JP6781526B2 - Connection structure of cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks - Google Patents

Connection structure of cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks Download PDF

Info

Publication number
JP6781526B2
JP6781526B2 JP2018530851A JP2018530851A JP6781526B2 JP 6781526 B2 JP6781526 B2 JP 6781526B2 JP 2018530851 A JP2018530851 A JP 2018530851A JP 2018530851 A JP2018530851 A JP 2018530851A JP 6781526 B2 JP6781526 B2 JP 6781526B2
Authority
JP
Japan
Prior art keywords
vacuum insulation
heat insulating
laminated
vacuum
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018530851A
Other languages
Japanese (ja)
Other versions
JP2019506338A (en
Inventor
ヒョン ユン,ジョン
ヒョン ユン,ジョン
キュ ビャク,ポム
キュ ビャク,ポム
ウ ナム,テ
ウ ナム,テ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyung Dong One Corp
Original Assignee
Kyung Dong One Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyung Dong One Corp filed Critical Kyung Dong One Corp
Publication of JP2019506338A publication Critical patent/JP2019506338A/en
Application granted granted Critical
Publication of JP6781526B2 publication Critical patent/JP6781526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B2025/087Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid comprising self-contained tanks installed in the ship structure as separate units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、LNGやLPGなどの液化ガスを貯蔵するために設けられる独立型液化ガス貯蔵タンクの真空断熱パネルの連結構造に関する。 The present invention relates to a connecting structure of vacuum insulation panels of a stand-alone liquefied gas storage tank provided for storing liquefied gas such as LNG and LPG.

天然ガスは、陸上又は海上のガス配管を介してガスの状態で運搬されたり、液化天然ガス(LNG)又は液化石油ガス(LPG)の状態で輸送船に貯蔵されたりしたまま、遠距離の消費先に運搬される。LNGは、メタンが主成分である天然ガスを大気圧で零下162℃に液化させたもので、液体と気体の容積比率は、約1/600であり、液化状態の比重は0.43〜0.50である。 Natural gas is consumed over long distances, being transported in the form of gas via onshore or offshore gas pipes, or stored on a transport ship in the form of liquefied natural gas (LNG) or liquefied petroleum gas (LPG). It will be transported first. LNG is a natural gas containing methane as the main component liquefied at 162 ° C below zero at atmospheric pressure. The volume ratio of liquid to gas is about 1/600, and the specific gravity of the liquefied state is 0.43 to 0. It is .50.

LNGを積んで海を運航して陸上の所要先にLNGを荷役するためのLNG輸送船や、LNGを積んで海を運航して陸上の所要先に到着した後、貯蔵されたLNGを再気化して天然ガス状態で荷役するLNG RV(Regasification Vessel)は、液化天然ガスの極低温に耐えられる貯蔵タンク(多くに「貨物艙」とする)を含む。 LNG transport vessels for loading LNG and operating the sea to load and unload LNG to destinations on land, and after loading LNG and operating the sea to arrive at destinations on land, regas the stored LNG. The LNG RV (Regasification Vessel), which is converted and handled in the state of natural gas, includes a storage tank (often referred to as a "cargo vessel") that can withstand the extremely low temperature of liquefied natural gas.

この貯蔵タンクは、断熱材に荷物の荷重が直接に作用するか否かによって独立型(Independent Type)とメンブレイン型(Membrane Type)に分類することができ、通常、メンブレイン型貯蔵タンクはNo 96型とMark III型に分けられ、独立型貯蔵タンクはMOSS型とSPB型に分けられる。MOSS型の独立型貯蔵タンクの構造は大韓民国特許第10−15063号などに記載されており、SPB型の独立型貯蔵タンクの構造は大韓民国特許第10−30513号などに記載されている。 This storage tank can be classified into an independent type (Independent Type) and a membrane type (Membrane Type) depending on whether or not the load of the load acts directly on the heat insulating material. Normally, the membrane type storage tank is No. It is divided into 96 type and Mark III type, and the stand-alone storage tank is divided into MOSS type and SPB type. The structure of the MOSS type stand-alone storage tank is described in Korean Patent No. 10-15063 and the like, and the structure of the SPB type stand-alone storage tank is described in Korean Patent No. 10-30513 and the like.

一般的に独立型貯蔵タンクは、アルミニウム合金やSUS及び9%ニッケルなどの低温に強い合金で製造されたタンク本体にポリウレタンフォーム(polyurethane foam)のような、比較的硬い断熱パネルを取り付けて作られ、船体の内部底に配列される複数のタンク支持体上に置かれる。 In general, a stand-alone storage tank is made by attaching a relatively hard heat insulating panel such as polyurethane foam to a tank body made of an aluminum alloy or a low temperature resistant alloy such as SUS and 9% nickel. , Placed on multiple tank supports arranged on the inner bottom of the hull.

ポリウレタンフォームによって製造された多数のタンク本体の外部に設けられる液化ガス貯蔵タンクの断熱構造は、大韓民国特許10−166608号などに記載されている。 The heat insulating structure of a liquefied gas storage tank provided outside a large number of tank bodies manufactured of polyurethane foam is described in Korean Patent No. 10-166608 and the like.

