JP6841069B2 - Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element Download PDF

Info

Publication number
JP6841069B2
JP6841069B2 JP2017021401A JP2017021401A JP6841069B2 JP 6841069 B2 JP6841069 B2 JP 6841069B2 JP 2017021401 A JP2017021401 A JP 2017021401A JP 2017021401 A JP2017021401 A JP 2017021401A JP 6841069 B2 JP6841069 B2 JP 6841069B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal alignment
polymer
alignment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017021401A
Other languages
Japanese (ja)
Other versions
JP2017200991A (en
Inventor
拓也 村上
拓也 村上
拓弥 村主
拓弥 村主
遼 須原
遼 須原
伸夫 安池
伸夫 安池
幸志 樫下
幸志 樫下
岡田 敬
敬 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JP2017200991A publication Critical patent/JP2017200991A/en
Application granted granted Critical
Publication of JP6841069B2 publication Critical patent/JP6841069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/757Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、液晶配向剤、液晶配向膜及びその製造方法並びに液晶素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, a method for producing the same , and a liquid crystal element.

液晶素子は、テレビやモバイル機器、各種モニターなどに広く利用されている。また、液晶素子には、液晶セル中の液晶分子を配向制御するために液晶配向膜が使用されている。液晶配向規制力を有する有機膜を得る方法としては、従来、有機膜をラビングする方法、酸化ケイ素を斜方蒸着する方法、長鎖アルキル基を有する単分子膜を形成する方法、感光性の有機膜に光照射する方法(光配向法)などが知られている。 Liquid crystal elements are widely used in televisions, mobile devices, various monitors, and the like. Further, in the liquid crystal element, a liquid crystal alignment film is used to control the orientation of the liquid crystal molecules in the liquid crystal cell. Conventional methods for obtaining an organic film having a liquid crystal orientation regulating force include a method of rubbing an organic film, a method of obliquely depositing silicon oxide, a method of forming a monomolecular film having a long-chain alkyl group, and a photosensitive organic method. A method of irradiating a film with light (photoalignment method) is known.

光配向法は、静電気や埃の発生を抑えつつ感光性の有機膜に均一な液晶配向性を付与することができ、しかも液晶配向方向の精密な制御も可能であることから、近年、種々検討が進められている(例えば、特許文献1参照)。特許文献1には、シクロブタン環構造を主鎖に有するポリイミド前駆体又はポリイミドを含有する液晶配向剤を基板上に塗布、焼成して得られる膜に偏光放射線を照射した後、沸点が110〜180℃である有機溶剤と膜を接触させ、次いで、水又は沸点50〜105℃の水溶性有機溶剤と接触させた後、150℃以上で加熱処理する方法により液晶配向膜を得ることが開示されている。こうした膜の洗浄処理及び加熱処理を行うことで、光配向法により膜に配向能を付与する場合に、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制するようにすることが開示されている。 Since the photo-alignment method can impart uniform liquid crystal orientation to a photosensitive organic film while suppressing the generation of static electricity and dust, and can also precisely control the liquid crystal orientation direction, various studies have been conducted in recent years. (See, for example, Patent Document 1). In Patent Document 1, a polyimide precursor having a cyclobutane ring structure as a main chain or a liquid crystal aligning agent containing polyimide is applied onto a substrate, and a film obtained by firing is irradiated with polarized radiation and then has a boiling point of 110 to 180. It is disclosed that a liquid crystal alignment film is obtained by contacting a film with an organic solvent at ° C., then contacting with water or a water-soluble organic solvent having a boiling point of 50 to 105 ° C., and then heat-treating at 150 ° C. or higher. There is. By performing such a film cleaning treatment and heat treatment, when the alignment ability is imparted to the film by the photoalignment method, the afterimage due to the AC drive generated in the liquid crystal display element of the IPS drive method or the FFS drive method is suppressed. It is disclosed to do.

国際公開第2014/084362号International Publication No. 2014/084362

しかしながら、特許文献1に記載の方法では、膜を洗浄及び加熱する工程が必要にあるため、液晶素子を製造する際に工程数が多くなり、コスト高になることや煩雑になることが懸念される。また近年、大画面で高精細の液晶テレビが主体となり、またスマートフォンやタブレットPC等といった小型の表示端末の普及が進み、液晶パネルに対する高精細化の要求及び低コスト化の要求は更に高まりつつある。そのため、液晶配向性や残像特性といった、液晶素子の表示品位に関わる各種特性が良好な液晶素子をできるだけ安価に製造できる技術を開発することが以前にも増して重要になってきている。 However, since the method described in Patent Document 1 requires a step of cleaning and heating the film, there is a concern that the number of steps will increase when manufacturing the liquid crystal element, resulting in high cost and complexity. To. In recent years, large-screen, high-definition LCD TVs have become the mainstream, and small display terminals such as smartphones and tablet PCs have become widespread, and the demand for high-definition and low-cost LCD panels is increasing. .. Therefore, it has become more important than ever to develop a technology capable of manufacturing a liquid crystal element having good various characteristics related to the display quality of the liquid crystal element, such as liquid crystal orientation and afterimage characteristics, at the lowest possible cost.

液晶素子は、現在、大画面の液晶テレビから、スマートフォンやタブレットPC等といった小型の表示装置まで幅広い範囲のデバイスや用途に適用されている。また、液晶素子の多用途化に伴い、車内や屋外のように高温となり得る場所に載置又は設置されたり、あるいは従来よりも長時間駆動されたりするようになり、より過酷な高温環境下で使用されることが想定される。そのため、液晶素子としては、耐熱性に対する信頼性が高いことが要求される。しかしながら、シクロブタン環構造を主鎖に有するポリイミド系重合体を含有する液晶配向剤を用いて光配向処理により液晶配向膜を作製する場合、塗膜に対する光照射によって生じた分解物に起因して、得られる液晶素子を高温環境下に長時間曝した場合に微小輝点が発生しやすく、耐熱性に対する信頼性が劣ることが懸念される。 Liquid crystal elements are currently applied to a wide range of devices and applications, from large-screen liquid crystal televisions to small display devices such as smartphones and tablet PCs. In addition, with the increasing versatility of liquid crystal elements, they can be placed or installed in places where high temperatures can occur, such as inside cars and outdoors, or they can be driven for a longer time than before, under harsher high-temperature environments. Expected to be used. Therefore, the liquid crystal element is required to have high reliability for heat resistance. However, when a liquid crystal alignment film is produced by a photoalignment treatment using a liquid crystal alignment agent containing a polyimide-based polymer having a cyclobutane ring structure in the main chain, it is caused by the decomposition products generated by light irradiation of the coating film. When the obtained liquid crystal element is exposed to a high temperature environment for a long time, minute bright spots are likely to occur, and there is a concern that the reliability of heat resistance is inferior.

本発明は、上記事情に鑑みてなされたものであり、光配向法を適用する場合に、膜に対して光照射した後に特別な処理を行わなくても耐熱性が良好であって、かつ良好な液晶配向性及び残像特性を示す液晶素子を得ることができる液晶配向剤を提供することを一つの目的とする。 The present invention has been made in view of the above circumstances, and when the photoalignment method is applied, the heat resistance is good and good even if no special treatment is performed after irradiating the liquid crystal with light. One object of the present invention is to provide a liquid crystal alignment agent capable of obtaining a liquid crystal element exhibiting excellent liquid crystal orientation and afterimage characteristics.

本発明者は、上記のような従来技術の課題を達成するべく鋭意検討した結果、特定の部分構造を有する重合体を配向膜材料に用いることにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には以下の手段が提供される。 As a result of diligent studies to achieve the above-mentioned problems of the prior art, the present inventor has found that the above-mentioned problems can be solved by using a polymer having a specific partial structure as an alignment film material. The present invention has been completed. Specifically, the following means are provided.

<1> 下記式(1)で表される部分構造を有する重合体(P)を含有する液晶配向剤。

Figure 0006841069
(式(1)中、Rは置換基を有していても良いシクロブタン環構造を有する4価の有機基であり、Rは2価の有機基である。X及びXは、それぞれ独立に水酸基又は炭素数1〜40の1価の有機基である。ただし、X及びXの少なくともいずれかは反応性基を有する1価の有機基である。)
<2> 上記<1>の液晶配向剤を用いて塗膜を形成し、該塗膜に光照射して液晶配向能を付与する、液晶配向膜の製造方法。
<3> 上記<1>の液晶配向剤を用いて形成された液晶配向膜。
<4> 上記<3>に記載の液晶配向膜を備える液晶素子。
<5> 上記式(1)で表される部分構造を有する重合体。
<6> 下記式(1−1)若しくは下記式(1−2)で表される化合物又はその塩。
Figure 0006841069
(式(1−1)及び式(1−2)中、X11及びX12は、それぞれ独立に水素原子又は炭素数1〜40の1価の有機基である。ただし、X11及びX12の少なくともいずれかは、反応性基を有する1価の有機基である。Rは、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、又は置換基を有してもよい炭素数1〜10の1価の脂肪族基である。Xは、水酸基、塩素原子、臭素原子、及び下記式(4−1)〜式(4−6)のそれぞれで表される構造よりなる群から選ばれる1種である。)
Figure 0006841069
(式(4−1)〜式(4−6)中、「*」は結合手であることを示す。) <1> A liquid crystal alignment agent containing a polymer (P) having a partial structure represented by the following formula (1).
Figure 0006841069
(In the formula (1), R 1 is a tetravalent organic group having a cyclobutane ring structure which may have a substituent, and R 2 is a divalent organic group. X 1 and X 2 are divalent organic groups. Each is independently a hydroxyl group or a monovalent organic group having 1 to 40 carbon atoms. However, at least one of X 1 and X 2 is a monovalent organic group having a reactive group.)
<2> A method for producing a liquid crystal alignment film, which forms a coating film using the liquid crystal alignment agent of <1> above, and irradiates the coating film with light to impart liquid crystal alignment ability.
<3> A liquid crystal alignment film formed by using the liquid crystal alignment agent of <1> above.
<4> A liquid crystal element provided with the liquid crystal alignment film according to <3> above.
<5> A polymer having a partial structure represented by the above formula (1).
<6> A compound represented by the following formula (1-1) or the following formula (1-2) or a salt thereof.
Figure 0006841069
(In formulas (1-1) and (1-2), X 11 and X 12 are independently hydrogen atoms or monovalent organic groups having 1 to 40 carbon atoms, respectively. However, X 11 and X 12 At least one of the above is a monovalent organic group having a reactive group. R 3 has the number of carbon atoms which may independently have a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or a substituent. It is a monovalent aliphatic group of 1 to 10. X is composed of a hydroxyl group, a chlorine atom, a bromine atom, and a group consisting of structures represented by the following formulas (4-1) to (4-6). It is one of the choices.)
Figure 0006841069
(In equations (4-1) to (4-6), "*" indicates a bond.)

本開示の液晶配向剤によれば、放射線の照射後に膜の洗浄や加熱といった特別な処理を行わなくても耐熱性が高く、しかも良好な液晶配向性及び残像特性を示す液晶素子を得ることができる。つまり、光配向法により膜に配向能を付与する場合に、耐熱性が高く、残像が少なく、かつ液晶配向性が良好な液晶素子をできるだけ少ない工程数で得ることができる。 According to the liquid crystal alignment agent of the present disclosure, it is possible to obtain a liquid crystal element having high heat resistance and good liquid crystal orientation and afterimage characteristics without performing special treatment such as cleaning or heating of the film after irradiation with radiation. it can. That is, when the alignment ability is imparted to the film by the photo-alignment method, a liquid crystal element having high heat resistance, little afterimage, and good liquid crystal orientation can be obtained in as few steps as possible.

以下に、本開示の液晶配向剤に配合される成分、及び必要に応じて任意に配合されるその他の成分について説明する。 Hereinafter, the components to be blended in the liquid crystal alignment agent of the present disclosure and other components to be optionally blended will be described.

≪重合体(P)≫
本開示の液晶配向剤は、上記式(1)で表される部分構造を有する重合体(P)を含有する。上記式(1)において、Rは、シクロブタン環構造を有するテトラカルボン酸誘導体に由来する4価の基であり、下記式(r−1)で表される部分構造であることが好ましい。すなわち、重合体(P)は、下記式(1−A)で表される部分構造及び下記式(1−B)で表される部分構造の少なくとも一方を有していることが好ましい。

Figure 0006841069
(式(r−1)中、Rは、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、又は置換基を有してもよい炭素数1〜10の1価の脂肪族基である。) ≪Polymer (P) ≫
The liquid crystal alignment agent of the present disclosure contains a polymer (P) having a partial structure represented by the above formula (1). In the above formula (1), R 1 is a tetravalent group derived from a tetracarboxylic acid derivative having a cyclobutane ring structure, and preferably has a partial structure represented by the following formula (r-1). That is, the polymer (P) preferably has at least one of a partial structure represented by the following formula (1-A) and a partial structure represented by the following formula (1-B).
Figure 0006841069
(In the formula (r-1), R 3 is a monovalent aliphatic group having 1 to 10 carbon atoms which may independently have a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or a substituent. Is.)

Figure 0006841069
(式(1−A)及び式(1−B)中、R、X及びXは、それぞれ上記式(1)中のR、X及びXと同義である。Rは、上記式(r−1)中のRと同義である。)
Figure 0006841069
(In the formula (1-A) and formula (1-B), R 2, X 1 and X 2 are each R 2, X 1 and X 2 as synonymous .R 3 in the formula (1) , Synonymous with R 3 in the above equation (r-1).)

上記式(r−1)において、Rの置換基を有してもよい炭素数1〜10の1価の脂肪族基は、炭素数1〜10のアルキル基、フッ素含有アルキル基、アルコキシ基、フッ素含有アルコキシ基、又は「−COOR20」(ただしR20は、炭素数1〜10のアルキル基、フッ素含有アルキル基、アルコキシ基又はフッ素含有アルコキシ基である。)であることが好ましい。なお、式中の4個のRは互いに同じでもよく、異なっていてもよい。
は、ジアミン化合物に由来する2価の基であり、従来公知のジアミン化合物から2つの1級アミノ基を除いた2価の基等が挙げられる。
In the above formula (r-1), the monovalent aliphatic group having 1 to 10 carbon atoms which may have a substituent of R 3 is an alkyl group having 1 to 10 carbon atoms, a fluorine-containing alkyl group, and an alkoxy group. , fluorine-containing alkoxy group, or "-COOR 20" (wherein R 20 is an alkyl group having 1 to 10 carbon atoms, a fluorine-containing alkyl group, an alkoxy group or a fluorine-containing alkoxy group.) is preferably. Incidentally, four R 3 in the formula may be the same as each other or may be different.
R 2 is a divalent group derived from a diamine compound, and examples thereof include a divalent group obtained by removing two primary amino groups from a conventionally known diamine compound.

及びXの炭素数1〜40の1価の有機基としては、例えば炭素数1〜40の1価の炭化水素基、当該炭化水素基のメチレン基を−O−、−S−、−CO−、−COO−、−COS−、−NR−、−CO−NR−、−Si(R−(ただし、Rは、水素原子又は炭素数1〜12の1価の炭化水素基である。)、−N=N−、−SO−等で置き換えてなる1価の基A、1価の炭化水素基又は1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、水酸基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシル基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基、などが挙げられる。ただし、X及びXの少なくともいずれかは反応性基を有する1価の有機基である。 Examples of the monovalent organic group having 1 to 40 carbon atoms of X 1 and X 2 include a monovalent hydrocarbon group having 1 to 40 carbon atoms and a methylene group of the hydrocarbon group being −O−, −S—,. -CO-, -COO-, -COS-, -NR 3- , -CO-NR 3- , -Si (R 3 ) 2- (However, R 3 is a hydrogen atom or a monovalent group having 1 to 12 carbon atoms. The hydrogen atom bonded to the carbon atom of the monovalent group A, the monovalent group A, or the monovalent group A, which is replaced with -N = N-, -SO 2-, etc. At least one of the halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), hydroxyl group, alkoxy group, nitro group, amino group, mercapto group, nitroso group, alkylsilyl group, alkoxysilyl group, silanol group, Examples thereof include a monovalent group substituted with a sulfino group, a phosphino group, a carboxyl group, a cyano group, a sulfo group, an acyl group and the like, a monovalent group having a heterocycle, and the like. However, at least one of X 1 and X 2 is a monovalent organic group having a reactive group.

ここで、本明細書において「炭化水素基」は、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。「脂肪族基」は、鎖状炭化水素基及び脂環式炭化水素基を意味する。 Here, the term "hydrocarbon group" as used herein means to include a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The "chain hydrocarbon group" means a linear hydrocarbon group and a branched hydrocarbon group which do not contain a cyclic structure in the main chain and are composed only of a chain structure. However, it may be saturated or unsaturated. The "alicyclic hydrocarbon group" means a hydrocarbon group containing only the alicyclic hydrocarbon structure as the ring structure and not containing the aromatic ring structure. However, it does not have to be composed only of the alicyclic hydrocarbon structure, and some of them have a chain structure. The "aromatic hydrocarbon group" means a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not have to be composed of only an aromatic ring structure, and a chain structure or an alicyclic hydrocarbon structure may be included in a part thereof. "Aliphatic group" means a chain hydrocarbon group and an alicyclic hydrocarbon group.

及びXの少なくとも一方が有している反応性基は、熱、光、酸、塩基及びラジカルの少なくとも1種類の存在下において、反応性基同士及び/又はマレイミド化合物との間で共有結合を形成する基であることが好ましい。反応性基は、少なくとも熱及び光の少なくとも一方により反応する基であることが好ましい。反応性基の具体例としては、例えば下記式(5−1)〜式(5−10)のそれぞれで表される構造、(メタ)アクリロイルオキシ基、スチリル基、ビニルフェニル基、(メタ)アクリルアミド基、ビニルオキシ基(CH=CH−O−)、下記式(p−1)及び式(p−2)のそれぞれで表される基などが挙げられる。ビニルフェニル基及びビニルオキシ基は、下記式(5−1)で表される構造の一例である。

Figure 0006841069
(式(5−1)〜式(5−10)中、R41は、置換基を有していてもよい炭素数1〜6の2価の脂肪族基であり、Rは、それぞれ独立に、水素原子、又は置換基を有していてもよい炭素数1〜6の1価の脂肪族基である。ただし、R41及びRのうち任意の2つの脂肪族基同士が結合して環構造を形成していてもよい。式(5−1)、式(5−9)中の複数のRは、互いに同じでも異なっていてもよい。「*」は結合手であることを示す。) The reactive groups possessed by at least one of X 1 and X 2 are shared between the reactive groups and / or the maleimide compound in the presence of at least one of heat, light, acid, base and radical. It is preferably a group that forms a bond. The reactive group is preferably a group that reacts with at least one of heat and light. Specific examples of the reactive group include structures represented by the following formulas (5-1) to (5-10), (meth) acryloyloxy group, styryl group, vinylphenyl group, and (meth) acrylamide. Examples include a group, a vinyloxy group (CH 2 = CH—O−), a group represented by each of the following formulas (p-1) and (p-2), and the like. The vinylphenyl group and the vinyloxy group are examples of structures represented by the following formula (5-1).
Figure 0006841069
(In formulas (5-1) to (5-10), R 41 is a divalent aliphatic group having 1 to 6 carbon atoms which may have a substituent, and R 5 is independent of each other. Is a monovalent aliphatic group having 1 to 6 carbon atoms which may have a hydrogen atom or a substituent. However, any two aliphatic groups of R 41 and R 5 are bonded to each other. Te may form a ring structure. equation (5-1), a plurality of R 5 in the formula (5-9) may be the same or different from each other. "*" it is a bond Shows.)

