactic acid and calcium phosphate, manufacturing method thereof
Iafisco et al. The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200923

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6842170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250