このような従来技術によると、液化ガス貯蔵タンクの断熱構造は、断熱パネルが所定の厚さを持たなければならないので、断熱パネルの設置時に一つの断熱パネルの大きさを一定の水準以上に増加させ得ない限界がある。このような問題を解決するために、大韓民国公開特許10−2011−0051407、10−2011−0046627などにおいては、スタッドボルトと、前記スタッドボルトに挟まれる1次断熱パネルと、前記1次断熱パネルを固定的に維持するために前記スタッドボルトに結合される固定部材と、前記固定部材に結合されて前記1次断熱パネル上に積層される2次断熱パネルと、を含む断熱構造が開示されている。 According to such a conventional technique, in the heat insulating structure of the liquefied gas storage tank, the size of one heat insulating panel is increased above a certain level when the heat insulating panel is installed because the heat insulating panel must have a predetermined thickness. There is a limit that cannot be made. In order to solve such a problem, in the Republic of Korea Published Patent 10-2011-0051407, 10-2011-0046627, etc., the stud bolt, the primary heat insulating panel sandwiched between the stud bolts, and the primary heat insulating panel are used. A heat insulating structure including a fixing member coupled to the stud bolt to be fixedly maintained and a secondary heat insulating panel bonded to the fixing member and laminated on the primary heat insulating panel is disclosed. ..

しかしながら、前記断熱パネルが固定部材のような装着部材により延長される時、前記断熱パネルの境界面が一直線上に積層されるので、大気からの熱がタンクの表面まで到達する長さが短くて断熱性能が落ちる。なお、スタッドボルトと固定部材、そして、これを断熱材のような充填部材で充填するが、その隙間を介して大気からタンクの表面に熱が浸透することができるので、断熱が完璧に行われない。 However, when the heat insulating panel is extended by a mounting member such as a fixing member, the boundary surfaces of the heat insulating panels are laminated in a straight line, so that the length of heat from the atmosphere reaching the surface of the tank is short. Insulation performance drops. The stud bolts, fixing members, and filling members such as heat insulating materials are used to fill them, but heat can penetrate from the atmosphere to the surface of the tank through the gaps, so heat insulation is performed perfectly. Absent.

本発明は、上記した従来の問題点を改善するためのものであり、タンク本体に真空断熱パネルを交差積層することにより、前記真空断熱パネルの境界面に沿って大気からの熱がタンクの表面まで到達する長さが長くて断熱性能が改善され、断熱パネルの厚さを薄くしながらも、強化された断熱性能を有し得る独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造を提供しようとするものである。 The present invention is for improving the above-mentioned conventional problems, and by cross-laminating vacuum insulation panels on the tank body, heat from the atmosphere is applied to the surface of the tank along the boundary surface of the vacuum insulation panels. Cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks that can have enhanced insulation performance while reducing the thickness of the insulation panel by increasing the length to reach to improve insulation performance. It seeks to provide a structure.

前記目的を達成するための本発明の独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造は、心材と前記心材を取り囲み、内部が真空で形成される外皮を有する真空断熱パネルと、前記真空断熱パネルが液化ガス貯蔵タンクのタンク本体の外部に熱損失を防止するために、連続して交差積層設けられて断熱が行われる独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造であって、前記タンク本体の外部に設けられるスタッドボルトと、前記スタッドボルトを介して前記タンク本体の外部に取り付けられる前記真空断熱パネルと、を含み、前記真空断熱パネルとタンク本体との間に間隙を形成するために前記スタッドボルトに挟まれるパッドを含み、前記パッドを固定する固定部材と、前記固定部材に他の固定部材を連結して、前記真空断熱パネルを固定できるようにする独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造が提供される。 The articulated structure of the cross-laminated vacuum insulation panels of the stand-alone liquefied gas storage tank of the present invention for achieving the above object is a vacuum insulation panel having a core material and an outer skin that surrounds the core material and is formed in a vacuum inside. In order to prevent heat loss outside the tank body of the liquefied gas storage tank, the vacuum insulation panel is continuously provided in a cross-laminated manner to insulate the liquefied gas storage tank. The vacuum insulation panel and the tank body include a stud bolt provided outside the tank body and a vacuum heat insulating panel attached to the outside of the tank body via the stud bolt. A pad sandwiched between the stud bolts to form a gap between the two, and a fixing member for fixing the pad and another fixing member connected to the fixing member so that the vacuum heat insulating panel can be fixed. A connected structure of cross-laminated vacuum insulation panels of a stand-alone liquefied gas storage tank is provided.

上述したような本発明によると、タンク本体の外部に連続して取り付けられる真空断熱パネルを交差積層して、前記真空断熱パネルの境界面に沿って大気からの熱がタンク表面まで到達する長さが長くて断熱性能を改善させることができる。なお、スタッドボルトと固定部材のような装着部材及び充填部材を介して、或いはその間の隙間を通じて熱損失が発生されるのを防止し得る。そして、従来のポリウレタンフォーム断熱パネルに比して強化された断熱性能を有し得るので、液化ガス積載容量の運送費用を最小化することができ、断熱パネルの厚さが減り、貯蔵タンクの貯蔵空間が増加するだけでなく、貯蔵タンクの重さの減少をもたらして運送コストを減少させることができる効果がある。 According to the present invention as described above, the length at which the vacuum heat insulating panels continuously attached to the outside of the tank body are cross-laminated and the heat from the atmosphere reaches the tank surface along the boundary surface of the vacuum heat insulating panels. Is long and can improve the heat insulation performance. It is possible to prevent heat loss from occurring through a mounting member such as a stud bolt and a fixing member and a filling member, or through a gap between them. And since it can have enhanced insulation performance compared to conventional polyurethane foam insulation panels, it is possible to minimize the transportation cost of the liquefied gas loading capacity, reduce the thickness of the insulation panel, and store the storage tank. Not only does it increase space, it also has the effect of reducing the weight of the storage tank and reducing transportation costs.