Figure 0006841069
(式(p−1)中、Xは、酸素原子又は−NH−である。「*」は結合手を示す。)
Figure 0006841069
(In formula (p-1), X 5 is an oxygen atom or -NH-. "*" Indicates a bond.)

上記式(5−1)において、R41の炭素数1〜6の2価の脂肪族基は、アルカンジイル基又はアルケンジイル基であることが好ましい。R41が有していてもよい置換基としては、例えばハロゲン原子、アルコキシ基等が挙げられる。Rの炭素数1〜6の1価の脂肪族基はアルキル基又はアルケニル基であることが好ましい。
上記式(5−2)〜式(5−10)において、R41の炭素数1〜6の2価の脂肪族基はアルカンジイル基が好ましい。R41が有していてもよい置換基については上記式(5−1)の説明が適用される。Rの炭素数1〜6の1価の脂肪族基はアルキル基が好ましい。式(5−5)中のRは、反応性の観点から水素原子又はメチル基であることが特に好ましい。
In the above formula (5-1), the divalent aliphatic group having 1 to 6 carbon atoms of R 41 is preferably an alkanediyl group or an arcendyl group. Examples of the substituent that R 41 may have include a halogen atom and an alkoxy group. It is preferred monovalent aliphatic group having 1 to 6 carbon atoms R 5 is an alkyl or alkenyl group.
In the above formulas (5-2) to (5-10), the divalent aliphatic group having 1 to 6 carbon atoms of R 41 is preferably an alkanediyl group. The description of the above formula (5-1) is applied to the substituent that R 41 may have. Monovalent aliphatic group having 1 to 6 carbon atoms for R 5 is preferably an alkyl group. R 5 in the formula (5-5), it is particularly preferred in view of reactivity is a hydrogen atom or a methyl group.

反応性基としては、液晶配向性、AC残像特性及び耐熱性により優れた液晶素子を得る観点から、上記の中でも、上記式(5−1)〜式(5−10)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる少なくとも1種類であることが好ましく、上記式(5−1)、式(5−2)、式(5−4)〜式(5−6)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる少なくとも1種類であることがより好ましい。なお、本明細書において「(メタ)アクリル」は、アクリル及びメタクリルを意味する。
上記で例示した反応性基は、式(1)中のカルボニル基に直接結合していてもよく、2価の連結基を介して結合していてもよい。当該2価の連結基としては、例えば酸素原子、炭素数1〜20のアルカンジイル基、当該アルカンジイル基の炭素−炭素結合間に−O−、−CO−、−COO−等を有する2価の基などが挙げられる。
The reactive group is represented by each of the above formulas (5-1) to (5-10) among the above from the viewpoint of obtaining a liquid crystal element having excellent liquid crystal orientation, AC afterimage characteristics and heat resistance. It is preferably at least one selected from the group consisting of the structure and the (meth) acryloyloxy group, and the above formulas (5-1), formula (5-2), formulas (5-4) to (5-6). ) And at least one selected from the group consisting of (meth) acryloyloxy groups. In addition, in this specification, "(meth) acrylic" means acrylic and methacrylic.
The reactive group exemplified above may be directly bonded to the carbonyl group in the formula (1), or may be bonded via a divalent linking group. The divalent linking group includes, for example, an oxygen atom, an alkanediyl group having 1 to 20 carbon atoms, and a divalent group having -O-, -CO-, -COO-, etc. between carbon-carbon bonds of the alkanediyl group. The basis of.

及びXは、少なくともいずれかが、下記式(2−1)〜式(2−10)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる1種であることが好ましく、下記式(2−1)、式(2−2)、式(2−4)〜式(2−6)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる1種であることがより好ましい。なお、下記式(2−1)〜式(2−10)中のR及びRの説明については、上記式(5−1)〜式(5−10)中のR41及びRの説明がそれぞれ適用される。

Figure 0006841069
(式(2−1)〜式(2−10)中、Rは、置換基を有していてもよい炭素数1〜6の2価の脂肪族基であり、Rは、それぞれ独立に、水素原子、又は置換基を有していてもよい炭素数1〜6の1価の脂肪族基である。ただし、R及びRのうち任意の2つの脂肪族基同士が結合して環構造を形成していてもよい。式(2−1)、式(2−9)中の複数のRは、互いに同じでも異なっていてもよい。「*」は結合手であることを示す。) X 1 and X 2 are at least one selected from the group consisting of structures represented by the following formulas (2-1) to (2-10) and (meth) acryloyloxy groups. It is preferable that the group consists of the structures represented by the following formulas (2-1), formula (2-2), formulas (2-4) to (2-6) and (meth) acryloyloxy groups. It is more preferable that it is one selected. Regarding the explanation of R 4 and R 5 in the following formulas (2-1) to (2-10), refer to R 41 and R 5 in the above formulas (5-1) to (5-10). Each description applies.
Figure 0006841069
(In formulas (2-1) to (2-10), R 4 is a divalent aliphatic group having 1 to 6 carbon atoms which may have a substituent, and R 5 is independent of each other. a hydrogen atom or a monovalent aliphatic group having 1 to 6 carbon atoms which may have a substituent. However, any two aliphatic groups bonded to each other among the R 4 and R 5 Te may form a ring structure. equation (2-1), a plurality of R 5 in the formula (2-9) may be the same or different from each other. "*" it is a bond Shows.)

[重合体(P)の合成]
重合体(P)を合成する方法は特に限定されないが、好ましい方法として、上記式(1−1)及び上記式(1−2)のそれぞれで表される化合物(以下、「特定酸誘導体」ともいう。)のうち少なくとも一方を含むテトラカルボン酸誘導体と、ジアミン化合物とを反応させる方法が挙げられる。
[Synthesis of polymer (P)]
The method for synthesizing the polymer (P) is not particularly limited, but as a preferable method, it is also referred to as a compound represented by each of the above formula (1-1) and the above formula (1-2) (hereinafter, also referred to as “specific acid derivative”). A method of reacting a tetracarboxylic acid derivative containing at least one of the above) with a diamine compound can be mentioned.

なお、本明細書において「テトラカルボン酸誘導体」は、テトラカルボン酸が有する4個のカルボキシル基が脱水縮合したテトラカルボン酸二無水物、及びテトラカルボン酸が有する4個のカルボキシル基の少なくとも1個が「−COX」(ただしXはハロゲン原子又は炭素数1〜40の1価の有機基である。)で置き換えられた化合物を含む。具体的には、テトラカルボン酸二無水物のほか、例えば、テトラカルボン酸が有する4個のカルボキシル基のうち1個又は2個がエステル化され、残りがカルボキシル基である化合物、テトラカルボン酸が有する4個のカルボキシル基のうち1個又は2個がエステル化され、残りのカルボキシル基に脱離基(例えば、ハロゲン原子、上記式(4−1)〜式(4−6)のそれぞれで表される構造等)が導入された化合物又はその塩などが挙げられる。 In the present specification, the "tetracarboxylic acid derivative" is a tetracarboxylic acid dianhydride in which four carboxyl groups of the tetracarboxylic acid are dehydrated and condensed, and at least one of the four carboxyl groups of the tetracarboxylic acid. Includes compounds in which is replaced with "-COX 3 " (where X 3 is a halogen atom or a monovalent organic group with 1-40 carbon atoms). Specifically, in addition to tetracarboxylic acid dianhydride, for example, a compound in which one or two of the four carboxyl groups of tetracarboxylic acid are esterified and the rest are carboxyl groups, tetracarboxylic acid. One or two of the four carboxyl groups possessed are esterified, and the remaining carboxyl groups are represented by a desorbing group (for example, a halogen atom, which is represented by the above formulas (4-1) to (4-6), respectively. Examples thereof include a compound into which a (structure, etc.) is introduced or a salt thereof.

上記式(1−1)、式(1−2)について、Rの好ましい例については上記式(r−1)の説明が適用される。X11及びX12は、少なくともいずれかが、上記式(2−1)〜式(2−10)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる1種であることが好ましい。また、X11、X12が反応性基を有さない基である場合、X11、X12は、水素原子又は炭素数1〜10のアルキル基であることが好ましい。
Xは、水酸基又は塩素原子であることが好ましい。なお、Xが水酸基の場合、特定酸二無水物はテトラカルボン酸ジエステルであり、Xが塩素原子又は臭素原子である場合、特定酸二無水物はテトラカルボン酸ジエステルジハロゲン化物である。
The formula (1-1), the formula (1-2), preferred examples of R 3 include a description of the formula (r-1) is applied. X 11 and X 12 are at least one selected from the group consisting of the structures represented by the above formulas (2-1) to (2-10) and (meth) acryloyloxy groups. Is preferable. When X 11 and X 12 are groups having no reactive group, X 11 and X 12 are preferably hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
X is preferably a hydroxyl group or a chlorine atom. When X is a hydroxyl group, the specific acid dianhydride is a tetracarboxylic dianhydride, and when X is a chlorine atom or a bromine atom, the specific acid dianhydride is a tetracarboxylic dianester dihalide.

[テトラカルボン酸誘導体]
(特定酸誘導体)
特定酸誘導体は、例えば、[1]シクロブタン環構造を有するテトラカルボン酸二無水物(以下、「特定テトラカルボン酸二無水物」ともいう。)を含むテトラカルボン酸二無水物と、反応性基を有する化合物(以下、「反応性基含有化合物(E)」ともいう。)とを反応させる方法、[2]特定テトラカルボン酸二無水物を含むテトラカルボン酸二無水物と反応性基含有化合物(E)とを反応させてテトラカルボン酸ジエステルを得て、次いで、上記脱離基を有する化合物(例えばハロゲン化剤)と反応させる方法、などによって得ることができる。
[Tetracarboxylic acid derivative]
(Specific acid derivative)
The specific acid derivative is, for example, a reactive group with a tetracarboxylic dianhydride containing [1] tetracarboxylic dianhydride having a cyclobutane ring structure (hereinafter, also referred to as “specific tetracarboxylic dianhydride”). (Hereinafter, also referred to as "reactive group-containing compound (E)"), [2] a tetracarboxylic dianhydride containing a specific tetracarboxylic dianhydride and a reactive group-containing compound. It can be obtained by a method of reacting with (E) to obtain a tetracarboxylic dianester and then reacting with the above-mentioned compound having a desorbing group (for example, a halogenating agent).

・特定テトラカルボン酸二無水物
特定テトラカルボン酸二無水物は、シクロブタン環構造を有していれば特に限定されず、具体的には下記式(4)で表される。

Figure 0006841069
(式(4)中、Aは、シクロブタン環構造を有する4価の有機基である。) -Specific tetracarboxylic dianhydride The specific tetracarboxylic dianhydride is not particularly limited as long as it has a cyclobutane ring structure, and is specifically represented by the following formula (4).
Figure 0006841069
(In formula (4), A 1 is a tetravalent organic group having a cyclobutane ring structure.)

上記式(4)において、Aは、上記式(r−1)で表される構造であることが好ましい。特定テトラカルボン酸二無水物の具体例としては、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、1−メチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3−トリメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1−エチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジエチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1−エチル−3−メチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、下記式(T−1−1)〜式(T−1−16)のそれぞれで表される化合物などが挙げられる。

Figure 0006841069
In the above formula (4), A 1 preferably has a structure represented by the above formula (r-1). Specific examples of the specific tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1-methyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the like. 1,3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3-trimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2, 3,4-Tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1-ethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-diethyl-1 , 2,3,4-Cyclobutanetetracarboxylic dianhydride, 1-ethyl-3-methyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, formulas (T-1-1) to Examples thereof include compounds represented by each of (T-1-16).
Figure 0006841069

特定テトラカルボン酸二無水物は、これらのうち、1,2,3,4−シクロブタンテトラカルボン酸二無水物及び1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物が好ましく、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物が特に好ましい。なお、特定テトラカルボン酸二無水物としては、1種を単独で又は2種以上を組み合わせて使用することができる。 Of these, the specific tetracarboxylic dianhydrides are 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride. , 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride is particularly preferable. As the specific tetracarboxylic dianhydride, one type may be used alone or two or more types may be used in combination.

・反応性基含有化合物(E)
反応性基含有化合物(E)は、反応性基と、酸二無水物基と反応する官能基とを有していれば特に限定されないが、好ましくは、下記式(3−1)で表される化合物である。

Figure 0006841069
(式(3−1)中、Aは反応性基であり、R11は単結合又は(k+1)価の炭化水素基である。kは1〜3の整数である。) -Reactive group-containing compound (E)
The reactive group-containing compound (E) is not particularly limited as long as it has a reactive group and a functional group that reacts with an acid dianhydride group, but is preferably represented by the following formula (3-1). Compound.
Figure 0006841069
(In formula (3-1), A 2 is a reactive group and R 11 is a single bond or (k + 1) -valent hydrocarbon group. K is an integer of 1-3.)

上記式(3−1)において、R11の(k+1)価の炭化水素基としては、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が挙げられる。kは1であることが好ましく、この場合のR11の具体例としては、2価の鎖状炭化水素基として、例えばメチレン基、エチレン基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、ヘプタンジイル基、オクタンジイル基、ノナンジイル基、デカンジイル基等が挙げられ、これらは直鎖状でも分岐状でもよい。また、R11の2価の脂環式炭化水素基としては、シクロへキシレン基、−R−(CH−(ただし、Rはシクロヘキシレン基、nは1〜5の整数である。)などが挙げられ、2価の芳香族炭化水素基としては、例えばフェニレン基、ビフェニレン基、−Ph−(CH−(ただし、Phはフェニレン基、nは1〜5の整数である。)などが挙げられる。
は、上記式(1)の反応性基の説明及び好ましい具体例の説明が適用される。
In the above formula (3-1), examples of the (k + 1) -valent hydrocarbon group of R 11 include a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group. k is preferably 1, and as a specific example of R 11 in this case, as a divalent chain hydrocarbon group, for example, a methylene group, an ethylene group, a propanediyl group, a butanjiyl group, a pentandiyl group, or a hexanediyl group. , Heptangiyl group, octanediyl group, nonandiyl group, decandyl group and the like, and these may be linear or branched. The divalent alicyclic hydrocarbon group of R 11 is a cyclohexylene group, −R c − (CH 2 ) n − (where R c is a cyclohexylene group and n is an integer of 1 to 5). Examples of the divalent aromatic hydrocarbon group include a phenylene group, a biphenylene group, and −Ph- (CH 2 ) n − (where Ph is a phenylene group and n is an integer of 1 to 5). ) And so on.
A 2 is an explanatory description and preferred examples of the reactive group of the above formula (1) is applied.

上記式(3−1)で表される化合物の具体例としては、例えば下記(3−1−1)〜式(3−1−16)のそれぞれで表される化合物等が挙げられる。なお、反応性基含有化合物(E)は1種を単独で又は2種以上を組み合わせて使用することができる。

Figure 0006841069
Specific examples of the compound represented by the above formula (3-1) include compounds represented by each of the following formulas (3-1-1) to (3-1-16). The reactive group-containing compound (E) may be used alone or in combination of two or more.
Figure 0006841069

・テトラカルボン酸二無水物と反応性基含有化合物(E)との反応
テトラカルボン酸二無水物と反応性基含有化合物(E)との反応は、必要に応じて有機溶媒中で行うことができる。使用する有機溶媒は、テトラカルボン酸二無水物及び反応性基含有化合物(E)に対して不活性であれば特に限定されないが、例えばアセトン、メチルエチルケトン等のケトン;ヘキサン、ヘプタン、トルエン等の炭化水素;クロロホルム、1,2−ジクロロエタン等のハロゲン系炭化水素;テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン等のエーテル;アセトニトリル、プロピオニトリル等のニトリル化合物、などが挙げられる。なお、これらの有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
-Reaction between tetracarboxylic dianhydride and reactive group-containing compound (E) The reaction between tetracarboxylic dianhydride and reactive group-containing compound (E) may be carried out in an organic solvent, if necessary. it can. The organic solvent used is not particularly limited as long as it is inert to the tetracarboxylic acid dianhydride and the reactive group-containing compound (E), but for example, ketones such as acetone and methyl ethyl ketone; hydrocarbons such as hexane, heptane and toluene. Hydrogen; halogen-based hydrocarbons such as chloroform and 1,2-dichloroethane; ethers such as tetrahydrofuran, diethyl ether and 1,4-dioxane; nitrile compounds such as acetonitrile and propionitrile, and the like. In addition, these organic solvents can be used individually by 1 type or in combination of 2 or more types.

反応性基含有化合物(E)の使用割合は、テトラカルボン酸二無水物1モルに対して、通常2〜100モルであり、2〜40モルとすることが好ましい。このときの反応温度は、使用する反応性基含有化合物(E)の種類に応じて適宜設定することができるが、−20℃〜150℃とすることが好ましく、0〜100℃とすることがより好ましい。反応時間は、0.1〜24時間が好ましく、0.5〜12時間がより好ましい。また、反応後、必要に応じて再沈殿を行ってもよい。得られた沈殿物は、その後、必要に応じて洗浄及び乾燥することにより、目的とする化合物(テトラカルボン酸ジエステル)を得ることができる。 The ratio of the reactive group-containing compound (E) to be used is usually 2 to 100 mol, preferably 2 to 40 mol, based on 1 mol of the tetracarboxylic dianhydride. The reaction temperature at this time can be appropriately set according to the type of the reactive group-containing compound (E) to be used, but is preferably −20 ° C. to 150 ° C., preferably 0 to 100 ° C. More preferred. The reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Further, after the reaction, reprecipitation may be performed if necessary. The obtained precipitate can then be washed and dried, if necessary, to obtain the target compound (tetracarboxylic dianester).

上記方法[2]において、上記反応で得られたテトラカルボン酸ジエステルと、塩化チオニル等の適当なハロゲン化剤と反応させる場合、好ましくは有機溶媒中で行われる。有機溶媒や反応温度、反応時間等の条件については、テトラカルボン酸二無水物と反応性基含有化合物(E)との反応条件の説明が適用される。 In the above method [2], when the tetracarboxylic dianester obtained in the above reaction is reacted with an appropriate halogenating agent such as thionyl chloride, it is preferably carried out in an organic solvent. As for the conditions such as the organic solvent, the reaction temperature, and the reaction time, the description of the reaction conditions of the tetracarboxylic dianhydride and the reactive group-containing compound (E) is applied.

・その他の酸誘導体
重合体(P)の合成に際し、テトラカルボン酸誘導体としては特定酸誘導体のみを用いてもよいが、特定酸誘導体と共に、特定酸誘導体とは異なるテトラカルボン酸誘導体(以下、「その他の酸誘導体」ともいう。)を併用してもよい。その他の酸誘導体としては、例えば、反応性基を有さないテトラカルボン酸ジエステル、反応性基を有さないテトラカルボン酸ジエステルジハロゲン化物、シクロブタン環構造を有さないテトラカルボン酸二無水物(以下、「その他のテトラカルボン酸二無水物」ともいう。)と反応性基含有化合物(E)との反応生成物、テトラカルボン酸二無水物等が挙げられる。
-Other Acid Derivatives When synthesizing the polymer (P), only a specific acid derivative may be used as the tetracarboxylic acid derivative, but together with the specific acid derivative, a tetracarboxylic acid derivative different from the specific acid derivative (hereinafter, "" Other acid derivatives ”) may be used in combination. Examples of other acid derivatives include a tetracarboxylic dianester having no reactive group, a tetracarboxylic dianester dihalide having no reactive group, and a tetracarboxylic dianhydride having no cyclobutane ring structure (hereinafter,). , "Other tetracarboxylic dianhydride") and the reaction product of the reactive group-containing compound (E), tetracarboxylic dianhydride and the like.