本発明による真空断熱パネルの連結構造を示す図である。It is a figure which shows the connection structure of the vacuum insulation panel by this invention. 本発明によって真空断熱パネルが連結される過程を示す順序図である。It is a sequence diagram which shows the process of connecting a vacuum insulation panel by this invention. 本発明によって連続して交差積層された真空断熱パネルの効果を示す図である。It is a figure which shows the effect of the vacuum insulation panel which was continuously cross-laminated by this invention. 本発明によって保護層が含まれた真空断熱パネルの構成を示す図である。It is a figure which shows the structure of the vacuum insulation panel including the protective layer by this invention. 本発明による真空断熱パネルの連結構造において仕上げ材を装着する方法を示す図である。It is a figure which shows the method of mounting the finishing material in the connection structure of the vacuum insulation panel by this invention.

以下、本発明の好ましい実施例による独立型液化ガスタンクの交差積層された真空断熱パネル連結構造を例示図に基づいて詳細に説明する。 Hereinafter, the cross-laminated vacuum insulation panel connection structure of the stand-alone liquefied gas tank according to the preferred embodiment of the present invention will be described in detail with reference to the illustration.

図1には、本発明の好ましい実施形態による真空断熱パネルの連結構造を説明するために断面図が示されており、図2には、タンク本体の外部に装着部材と真空断熱パネルが連結される過程を順序に示されている。 FIG. 1 shows a cross-sectional view for explaining a connection structure of a vacuum insulation panel according to a preferred embodiment of the present invention, and FIG. 2 shows a mounting member and a vacuum insulation panel connected to the outside of a tank body. The process is shown in order.

図1及び図2に示されたように、独立型液化ガスタンクの断熱構造は、タンク本体1の外側に真空断熱パネル6が積層されることによって真空断熱パネル層を形成して行われる。前記真空断熱パネル6は、熱伝導率が非常に低い断熱材として、アルミニウム薄膜を含む高い遮蔽性を有する外皮が内部に有機系や無機系列の気空型心材の全ての面を取り囲むように形成される。前記真空断熱パネル6は、貯蔵タンクのタンク本体1の外側に複数個が互いに連続して配置されて、下部真空断熱パネル層6bを形成し、前記下部真空断熱パネル層6bの上に真空断熱パネルが一つ以上の層に交差積層されることによって上部真空断熱パネル層6aを形成する。 As shown in FIGS. 1 and 2, the heat insulating structure of the stand-alone liquefied gas tank is formed by forming a vacuum heat insulating panel layer by laminating the vacuum heat insulating panel 6 on the outside of the tank body 1. The vacuum heat insulating panel 6 is formed as a heat insulating material having a very low thermal conductivity so that an outer skin having a high shielding property including an aluminum thin film surrounds all surfaces of an organic or inorganic series air-air core material inside. Will be done. A plurality of the vacuum insulation panels 6 are continuously arranged outside the tank body 1 of the storage tank to form a lower vacuum insulation panel layer 6b, and the vacuum insulation panel 6 is placed on the lower vacuum insulation panel layer 6b. Is cross-laminated in one or more layers to form the upper vacuum insulation panel layer 6a.

上記の下部真空断熱パネル層6bは、タンク本体1と密着されず、パッド2によって間隙9が形成されている。タンク本体1と下部真空断熱パネル層6bと間の間隙9は通気空間として活用されることができ、タンク本体1の損傷による漏れ発生時、漏出液の通路としても活用されることができる。 The lower vacuum heat insulating panel layer 6b is not in close contact with the tank body 1, and a gap 9 is formed by the pad 2. The gap 9 between the tank body 1 and the lower vacuum heat insulating panel layer 6b can be used as a ventilation space, and can also be used as a passage for leaked liquid when a leak occurs due to damage to the tank body 1.

本発明の好ましい実施形態による真空断熱パネルの連結構造によると、タンク本体1の外部面には一定の間隔を置いてスタッドボルト51が設けられる。スタッドボルト51は、溶接によってタンク本体1の外部面に固定装着されることができる。 According to the connection structure of the vacuum heat insulating panel according to the preferred embodiment of the present invention, the stud bolts 51 are provided on the outer surface of the tank body 1 at regular intervals. The stud bolt 51 can be fixedly mounted on the outer surface of the tank body 1 by welding.

スタッドボルト51の上には、所定の厚さを有するパッド2が挟まれる。前記パッド2は、周りに比して中央部位の高さが低く段差が生じ、中央に貫通溝が形成されている。そこで、前記スタッドボルト51は、パッド2の段差部位に形成された貫通溝を通過し、その上にスタッドボルト51の末端を収容する第1固定部材3が螺合される。前記第1固定部材3は、一側の下部末端52がスタッドボルト51と螺合して、第1固定部材3の側面に形成される押し突起53がパッド2を押してパッド2がタンク本体1に密着されるように固定する。前記パッド2の中央部には、下向に段差が生じて空いた空間8からなる段差部位が形成されている。そこで、スタッドボルト51を前記段差部位に貫通した後、第1固定部材3が挟まれても第1固定部材3において真空断熱パネル3を押す押し突起53が前記段差部位の空いた空間8内に位置して、下部真空断熱パネル層6bに真空断熱パネル6を密着させて装着するのに障害にならない。 A pad 2 having a predetermined thickness is sandwiched on the stud bolt 51. The pad 2 has a lower central portion than the surroundings and a step is formed, and a through groove is formed in the center. Therefore, the stud bolt 51 passes through a through groove formed in a stepped portion of the pad 2, and a first fixing member 3 accommodating the end of the stud bolt 51 is screwed onto the through groove. In the first fixing member 3, the lower end 52 on one side is screwed with the stud bolt 51, the push projection 53 formed on the side surface of the first fixing member 3 pushes the pad 2, and the pad 2 is attached to the tank body 1. Fix it so that it is in close contact. In the central portion of the pad 2, a step portion formed by a space 8 having a step downward and vacant is formed. Therefore, even if the first fixing member 3 is sandwiched after the stud bolt 51 is penetrated through the step portion, the push projection 53 that pushes the vacuum heat insulating panel 3 in the first fixing member 3 is provided in the space 8 where the step portion is vacant. Positionally, it does not hinder the mounting of the vacuum insulation panel 6 in close contact with the lower vacuum insulation panel layer 6b.

前記第1固定部材3において、スタッドボルト51が結合される部位の下部末端52の反対側の上部末端54には、第2固定部材4の下部末端71が収容されるように延長ネジ山が形成される。 In the first fixing member 3, an extension screw thread is formed at the upper end 54 on the opposite side of the lower end 52 of the portion where the stud bolt 51 is joined so that the lower end 71 of the second fixing member 4 is accommodated. Will be done.

前記パッド2の上には、真空断熱パネル6の角が定着されることにより形成される部真空断熱パネル層6bが固定される。言い換えれば、下部真空断熱パネル層6bを形成する真空断熱パネル6の各角部は、それぞれ相異なるパッド2上に定着されて固定される。前記真空断熱パネル6は、一定の間隔で設けられたパッド2の上に連続して装着されてタンク本体1を取り囲み、パッド2によってタンク本体1と真空断熱パネル6との間で間隙9の大きさが一定に維持し得る。 A portion vacuum heat insulating panel layer 6b formed by fixing the corners of the vacuum heat insulating panel 6 is fixed on the pad 2. In other words, each corner of the vacuum heat insulating panel 6 forming the lower vacuum heat insulating panel layer 6b is fixed and fixed on different pads 2. The vacuum insulation panel 6 is continuously mounted on pads 2 provided at regular intervals to surround the tank body 1, and the size of the gap 9 between the tank body 1 and the vacuum insulation panel 6 by the pad 2 is large. Can be kept constant.

パッド2の上に各角がかけられて装着された下部真空断熱パネル層6bの真空断熱パネル6は、パッド2を固定している第1固定部材3に第2固定部材4が螺合されて固定される。前記第2固定部材4は、板状の押し板72と前記押し板72の下部に設けられる下部末端71とからなって、第2固定部材4の下部末端71が第1固定部材3に結合される時、前記押し板72が各真空断熱パネル6の角を押して固定する。これによって、前記真空断熱パネル6は、スタッドボルト51と第1、第2固定部材3、4を含む装着部材が前記真空断熱パネル6の角が会う頂点部分を固定する。 In the vacuum insulation panel 6 of the lower vacuum insulation panel layer 6b mounted on the pad 2 with each corner hung, the second fixing member 4 is screwed into the first fixing member 3 fixing the pad 2. It is fixed. The second fixing member 4 is composed of a plate-shaped push plate 72 and a lower end 71 provided at the lower part of the push plate 72, and the lower end 71 of the second fixing member 4 is coupled to the first fixing member 3. At that time, the push plate 72 pushes and fixes the corners of each vacuum heat insulating panel 6. As a result, the vacuum heat insulating panel 6 fixes the apex portion where the corners of the vacuum heat insulating panel 6 meet with the mounting member including the stud bolt 51 and the first and second fixing members 3 and 4.

一方、前記パッド2の中央部で段差が生じた段差部位の空いた空間8と真空断熱パネル6の隣接された真空断熱パネル6との間は、弾性を有するフォームや無機質繊維系からなる断熱パッド5が充填される。。前記真空断熱パネル5の間の断熱パッド5は、真空断熱パネル6の面に予め取り付けられて装着され得るか、又は真空断熱パネル6が装着された後に挟まれて装着されることができる。前記パッドは、液化ガスが供給或いは排出されることにより、タンク本体1が収縮或いは膨張することによりその幅が変化することができる。 On the other hand, between the space 8 where the step portion is vacant in the central portion of the pad 2 and the vacuum heat insulating panel 6 adjacent to the vacuum heat insulating panel 6, a heat insulating pad made of elastic foam or an inorganic fiber system is used. 5 is filled. .. The heat insulating pad 5 between the vacuum heat insulating panels 5 can be mounted in advance on the surface of the vacuum heat insulating panel 6, or can be sandwiched and mounted after the vacuum heat insulating panel 6 is mounted. The width of the pad can be changed by contracting or expanding the tank body 1 by supplying or discharging the liquefied gas.

前記の真空断熱パネル6は、下部真空断熱パネル層6bの上に上部真空断熱パネル層6aが複数個の層に積層される時、交差積層するように構成する。図3の(a)のように、隣接された真空断熱パネル6の間に積層方向の境界面が一直線上に積層されると、大気からの熱がタンクの表面まで到達する長さが相対的に短くて断熱性能が落ちる。一方、図3の(b)に示された本発明の好ましい実施形態のように、真空断熱パネル6が互いに連続して交差積層されると、積層方向の境界面がジグザグを成して大気からの熱がタンクの表面まで到達する長さが長くて断熱性能が改善される。これは、以下の数式の通りにフーリエ法則に基づく。 The vacuum heat insulating panel 6 is configured to be cross-laminated when the upper vacuum heat insulating panel layer 6a is laminated on the lower vacuum heat insulating panel layer 6b in a plurality of layers. As shown in (a) of FIG. 3, when the boundary surfaces in the stacking direction are stacked in a straight line between the adjacent vacuum insulation panels 6, the length at which the heat from the atmosphere reaches the surface of the tank is relative. It is too short and the heat insulation performance drops. On the other hand, when the vacuum heat insulating panels 6 are continuously cross-laminated with each other as in the preferred embodiment of the present invention shown in FIG. 3 (b), the boundary surfaces in the stacking direction form a zigzag from the atmosphere. The heat of the tank reaches the surface of the tank for a long time, which improves the heat insulation performance. This is based on Fourier's law as shown in the following formula.