上記その他のテトラカルボン酸二無水物は特に限定されない。具体例としては、脂肪族テトラカルボン酸二無水物として、例えばエチレンジアミン四酢酸二無水物などを; The other tetracarboxylic dianhydride is not particularly limited. As a specific example, as the aliphatic tetracarboxylic dianhydride, for example, ethylenediaminetetraacetic acid dianhydride;

脂環式テトラカルボン酸二無水物として、例えば2,3,5−トリカルボキシシクロペンチル酢酸二無水物、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラン−3−イル)−8−メチル−3a,4,5,9b−テトラヒドロナフト[1,2−c]フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p−フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3−プロピレングリコールビス(アンヒドロトリメリテート)などを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、重合体(P)の合成に際し、その他のテトラカルボン酸二無水物は、1種を単独で又は2種以上を組み合わせて使用することができる。 As the alicyclic tetracarboxylic acid dianhydride, for example, 2,3,5-tricarboxycyclopentylacetate dianhydride, 5- (2,5-dioxo tetrahydrofuran-3-yl) -3a, 4,5,9b- Tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxo tetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1, 2-c] Fran-1,3-dione, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, 3,5,6 -Tricarboxy-2-carboxymethyl norbornan-2: 3,5: 6-dianhydride, 2,4,6,8-tetracarboxybicyclo [3.3.0] octane-2: 4,6: 8- Dianhydride, cyclohexanetetracarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride, etc .; as aromatic tetracarboxylic acid dianhydride, for example, pyromellitic acid dianhydride, 4,4'-(hexafluoroisopropi). Liden) Diphthalic acid anhydride, p-phenylenebis (trimeritic acid monoester anhydride), ethylene glycol bis (anhydrotrimeritate), 1,3-propylene glycolbis (anhydrotrimeritate), etc .; In addition, the tetracarboxylic dianhydride described in JP-A-2010-97188 can be used. In the synthesis of the polymer (P), one type of other tetracarboxylic dianhydride may be used alone or in combination of two or more types.

重合体(P)の合成に際し、特定酸誘導体の使用割合は、本開示の効果を十分に得る観点から、合成に使用するテトラカルボン酸誘導体の合計量に対して、10モル%以上とすることが好ましい。より好ましくは30モル%以上であり、さらに好ましくは50モル%以上である。なお、特定酸誘導体及びその他の酸誘導体はそれぞれ、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 In synthesizing the polymer (P), the ratio of the specific acid derivative used shall be 10 mol% or more with respect to the total amount of the tetracarboxylic acid derivative used in the synthesis from the viewpoint of sufficiently obtaining the effects of the present disclosure. Is preferable. It is more preferably 30 mol% or more, still more preferably 50 mol% or more. As the specific acid derivative and the other acid derivative, one type may be used alone, or two or more types may be used in combination.

[ジアミン化合物]
重合体(P)の合成に使用するジアミン化合物は特に制限されず、種々のジアミン化合物を用いることができる。その具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなどを;脂環式ジアミンとして、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)などを;
[Diamine compound]
The diamine compound used for the synthesis of the polymer (P) is not particularly limited, and various diamine compounds can be used. Specific examples thereof include, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine and the like as aliphatic diamines; and for example, 1,4-diaminocyclohexane, 4, as alicyclic diamines. 4'-methylenebis (cyclohexylamine) etc .;

芳香族ジアミンとして、例えばドデカノキシジアミノベンゼン、ヘキサデカノキシジアミノベンゼン、オクタデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、コレステリルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6−ビス(4−アミノベンゾイルオキシ)コレスタン、3,6−ビス(4−アミノフェノキシ)コレスタン、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ブチルシクロヘキサン、2,5−ジアミノ−N,N−ジアリルアニリン、下記式(E−1)

Figure 0006841069
(式(E−1)中、XI及びXIIは、それぞれ独立に、単結合、−O−、−COO−又は−OCO−であり、Rは炭素数1〜3のアルカンジイル基であり、RIIは単結合又は炭素数1〜3のアルカンジイル基であり、aは0又は1であり、bは0〜2の整数であり、cは1〜20の整数であり、dは0又は1である。ただし、a及びbが同時に0になることはない。)
で表される化合物などの側鎖型ジアミン:
p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルスルフィド、4−アミノフェニル−4’−アミノベンゾエート、4,4’−ジアミノアゾベンゼン、3,5−ジアミノ安息香酸、1,5−ビス(4−アミノフェノキシ)ペンタン、ビス[2−(4−アミノフェニル)エチル]ヘキサン二酸、ビス(4−アミノフェニル)アミン、N,N−ビス(4−アミノフェニル)メチルアミン、2,6−ジアミノピリジン、1,4−ビス−(4−アミノフェニル)−ピペラジン、N,N’−ビス(4−アミノフェニル)−ベンジジン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−(フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4−(4−アミノフェノキシカルボニル)−1−(4−アミノフェニル)ピペリジン、4,4’−[4,4’−プロパン−1,3−ジイルビス(ピペリジン−1,4−ジイル)]ジアニリンなどの非側鎖型ジアミンを;
ジアミノオルガノシロキサンとして、例えば、1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010−97188号公報に記載のジアミンを用いることができる。また、重合体(P)の合成に使用するジアミン化合物は、上記反応性基を有する基を置換基として有していてもよい。 Examples of aromatic diamines include dodecanoxidiaminobenzene, hexadecanoxidiaminobenzene, octadecanoxidiaminobenzene, cholestanyloxydiaminobenzene, cholesteryloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, and diaminobenzoic acid. Ranostanyl, 3,6-bis (4-aminobenzoyloxy) cholesterol, 3,6-bis (4-aminophenoxy) cholesterol, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butyl Cyclohexane, 2,5-diamino-N, N-diallylaniline, the following formula (E-1)
Figure 0006841069
(In the formula (E-1), X I and X II is independently a single bond, -O -, - COO- or a -OCO-, R I is alkanediyl group having 1 to 3 carbon atoms Yes, R II is a single bond or an alkanediyl group with 1-3 carbon atoms, a is 0 or 1, b is an integer 0-2, c is an integer 1-20, d is It is 0 or 1. However, a and b cannot be 0 at the same time.)
Side chain diamines such as compounds represented by:
p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethane, 4,4'-diaminodiphenylsulfide, 4-aminophenyl-4'-aminobenzoate, 4,4'-diaminoazobenzene, 3,5-Diaminobenzoic acid, 1,5-bis (4-aminophenoxy) pentane, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, bis (4-aminophenyl) amine, N, N- Bis (4-aminophenyl) methylamine, 2,6-diaminopyridine, 1,4-bis- (4-aminophenyl) -piperazin, N, N'-bis (4-aminophenyl) -benzidine, 2,2 '-Dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 2,2-bis [4- (4) -Aminophenoxy) phenyl] propane, 4,4'-(phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4- (4-aminophenoxycarbonyl) -1- (4-amino) Non-side chain diamines such as phenyl) piperidine, 4,4'-[4,4'-propane-1,3-diylbis (piperidin-1,4-diyl)] dianiline;
Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane; and the diamine described in JP-A-2010-97188 can be used. Further, the diamine compound used for the synthesis of the polymer (P) may have the above-mentioned reactive group as a substituent.

重合体(P)の合成に使用するジアミン化合物としては、これらのうち、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン及び4,4’−ジアミノジフェニルエタンの少なくともいずれかを含むことが好ましい。なお、重合体(P)の合成に際し、ジアミン化合物は1種を単独で又は2種以上を組み合わせて使用できる。 The diamine compound used in the synthesis of the polymer (P) preferably contains at least one of p-phenylenediamine, 4,4'-diaminodiphenylmethane and 4,4'-diaminodiphenylethane. In the synthesis of the polymer (P), one diamine compound may be used alone or two or more diamine compounds may be used in combination.

[テトラカルボン酸誘導体とジアミン化合物との反応]
テトラカルボン酸誘導体とジアミン化合物との反応は、使用するテトラカルボン酸誘導体に応じて有機化学の定法を適宜組み合わせて行うことができる。
[Reaction between tetracarboxylic acid derivative and diamine compound]
The reaction between the tetracarboxylic acid derivative and the diamine compound can be carried out by appropriately combining the conventional methods of organic chemistry depending on the tetracarboxylic acid derivative used.

例えば、テトラカルボン酸誘導体がテトラカルボン酸ジエステルである場合、テトラカルボン酸ジエステルとジアミン化合物とを、好ましくは有機溶媒中、適当な脱水触媒の存在下で反応させる方法を用いることができる。反応に使用する脱水触媒としては、例えば4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムハライド、カルボニルイミダゾール、ジシクロヘキシルカルボジイミド、リン系縮合剤などが挙げられる。これら脱水触媒の使用割合は、テトラカルボン酸ジエステル1モルに対して、2〜3モルとすることが好ましく、2〜2.5モルとすることがより好ましい。 For example, when the tetracarboxylic acid derivative is a tetracarboxylic acid diester, a method of reacting the tetracarboxylic acid diester and the diamine compound in an organic solvent in the presence of a suitable dehydration catalyst can be used. Examples of the dehydration catalyst used in the reaction include 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium halide, carbonylimidazole, dicyclohexylcarbodiimide, and phosphorus-based condensing agent. And so on. The ratio of these dehydration catalysts to be used is preferably 2 to 3 mol, more preferably 2 to 2.5 mol, based on 1 mol of the tetracarboxylic diandies.

また、テトラカルボン酸誘導体がテトラカルボン酸ジエステルジハロゲン化物である場合、テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物とを、好ましくは有機溶媒中、適当な塩基の存在下で反応させる方法を用いることができる。反応に使用する塩基としては、例えばピリジン、トリエチルアミン等の3級アミン;水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウム、カリウム等のアルカリ金属類等が挙げられる。塩基の使用割合は、ジアミン化合物1モルに対して、2〜4モルとすることが好ましく、2〜3モルとすることがより好ましい。なお、テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物との反応は、反応の進行を促進させる目的でルイス酸の存在下で行ってもよい。ルイス酸としては、例えば塩化リチウム等のハロゲン化リチウムなどが挙げられる。 When the tetracarboxylic acid derivative is a tetracarboxylic acid diester dihalide, a method of reacting the tetracarboxylic acid diester dihalide with the diamine compound, preferably in an organic solvent in the presence of an appropriate base can be used. .. Examples of the base used in the reaction include tertiary amines such as pyridine and triethylamine; alkali metals such as sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium and potassium. The ratio of the base used is preferably 2 to 4 mol, more preferably 2 to 3 mol, with respect to 1 mol of the diamine compound. The reaction between the tetracarboxylic dianester dihalide and the diamine compound may be carried out in the presence of Lewis acid for the purpose of accelerating the progress of the reaction. Examples of Lewis acid include lithium halide such as lithium chloride.

テトラカルボン酸誘導体とジアミン化合物との反応において、反応に供されるテトラカルボン酸誘導体とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸誘導体が有する反応に関与する基「−COX(Xは水酸基又は脱離基)」が0.2〜2当量となる割合が好ましい。反応温度は、−30℃〜150℃が好ましく、反応時間は0.1〜48時間が好ましい。 In the reaction between the tetracarboxylic acid derivative and the diamine compound, the ratio of the tetracarboxylic acid derivative and the diamine compound used in the reaction is involved in the reaction of the tetracarboxylic acid derivative with respect to one amino group equivalent of the diamine compound. It is preferable that the amount of the group "-COX 4 (X 4 is a hydroxyl group or a leaving group)" is 0.2 to 2 equivalents. The reaction temperature is preferably −30 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 48 hours.

反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。これらの有機溶媒のうち、非プロトン性極性溶媒よりなる群(第一群の有機溶媒)から選択される1種以上、又は、第一群の有機溶媒から選択される1種以上と、ケトン、エステル、エーテル、ハロゲン化炭化水素及び炭化水素よりなる群(第二群の有機溶媒)から選択される1種以上との混合物を使用することが好ましい。後者の場合、第二群の有機溶媒の使用割合は、第一群の有機溶媒及び第二群の有機溶媒の合計量に対して、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは30質量%以下である。 Examples of the organic solvent used in the reaction include an aprotic polar solvent, a ketone, an ester, an ether, a halogenated hydrocarbon, and a hydrocarbon. Among these organic solvents, one or more selected from the group consisting of aprotic polar solvents (organic solvents of the first group), or one or more selected from the organic solvents of the first group, and ketones. It is preferable to use a mixture with one or more selected from the group consisting of esters, ethers, halogenated hydrocarbons and hydrocarbons (organic solvents of the second group). In the latter case, the ratio of the organic solvent used in the second group is preferably 50% by mass or less, more preferably 40% by mass, based on the total amount of the organic solvent in the first group and the organic solvent in the second group. It is less than or equal to, more preferably 30% by mass or less.

特に好ましい有機溶媒は、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m−クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と他の有機溶媒との混合物を、上記割合の範囲で使用することが好ましい。有機溶媒の使用量(a)は、反応に使用するモノマーの合計量(b)が、反応溶液の全量(a+b)に対して、0.1〜50質量%になる量とすることが好ましい。 Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol. It is preferable to use one or more selected from the group consisting of and halogenated phenol as a solvent, or to use a mixture of one or more of these and another organic solvent in the above ratio range. The amount of the organic solvent used (a) is preferably such that the total amount (b) of the monomers used in the reaction is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution.

(末端修飾剤)
重合体(P)の合成に際して、テトラカルボン酸誘導体及びジアミン化合物とともに、機能性基を有する末端修飾剤を用いることにより、重合体(P)として、上記式(1)で表される部分構造を有し、かつ機能性基を重合体末端に有する重合体を得ることができる。この場合、後述する重合体(Q)を重合体(P)と共に液晶配向剤に含有させる場合に液晶配向剤の塗布性をより改善できる点で好ましい。
(Terminal modifier)
By using a terminal modifier having a functional group together with the tetracarboxylic acid derivative and the diamine compound in the synthesis of the polymer (P), the partial structure represented by the above formula (1) can be obtained as the polymer (P). A polymer having a functional group at the end of the polymer can be obtained. In this case, when the polymer (Q) described later is contained in the liquid crystal alignment agent together with the polymer (P), the coatability of the liquid crystal alignment agent can be further improved, which is preferable.

末端修飾剤としては、例えば酸一無水物、モノカルボニルクロリド、モノアミン化合物、モノイソシアネート化合物などを挙げることができる。末端修飾剤が有する機能性基としては、例えば、上記反応性基、チオール基、保護されたアミノ基等が挙げられる。
このような末端修飾剤の具体例としては、(メタ)アクリロイルクロリド、2−フランカルボニルクロリド、フルフリルアミン、2−アミノエタンチオール、3−アミノプロパンチオール、N−(tert−ブトキシカルボニル)−1,2−ジアミノエタン、N−(tert−ブトキシカルボニル)−1,3−ジアミノプロパンなどを挙げることができる。なお、末端修飾剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
上記合成に際し、末端修飾剤の使用割合は、使用するジアミン化合物の合計100モル部に対して、20モル部以下とすることが好ましく、0.001〜10モル部とすることがより好ましい。
Examples of the terminal modifier include acid monoanhydride, monocarbonyl chloride, monoamine compound, monoisocyanate compound and the like. Examples of the functional group contained in the terminal modifier include the above-mentioned reactive group, thiol group, protected amino group and the like.
Specific examples of such terminal modifiers include (meth) acryloyl chloride, 2-furancarbonyl chloride, furfurylamine, 2-aminoethanethiol, 3-aminopropanethiol, N- (tert-butoxycarbonyl) -1, Examples thereof include 2-diaminoethane and N- (tert-butoxycarbonyl) -1,3-diaminopropane. The terminal modifier may be used alone or in combination of two or more.
In the above synthesis, the ratio of the terminal modifier used is preferably 20 parts or less, more preferably 0.001 to 10 parts, based on 100 parts by mole of the total diamine compound used.

重合体(P)は、上記式(1−1)及び上記式(1−2)のそれぞれで表される化合物の少なくとも一方を含むテトラカルボン酸誘導体と、ジアミン化合物との反応生成物である。この反応生成物は、テトラカルボン酸誘導体に由来する構造単位及びジアミン化合物に由来する構造単位のみを有する重合体であってもよく、テトラカルボン酸誘導体に由来する構造単位及びジアミン化合物に由来する構造単位とは異なるその他の部分構造を更に有していてもよい。その他の部分構造としては、例えば、上記末端修飾剤に由来する部分構造等が挙げられる。 The polymer (P) is a reaction product of a diamine compound and a tetracarboxylic acid derivative containing at least one of the compounds represented by the above formulas (1-1) and (1-2). This reaction product may be a polymer having only a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine compound, and the structural unit derived from the tetracarboxylic acid derivative and the structure derived from the diamine compound. It may further have other substructures different from the unit. Examples of other partial structures include partial structures derived from the terminal modifier.

以上のようにして、ポリアミック酸エステルである重合体(P)を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルの合成方法は上記に限らず、例えばポリアミック酸と、反応性基を有するアルコール類又はハロゲン化アルキルとを反応させる方法などによって得ることもできる。 As described above, a reaction solution obtained by dissolving the polymer (P) which is a polyamic acid ester is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamic acid ester contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent. The polyamic acid ester may have only an amic acid ester structure, or may be a partial esterified product in which an amic acid structure and an amic acid ester structure coexist. The method for synthesizing the polyamic acid ester is not limited to the above, and can be obtained, for example, by reacting the polyamic acid with an alcohol having a reactive group or an alkyl halide.

以上のようにして得られる重合体(P)は、これを濃度15質量%の溶液としたときに、20〜1,800mPa・sの溶液粘度を持つものであることが好ましく、50〜1,500mPa・sの溶液粘度を持つものであることがより好ましい。なお、重合体(P)の溶液粘度(mPa・s)は、重合体(P)の良溶媒(例えばγ−ブチロラクトン、N−メチル−2−ピロリドンなど)を用いて調製した濃度15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polymer (P) obtained as described above preferably has a solution viscosity of 20 to 1,800 mPa · s, preferably 50 to 1, when a solution having a concentration of 15% by mass is used. It is more preferable that the solution has a viscosity of 500 mPa · s. The solution viscosity (mPa · s) of the polymer (P) is 15% by mass at a concentration prepared by using a good solvent of the polymer (P) (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. with an E-type rotational viscometer for the polymer solution.

重合体(P)のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000〜500,000であり、より好ましくは2,000〜300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。このような分子量範囲にあることで、液晶素子の良好な配向性及び安定性を確保することができる。 The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. Is. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, more preferably 5 or less. Within such a molecular weight range, good orientation and stability of the liquid crystal device can be ensured.