フーリエ法則は、次の数学式1の通りである。
[数学式1]
Q = −kA(t2−t1)/L
The Fourier law is as shown in the following mathematical formula 1.
[Mathematical formula 1]
Q = -kA (t2-t1) / L

(ここで、Q:熱伝達量、A:断面積、k:熱伝導率、t2−t1:温度差、L:距離) (Here, Q: heat transfer amount, A: cross-sectional area, k: thermal conductivity, t2-t1: temperature difference, L: distance)

前記フーリエ法則によると、伝達される熱量は断面積に比例し、温度勾配に対して距離に反比例する。即ち、真空断熱パネル6の積層方向の境界面が一直線上に積層されて施工するよりもジグザグに交差積層施工する場合、大気からの熱がタンクの表面まで到達する長さが長くなるため、熱量を最小化して断熱性能を改善できるのが分かる。 According to the Fourier law, the amount of heat transferred is proportional to the cross-sectional area and inversely proportional to the distance with respect to the temperature gradient. That is, when the boundary surfaces of the vacuum heat insulating panels 6 in the stacking direction are laminated in a straight line and cross-laminated in a zigzag manner, the length of heat from the atmosphere reaching the surface of the tank becomes longer, so that the amount of heat is increased. It can be seen that the insulation performance can be improved by minimizing.

前記真空断熱パネル6は、少なくとも一つ以上連続して積層されると、図4に示されたように少なくとも一つは、真空断熱パネル上に保護層81を含むことができる。前記保護層81は、前記真空断熱パネルが外部の温度環境や圧力、機械的衝撃からの内部真空毀損を保護する。 When at least one or more of the vacuum insulation panels 6 are continuously laminated, at least one of them may include a protective layer 81 on the vacuum insulation panel as shown in FIG. In the protective layer 81, the vacuum heat insulating panel protects the internal vacuum damage from an external temperature environment, pressure, and mechanical impact.

図4は、前記保護層81が含まれた真空断熱パネルが最上部層に積層された場合を例示している。前記保護層81は、真空断熱パネルの外部に積層され得るし、真空断熱パネルの外面にコーティングされ得る。前記保護層81は、ポリプロピレン、ポリエチレン、ポリスチレン、ポリビニルアルコール、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレートのような有機材質のシート又は発泡フォーム、不織布、ガラス繊維のような無機材質のシートで形成することができる。 FIG. 4 illustrates a case where the vacuum heat insulating panel including the protective layer 81 is laminated on the uppermost layer. The protective layer 81 may be laminated on the outside of the vacuum insulation panel or coated on the outer surface of the vacuum insulation panel. The protective layer 81 may be formed of a sheet made of an organic material such as polypropylene, polyethylene, polystyrene, polyvinyl alcohol, polycarbonate, polymethylmethacrylate, or polyethylene terephthalate, or a sheet made of an inorganic material such as foamed foam, non-woven fabric, or glass fiber. it can.

積層された真空断熱パネル6の最上部層には仕上げ材7を装着する。前記仕上げ材は、ガルバリューム、アルミニウム、亜鉛、ステンレス鋼板のような金属材シートや炭素繊維、ガラス繊維、岩綿のような繊維で補強したフェノール樹脂、エポキシ樹脂、ポリエステル樹脂又は熱硬化樹脂の複合材料シート、又はゴムシート、又は木板材などが使用され得る。 A finishing material 7 is attached to the uppermost layer of the laminated vacuum heat insulating panels 6. The finishing material is a composite material of a metal sheet such as galvalume, aluminum, zinc, stainless steel plate, a phenol resin reinforced with carbon fiber, glass fiber, and fiber such as rock wool, an epoxy resin, a polyester resin, or a thermosetting resin. Sheets, rubber sheets, wood boards, etc. may be used.

仕上げ材を装着する方法は図5に示した。前記仕上げ材7は、5の(a)のように真空断熱パネル6に密着させ、垂直にボルティング(bolting)して装着すれば、前記真空断熱パネル6の内部に形成されている真空を毀損させることができる。従って、図5の(b)のように、前記仕上げ材7を90度に折れて水平にボルティングして締めたり、図5の(c)のように接着剤を前記仕上げ材7と真空断熱パネル6の間に塗って接着剤層100による固定を誘導したり、選択的には前記のように仕上げ、図5の(d)のようにバンドで固定するのが好ましい。 The method of mounting the finishing material is shown in FIG. If the finishing material 7 is brought into close contact with the vacuum heat insulating panel 6 as in (a) of 5 and vertically bolted and mounted, the vacuum formed inside the vacuum heat insulating panel 6 is damaged. Can be made to. Therefore, as shown in FIG. 5 (b), the finishing material 7 is folded at 90 degrees and bolted horizontally to be tightened, or as shown in FIG. 5 (c), the adhesive is vacuum-insulated with the finishing material 7. It is preferable to apply it between the panels 6 to induce fixing by the adhesive layer 100, or selectively finish it as described above and fix it with a band as shown in FIG. 5D.

本発明による独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造は、真空断熱パネル6と断熱パッド5、仕上げ材7のような装着部材を成す複合部材がタンク本体1上に組み立てることができ、又は前記真空断熱パネル6と前記装着部材が構成される真空断熱パネル層がモジュール化されて組み立てられた状態でタンクに装着されることができる。 In the cross-laminated vacuum insulation panel connection structure of the stand-alone liquefied gas storage tank according to the present invention, a composite member forming a mounting member such as the vacuum insulation panel 6, the insulation pad 5, and the finishing material 7 is assembled on the tank body 1. It can be mounted on the tank in a state in which the vacuum heat insulating panel 6 and the vacuum heat insulating panel layer including the mounting member are modularized and assembled.

本発明による独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造は、陸上の独立型液化ガスタンクだけでなく、独立型液化ガスタンクが設けられていると同時に、流動が発生する海上で浮遊されたまま使用する海洋構造物のうち、どこでも適用され得るし、LNGやLPGなどを運搬する液化ガス運搬船やLNG RV(LNG Regasfication Vessel)のような船舶を始めとして、LNG FPSO(Floating Production, Storage And Offloading)やLNG FSRU(Floating Storage and Regasification Unit)のような海上プラントなどに全て適用され得る。 The cross-laminated vacuum insulation panel connection structure of the stand-alone liquefied gas storage tank according to the present invention is provided not only with the stand-alone liquefied gas tank on land but also at the same time when the flow is generated at sea. LNG FPSO (Floating Production, It can be applied to all offshore plants such as Storage And Offloading (Storage And Offloading) and LNG FSRU (Floating Storage and Regasification Unit).

以上のように本発明による、独立型液化ガス貯蔵タンクの交差積層された真空断熱パネルの連結構造を例示された図面を参照して説明したが、本発明は、以上で説明された実施例と図面によって限定されず、特許請求の範囲内で本発明が属する技術の分野における通常の知識を有する者によって様々な修正及び変更がなされることは勿論である。 As described above, the connection structure of the cross-laminated vacuum insulation panels of the stand-alone liquefied gas storage tank according to the present invention has been described with reference to the illustrated drawings, but the present invention has the same as the examples described above. It goes without saying that various modifications and changes are made by a person having ordinary knowledge in the field of technology to which the present invention belongs within the scope of claims, not limited by the drawings.

1 タンク表面
2 パッド
3 第1固定部材
4 第2固定部材
5 断熱パッド
6 真空断熱パネル
7 仕上げ材
8 空いた空間
9 間隙
51 スタッドボルト
52 第1固定部材の下部末端部
53 第1固定部材の押し突起
54 第1固定部材の上部末端
71 第2固定部材の下部末端
72 押し板
81 保護層
100 接着剤層
1 Tank surface 2 Pad 3 1st fixing member 4 2nd fixing member 5 Insulation pad 6 Vacuum insulation panel 7 Finishing material 8 Empty space 9 Gap 51 Stud bolt 52 Lower end of 1st fixing member 53 Pushing of 1st fixing member Protrusion 54 Upper end of first fixing member 71 Lower end of second fixing member 72 Push plate 81 Protective layer 100 Adhesive layer

Claims (7)