重合体(P)を含む液晶配向剤を用いて膜を形成した場合、上記式(1)で表される部分構造を有さない重合体のみを重合体成分として含む液晶配向剤を用いた場合との対比で、光配向処理による分解物の発生を抑制できる利点がある。これは、主鎖中のシクロブタン環は[2+2]の逆反応で分解が起こり、低分子化することによって膜に異方性を与えると考えられているが、その際、反応性基による反応により、実質的に発生する分解物を膜中の成分に結合させておくことが可能となり、分解物の発生を低減できるためと推測される。ただし、これはあくまでも推測であり、本開示の内容を何ら限定するものではない。 When a film is formed using a liquid crystal alignment agent containing a polymer (P), when a liquid crystal alignment agent containing only a polymer having no partial structure represented by the above formula (1) as a polymer component is used. In comparison with, there is an advantage that the generation of decomposition products due to the photo-alignment treatment can be suppressed. It is thought that the cyclobutane ring in the main chain is decomposed by the reverse reaction of [2 + 2] and anisotropy is given to the membrane by lowering the molecular weight. It is presumed that the decomposition products that are substantially generated can be bound to the components in the membrane, and the generation of decomposition products can be reduced. However, this is only speculation and does not limit the content of this disclosure in any way.

≪その他の成分≫
<重合体(Q)>
本開示の液晶配向剤は、重合体成分として重合体(P)のみを含有していてもよいが、重合体(P)とともに、ポリアミック酸及びポリイミドよりなる群から選ばれる少なくとも一種の重合体(Q)を含有しているとよい。重合体(P)と重合体(Q)とを含有する液晶配向剤を用いて基板上に塗膜を形成した場合、表面エネルギーの相違により、重合体(P)を塗膜の外層に偏在させることが可能となり、これにより液晶配向性及びAC残像特性をより改善できることが推測される。
≪Other ingredients≫
<Polymer (Q)>
The liquid crystal alignment agent of the present disclosure may contain only the polymer (P) as a polymer component, but at least one polymer selected from the group consisting of polyamic acid and polyimide together with the polymer (P) ( It is good that it contains Q). When a coating film is formed on a substrate using a liquid crystal alignment agent containing a polymer (P) and a polymer (Q), the polymer (P) is unevenly distributed on the outer layer of the coating film due to the difference in surface energy. It is presumed that this makes it possible to further improve the liquid crystal orientation and AC afterimage characteristics.

(ポリアミック酸)
重合体(Q)としてのポリアミック酸は、例えばテトラカルボン酸二無水物とジアミン化合物とを反応させることによって得ることができる。反応に使用するテトラカルボン酸二無水物及びジアミン化合物としては、重合体(P)の説明で例示したテトラカルボン酸二無水物及びジアミン化合物等が挙げられる。
(Polyamic acid)
The polyamic acid as the polymer (Q) can be obtained, for example, by reacting a tetracarboxylic dianhydride with a diamine compound. Examples of the tetracarboxylic dianhydride and the diamine compound used in the reaction include the tetracarboxylic dianhydride and the diamine compound exemplified in the description of the polymer (P).

ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が、0.2〜2当量となる割合が好ましく、0.3〜1.2当量となる割合がより好ましい。ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は−20℃〜150℃が好ましく、反応時間は0.1〜24時間が好ましい。重合体(Q)としてポリアミック酸を含有させた場合、重合体(P)の配合による効果を得つつ、印刷性をさらに改善できる点で好ましい。 The ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid synthesis reaction was 0. The acid anhydride group of the tetracarboxylic dianhydride was 0. A ratio of 2 to 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable. The polyamic acid synthesis reaction is preferably carried out in an organic solvent. The reaction temperature at this time is preferably −20 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 24 hours. When a polyamic acid is contained as the polymer (Q), it is preferable in that the printability can be further improved while obtaining the effect of blending the polymer (P).

(ポリイミド)
重合体(Q)としてのポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。液晶配向剤の調製に使用するポリイミドは、そのイミド化率が20%以上であることが好ましく、30〜99%であることがより好ましく、40〜99%であることが更に好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
(Polyimide)
The polyimide as the polymer (Q) can be obtained, for example, by dehydrating and ring-closing the polyamic acid synthesized as described above to imidize it. The polyimide may be a completely imidized product in which all of the amic acid structure possessed by its precursor polyamic acid is dehydrated and ring-closed, or only a part of the amic acid structure is dehydrated and ring-closed, and the amic acid structure and imide It may be a partially imidized product in which a ring structure coexists. The polyimide used for preparing the liquid crystal alignment agent preferably has an imidization ratio of 20% or more, more preferably 30 to 99%, and even more preferably 40 to 99%. This imidization ratio is expressed as a percentage of the ratio of the number of imide ring structures to the total of the number of amic acid structures and the number of imide ring structures of polyimide. Here, a part of the imide ring may be an isoimide ring.

ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を加熱する方法により、又はポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。このうち、後者の方法によることが好ましい。 The dehydration ring closure of the polyamic acid is preferably carried out by a method of heating the polyamic acid, or by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to the solution, and heating as necessary. .. Of these, the latter method is preferable.

ポリアミック酸の溶液中に脱水剤及び脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01〜20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、テトラカルボン酸ジエステルとジアミンとの反応に使用する化合物として例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0〜180℃であり、反応時間は、好ましくは1.0〜120時間である。重合体(Q)としてポリイミドを含有させた場合、重合体(P)の配合による効果を得つつ、電気特性をさらに改善することが可能となる点で好ましい。 In the method of adding a dehydrating agent and a dehydration ring-closing catalyst to a solution of polyamic acid, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride can be used as the dehydrating agent. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, collagen, lutidine, and triethylamine can be used. The amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used. Examples of the organic solvent used in the dehydration ring closure reaction include organic solvents exemplified as compounds used in the reaction of tetracarboxylic diandies and diamines. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours. When polyimide is contained as the polymer (Q), it is preferable in that it is possible to further improve the electrical characteristics while obtaining the effect of blending the polymer (P).

重合体(Q)は、これを濃度15質量%の溶液としたときに、20〜1,800mPa・sの溶液粘度を持つものであることが好ましく、50〜1,500mPa・sの溶液粘度を持つものであることがより好ましい。なお、重合体(Q)の溶液粘度(mPa・s)は、重合体(Q)の良溶媒(例えばγ−ブチロラクトン、N−メチル−2−ピロリドンなど)を用いて調製した濃度15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polymer (Q) preferably has a solution viscosity of 20 to 1,800 mPa · s when a solution having a concentration of 15% by mass is used, and has a solution viscosity of 50 to 1,500 mPa · s. It is more preferable to have. The solution viscosity (mPa · s) of the polymer (Q) is 15% by mass at a concentration prepared by using a good solvent of the polymer (Q) (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. with an E-type rotational viscometer for the polymer solution.

重合体(Q)のGPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000〜500,000であり、より好ましくは2,000〜300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。 The polystyrene-equivalent weight average molecular weight (Mw) of the polymer (Q) measured by GPC is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, more preferably 5 or less.

本開示の液晶配向剤が重合体(Q)を含有する場合において、重合体(P)の含有割合は、重合体(P)及び重合体(Q)の合計100質量部に対して、3質量部以上とすることが好ましく、5〜95質量部とすることがより好ましく、10〜90質量部とすることがさらに好ましく、15〜85質量部とすることが特に好ましい。なお、重合体(P)及び重合体(Q)はそれぞれ、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 When the liquid crystal aligning agent of the present disclosure contains a polymer (Q), the content ratio of the polymer (P) is 3% by mass with respect to a total of 100 parts by mass of the polymer (P) and the polymer (Q). The amount is preferably 5 parts by mass or more, more preferably 5 to 95 parts by mass, further preferably 10 to 90 parts by mass, and particularly preferably 15 to 85 parts by mass. As the polymer (P) and the polymer (Q), one type may be used alone, or two or more types may be used in combination.

本開示の液晶配向剤は、その他の成分として重合体(Q)以外の成分を含有していてもよい。その他の成分としては、例えば、重合体(P)及び重合体(Q)以外の重合体(以下、「その他の重合体」という。)、分子内に少なくとも一つのエポキシ基を有する化合物(以下「エポキシ基含有化合物」という。)、官能性シラン化合物、光重合性化合物、酸化防止剤、金属キレート化合物、硬化促進剤、架橋剤、イミド化促進剤、界面活性剤、充填剤、分散剤、光増感剤、酸発生剤、塩基発生剤、ラジカル発生剤等が挙げられる。本開示の液晶配向剤は、重合体(P)と共に、官能性シラン化合物、酸発生剤、塩基発生剤及びラジカル発生剤よりなる群から選ばれる少なくとも一種を含有することが好ましい。 The liquid crystal alignment agent of the present disclosure may contain a component other than the polymer (Q) as another component. Examples of other components include a polymer (P) and a polymer other than the polymer (Q) (hereinafter, referred to as "other polymer"), and a compound having at least one epoxy group in the molecule (hereinafter, "" "Epoxy group-containing compound"), functional silane compound, photopolymerizable compound, antioxidant, metal chelate compound, curing accelerator, cross-linking agent, imidization accelerator, surfactant, filler, dispersant, light Examples thereof include sensitizers, acid generators, base generators and radical generators. The liquid crystal alignment agent of the present disclosure preferably contains at least one selected from the group consisting of a functional silane compound, an acid generator, a base generator and a radical generator together with the polymer (P).

(その他の重合体)
その他の重合体は、溶液特性や電気特性の改善のために使用することができる。かかるその他の重合体としては、例えば、ポリオルガノシロキサン、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを主骨格とする重合体などを挙げることができる。その他の重合体の配合割合は、液晶配向剤に配合する重合体の合計100質量部に対して、50質量部以下とすることが好ましく、30質量部以下とすることがより好ましく、20質量部以下とすることがさらに好ましい。
(Other polymers)
Other polymers can be used to improve solution and electrical properties. Examples of such other polymers include polymers having a main skeleton such as polyorganosiloxane, polyester, polyamide, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate. Can be mentioned. The blending ratio of the other polymers is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and 20 parts by mass with respect to 100 parts by mass of the total of the polymers to be mixed in the liquid crystal alignment agent. The following is more preferable.

(エポキシ基含有化合物)
エポキシ基含有化合物は、液晶配向膜における基板表面との接着性や電気特性を向上させるために使用することができる。このようなエポキシ基含有化合物としては、例えばエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン、N,N−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサン、N,N−ジグリシジル−シクロヘキシルアミン等が挙げられる。その他、エポキシ基含有化合物の例としては、国際公開第2009/096598号記載のエポキシ基含有ポリオルガノシロキサンを用いることができる。エポキシ基含有化合物を液晶配向剤に添加する場合、その配合割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、50質量部以下とすることが好ましく、0.1〜30質量部とすることがより好ましい。
(Epoxy group-containing compound)
The epoxy group-containing compound can be used to improve the adhesiveness and electrical properties of the liquid crystal alignment film to the substrate surface. Examples of such an epoxy group-containing compound include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylol propantriglycidyl ether, N, N, N', N'-. Tetraglycidyl-m-xylylene diamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, N, N , N', N'-tetrax (2-hydroxyethyl) ethylenediamine, N, N-diglycidyl-benzylamine, N, N-diglycidyl-aminomethylcyclohexane, N, N-diglycidyl-cyclohexylamine and the like. In addition, as an example of the epoxy group-containing compound, the epoxy group-containing polyorganosiloxane described in International Publication No. 2009/096598 can be used. When the epoxy group-containing compound is added to the liquid crystal alignment agent, the blending ratio thereof is preferably 50 parts by mass or less with respect to a total of 100 parts by mass of the polymers contained in the liquid crystal alignment agent. It is more preferably 30 parts by mass.

(官能性シラン化合物)
官能性シラン化合物は、液晶配向剤の印刷性の向上を目的として使用することができる。このような官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、10−トリメトキシシリル−1,4,7−トリアザデカン、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−グリシドキシエチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等を挙げることができる。官能性シラン化合物を液晶配向剤に添加する場合、その配合比率は、重合体の合計100質量部に対して、5質量部以下が好ましく、0.02〜3質量部がより好ましく、0.1〜2質量部がさらに好ましい。
(Functional silane compound)
The functional silane compound can be used for the purpose of improving the printability of the liquid crystal alignment agent. Examples of such functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, and 3-ureidopropyltriethoxysilane. Silane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, 10-trimethoxysilyl-1,4,7-triazadecane, N-benzyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltri Examples thereof include methoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-glycidoxyethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like. When the functional silane compound is added to the liquid crystal alignment agent, the blending ratio thereof is preferably 5 parts by mass or less, more preferably 0.02 to 3 parts by mass, and 0.1 by mass, based on 100 parts by mass of the total amount of the polymer. ~ 2 parts by mass is more preferable.

(酸発生剤)
酸発生剤としては、熱又は光によって酸を発生する化合物として公知の化合物の中から適宜選択して使用することができる。具体的には、熱酸発生剤として、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩等を、光酸発生剤として、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩;1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネートテトラヒドロチオフェニウム塩;N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド等のN−スルホニルオキシイミド化合物等を、それぞれ挙げることができる。酸発生剤を液晶配向剤に添加する場合、その配合割合は、重合体の合計100質量部に対して、50質量部以下が好ましく、0.1〜30質量部がより好ましい。
(Acid generator)
As the acid generator, a compound known as a compound that generates an acid by heat or light can be appropriately selected and used. Specifically, as a thermoacid generator, for example, an iodonium salt such as diphenyliodonium trifluoromethanesulfonate and bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, and as a photoacid generator, for example, triphenylsulfonium trifluoromethane. Sulfonium salts such as sulfonates; 1- (4-n-butoxynaphthalene-1-yl) tetrahydrothiophenium trifluoromethanesulfonate tetrahydrothiophenium salts; N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept Examples of N-sulfonyloxyimide compounds such as -5-en-2 and 3-dicarboxyimide can be mentioned respectively. When the acid generator is added to the liquid crystal alignment agent, the blending ratio thereof is preferably 50 parts by mass or less, more preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the total polymer.

(塩基発生剤)
塩基発生剤としては、熱又は光によって塩基を発生する化合物として公知の化合物の中から適宜選択して使用することができる。具体的には、例えばイミダゾール系熱塩基発生剤;オルトニトロベンジルカルバメート系、α,α−ジメチル−3,5−ジメトキシベンジルカルバメート系、アシルオキシイミノ系の光塩基発生剤などを用いることができる。塩基発生剤を液晶配向剤に添加する場合、その配合割合は、重合体の合計100質量部に対して、50質量部以下が好ましく、0.1〜30質量部がより好ましい。
(Base generator)
As the base generator, a compound known as a compound that generates a base by heat or light can be appropriately selected and used. Specifically, for example, an imidazole-based thermobase generator; orthonitrobenzyl carbamate-based, α, α-dimethyl-3,5-dimethoxybenzyl carbamate-based, acyloxyimino-based photobase generator and the like can be used. When the base generator is added to the liquid crystal alignment agent, the blending ratio thereof is preferably 50 parts by mass or less, more preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the total polymer.

(ラジカル発生剤)
ラジカル発生剤としては、熱又は光によってラジカルを発生する化合物として公知の化合物の中から適宜選択して使用することができる。具体的には、熱ラジカル発生剤として、例えばt−ブチルヒドロペルオキシド、ペルオキシ酢酸t−ブチル等の過酸化物;アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(イソブチロニトリル)等のアゾ化合物;レドックス系開始剤;などを、光ラジカル発生剤として、例えばアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、フルオレン、トリフェニルアミン、3−メチルアセトフェノン、4,4’−ジメトキシベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1,4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン等を、それぞれ挙げることができる。ラジカル発生剤を液晶配向剤に添加する場合、その配合割合は、重合体の合計100質量部に対して、50質量部以下が好ましく、0.1〜30質量部がより好ましい。
(Radical generator)
As the radical generator, a compound known as a compound that generates radicals by heat or light can be appropriately selected and used. Specifically, examples of the thermal radical generator include peroxides such as t-butyl hydroperoxide and t-butyl peroxyacetate; azobisisobutyronitrile (AIBN) and 2,2'-azobis (isobutyronitrile). ) And other azo compounds; redox-based initiators; etc., as photoradical generators, such as acetophenone, 1-hydroxycyclohexylphenyl ketone, fluorene, triphenylamine, 3-methylacetophenone, 4,4'-dimethoxybenzophenone, 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone and the like can be mentioned respectively. When the radical generator is added to the liquid crystal alignment agent, the blending ratio thereof is preferably 50 parts by mass or less, more preferably 0.1 to 30 parts by mass, based on 100 parts by mass of the total polymer.

<溶剤>
本開示の液晶配向剤は、重合体(P)及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物として調製される。
使用する有機溶媒としては、例えばN−メチル−2−ピロリドン、N−エチル−2−ピロリドン、1,2−ジメチル−2−イミダゾリジノン、γ−ブチロラクトン、γ−ブチロラクタム、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、4−ヒドロキシ−4−メチル−2−ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコール−n−ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
<Solvent>
The liquid crystal alignment agent of the present disclosure is prepared as a liquid composition in which the polymer (P) and other components used as needed are preferably dispersed or dissolved in a suitable solvent.
Examples of the organic solvent used include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, γ-butyrolactone, γ-butyrolactam, N, N-dimethylformamide. , N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol methyl ether, Ethyl glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl Examples thereof include ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate, diisopentyl ether, ethylene carbonate and propylene carbonate. These can be used alone or in admixture of two or more.

液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1〜10質量%の範囲である。すなわち、液晶配向剤は、後述するように基板表面に塗布され、好ましくは加熱されることにより、液晶配向膜である塗膜又は液晶配向膜となる塗膜が形成される。このとき、固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
本開示の液晶配向剤における重合体(P)の含有割合は、液晶配向剤中の固形成分(溶媒以外の成分)の合計100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上である。
The solid content concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent of the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferable. It is in the range of 1 to 10% by mass. That is, the liquid crystal alignment agent is applied to the surface of the substrate as described later, and is preferably heated to form a coating film that is a liquid crystal alignment film or a coating film that becomes a liquid crystal alignment film. At this time, if the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small and it becomes difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes excessive and it is difficult to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coatability deteriorates. There is a tendency.
The content ratio of the polymer (P) in the liquid crystal alignment agent of the present disclosure is preferably 3 parts by mass or more, more preferably 5 parts by mass, based on 100 parts by mass of the total of the solid components (components other than the solvent) in the liquid crystal alignment agent. It is 10 parts by mass or more, more preferably 10 parts by mass or more.

≪液晶配向膜及び液晶素子≫
本開示の液晶配向膜は、上記のように調製された液晶配向剤により形成される。また、本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子における液晶の動作モードは特に限定されず、例えばTN(Twisted Nematic)型、STN(Super Twisted Nematic)型、VA(Vertical Alignment)型(VA−MVA型、VA−PVA型などを含む。)、IPS(In-Plane Switching)型、FFS(fringe field switching)型、OCB(Optically Compensated Bend)型など種々のモードに適用することができる。液晶素子は、例えば以下の工程1〜工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
≪Liquid crystal alignment film and liquid crystal element≫
The liquid crystal alignment film of the present disclosure is formed by the liquid crystal alignment agent prepared as described above. Further, the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed by using the liquid crystal alignment agent described above. The operation mode of the liquid crystal in the liquid crystal element is not particularly limited, and for example, TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type (including VA-MVA type, VA-PVA type, etc.) , IPS (In-Plane Switching) type, FFS (fringe field switching) type, OCB (Optically Compensated Bend) type and the like. The liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. In step 1, the substrate used differs depending on the desired operation mode. Steps 2 and 3 are common to each operation mode.