タンク本体の表面に所定の間隔でスタッドボルトを設け、前記スタッドボルトを介して前記タンク本体の外側を取り囲むように断熱パネルを積層して、前記タンク本体を大気から断熱するようにする独立型液化ガス貯蔵タンクの断熱パネル連結構造において、
前記断熱パネルは、心材を取り囲み、内部が真空で形成される外皮を有する真空断熱パネルからなり、
前記断熱パネル連結構造は、
前記スタッドボルトに挟まれるパッドと、
前記スタッドボルトと締結され、締結状態で前記パッドを加圧して固定する押し突起を有する第1固定部材と
前記パッドの上に積層された真空断熱パネルの角が定着されることにより形成される下部真空断熱パネル層と、
前記第1固定部材と結合され、結合状態で前記真空断熱パネルの角を加圧して固定する押し板を有する第2固定部材と、
前記下部真空断熱パネル層の上に積層された上部真空断熱パネル層と、を備え、前記上部真空断熱パネル層は、真空断熱パネルが下部の真空断熱パネルに対し1つ以上の層に連続してジグザグに交差積層されて形成されることを特徴とする、独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。
Stand-alone liquefaction in which stud bolts are provided on the surface of the tank body at predetermined intervals, and heat insulating panels are laminated so as to surround the outside of the tank body via the stud bolts so as to insulate the tank body from the atmosphere. In the insulation panel connection structure of the gas storage tank,
The heat insulating panel comprises a vacuum heat insulating panel having an exodermis that surrounds the core material and is formed with a vacuum inside.
The heat insulating panel connecting structure
The pad sandwiched between the stud bolts and
A lower portion formed by fixing the corners of a first fixing member having a push projection that is fastened to the stud bolt and pressurizing and fixing the pad in the fastened state and a vacuum heat insulating panel laminated on the pad. Vacuum insulation panel layer and
A second fixing member that is coupled to the first fixing member and has a push plate that pressurizes and fixes the corners of the vacuum insulation panel in the combined state.
The upper vacuum insulation panel layer is provided with an upper vacuum insulation panel layer laminated on the lower vacuum insulation panel layer, and the upper vacuum insulation panel layer is a continuous layer in which the vacuum insulation panel is one or more layers with respect to the lower vacuum insulation panel. A connected structure of vacuum insulation panels in which stand-alone liquefied gas storage tanks are cross-laminated, characterized in that they are cross-laminated in a zigzag manner.
少なくとも一つ以上の真空断熱パネル上に積層される保護層を含むことを特徴とする、請求項1に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The connected structure of the vacuum insulation panel in which the stand-alone liquefied gas storage tanks according to claim 1 are cross-laminated, comprising a protective layer laminated on at least one or more vacuum insulation panels. 前記保護層は、ポリプロピレン、ポリエチレン、ポリスチレン、ポリビニルアルコール、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレートの中から選択される有機材質のシート又は発泡フォーム、不織布、ガラス繊維の中から選択される無機材質のシートを含むことを特徴とする、請求項2に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The protective layer is an organic material sheet selected from polypropylene, polyethylene, polystyrene, polyvinyl alcohol, polycarbonate, polymethylmethacrylate, and polyethylene terephthalate, or an inorganic material sheet selected from foamed foam, non-woven fabric, and glass fiber. The connected structure of the vacuum heat insulating panel in which the stand-alone liquefied gas storage tanks according to claim 2 are cross-laminated. 前記真空断熱パネルは、側面とパッドの中央部に形成される段差部の空いた空間には弾性を有するフォームパッド又は無機質繊維系パッドの断熱パッドがさらに含むことを特徴とする、請求項1に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The vacuum heat insulating panel is characterized in that a heat insulating pad of an elastic foam pad or an inorganic fiber-based pad is further included in a space having a step portion formed on a side surface and a central portion of the pad. A connected structure of vacuum insulation panels in which the described stand-alone liquefied gas storage tanks are cross-laminated. 前記上部真空断熱パネル層の最上部層に装着される仕上げ材は、ガルバリウム、アルミニウム、亜鉛、ステンレス鋼板の中から選択される金属材シート、又はフェノール樹脂、エポキシ樹脂、ポリエステル樹脂の中から選択される熱硬化樹脂の複合材料シート、又はゴムシート、又は木板材からなる群から選ばれる一つ以上を含むことを特徴とする、請求項1に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The finishing material attached to the uppermost layer of the upper vacuum heat insulating panel layer is selected from a metal sheet selected from galvalume, aluminum, zinc, and stainless steel plate, or a phenol resin, epoxy resin, and polyester resin. The stand-alone liquefied gas storage tank according to claim 1, which comprises one or more selected from the group consisting of a composite material sheet of a thermosetting resin, a rubber sheet, or a wooden board material, is cross-laminated. Connection structure of vacuum insulation panel . 前記仕上げ材は、前記仕上げ材を90度に折れて水平にボルティングして締められ、接着剤で仕上げられ、バンドで固定することを特徴とする、請求項5に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The finish is tightened by horizontally and vaulting broken the finish 90 degrees, finished with an adhesive, characterized in that fixed bands, independent liquefied gas according to claim 5 A connected structure of vacuum insulation panels in which storage tanks are cross-laminated. 前記真空断熱パネルは、フォームパッドや繊維系パッドからなる断熱パネル仕上げ材一体に取り付けられた、モジュール化されものであることを特徴とする、請求項1に記載の独立型液化ガス貯蔵タンクが交差積層された真空断熱パネルの連結構造。 The vacuum insulation panel is thermal insulating panel of foam pad or fiber-based pads attached to finish integrally, and characterized in that the modular, stand-alone liquefied gas storage of claim 1 A connection structure of vacuum insulation panels in which tanks are cross-laminated.
JP2018530851A 2015-12-15 2016-11-21 Connection structure of cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks Active JP6781526B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150178800A KR101772581B1 (en) 2015-12-15 2015-12-15 Cross stacked insulation panel installation structure of independent type liquefied gas storage tank
KR10-2015-0178800 2015-12-15
PCT/KR2016/013425 WO2017104988A1 (en) 2015-12-15 2016-11-21 Structure for connecting alternately stacked vacuum insulation panels of independent type liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JP2019506338A JP2019506338A (en) 2019-03-07
JP6781526B2 true JP6781526B2 (en) 2020-11-04

Family

ID=59056894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530851A Active JP6781526B2 (en) 2015-12-15 2016-11-21 Connection structure of cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks

Country Status (5)

Country Link
EP (1) EP3392131B1 (en)
JP (1) JP6781526B2 (en)
KR (1) KR101772581B1 (en)
CN (1) CN108541247B (en)
WO (1) WO2017104988A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427466B1 (en) 2017-08-01 2022-08-01 엘지전자 주식회사 Vehicle, refrigerater for vehicle, and controlling method for refrigerator for vehicle
KR102459784B1 (en) 2017-08-01 2022-10-28 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102449175B1 (en) 2017-08-01 2022-09-29 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102529116B1 (en) 2017-08-01 2023-05-08 엘지전자 주식회사 Vacuum adiabatic body, fabrication method for the vacuum adibatic body, and refrigerating or warming apparatus insulated by the vacuum adiabatic body
KR102449177B1 (en) 2017-08-01 2022-09-29 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102459786B1 (en) 2017-08-16 2022-10-28 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102003407B1 (en) 2017-12-27 2019-07-24 대우조선해양 주식회사 Insulation system for natural gas cargo of carrier and liquefied natural gas fuel tank
KR102019273B1 (en) * 2017-12-28 2019-09-06 대우조선해양 주식회사 Insulation system for natural gas cargo of carrier and liquefied natural gas fuel tank
CN108869737B (en) * 2018-06-27 2021-02-26 深圳市中科金朗产业研究院有限公司 High-pressure tank and manufacturing method thereof
KR102185817B1 (en) * 2018-08-28 2020-12-02 대우조선해양 주식회사 Insulation system for natural gas cargo of carrier and liquefied natural gas fuel tank
KR102158648B1 (en) * 2018-12-20 2020-09-23 대우조선해양 주식회사 Insulation wall securing device for lng storage tank
KR102213093B1 (en) * 2019-07-03 2021-02-08 (주)동성화인텍 Insulation structure of cryogenic liquid storage tank
KR102320577B1 (en) * 2020-04-08 2021-11-03 정태영 Insulation structure of pressure-type storage tank in which cryogenic liquefied gas is stored
CN114889751A (en) * 2022-04-27 2022-08-12 江南造船(集团)有限责任公司 Heat insulation layer for low-temperature liquid cargo tank and low-temperature liquid cargo tank
CN115445874B (en) * 2022-09-30 2024-05-07 上海外高桥造船海洋工程有限公司 Method for stacking, placing and coating binding bridge sheet bodies