(工程1:塗膜の形成)
先ず基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム−酸化スズ(In−SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法又はインクジェット印刷法により行う。
(Step 1: Formation of coating film)
First, a liquid crystal alignment agent is applied onto the substrate, and preferably the coated surface is heated to form a coating film on the substrate. As the substrate, for example, glass such as float glass and soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, and poly (aliphatic olefin) can be used. As the transparent conductive film provided on one surface of a substrate, NESA film (US PPG registered trademark) made of tin oxide (SnO 2), indium oxide - such as an ITO film made of tin oxide (In 2 O 3 -SnO 2) the Can be used. When manufacturing a TN type, STN type or VA type liquid crystal element, two substrates provided with a patterned transparent conductive film are used. On the other hand, in the case of manufacturing an IPS type or FFS type liquid crystal element, a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb-tooth shape, and a facing substrate not provided with an electrode. Is used. As the metal film, a film made of a metal such as chromium can be used. The liquid crystal alignment agent is applied to the substrate on the electrode forming surface, preferably by an offset printing method, a spin coating method, a roll coater method, or an inkjet printing method.

液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30〜200℃であり、プレベーク時間は、好ましくは0.25〜10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80〜300℃であり、ポストベーク時間は、好ましくは5〜200分である。このようにして形成される膜の膜厚は、好ましくは0.001〜1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜、又は液晶配向膜となる塗膜が形成される。 After the liquid crystal alignment agent is applied, preheating is preferably performed for the purpose of preventing the applied liquid crystal alignment agent from dripping. The pre-baking temperature is preferably 30 to 200 ° C., and the pre-baking time is preferably 0.25 to 10 minutes. Then, a firing (post-baking) step is carried out for the purpose of completely removing the solvent and, if necessary, thermally imidizing the amic acid structure present in the polymer. The firing temperature (post-baking temperature) at this time is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes. The film thickness of the film thus formed is preferably 0.001 to 1 μm. By applying the liquid crystal alignment agent on the substrate and then removing the organic solvent, a liquid crystal alignment film or a coating film to be a liquid crystal alignment film is formed.

(工程2:配向処理)
TN型、STN型、IPS型又はFFS型の液晶素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦ることによって塗膜に液晶配向能を付与するラビング処理、基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理などが挙げられる。特に、重合体(P)は光感度が高く、少ない露光量でも塗膜に異方性を発現させることができることから、光配向法を好ましく適用することができる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。
(Step 2: Orientation treatment)
When manufacturing a TN type, STN type, IPS type or FFS type liquid crystal element, a treatment (alignment treatment) for imparting a liquid crystal alignment ability to the coating film formed in the above step 1 is performed. As a result, the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film. The orientation treatment includes a rubbing treatment that imparts liquid crystal orientation ability to the coating film by rubbing the coating film in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and a coating film formed on the substrate. Examples thereof include a photo-alignment treatment in which the coating film is irradiated with light to impart a liquid crystal alignment ability to the coating film. In particular, since the polymer (P) has high photosensitivity and can exhibit anisotropy in the coating film even with a small exposure amount, the photoalignment method can be preferably applied. On the other hand, in the case of producing a vertically oriented liquid crystal element, the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an orientation treatment.

光配向処理における光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて塗膜の加熱中に塗膜に対して照射する方法、等により行うことができる。光配向処理において、塗膜に照射する放射線としては、例えば150〜800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200〜400nmの波長の光を含む紫外線である。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。放射線の照射量は、好ましくは400〜50,000J/mであり、より好ましくは1,000〜20,000J/mである。塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。
The light irradiation in the photoalignment treatment includes a method of irradiating the coating film after the post-baking step, a method of irradiating the coating film after the pre-baking step and before the post-baking step, and at least the pre-baking step and the post-baking step. In any of these methods, the coating film can be irradiated while the coating film is being heated, or the like. In the photo-alignment treatment, as the radiation to irradiate the coating film, for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used. Preferably, it is ultraviolet light containing light having a wavelength of 200 to 400 nm. When the radiation is polarized, it may be linearly polarized or partially polarized. When the radiation to be used is linearly polarized light or partially polarized light, the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof. When irradiating unpolarized radiation, the direction of irradiation is diagonal.
As the light source to be used, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The irradiation amount of radiation is preferably 400 to 50,000 J / m 2 , and more preferably 1,000 to 20,000 J / m 2 . The light irradiation on the coating film may be performed while heating the coating film in order to enhance the reactivity.

配向能付与のための光照射後において、基板表面を例えば水、有機溶媒(例えば、メタノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル等)又はこれらの混合物を用いて洗浄する処理や、基板を加熱する処理を行ってもよい。本開示の液晶配向剤を用いて塗膜を形成した場合、こうした洗浄処理や加熱処理を実施しなくても表示性能が良好な液晶素子が得られ、プロセス低減を図ることができる点で好ましい。 After irradiation with light to impart orientation ability, the surface of the substrate is washed with, for example, water, an organic solvent (for example, methanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, etc.) or a mixture thereof. , The process of heating the substrate may be performed. When a coating film is formed using the liquid crystal alignment agent of the present disclosure, it is preferable that a liquid crystal element having good display performance can be obtained without performing such cleaning treatment or heat treatment, and the process can be reduced.

(工程3:液晶セルの構築)
上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(Step 3: Construction of liquid crystal cell)
A liquid crystal cell is manufactured by preparing two substrates on which the liquid crystal alignment film is formed as described above and arranging the liquid crystal between the two substrates arranged opposite to each other. In order to manufacture a liquid crystal cell, for example, (1) two substrates are arranged facing each other through a gap (spacer) so that the liquid crystal alignment films face each other, and the peripheral portion of the two substrates is used with a sealant. A method of injecting and filling the liquid crystal into the surface of the substrate and the cell gap partitioned by the sealant, and then sealing the injection holes. (2) Sealing at a predetermined place on one of the substrates on which the liquid crystal alignment film is formed. A method in which an agent is applied, liquid crystal is further dropped onto a predetermined number of places on the liquid crystal alignment film surface, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal is spread over the entire surface of the substrate (ODF method). ) Etc. can be mentioned. It is desirable to remove the flow orientation at the time of filling the liquid crystal by further heating the manufactured liquid crystal cell to a temperature at which the used liquid crystal takes an isotropic phase and then slowly cooling it to room temperature.

シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。 As the sealing agent, for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used. As the spacer, a photo spacer, a bead spacer, or the like can be used. Examples of the liquid crystal include nematic liquid crystal and smectic liquid crystal, and among them, nematic liquid crystal is preferable, and for example, shift-based liquid crystal, azoxy-based liquid crystal, biphenyl-based liquid crystal, phenylcyclohexane-based liquid crystal, ester-based liquid crystal, terphenyl-based liquid crystal, and biphenyl. Cyclohexane-based liquid crystals, pyrimidine-based liquid crystals, dioxane-based liquid crystals, bicyclooctane-based liquid crystals, Cuban-based liquid crystals, and the like can be used. Further, for example, a cholesteric liquid crystal, a chiral agent, a ferroelectric liquid crystal or the like may be added to these liquid crystals for use.

続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせ、液晶素子とする。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。 Subsequently, if necessary, a polarizing plate is attached to the outer surface of the liquid crystal cell to form a liquid crystal element. Examples of the polarizing plate include a polarizing plate in which a polarizing film called "H film" in which polyvinyl alcohol is stretch-oriented and iodine is absorbed is sandwiched between a cellulose acetate protective film, or a polarizing plate made of the H film itself.

本開示の液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム等に用いることができる。また、本開示の液晶配向剤を用いて形成された液晶素子は位相差フィルムに適用することもできる。 The liquid crystal elements of the present disclosure can be effectively applied to various applications, for example, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors. , LCD TVs, information displays and other display devices, dimming films and the like. Further, the liquid crystal element formed by using the liquid crystal alignment agent of the present disclosure can also be applied to a retardation film.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

以下の例において、重合体の分子量は以下の方法により測定した。
[重合体の分子量]
以下の条件のゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)を測定し、分子量分布(Mw/Mn)を求めた。
測定装置:東ソー(株)製、HLC−8020
カラム:東ソー(株)製、TSK guardcolumn α、TSK gel α−M、及びTSK gel α−2500を直列に接続して使用
展開溶媒:ジメチルホルムアミド3Lに対して臭化リチウム・一水和物9.4g及びリン酸1.7gを溶解した溶液
温度:35℃
流速:1.0mL/分
In the following example, the molecular weight of the polymer was measured by the following method.
[Molecular weight of polymer]
The polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) were measured by gel permeation chromatography (GPC) under the following conditions, and the molecular weight distribution (Mw / Mn) was determined.
Measuring device: HLC-8020 manufactured by Tosoh Corporation
Column: Tosoh Corporation, TSK guardgroup α, TSK gel α-M, and TSK gel α-2500 are connected in series and used. Developing solvent: Lithium bromide / monohydrate for 3 L of dimethylformamide 9. Solution in which 4 g and 1.7 g of phosphoric acid are dissolved Temperature: 35 ° C
Flow velocity: 1.0 mL / min

以下の例で使用した主な化合物の構造と略号は以下の通りである。
(テトラカルボン酸二無水物)
TA−1;1,2,3,4−ブタンテトラカルボン酸二無水物
TA−2;1,2,3,4−シクロブタンテトラカルボン酸二無水物
TA−3;(1R,2R,3S,4S)−1,3−ジメチルシクロブタン−1,2,3,4−テトラカルボン酸二無水物
TA−4;trans−1,2,3,4−シクロペンタンテトラカルボン酸二無水物
TA−5;2,3,5−トリカルボキシシクロペンチル酢酸二無水物
TA−6;ピロメリット酸二無水物

Figure 0006841069
The structures and abbreviations of the main compounds used in the examples below are as follows.
(Tetracarboxylic dianhydride)
TA-1; 1,2,3,4-butanetetracarboxylic dianhydride TA-2; 1,2,3,4-cyclobutanetetracarboxylic dianhydride TA-3; (1R, 2R, 3S, 4S) ) -1,3-Dimethylcyclobutane-1,2,3,4-tetracarboxylic dianhydride TA-4; trans-1,2,3,4-cyclopentanetetracarboxylic dianhydride TA-5; 2 , 3,5-Tricarboxycyclopentylacetic acid dianhydride TA-6; pyromellitic dianhydride
Figure 0006841069

(ジアミン)
DA−1;パラフェニレンジアミン
DA−2;4,4’−ジアミノジフェニルメタン
DA−3;4,4’−エチレンジアニリン
DA−4;2,2’−ジメチル−4,4’−ジアミノビフェニル
DA−5;N−(tert−ブトキシカルボニル)−2,5−ジアミノベンジルアミン
DA−6;4−アミノ−N−(4−アミノフェニル)−N−(tert−ブトキシカルボニル)ベンズアミド
DA−7;4,4’−ジアミノジフェニルアミン
DA−8;4,4’−ジアミノ−N4,N4’−ビス(4−アミノフェニル)−N4,N4’−ジメチルビフェニル
DA−9:N−2−(4−アミノフェニルエチル)−N−メチルアミン
DA−10:6,6’−(ピペラジン−1,4−ジイル)−ビス(ピリジン−3−アミン)
DA−11:1,4−フェノキシレン−ビス(4−アミノベンゾネート)
DA−12:4−アミノフェニル−3−(4−アミノフェニル)−2−メチルアクリレート

Figure 0006841069
(Diamine)
DA-1; Paraphenylenediamine DA-2; 4,4'-diaminodiphenylmethane DA-3; 4,4'-ethylenedianiline DA-4; 2,2'-dimethyl-4,4'-diaminobiphenyl DA- 5; N- (tert-butoxycarbonyl) -2,5-diaminobenzylamine DA-6; 4-amino-N- (4-aminophenyl) -N- (tert-butoxycarbonyl) benzamide DA-7; 4, 4'-Diaminodiphenylamine DA-8; 4,4'-diamino-N4, N4'-bis (4-aminophenyl) -N4, N4'-dimethylbiphenyl DA-9: N-2- (4-aminophenylethyl) ) -N-Methylamine DA-10: 6,6'-(piperazin-1,4-diyl) -bis (pyridine-3-amine)
DA-11: 1,4-phenoxylen-bis (4-aminobenzonate)
DA-12: 4-aminophenyl-3- (4-aminophenyl) -2-methylacrylate
Figure 0006841069

(末端修飾剤)
EC−1;メタクリロイルクロリド
EC−2;2−フランカルボニルクロリド
EC−3;フルフリルアミン
EC−4;2−アミノエタンチオール
EC−5;N−(tert−ブトキシカルボニル)−1,2−ジアミノエタン

Figure 0006841069
(Terminal modifier)
EC-1; Methacryloyl chloride EC-2; 2-Francarbonyl chloride EC-3; Furfurylamine EC-4; 2-Aminoethanethiol EC-5; N- (tert-butoxycarbonyl) -1,2-diaminoethane
Figure 0006841069

(イミド化促進剤)
I−1;3−(2−ヒドロキシフェニル)−N−(ピリジン−3−イルメチル)プロパンアミド
I−2;N−α−(9−フルオレニルメトキシカルボニル)−N−(tert−ブトキシカルボニル)−L−ヒスチジン
(官能性シラン化合物)
S−1;3−グリシドキシプロピルメチルジエトキシシラン
(エポキシ基含有化合物)
CL−1;N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン
CL−2;N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン
(脱水触媒)
DMT−MM;4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド
(溶剤)
NMP;N−メチル−2−ピロリドン
γBL;γ−ブチロラクトン
BC;ブチルセロソルブ
(Imidation accelerator)
I-1; 3- (2-hydroxyphenyl) -N- (pyridine-3-ylmethyl) propanamide I-2; N-α- (9-fluorenylmethoxycarbonyl) -N- (tert-butoxycarbonyl) -L-histidine (functional silane compound)
S-1; 3-glycidoxypropylmethyldiethoxysilane (epoxy group-containing compound)
CL-1; N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane CL-2; N, N, N', N'-tetrakis (2-hydroxyethyl) ethylenediamine (dehydration catalyst)
DMT-MM; 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (solvent)
NMP; N-methyl-2-pyrrolidone γBL; γ-butyrolactone BC; butyl cellosolve

[実施例1a]
窒素導入管、還流冷却管、及び温度計を備えた200mL三口フラスコに、TA−3を22.42g(100mmol)、テトラヒドロフランを100mL、ピリジンを0.79g(10.0mmol)入れ、窒素気流下で撹拌して懸濁させた。この懸濁液にβ−メタリルアルコール15.14g(210mmol)を加え、室温で2時間撹拌した。さらに60℃で8時間反応させ、無色透明な溶液を得た。この反応溶液を60℃で減圧濃縮し、さらに真空乾燥し、下記式(DE−1a)で表される化合物と下記式(DE−1b)で表される化合物との混合物(以下、DE−1a/bという)36.84gを得た。

Figure 0006841069
[Example 1a]
In a 200 mL three-necked flask equipped with a nitrogen introduction tube, a reflux condenser, and a thermometer, 22.42 g (100 mmol) of TA-3, 100 mL of tetrahydrofuran, and 0.79 g (10.0 mmol) of pyridine were placed under a nitrogen stream. It was stirred and suspended. 15.14 g (210 mmol) of β-metharyl alcohol was added to this suspension, and the mixture was stirred at room temperature for 2 hours. The reaction was further carried out at 60 ° C. for 8 hours to obtain a colorless and transparent solution. This reaction solution is concentrated under reduced pressure at 60 ° C., further vacuum dried, and a mixture of a compound represented by the following formula (DE-1a) and a compound represented by the following formula (DE-1b) (hereinafter, DE-1a). 36.84 g (called / b) was obtained.
Figure 0006841069

[実施例2a]
窒素導入管及び還流冷却管を備えた100mLナスフラスコに、DE−1a/bを18.42g(50.0mmol)、トルエンを100mL入れ、80℃で30分間撹拌した。その後、撹拌しながら室温まで冷却し、さらに室温で30分間撹拌した。得られた懸濁液をろ過し、トルエン5mLで2回洗浄した。得られた固体を60℃で真空乾燥し、白色粉末のDE−1a 15.47gを得た(42.0mmol、収率84%)。
[Example 2a]
18.42 g (50.0 mmol) of DE-1a / b and 100 mL of toluene were placed in a 100 mL eggplant flask equipped with a nitrogen introduction tube and a reflux condenser, and the mixture was stirred at 80 ° C. for 30 minutes. Then, the mixture was cooled to room temperature with stirring, and further stirred at room temperature for 30 minutes. The resulting suspension was filtered and washed twice with 5 mL of toluene. The obtained solid was vacuum dried at 60 ° C. to obtain 15.47 g of DE-1a as a white powder (42.0 mmol, yield 84%).