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW261654B (en) * 1993-05-20 1995-11-01 Ishikawajima Harima Heavy Ind
JPH0867292A (en) * 1994-06-24 1996-03-12 Mitsubishi Heavy Ind Ltd Internal surface heat insulating structure for cargo tank of liquefied gas carrier
CN100453402C (en) * 2004-12-08 2009-01-21 韩国Gas公社 Lng storage tank and constructing method thereof
KR101031265B1 (en) * 2008-03-11 2011-04-29 삼성중공업 주식회사 Containment tank for liquefied natural gas
KR100990179B1 (en) * 2008-05-08 2010-10-29 삼성중공업 주식회사 Insulation strusture to lng carrier cargo
JP5238577B2 (en) * 2009-03-31 2013-07-17 Jx日鉱日石エネルギー株式会社 Composite container and method for manufacturing composite container
JP5452969B2 (en) * 2009-04-13 2014-03-26 川崎重工業株式会社 Thermal insulation structure of low temperature tank and thermal insulation construction method
KR20110046627A (en) * 2009-10-29 2011-05-06 주식회사 화인텍 Insulation panel attachment structure of an independence type liquified gas tank and attachment method thereof
KR20110051407A (en) * 2009-11-10 2011-05-18 주식회사 화인텍 Independence type liquified gas tank having double insulation layer
KR20110136431A (en) * 2010-06-15 2011-12-21 대우조선해양 주식회사 Insulation box of a lng storage tank
KR20120035952A (en) * 2010-10-07 2012-04-17 삼성중공업 주식회사 Cargo containment
FR2972242B1 (en) * 2011-03-01 2014-10-17 Gaztransp Et Technigaz FIXING INSULATING PANELS ON A CARRIER WALL ACCORDING TO A REPEATED PATTERN
KR101415899B1 (en) * 2012-05-09 2014-07-14 한국과학기술원 Cryogenic liquid containment system and cargo containment system for liquefied natural gas carrier using the same
FR2994245B1 (en) * 2012-08-03 2015-05-29 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATING TANK WALL WITH SPACER CARRIER ELEMENTS
FR2998256B1 (en) * 2012-11-16 2019-12-20 Gaztransport Et Technigaz PROCESS FOR THE MANUFACTURE OF A WATERPROOF AND THERMALLY INSULATED TANK WALL
JP6390009B2 (en) * 2013-03-01 2018-09-19 パナソニックIpマネジメント株式会社 Insulated container
KR101455633B1 (en) * 2013-05-23 2014-10-30 삼성중공업 주식회사 Insulation structure of cargo tank for lng

Also Published As

Publication number Publication date
KR20170071623A (en) 2017-06-26
KR101772581B1 (en) 2017-08-31
CN108541247B (en) 2020-08-11
CN108541247A (en) 2018-09-14
EP3392131B1 (en) 2022-06-01
EP3392131A1 (en) 2018-10-24
JP2019506338A (en) 2019-03-07
EP3392131A4 (en) 2019-09-25
WO2017104988A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6781526B2 (en) Connection structure of cross-laminated vacuum insulation panels of stand-alone liquefied gas storage tanks
JP6742407B2 (en) Sealed heat insulation tank
CN108700257B (en) Insulating unit suitable for making insulating walls in sealed cans
AU2012291901B2 (en) Sealed, thermally-insulating vessel
US11674643B2 (en) Corner structure for a sealed, thermally insulated tank
CN104870882A (en) Sealed thermally insulating vessel
RU2758743C1 (en) Heat-insulating sealed tank
US11480298B2 (en) Sealed and thermally insulating tank with several areas
CN116324261A (en) Sealed and thermally insulated can
KR101419821B1 (en) Dual structure of storing container for liquefied natural gas
KR102608691B1 (en) Insulation System of Liquefied Natural Gas Storage Tank
KR101302213B1 (en) Insulation structure of lng cargo tank
EP3733500B1 (en) Membrane bonding structure and liquefied gas storage tank comprising same
KR102630657B1 (en) Liquefied gas storage tank, vessel having the same and manufacturing method of liquefied gas storage tank
KR102469993B1 (en) Handling device for insulation panel
RU2822023C1 (en) Sealed and heat-insulating tank
RU2812076C1 (en) Sealed and heat-insulating tank
CN116157615B (en) Sealed and thermally insulated tank
RU2812589C1 (en) Sealed and heat-insulated tank
KR20180061944A (en) Insulation system of membraine type storage tank and membrain type storage tank
KR20220114333A (en) Insulation structure for liquified gas storage tank and method for forming the insulation structure
KR20220026936A (en) Insulation structure for liquified gas storage tank with leak path and method for forming the insulation structure, and the leak path forming tool
KR20220026933A (en) Insulation structure for liquified gas storage tank and method for forming the insulation structure
KR20220026935A (en) Insulation structure for liquified gas storage tank and method for forming the insulation structure
KR101788748B1 (en) Insulation Structure For LNG Carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6781526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250