[実施例3a]
窒素導入管、還流冷却管、及び温度計を備えた500mL三口フラスコに、DE−1aを14.74g(40.0mmol)、ヘプタンを80mL、ピリジンを0.032g(0.40mmol)入れ、窒素気流下75℃で撹拌した。塩化チオニル14.28g(120mmol)を20分かけてゆっくり滴下し、反応の進行に伴う発泡を確認した。滴下終了後、75℃で2時間反応させ、無色透明な溶液を得た。この反応溶液を60℃で減圧濃縮し、過剰の塩化チオニルを留去した。得られた液体にヘプタン80mLを加えて室温で撹拌し、析出した不溶分をろ過により除去した。このろ液を60℃で減圧濃縮し、さらに高真空下60℃で4時間乾燥し、無色透明液体の下記式(DC−1a)で表される化合物15.89gを得た(39.2mmol、収率98%)。

Figure 0006841069
[Example 3a]
In a 500 mL three-necked flask equipped with a nitrogen introduction tube, a reflux condenser, and a thermometer, 14.74 g (40.0 mmol) of DE-1a, 80 mL of heptane, and 0.032 g (0.40 mmol) of pyridine were placed in a nitrogen stream. The mixture was stirred at 75 ° C. below. 14.28 g (120 mmol) of thionyl chloride was slowly added dropwise over 20 minutes, and foaming as the reaction proceeded was confirmed. After completion of the dropping, the reaction was carried out at 75 ° C. for 2 hours to obtain a colorless and transparent solution. The reaction solution was concentrated under reduced pressure at 60 ° C. to distill off excess thionyl chloride. 80 mL of heptane was added to the obtained liquid, and the mixture was stirred at room temperature, and the precipitated insoluble matter was removed by filtration. The filtrate was concentrated under reduced pressure at 60 ° C. and further dried under high vacuum at 60 ° C. for 4 hours to obtain 15.89 g of a colorless transparent liquid represented by the following formula (DC-1a) (39.2 mmol, Yield 98%).
Figure 0006841069

[実施例4a]
β−メタリルアルコール15.14g(210mmol)をフルフリルアルコール20.60g(210mmol)に変更した以外は実施例1aと同様にして、下記式(DE−2a)で表される化合物と下記式(DE−2b)で表される化合物との混合物(以下、DE−2a/bという)42.04gを得た。

Figure 0006841069
[Example 4a]
The compound represented by the following formula (DE-2a) and the following formula (DE-2a) are obtained in the same manner as in Example 1a except that 15.14 g (210 mmol) of β-metharyl alcohol is changed to 20.60 g (210 mmol) of furfuryl alcohol. 42.04 g of a mixture (hereinafter referred to as DE-2a / b) with the compound represented by DE-2b) was obtained.
Figure 0006841069

[実施例5a]
窒素導入管、還流冷却管、及び温度計を備えた100mL三口フラスコに、TA−2を9.81g(50mmol)、テトラヒドロフランを50mL、ピリジンを0.40g(5.0mmol)入れ、窒素気流下で撹拌して懸濁させた。この懸濁液にメタクリル酸2−ヒドロキシエチル13.66g(105mmol)を加え、室温で2時間撹拌した。さらに40℃で24時間反応させ、無色透明な溶液を得た。この反応溶液を40℃で減圧濃縮し、さらに真空乾燥し、下記式(DE−3a)で表される化合物と下記式(DE−3b)で表される化合物との混合物(以下、DE−3a/bという)22.82gを得た。

Figure 0006841069
[Example 5a]
In a 100 mL three-necked flask equipped with a nitrogen introduction tube, a reflux condenser, and a thermometer, 9.81 g (50 mmol) of TA-2, 50 mL of tetrahydrofuran, and 0.40 g (5.0 mmol) of pyridine were placed under a nitrogen stream. It was stirred and suspended. 13.66 g (105 mmol) of 2-hydroxyethyl methacrylate was added to this suspension, and the mixture was stirred at room temperature for 2 hours. The reaction was further carried out at 40 ° C. for 24 hours to obtain a colorless and transparent solution. This reaction solution is concentrated under reduced pressure at 40 ° C., further vacuum dried, and a mixture of a compound represented by the following formula (DE-3a) and a compound represented by the following formula (DE-3b) (hereinafter, DE-3a). 22.82 g (called / b) was obtained.
Figure 0006841069

[実施例6a]
β−メタリルアルコール15.14g(210mmol)をプロパルギルアルコール11.77g(210mmol)に変更した以外は実施例1aと同様にして、下記式(DE−4a)で表される化合物と下記式(DE−4b)で表される化合物との混合物(以下、DE−4a/bという)33.63gを得た。

Figure 0006841069
[Example 6a]
The compound represented by the following formula (DE-4a) and the following formula (DE) are the same as in Example 1a except that 15.14 g (210 mmol) of β-metharyl alcohol is changed to 11.77 g (210 mmol) of propargyl alcohol. 33.63 g of a mixture with the compound represented by -4b) (hereinafter referred to as DE-4a / b) was obtained.
Figure 0006841069

[実施例7a]
β−メタリルアルコール15.14g(210mmol)をヒドロキシアセトン15.56g(210mmol)に変更した以外は実施例1aと同様にして、下記式(DE−5a)で表される化合物と下記式(DE−5b)で表される化合物との混合物(以下、DE−5a/bという)37.23gを得た。

Figure 0006841069
[Example 7a]
The compound represented by the following formula (DE-5a) and the following formula (DE) are the same as in Example 1a except that 15.14 g (210 mmol) of β-metallic alcohol is changed to 15.56 g (210 mmol) of hydroxyacetone. 37.23 g of a mixture with the compound represented by −5b) (hereinafter referred to as DE-5a / b) was obtained.
Figure 0006841069

[実施例8a]
メタクリル酸2−ヒドロキシエチル13.66g(105mmol)をグリセロール1,2−カルボナート12.40g(105mmol)に変更した以外は実施例5aと同様にして、下記式(DE−6a)で表される化合物と下記式(DE−6b)で表される化合物との混合物(以下、DE−6a/bという)21.61gを得た。

Figure 0006841069
[Example 8a]
A compound represented by the following formula (DE-6a) in the same manner as in Example 5a except that 13.66 g (105 mmol) of 2-hydroxyethyl methacrylate was changed to 12.40 g (105 mmol) of glycerol 1,2-carbonate. 21.61 g of a mixture (hereinafter referred to as DE-6a / b) with the compound represented by the following formula (DE-6b) was obtained.
Figure 0006841069

[合成例9]
窒素導入管、還流冷却管、及び温度計を備えた100mL三口フラスコに、1S,2S,4R,5R−シクロヘキサンテトラカルボン酸二無水物を9.81g(50mmol)、テトラヒドロフランを50mL、ピリジンを0.40g(5.0mmol)入れ、窒素気流下で撹拌して懸濁させた。この懸濁液にメタノール6.4g(200mmol)を加え、室温で24時間撹拌し、無色透明な溶液を得た。この反応溶液を60℃で減圧濃縮し、さらに真空乾燥し、下記式(DE−7a)で表される化合物と下記式(DE−7b)で表される化合物との混合物(以下、DE−7a/bという)14.41gを得た。

Figure 0006841069
[Synthesis Example 9]
In a 100 mL three-necked flask equipped with a nitrogen introduction tube, a reflux condenser tube, and a thermometer, 9.81 g (50 mmol) of 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride, 50 mL of tetrahydrofuran, and 0. 40 g (5.0 mmol) was added, and the mixture was suspended by stirring under a nitrogen stream. 6.4 g (200 mmol) of methanol was added to this suspension, and the mixture was stirred at room temperature for 24 hours to obtain a colorless and transparent solution. This reaction solution is concentrated under reduced pressure at 60 ° C., further vacuum dried, and a mixture of a compound represented by the following formula (DE-7a) and a compound represented by the following formula (DE-7b) (hereinafter, DE-7a). 14.41 g (called / b) was obtained.
Figure 0006841069

[合成例10]
国際公開第2010/092989号の実施例4に記載の方法に従い、下記式(DE−8a)で表される化合物を合成した。また、国際公開第2010/092989号の実施例47に記載の方法に従い、下記式(DC−8a)で表される化合物を合成した。

Figure 0006841069
[Synthesis Example 10]
A compound represented by the following formula (DE-8a) was synthesized according to the method described in Example 4 of International Publication No. 2010/092989. In addition, a compound represented by the following formula (DC-8a) was synthesized according to the method described in Example 47 of International Publication No. 2010/092989.
Figure 0006841069

[合成例11]
窒素導入管、還流冷却管、及び温度計を備えた50mLのナスフラスコに、3,4−ジヒドロクマリンを1.63g(11.0mmol)、3−(アミノメチル)ピリジンを1.08g(10.0mmol)、テトラヒドロフランを10mL入れ、窒素気流下80℃で3時間加熱還流した。この反応溶液にヘプタン40mlを加えて生成物を析出させ、ろ過した。得られた固体をヘプタンで洗浄、減圧乾燥し、3−(2−ヒドロキシフェニル)−N−(ピリジン−3−イルメチル)プロパンアミド2.51g(9.8mmol)を得た。

Figure 0006841069
[Synthesis Example 11]
1.63 g (11.0 mmol) of 3,4-dihydrocoumarin and 1.08 g (10.) of 3- (aminomethyl) pyridine in a 50 mL eggplant flask equipped with a nitrogen introduction tube, a reflux condenser tube, and a thermometer. (0 mmol), 10 mL of tetrahydrofuran was added, and the mixture was heated under reflux at 80 ° C. for 3 hours under a nitrogen stream. 40 ml of heptane was added to this reaction solution to precipitate the product, which was filtered. The obtained solid was washed with heptane and dried under reduced pressure to obtain 2.51 g (9.8 mmol) of 3- (2-hydroxyphenyl) -N- (pyridin-3-ylmethyl) propanamide.
Figure 0006841069

[合成例12]
国際公開第2011/115118号の合成例7に記載の方法に従い、N−(tert−ブトキシカルボニル)−2,5−ジアミノベンジルアミンを合成した。
[Synthesis Example 12]
N- (tert-butoxycarbonyl) -2,5-diaminobenzylamine was synthesized according to the method described in Synthesis Example 7 of WO2011 / 115118.

[実施例1]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−1a/bを3.54g(9.6mmol)、DA−1を1.08g(10.0mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、トリアジン系脱水縮合剤であるDMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−1)を得た。この重合体の数平均分子量Mnは11,000、分子量分布Mw/Mnは3.0であった。
[Example 1]
In a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, 3.54 g (9.6 mmol) of DE-1a / b, 1.08 g (10.0 mmol) of DA-1, 31.0 g of NMP, and triethylamine. 0.51 g (5.0 mmol) was added, the mixture was cooled to about 10 ° C., 8.30 g (30.0 mmol) of DMT-MM, which is a triazine-based dehydration condensing agent, was added, and the mixture was reacted at room temperature under a nitrogen stream for 24 hours. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder of polyamic acid ester (PAE-1). The number average molecular weight Mn of this polymer was 11,000, and the molecular weight distribution Mw / Mn was 3.0.

[実施例2]
DE−1a/bをDE−1a 3.54g(9.6mmol)に変更した以外は実施例1と同様にして、ポリアミック酸エステル(PAE−2)を得た。この重合体の数平均分子量Mnは12,000、分子量分布Mw/Mnは4.1であった。
[Example 2]
A polyamic acid ester (PAE-2) was obtained in the same manner as in Example 1 except that DE-1a / b was changed to 3.54 g (9.6 mmol) of DE-1a. The number average molecular weight Mn of this polymer was 12,000, and the molecular weight distribution Mw / Mn was 4.1.

[実施例3]
DE−1a/bをDE−1a 2.83(7.68mmol)及びDE−7a/b 0.553g(1.92mmol)に変更した以外は実施例1と同様にして、ポリアミック酸エステル(PAE−3)を得た。この重合体の数平均分子量Mnは21,000、分子量分布Mw/Mnは3.5であった。
[Example 3]
The polyamic acid ester (PAE-) was the same as in Example 1 except that DE-1a / b was changed to DE-1a 2.83 (7.68 mmol) and DE-7a / b 0.553 g (1.92 mmol). 3) was obtained. The number average molecular weight Mn of this polymer was 21,000, and the molecular weight distribution Mw / Mn was 3.5.

[実施例4]
窒素導入管及び温度計を備えた50mL三口フラスコに、DA−1を1.03g(9.5mmol)、DA−3を0.106g(0.50mmol)、NMPを20.0g入れ、約10℃に冷却し、ジアミン溶液を調製した。ここに、DC−1a 3.89g(9.6mmol)をピリジン1.90g(21.6mmol)及びγBL20.0gに予め溶解させて調製した酸クロライド溶液を加え、窒素気流下室温で4時間反応させた。この重合溶液にEC−1を0.209g(2.0mmol)加えて、さらに4時間反応させた。得られた重合溶液をγBLにより希釈し、脱イオン水中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、イソプロパノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−4)を得た。この重合体の数平均分子量Mnは8,000、分子量分布Mw/Mnは2.1であった。
[Example 4]
1.03 g (9.5 mmol) of DA-1, 0.106 g (0.50 mmol) of DA-3, and 20.0 g of NMP were placed in a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer at about 10 ° C. To prepare a diamine solution. An acid chloride solution prepared by previously dissolving 3.89 g (9.6 mmol) of DC-1a in 1.90 g (21.6 mmol) of pyridine and 20.0 g of γBL was added thereto, and the mixture was reacted at room temperature for 4 hours under a nitrogen stream. It was. 0.209 g (2.0 mmol) of EC-1 was added to this polymerization solution, and the mixture was further reacted for 4 hours. The obtained polymerization solution was diluted with γBL and slowly poured into deionized water with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in isopropanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-4). The number average molecular weight Mn of this polymer was 8,000, and the molecular weight distribution Mw / Mn was 2.1.

[実施例5]
窒素導入管及び温度計を備えた50mL三口フラスコに、DA−1を0.973g(9.0mmol)、DA−6を0.327g(1.0mmol)、NMPを20.0g入れ、約10℃に冷却し、ジアミン溶液を調製した。ここに、DC−1a 3.89g(9.6mmol)をピリジン1.90g(21.6mmol)及びγBL20.0gに予め溶解させて調製した酸クロライド溶液を加え、窒素気流下室温で4時間反応させた。この重合溶液にEC−2を0.261g(2.0mmol)加えて、さらに4時間反応させた。得られた重合溶液をγBLにより希釈し、脱イオン水中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、イソプロパノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−5)を得た。この重合体の数平均分子量Mnは25,000、分子量分布Mw/Mnは4.5であった。
[Example 5]
0.973 g (9.0 mmol) of DA-1, 0.327 g (1.0 mmol) of DA-6, and 20.0 g of NMP were placed in a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer at about 10 ° C. To prepare a diamine solution. An acid chloride solution prepared by previously dissolving 3.89 g (9.6 mmol) of DC-1a in 1.90 g (21.6 mmol) of pyridine and 20.0 g of γBL was added thereto, and the mixture was reacted at room temperature for 4 hours under a nitrogen stream. It was. 0.261 g (2.0 mmol) of EC-2 was added to this polymerization solution, and the mixture was further reacted for 4 hours. The obtained polymerization solution was diluted with γBL and slowly poured into deionized water with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in isopropanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-5). The number average molecular weight Mn of this polymer was 25,000, and the molecular weight distribution Mw / Mn was 4.5.

[実施例6]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−2a/bを4.04g(9.6mmol)、DA−1を0.995g(9.2mmol)、EC−3を0.078g(0.8mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、DMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−6)を得た。この重合体の数平均分子量Mnは15,000、分子量分布Mw/Mnは3.2であった。
[Example 6]
In a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, 4.04 g (9.6 mmol) of DE-2a / b, 0.995 g (9.2 mmol) of DA-1 and 0.078 g (EC-3) of EC-3 ( 0.8 mmol), 31.0 g of NMP, 0.51 g (5.0 mmol) of triethylamine, cooled to about 10 ° C., 8.30 g (30.0 mmol) of DMT-MM was added, and 24 at room temperature under a nitrogen stream. Reacted for time. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-6). The number average molecular weight Mn of this polymer was 15,000, and the molecular weight distribution Mw / Mn was 3.2.

[実施例7]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−3a/bを2.19g(4.8mmol)、DE−8aを1.38g(4.8mmol)、DA−1を1.08g(10.0mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、DMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−7)を得た。この重合体の数平均分子量Mnは18,000、分子量分布Mw/Mnは1.8であった。
[Example 7]
In a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, 2.19 g (4.8 mmol) of DE-3a / b, 1.38 g (4.8 mmol) of DE-8a, and 1.08 g (DA-1). 10.0 mmol), 31.0 g of NMP, 0.51 g (5.0 mmol) of triethylamine, cooled to about 10 ° C., 8.30 g (30.0 mmol) of DMT-MM was added, and 24 at room temperature under a nitrogen stream. Reacted for time. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-7). The number average molecular weight Mn of this polymer was 18,000, and the molecular weight distribution Mw / Mn was 1.8.

[実施例8]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−4a/bを3.23g(9.6mmol)、DA−1を0.995g(9.2mmol)、EC−4を0.062g(0.8mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、DMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−8)を得た。この重合体の数平均分子量Mnは12,000、分子量分布Mw/Mnは3.3であった。
[Example 8]
In a 50 mL three-necked flask equipped with a nitrogen inlet tube and a thermometer, 3.23 g (9.6 mmol) of DE-4a / b, 0.995 g (9.2 mmol) of DA-1, and 0.062 g of EC-4 (0.062 g). 0.8 mmol), 31.0 g of NMP, 0.51 g (5.0 mmol) of triethylamine, cooled to about 10 ° C., 8.30 g (30.0 mmol) of DMT-MM was added, and 24 at room temperature under a nitrogen stream. Reacted for time. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-8). The number average molecular weight Mn of this polymer was 12,000, and the molecular weight distribution Mw / Mn was 3.3.

[実施例9]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−5a/bを3.57g(9.6mmol)、DA−1を0.796g(7.36mmol)、DA−5を0.437g(1.84mmol)、EC−5を0.128g(0.80mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、DMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−9)を得た。この重合体の数平均分子量Mnは12,000、分子量分布Mw/Mnは3.5であった。
[Example 9]
In a 50 mL three-necked flask equipped with a nitrogen inlet tube and a thermometer, 3.57 g (9.6 mmol) of DE-5a / b, 0.796 g (7.36 mmol) of DA-1, and 0.437 g of DA-5 (0.437 g). 1.84 mmol), 0.128 g (0.80 mmol) of EC-5, 31.0 g of NMP, 0.51 g (5.0 mmol) of triethylamine, cooled to about 10 ° C., and 8.30 g of DMT-MM. (30.0 mmol) was added, and the mixture was reacted at room temperature under a nitrogen stream for 24 hours. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-9). The number average molecular weight Mn of this polymer was 12,000, and the molecular weight distribution Mw / Mn was 3.5.

[実施例10]
窒素導入管及び温度計を備えた50mL三口フラスコに、DE−6a/bを2.08g(4.8mmol)、DE−8aを1.38g(4.8mmol)、DA−1を0.796g(7.36mmol)、DA−5を0.437g(1.84mmol)、EC−5を0.128g(0.80mmol)、NMPを31.0g、トリエチルアミンを0.51g(5.0mmol)入れ、約10℃に冷却し、DMT−MMを8.30g(30.0mmol)加え、窒素気流下室温で24時間反応させた。得られた重合溶液をNMPにより希釈し、メタノール中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−9)を得た。この重合体の数平均分子量Mnは20,000、分子量分布Mw/Mnは3.0であった。
[Example 10]
In a 50 mL three-necked flask equipped with a nitrogen inlet tube and a thermometer, 2.08 g (4.8 mmol) of DE-6a / b, 1.38 g (4.8 mmol) of DE-8a, and 0.796 g of DA-1 (DA-1). 7.36 mmol), 0.437 g (1.84 mmol) of DA-5, 0.128 g (0.80 mmol) of EC-5, 31.0 g of NMP, 0.51 g (5.0 mmol) of triethylamine, and so on. The mixture was cooled to 10 ° C., 8.30 g (30.0 mmol) of DMT-MM was added, and the mixture was reacted at room temperature under a nitrogen stream for 24 hours. The obtained polymerization solution was diluted with NMP and slowly poured into methanol with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in methanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-9). The number average molecular weight Mn of this polymer was 20,000, and the molecular weight distribution Mw / Mn was 3.0.

[合成例13]
窒素導入管及び温度計を備えた50mL三口フラスコに、DA−1を1.08g(10.0mmol)、NMPを16.0g入れ、約10℃に冷却し、ジアミン溶液を調製した。ここに、DC−8a 3.12g(9.6mmol)をピリジン1.90g(21.6mmol)及びγBL16.0gに予め溶解させて調製した酸クロライド溶液を加え、窒素気流下室温で4時間反応させた。得られた重合溶液をγBLにより希釈し、脱イオン水中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、イソプロパノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−11)を得た。この重合体の数平均分子量Mnは19,000、分子量分布Mw/Mnは1.5であった。
[Synthesis Example 13]
1.08 g (10.0 mmol) of DA-1 and 16.0 g of NMP were placed in a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, and cooled to about 10 ° C. to prepare a diamine solution. An acid chloride solution prepared by previously dissolving 3.12 g (9.6 mmol) of DC-8a in 1.90 g (21.6 mmol) of pyridine and 16.0 g of γBL was added thereto, and the mixture was reacted at room temperature for 4 hours under a nitrogen stream. It was. The obtained polymerization solution was diluted with γBL and slowly poured into deionized water with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in isopropanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-11). The number average molecular weight Mn of this polymer was 19,000, and the molecular weight distribution Mw / Mn was 1.5.

[合成例14]
テトラカルボン酸二無水物としてTA−3を100モル部、ジアミンとしてDA−1を100モル部、NMPに溶解し、室温で6時間反応を行い、ポリアミック酸(PAA−1)を20質量%含有する溶液を得た。
[Synthesis Example 14]
100 parts by mass of TA-3 as a tetracarboxylic dianhydride and 100 parts by mass of DA-1 as a diamine were dissolved in NMP and reacted at room temperature for 6 hours to contain 20% by mass of polyamic acid (PAA-1). Obtained a solution to be prepared.

[合成例15]
テトラカルボン酸二無水物としてTA−2を100モル部、ジアミンとしてDA−4を100モル部、NMPに溶解し、室温で6時間反応を行い、ポリアミック酸(PAA−2)を20質量%含有する溶液を得た。
[Synthesis Example 15]
100 parts by mass of TA-2 as a tetracarboxylic dianhydride and 100 parts by mass of DA-4 as a diamine were dissolved in NMP and reacted at room temperature for 6 hours to contain 20% by mass of polyamic acid (PAA-2). Obtained a solution to be prepared.

[合成例16]
テトラカルボン酸二無水物としてTA−1を100モル部、ジアミンとしてDA−7を100モル部、NMPに溶解し、室温で6時間反応を行い、ポリアミック酸(PAA−3)を20質量%含有する溶液を得た。
[Synthesis Example 16]
100 parts by mass of TA-1 as a tetracarboxylic dianhydride and 100 parts by mass of DA-7 as a diamine were dissolved in NMP and reacted at room temperature for 6 hours to contain 20% by mass of polyamic acid (PAA-3). Obtained a solution to be prepared.

[合成例17]
テトラカルボン酸二無水物としてTA−4を100モル部、ジアミンとしてDA−2を80モル部及びDA−8を20モル部、NMPに溶解し、室温で6時間反応を行い、ポリアミック酸(PAA−3)を20質量%含有する溶液を得た。
[Synthesis Example 17]
Dissolve 100 parts by mass of TA-4 as tetracarboxylic dianhydride, 80 parts by mass of DA-2 as diamine and 20 parts by mass of DA-8 in NMP, and react at room temperature for 6 hours to carry out polyamic acid (PAA). A solution containing 20% by mass of -3) was obtained.

重合体の合成に使用した化合物の種類及び配合割合を下記表1に示した。なお、下記表1中、「モル比」は、合成に使用した各化合物の使用割合(モル比)を表す(下記表3についても同じ)。 The types and blending ratios of the compounds used in the synthesis of the polymer are shown in Table 1 below. In Table 1 below, "molar ratio" represents the usage ratio (molar ratio) of each compound used in the synthesis (the same applies to Table 3 below).

Figure 0006841069
Figure 0006841069

[実施例11:光配向FFS型液晶表示素子]
(1)液晶配向剤の調製
重合体として実施例1で得た重合体(PAE−1)をγ−ブチロラクトン(GBL)、N−メチル−2−ピロリドン(NMP)及びブチルセロソルブ(BC)からなる混合溶媒(GBL:NMP:BC=80:10:10(質量比))に溶解し、固形分濃度が4.0質量%の溶液とした。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(R−1)を調製した。
[Example 11: Photo-alignment FFS type liquid crystal display element]
(1) Preparation of liquid crystal alignment agent The polymer (PAE-1) obtained in Example 1 as a polymer is mixed with γ-butyrolactone (GBL), N-methyl-2-pyrrolidone (NMP) and butyl cellosolve (BC). It was dissolved in a solvent (GBL: NMP: BC = 80: 10: 10 (mass ratio)) to prepare a solution having a solid content concentration of 4.0% by mass. A liquid crystal alignment agent (R-1) was prepared by filtering this solution through a filter having a pore size of 0.2 μm.

(2)塗布性の評価
上記で調製した液晶配向剤(R−1)を、ガラス基板上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した230℃のオーブンで30分間加熱(ポストベーク)することにより、平均膜厚0.1μmの塗膜を形成した。この塗膜を倍率100倍及び10倍の顕微鏡で観察して膜厚ムラ及びピンホールの有無を調べた。評価は、100倍の顕微鏡で観察しても膜厚ムラ及びピンホールの双方とも観察されなかった場合を塗布性「良好」、100倍の顕微鏡では膜厚ムラ及びピンホールの少なくとも一方が観察されたが、10倍の顕微鏡では膜厚ムラ及びピンホールの双方とも観察されなかった場合を塗布性「可」、10倍の顕微鏡で膜厚ムラ及びピンホールの少なくとも一方が明確に観察された場合を塗布性「不良」とした。本実施例では、100倍の顕微鏡でも膜厚ムラ及びピンホールの双方とも観察されず、塗布性は「良好」であった。
(2) Evaluation of coatability The liquid crystal alignment agent (R-1) prepared above is coated on a glass substrate using a spinner, prebaked on a hot plate at 80 ° C. for 1 minute, and then nitrogen is stored in the oven. By heating (post-baking) for 30 minutes in the replaced oven at 230 ° C., a coating film having an average film thickness of 0.1 μm was formed. This coating film was observed with a microscope at 100 times and 10 times magnification to check for uneven film thickness and the presence or absence of pinholes. The evaluation was "good" when both film thickness unevenness and pinholes were not observed even when observed with a 100x microscope, and at least one of film thickness unevenness and pinholes was observed with a 100x microscope. However, when both film thickness unevenness and pinholes were not observed with a 10x microscope, the coatability was "OK", and when at least one of the film thickness unevenness and pinholes was clearly observed with a 10x microscope. Was defined as "poor" coatability. In this example, neither uneven film thickness nor pinholes was observed even with a 100x microscope, and the coatability was "good".

(3)塗膜中の重合体成分のイミド化率の測定
上記(2)で得た塗膜につき、FT−IR測定における1360cm−1付近の吸収(イミド基のC−N伸縮振動由来の吸収)による吸光度α1と、1500cm−1付近の吸収(芳香環のC=C伸縮振動由来の吸収)による吸光度α2から、下記数式(4)によりイミド化率(%)を算出した。
イミド化率(%)={(α1230℃/α2230℃)/(α1300℃/α2300℃)}×100 …(4)
(数式(4)中、α1230℃及びα2230℃は、上記(2)で得た塗膜の測定結果であり、α1300℃及びα2300℃は、庫内を窒素置換した300℃のオーブンで90分間加熱した塗膜の測定結果である。ただし、300℃で加熱した塗膜のイミド化率が100%であるとした。)
その結果、この塗膜のイミド化率は30%であった。
(3) Measurement of imidization rate of polymer component in coating film Absorption around 1360 cm -1 in FT-IR measurement for the coating film obtained in (2) above (absorption derived from CN expansion and contraction vibration of imide group) The imidization rate (%) was calculated by the following formula (4) from the absorbance α1 according to () and the absorbance α2 due to absorption near 1500 cm -1 (absorption derived from C = C stretching vibration of the aromatic ring).
Imidization rate (%) = {(α1 230 ° C / α2 230 ° C ) / (α1 300 ° C / α2 300 ° C )} × 100… (4)
(In the formula (4), α1 230 ° C. and α2 230 ° C. are the measurement results of the coating film obtained in (2) above, and α1 300 ° C. and α2 300 ° C. are ovens at 300 ° C. in which the inside of the oven is replaced with nitrogen. This is the measurement result of the coating film heated at 300 ° C., where the imidization rate of the coating film heated at 300 ° C. is 100%.)
As a result, the imidization rate of this coating film was 30%.

(4)密着性
上記(2)で製造した塗膜を用いて、液晶配向剤により形成した塗膜と基板との密着性について評価した。先ず、ガイドの付いた等間隔スペーサーを用い、カッターナイフにより塗膜に切り込みを入れ、1cm×1cmの範囲内に10個×10個の格子パターンを形成した。各切込みの深さは、塗膜の中ほどまで達するようにした。次いで、上記格子パターンの全面を覆うようにセロハンテープを密着させた後、該セロハンテープを引き剥がした。引き剥がし後の格子パターンの切込み部をクロスニコル下における目視によって観察して密着性を評価した。評価は、切込み線に沿った部分及び格子パターンの交差部分に剥離が確認されなかった場合を密着性「◎」、上記部分に剥離が観察された格子目の個数が、格子パターン全体の個数に対して15%未満の場合を密着性「〇」、15%以上20%未満であった場合を密着性「△」、20%以上であった場合を「×」として行った。その結果、この塗膜は密着性「△」であった。
(4) Adhesion Using the coating film produced in (2) above, the adhesion between the coating film formed by the liquid crystal alignment agent and the substrate was evaluated. First, using an evenly spaced spacer with a guide, cuts were made in the coating film with a cutter knife to form 10 × 10 lattice patterns within a range of 1 cm × 1 cm. The depth of each cut was set to reach the middle of the coating film. Next, the cellophane tape was brought into close contact with the cellophane tape so as to cover the entire surface of the lattice pattern, and then the cellophane tape was peeled off. The cut portion of the lattice pattern after peeling was visually observed under the cloth Nicol to evaluate the adhesion. The evaluation is that the adhesion is "◎" when no peeling is confirmed at the part along the cut line and at the intersection of the grid patterns, and the number of grids where peeling is observed in the above part is the number of the entire grid pattern. On the other hand, when it was less than 15%, the adhesion was “◯”, when it was 15% or more and less than 20%, it was evaluated as “Δ”, and when it was 20% or more, it was evaluated as “x”. As a result, this coating film had an adhesiveness of "Δ".

(5)光配向法による液晶表示素子の製造
平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記で調製した液晶配向剤(R−1)を膜厚が0.1μmになるようにスピンナーを用いて塗布し、80℃のホットプレートで1分、200℃のクリーンオーブンで1時間乾燥して塗膜を形成した。この塗膜表面に、Hg−Xeランプを用いて、254nmの輝線を含む偏光の紫外線500mJ/cmを基板法線方向から照射し、液晶配向膜を形成した。次に、上記光照射処理を行った一対の基板について、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、光照射時の偏光軸の基板面への投影方向が逆平行となるように基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC−7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを150℃で加熱してから室温まで徐冷した。次に、基板の外側両面に偏光板を貼り合わせて横電界(FFS)方式液晶表示素子を作製した。
(5) Manufacture of liquid crystal display element by photoalignment method On each surface of a glass substrate in which a flat plate electrode, an insulating layer and a comb-shaped electrode are laminated on one side in this order, and a facing glass substrate on which no electrode is provided. The liquid crystal aligning agent (R-1) prepared above was applied using a spinner so that the film thickness was 0.1 μm, and dried on a hot plate at 80 ° C. for 1 minute and in a clean oven at 200 ° C. for 1 hour. To form a coating film. A liquid crystal alignment film was formed on the surface of the coating film by irradiating the surface of the coating film with polarized ultraviolet rays of 500 mJ / cm 2 containing a bright line of 254 nm from the normal direction of the substrate using an Hg-Xe lamp. Next, the pair of substrates subjected to the light irradiation treatment were screen-printed with an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm, leaving a liquid crystal injection port on the edge of the surface on which the liquid crystal alignment film was formed. The substrates were overlapped and pressure-bonded so that the projection directions of the polarizing axes on the substrate surface at the time of light irradiation were antiparallel, and the adhesive was thermoset at 150 ° C. for 1 hour. Next, a nematic liquid crystal (MLC-7028 manufactured by Merck & Co., Inc.) was filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Further, in order to eliminate the flow orientation at the time of liquid crystal injection, this was heated at 150 ° C. and then slowly cooled to room temperature. Next, a polarizing plate was attached to both outer surfaces of the substrate to produce a transverse electric field (FFS) type liquid crystal display element.

(6)液晶配向性の評価
上記(5)で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を顕微鏡によって倍率50倍で観察した。評価は、異常ドメインが観察されなかった場合を液晶配向性「良好」とし、異常ドメインが観察された場合を液晶配向性「不良」とした。その結果、この実施例では「良好」の評価であった。
(6) Evaluation of liquid crystal orientation With respect to the liquid crystal display element manufactured in (5) above, the presence or absence of abnormal domains in the change in brightness when a voltage of 5 V is turned ON / OFF (applied / released) is measured with a microscope at a magnification of 50 times. Observed. In the evaluation, the case where no abnormal domain was observed was regarded as "good" in liquid crystal orientation, and the case where abnormal domain was observed was regarded as "poor" in liquid crystal orientation. As a result, it was evaluated as "good" in this example.

(7)駆動ストレス後のコントラスト評価(AC残像特性の評価)
基板の外側両面に偏光板を貼り合わせなかった点以外は上記(5)と同様の操作を行い、FFS型液晶セルを作製した。このFFS型液晶セルにつき、交流電圧10Vで30時間駆動した後に、光源と光量検出器の間に偏光子と検光子を配置した装置を使用して、下記数式(2)で表される最小相対透過率(%)を測定した。
最小相対透過率(%)=(β−B0)/(B100−B0)×100 …(2)
(数式(2)中、B0は、ブランクでクロスニコル下の光の透過量である。B100は、ブランクでパラニコル下の光の透過量である。βは、クロスニコル下で偏光子と検光子の間に液晶表示素子を挟み最小となる光透過量である。)
暗状態の黒レベルは液晶表示素子の最小相対透過率で表され、FFS型液晶表示素子では暗状態での黒レベルが小さいほどコントラストが優れる。最小相対透過率が1.0%未満のものをAC残像特性「◎」とし、1.0%以上1.5%未満のものを「〇」とし、1.5%以上2.0%未満のものを「△」、2.0%以上のものを「×」とした。その結果、この実施例では「△」の評価であった。
(7) Contrast evaluation after drive stress (evaluation of AC afterimage characteristics)
An FFS type liquid crystal cell was produced by performing the same operation as in (5) above except that the polarizing plates were not bonded to both outer surfaces of the substrate. This FFS type liquid crystal cell is driven at an AC voltage of 10 V for 30 hours, and then using a device in which a polarizer and an analyzer are arranged between a light source and a photodetector, the minimum relative represented by the following mathematical formula (2) is used. The transmittance (%) was measured.
Minimum relative transmittance (%) = (β-B0) / (B100-B0) × 100 ... (2)
(In the formula (2), B0 is the amount of light transmitted under the cross Nicol in the blank. B100 is the amount of light transmitted under the paranicol in the blank. β is the polarizer and the analyzer under the cross Nicol. This is the minimum amount of light transmitted by sandwiching a liquid crystal display element between the two.)
The black level in the dark state is represented by the minimum relative transmittance of the liquid crystal display element, and in the FFS type liquid crystal display element, the smaller the black level in the dark state, the better the contrast. If the minimum relative transmittance is less than 1.0%, the AC afterimage characteristic is "◎", if it is 1.0% or more and less than 1.5%, it is "○", and it is 1.5% or more and less than 2.0%. Those with "Δ" and those with 2.0% or more were designated as "x". As a result, the evaluation was "Δ" in this example.

(8)微小輝点観察(耐熱信頼性試験)
微小輝点の評価は、基板の外側両面に偏光板を貼り合わせなかった点以外は上記(5)と同様の操作を行い製造した液晶セルを100℃の恒温槽に21日間保管した後、液晶セル中の微小輝点の有無を顕微鏡にて観察することにより行った。光配向処理のための光照射によって生成した分解物が膜中に残ったままの場合、液晶表示素子を高温環境下に長時間曝すことによって分解物が膜表面にブリードアウトし、液晶中で徐々に結晶化し、微小輝点として観察されることが分かっている。なお、観察領域は、680μm×680μm、顕微鏡倍率は100倍にて行った。評価は、微小輝点が観察されない場合は「」とし、微小輝点の数が1点又は2点観察された場合は「」とし、微小輝点の数が3点以上5点以下観察された場合は「×」とし、微小輝点が6点以上観察された場合は「××」とした。その結果、この実施例では「○」の評価であった。
(8) Observation of minute bright spots (heat resistance test)
The evaluation of the minute bright spots was carried out by storing the liquid crystal cell produced by performing the same operation as in (5) above for 21 days in a constant temperature bath at 100 ° C. except that the polarizing plates were not attached to both outer surfaces of the substrate, and then the liquid crystal. This was done by observing the presence or absence of minute bright spots in the cell with a microscope. When the decomposition products generated by light irradiation for photoalignment treatment remain in the film, the decomposition products bleed out to the film surface by exposing the liquid crystal display element to a high temperature environment for a long time, and gradually bleed out in the liquid crystal. It is known that it crystallizes in and is observed as a minute bright spot. The observation area was 680 μm × 680 μm, and the microscope magnification was 100 times. The evaluation is "◎ " when no micro-bright spots are observed, "○ " when the number of micro-bright spots is 1 or 2 points, and the number of micro-bright spots is 3 or more and 5 or less. When 6 or more micro-bright spots were observed, it was rated as "XX". As a result, the evaluation was "○" in this example.

[実施例12〜22、比較例1〜3]
上記実施例11において、液晶配向剤に含有させる重合体及び添加剤の種類及び配合比率を下記表2に示す通りに変更したほかは実施例11と同様にして液晶配向剤を調製するとともに、FFS型液晶表示素子又は液晶セルを製造して各種評価を行った。評価結果は下記表2に示した。なお、表2中、液晶配向剤中の重合体1及び重合体2の配合比率は固形分換算の質量部により示し、添加剤1及び添加剤2の配合比率は、重合体1及び重合体2の固形分質量の合計を100質量部としたときの質量部により示した。
[Examples 12 to 22, Comparative Examples 1 to 3]
In Example 11, the liquid crystal alignment agent was prepared in the same manner as in Example 11 except that the types and blending ratios of the polymers and additives contained in the liquid crystal alignment agent were changed as shown in Table 2 below, and FFS. A type liquid crystal display element or a liquid crystal cell was manufactured and various evaluations were performed. The evaluation results are shown in Table 2 below. In Table 2, the blending ratio of the polymer 1 and the polymer 2 in the liquid crystal aligning agent is indicated by the mass part in terms of solid content, and the blending ratio of the additive 1 and the additive 2 is the polymer 1 and the polymer 2. It is shown by the mass part when the total solid content mass of is 100 parts by mass.

Figure 0006841069
Figure 0006841069

実施例11〜22では、液晶配向剤の塗布性及び密着性、並びに液晶表示素子における液晶配向性、AC残像特性及び耐熱性のバランスが取れていた。特に、実施例14〜18、20、21では、上記特性がいずれも「良好」、「◎」又は「○」の結果であり、各種特性のバランスに優れていた。また、実施例19、22では、AC残像特性が「○」の評価とやや劣る結果であったものの、塗布性や液晶配向性、耐熱性については他の実施例と同様に良好な結果であった。これに対し、比較例1〜3は、複数の評価項目において実施例より劣る結果であった。
また、実施例12〜22と比較例1を比較すると、実施例の方が、高イミド化率を示し、AC残像特性が良好となった。これは、おそらくイミド化率が高くなることで、液晶との相互作用が高まり、液晶配向性が改善されたことによるものと考えられる。
また、比較例1の結果より、ポリアミック酸では光分解性が低く、同等の偏光紫外線の露光量では液晶配向性が不良となることが分かった。
さらに、実施例14〜18、20〜22と、比較例3との対比により、末端を修飾したポリアミック酸エステルと、ポリアミック酸を含有する液晶配向剤は、ポリアミック酸エステルとポリアミック酸の相分離に由来する微小凹凸が抑制され塗布性が良好になったものと考えられる。
以上の実施例11〜22と比較例1〜3の結果より、反応性基を側鎖に有するポリアミック酸エステルを含有する液晶配向剤によれば、光配向処理後に膜中の分解物を洗い流すための洗浄処理を行わなくても耐熱性(特に、長期耐熱性)が良好であることが分かった。実施例14〜18では、長期耐熱性が特に優れており、微小輝点の原因物質である光分解物の拡散及び/又は結晶化を抑制していることが示唆された。
In Examples 11 to 22, the coatability and adhesion of the liquid crystal alignment agent, the liquid crystal orientation in the liquid crystal display element, the AC afterimage characteristic, and the heat resistance were well balanced. In particular, in Examples 14 to 18, 20 and 21, all of the above characteristics were the results of "good", "⊚" or "◯", and the balance of various characteristics was excellent. Further, in Examples 19 and 22, although the AC afterimage characteristic was slightly inferior to the evaluation of "○", the coating property, the liquid crystal orientation, and the heat resistance were good results as in the other examples. It was. On the other hand, Comparative Examples 1 to 3 were inferior to Examples in a plurality of evaluation items.
Further, when Examples 12 to 22 and Comparative Example 1 were compared, the example showed a higher imidization rate and had better AC afterimage characteristics. This is probably because the higher imidization rate enhances the interaction with the liquid crystal and improves the liquid crystal orientation.
Further, from the results of Comparative Example 1, it was found that the polyamic acid had low photodegradability, and the liquid crystal orientation was poor at the same exposure amount of polarized ultraviolet rays.
Further, by comparing Examples 14 to 18 and 20 to 22 with Comparative Example 3, the liquid crystal aligning agent containing the polyamic acid ester having a modified end and the polyamic acid is used for phase separation of the polyamic acid ester and the polyamic acid. It is considered that the derived micro-concavities and convexities were suppressed and the coatability was improved.
From the results of Examples 11 to 22 and Comparative Examples 1 to 3 above, according to the liquid crystal alignment agent containing a polyamic acid ester having a reactive group in the side chain, the decomposition products in the film are washed away after the photoalignment treatment. It was found that the heat resistance (particularly, long-term heat resistance) was good even without the cleaning treatment. It was suggested that in Examples 14 to 18, the long-term heat resistance was particularly excellent, and the diffusion and / or crystallization of the photodegraded product, which is a causative substance of micro-bright spots, was suppressed.

[合成例18〜22]
テトラカルボン酸二無水物及びジアミン化合物の種類及び量を表3に示す通りに変更した以外は合成例14と同様にして、ポリアミック酸(PAA−5〜PAA−9)を含有する溶液を得た。
[Synthesis Examples 18 to 22]
A solution containing a polyamic acid (PAA-5 to PAA-9) was obtained in the same manner as in Synthesis Example 14 except that the types and amounts of the tetracarboxylic dianhydride and the diamine compound were changed as shown in Table 3. ..

[実施例23]
窒素導入管及び温度計を備えた50mL三口フラスコに、DA−1を1.08g(10.0mmol)、NMPを20.0g入れ、約10℃に冷却し、ジアミン溶液を調製した。ここに、DC−1a 3.89g(9.6mmol)をピリジン1.90g(21.6mmol)及びγBL20.0gに予め溶解させて調製した酸クロライド溶液を加え、窒素気流下室温で4時間反応させた。得られた重合溶液をγBLにより希釈し、脱イオン水中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、イソプロパノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE−12)を得た。この重合体の数平均分子量Mnは20,000、分子量分布Mw/Mnは3.20であった。
[実施例24〜27]
テトラカルボン酸誘導体及びジアミン化合物の種類及び量を下記表3に示す通りに変更した以外は実施例23と同様にして、ポリアミック酸エステル(PAE−13〜PAE−16)を得た。重合体(PAE−13)の数平均分子量Mnは22,000、分子量分布Mw/Mnは3.90であり、重合体(PAE−14)の数平均分子量Mnは30,000、分子量分布Mw/Mnは4.10であった。重合体(PAE−15)の数平均分子量Mnは11,000、分子量分布Mw/Mnは3.00であり、重合体(PAE−16)の数平均分子量Mnは10,000、分子量分布Mw/Mnは2.90であった。
[Example 23]
1.08 g (10.0 mmol) of DA-1 and 20.0 g of NMP were placed in a 50 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, and cooled to about 10 ° C. to prepare a diamine solution. An acid chloride solution prepared by previously dissolving 3.89 g (9.6 mmol) of DC-1a in 1.90 g (21.6 mmol) of pyridine and 20.0 g of γBL was added thereto, and the mixture was reacted at room temperature for 4 hours under a nitrogen stream. It was. The obtained polymerization solution was diluted with γBL and slowly poured into deionized water with stirring to coagulate. The precipitated solid was recovered, stirred and washed twice in isopropanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-12). The number average molecular weight Mn of this polymer was 20,000, and the molecular weight distribution Mw / Mn was 3.20.
[Examples 24-27]
Polyamic acid esters (PAE-13 to PAE-16) were obtained in the same manner as in Example 23 except that the types and amounts of the tetracarboxylic acid derivative and the diamine compound were changed as shown in Table 3 below. The number average molecular weight Mn of the polymer (PAE-13) is 22,000 and the molecular weight distribution Mw / Mn is 3.90, and the number average molecular weight Mn of the polymer (PAE-14) is 30,000 and the molecular weight distribution Mw / Mn. The Mn was 4.10. The number average molecular weight Mn of the polymer (PAE-15) is 11,000 and the molecular weight distribution Mw / Mn is 3.00, and the number average molecular weight Mn of the polymer (PAE-16) is 10,000 and the molecular weight distribution Mw / Mn. The Mn was 2.90.

[実施例28]
国際公開第2015/152174号の合成例4に記載の方法を参考にして、下記の方法によりポリアミック酸エステル−ポリアミック酸共重合体(PAE−17)を合成した。
窒素導入管及び温度計を備えた100mL三口フラスコに、DE−1aを3.50g(9.5mmol)、NMPを55.4g加えて撹拌して溶解させた。次いで、トリエチルアミンを2.11g(20.9mmol)、DA−1を2.05g(19.0mmol)添加して撹拌して溶解させた。この溶液を約10℃に冷却し、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニルを7.28g(19.0mmol)添加し、更にNMPを11.9g加えて、窒素気流下室温で12時間反応させた。その後、リン酸ジフェニル0.95g(3.80mmol)とTA−3を2.00g(8.93mmol)添加し、更にNMPを11.9g加えて、窒素気流下室温で12時間反応させた。得られた重合溶液をメタノール中(600g)に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、メタノール中で撹拌洗浄を2回繰り返した後、60℃で真空乾燥して、ポリアミック酸エステル−ポリアミック酸共重合体(PAE−17)の粉末を得た。この重合体の数平均分子量Mn は20,000、分子量分布Mw/Mnは3.50であった。
[Example 28]
A polyamic acid ester-polyamic acid copolymer (PAE-17) was synthesized by the following method with reference to the method described in Synthesis Example 4 of International Publication No. 2015/152174.
3.50 g (9.5 mmol) of DE-1a and 55.4 g of NMP were added to a 100 mL three-necked flask equipped with a nitrogen introduction tube and a thermometer, and the mixture was stirred and dissolved. Then, 2.11 g (20.9 mmol) of triethylamine and 2.05 g (19.0 mmol) of DA-1 were added, and the mixture was stirred and dissolved. The solution was cooled to about 10 ° C., 7.28 g (19.0 mmol) of diphenyl phosphonate (2,3-dihydro-2-thioxo-3-benzoxazolyl) was added, and 11.9 g of NMP was further added. Then, the reaction was carried out at room temperature under a nitrogen stream for 12 hours. Then, 0.95 g (3.80 mmol) of diphenyl phosphate and 2.00 g (8.93 mmol) of TA-3 were added, and 11.9 g of NMP was further added, and the mixture was reacted at room temperature under a nitrogen stream for 12 hours. The obtained polymerization solution was slowly poured into methanol (600 g) with stirring to solidify. The precipitated solid was recovered, stirred and washed twice in methanol, and then vacuum dried at 60 ° C. to obtain a powder of polyamic acid ester-polyamic acid copolymer (PAE-17). The number average molecular weight Mn of this polymer was 20,000, and the molecular weight distribution Mw / Mn was 3.50.

Figure 0006841069
Figure 0006841069

[実施例29〜41]
上記実施例11において、液晶配向剤に含有させる重合体及び添加剤の種類を下記表4に示す通りに変更したほかは実施例11と同様にして液晶配向剤を調製するとともに、FFS型液晶表示素子又は液晶セルを製造して各種評価を行った。評価結果は下記表4に示した。
[Examples 29 to 41]
In Example 11, the liquid crystal alignment agent was prepared in the same manner as in Example 11 except that the types of the polymer and the additive contained in the liquid crystal alignment agent were changed as shown in Table 4 below, and the FFS type liquid crystal display was performed. A device or a liquid crystal cell was manufactured and various evaluations were performed. The evaluation results are shown in Table 4 below.

Figure 0006841069
Figure 0006841069

液晶配向剤の塗布性及び密着性並びに液晶表示素子における液晶配向性、AC残像特性及び耐熱性について、実施例29〜41では、いずれも「良好」、「◎」又は「〇」の結果であり、各種特性のバランスが取れていた。中でも、実施例31は液晶配向性及びAC残像特性が特に良好であり、実施例41は密着性が特に良好であった。
また、実施例29〜37は耐熱性が特に優れており、重合体1の比率が10部と少ない組成でも良好な液晶配向性及びAC残像特性を示した。これは、重合体1のポリアミック酸エステルの疎水性が高く、重合体2のポリアミック酸との層分離が促進され、配向膜表層に重合体1に由来するポリイミドが偏在しやすいためであると考えられる。また、重合体1の比率が少ないと、光分解物の発生量が少なくなるため焼成炉の汚染を低減でき、かつ、配向膜中に残留する光分解物が少なくなるため、高温環境下に曝した場合にも微小輝点の発生が少なく、耐熱性が向上したものと考えられる。
Regarding the coatability and adhesion of the liquid crystal alignment agent, the liquid crystal orientation in the liquid crystal display element, the AC afterimage characteristic, and the heat resistance, all of the results were "good", "◎", or "○" in Examples 29 to 41. , Various characteristics were well-balanced. Among them, Example 31 had particularly good liquid crystal orientation and AC afterimage characteristics, and Example 41 had particularly good adhesion.
Further, Examples 29 to 37 were particularly excellent in heat resistance, and exhibited good liquid crystal orientation and AC afterimage characteristics even with a composition in which the ratio of the polymer 1 was as small as 10 parts. It is considered that this is because the polyamic acid ester of the polymer 1 is highly hydrophobic, the layer separation of the polymer 2 from the polyamic acid is promoted, and the polyimide derived from the polymer 1 is likely to be unevenly distributed on the surface layer of the alignment film. Be done. Further, when the ratio of the polymer 1 is small, the amount of photodecomposed products generated is small, so that contamination of the firing furnace can be reduced, and the amount of photodegraded products remaining in the alignment film is small, so that the mixture is exposed to a high temperature environment. Even in this case, the occurrence of minute bright spots is small, and it is considered that the heat resistance is improved.

Claims (8)

下記式(1)で表される部分構造を有する重合体(P)を含有する液晶配向剤。
Figure 0006841069
(式(1)中、Rは、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物に由来するシクロブタン環構造を有する4価の有機基であり、Rは2価の有機基である。X及びXは、それぞれ独立に水酸基又は炭素数1〜40の1価の有機基である。ただし、X及びXの少なくともいずれかは、反応性基を有する1価の有機基である。)
A liquid crystal alignment agent containing a polymer (P) having a partial structure represented by the following formula (1).
Figure 0006841069
(In the formula (1), R 1 is a tetravalent organic group having a cyclobutane ring structure derived from 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride , and R 2 Is a divalent organic group. X 1 and X 2 are independently hydroxyl groups or monovalent organic groups having 1 to 40 carbon atoms, respectively. However, at least one of X 1 and X 2 is reactive. It is a monovalent organic group having a group.)
前記式(1)において、X及びXの少なくともいずれかは、下記式(2−1)〜式(2−10)のそれぞれで表される構造及び(メタ)アクリロイルオキシ基よりなる群から選ばれる1種である、請求項1に記載の液晶配向剤。
Figure 0006841069
(式(2−1)〜式(2−10)中、Rは、置換基を有していてもよい炭素数1〜6の2価の脂肪族基であり、Rは、それぞれ独立に、水素原子、又は置換基を有していてもよい炭素数1〜6の1価の脂肪族基である。ただし、R及びRのうち任意の2つの脂肪族基同士が結合して環構造を形成していてもよい。式(2−1)、式(2−9)中の複数のRは、互いに同じでも異なっていてもよい。「*」は結合手であることを示す。)
In the above formula (1), at least one of X 1 and X 2 consists of a group consisting of a structure represented by each of the following formulas (2-1) to (2-10) and a (meth) acryloyloxy group. The liquid crystal alignment agent according to claim 1, which is one of the selected types.
Figure 0006841069
(In formulas (2-1) to (2-10), R 4 is a divalent aliphatic group having 1 to 6 carbon atoms which may have a substituent, and R 5 is independent of each other. a hydrogen atom or a monovalent aliphatic group having 1 to 6 carbon atoms which may have a substituent. However, any two aliphatic groups bonded to each other among the R 4 and R 5 Te may form a ring structure. equation (2-1), a plurality of R 5 in the formula (2-9) may be the same or different from each other. "*" it is a bond Shows.)
前記式(1)で表される部分構造を有さない重合体をさらに含有する、請求項1又は2に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 1 or 2 , further containing a polymer having no partial structure represented by the formula (1). 前記式(1)で表される部分構造を有さない重合体は、ポリアミック酸及びポリイミドよりなる群から選ばれる少なくとも1種の重合体である、請求項に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 3 , wherein the polymer having no partial structure represented by the formula (1) is at least one polymer selected from the group consisting of polyamic acid and polyimide. 官能性シラン化合物、酸発生剤、塩基発生剤及びラジカル発生剤よりなる群から選ばれる少なくとも1種を含有する、請求項1〜のいずれか一項に記載の液晶配向剤。 The liquid crystal alignment agent according to any one of claims 1 to 4 , which contains at least one selected from the group consisting of a functional silane compound, an acid generator, a base generator and a radical generator. 請求項1〜のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed by using the liquid crystal alignment agent according to any one of claims 1 to 5. 請求項1〜のいずれか一項に記載の液晶配向剤を用いて塗膜を形成し、該塗膜に光照射して液晶配向能を付与する、液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, which comprises forming a coating film using the liquid crystal alignment agent according to any one of claims 1 to 5 and irradiating the coating film with light to impart liquid crystal alignment ability. 請求項に記載の液晶配向膜を備える液晶素子。 A liquid crystal element including the liquid crystal alignment film according to claim 6.
JP2017021401A 2016-04-28 2017-02-08 Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element Active JP6841069B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090637 2016-04-28
JP2016090637 2016-04-28

Publications (2)

Publication Number Publication Date
JP2017200991A JP2017200991A (en) 2017-11-09
JP6841069B2 true JP6841069B2 (en) 2021-03-10

Family

ID=60223278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021401A Active JP6841069B2 (en) 2016-04-28 2017-02-08 Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element

Country Status (4)

Country Link
JP (1) JP6841069B2 (en)
KR (1) KR102236019B1 (en)
CN (1) CN107338058B (en)
TW (1) TWI750165B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186055A1 (en) * 2017-04-04 2018-10-11 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound
WO2019093037A1 (en) * 2017-11-07 2019-05-16 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
JP2019132952A (en) * 2018-01-30 2019-08-08 シャープ株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
CN111566554B (en) * 2018-03-07 2023-07-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element and manufacturing method thereof
KR102601623B1 (en) * 2019-03-19 2023-11-10 주식회사 엘지화학 Liquid crystal alignment film and liquid crystal display using the same
JP7421159B2 (en) * 2019-11-18 2024-01-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20220157403A (en) * 2020-03-24 2022-11-29 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent for photo-alignment method, liquid crystal aligning film, and liquid crystal display element
CN116529290A (en) * 2020-11-20 2023-08-01 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI774321B (en) * 2021-04-15 2022-08-11 李長榮化學工業股份有限公司 Polyamic acid, polyimide, and element formed therefrom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302225A (en) * 1996-03-14 1997-11-25 Toshiba Corp Polyimide precursor composition, method of forming polyimide film, electronic part and liquid crystal element
KR100519652B1 (en) * 1999-07-26 2005-10-07 제일모직주식회사 Polyamic acid random copolymer and Polyimide random copolymer
KR100559264B1 (en) * 2004-10-29 2006-03-15 한국화학연구원 Composition of containing polyamic acid blends and liquid crystal alignment layer and cell using them
KR101699096B1 (en) * 2009-02-12 2017-01-23 닛산 가가쿠 고교 가부시키 가이샤 Tetracarboxylic acid derivatives, processes for producing same, and liquid-crystal alignment material
JP5305091B2 (en) * 2009-03-05 2013-10-02 日立化成株式会社 Photosensitive resin composition for optical nanoimprint lithography Resin composition, pattern forming method using the same, fine structure, and photocured product removal method
JP6048117B2 (en) * 2012-03-22 2016-12-21 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6098818B2 (en) * 2012-11-07 2017-03-22 Jsr株式会社 Liquid crystal alignment agent
JP6217648B2 (en) * 2012-11-30 2017-10-25 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6287577B2 (en) * 2014-05-23 2018-03-07 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP6547461B2 (en) 2014-07-23 2019-07-24 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
JP6805475B2 (en) * 2014-09-09 2020-12-23 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
KR20170123234A (en) 2017-11-07
JP2017200991A (en) 2017-11-09
CN107338058A (en) 2017-11-10
KR102236019B1 (en) 2021-04-02
TWI750165B (en) 2021-12-21
TW201807067A (en) 2018-03-01
CN107338058B (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP6841069B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP6682771B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
WO2018159284A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing same, liquid crystal element and polymer
JP6314488B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, retardation film and method for producing retardation film
JP6269501B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP2014044397A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for manufacturing liquid crystal alignment film
JP6424609B2 (en) Liquid crystal alignment agent, method of manufacturing liquid crystal display element, liquid crystal alignment film and liquid crystal display element
JP6870289B2 (en) Liquid crystal alignment agent, manufacturing method of liquid crystal element, liquid crystal alignment film, liquid crystal element
JP6828360B2 (en) A liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a method for manufacturing a liquid crystal alignment film and a liquid crystal element.
JP7517208B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal element
JP7396177B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
TWI850211B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2022173076A (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method for the same, liquid crystal device, liquid crystal display, and polymer
JP7028241B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element
JP6617529B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
JP2016035500A (en) Liquid crystal alignment agent, manufacturing method of liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film
JP6507837B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, liquid crystal display device, retardation film and method for manufacturing the same
JPWO2019159470A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2024061619A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and diamine
JP2022083973A (en) Liquid crystal alignment agent, liquid crystal orientation membrane and liquid crystal element
JP2023170991A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
JP2024127588A (en) Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element and its manufacturing method
CN118956419A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JP2024087351A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6841069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250