JP6771509B2 - Immunomagnetic composition, its preparation method, its usage method and cancer treatment kit - Google Patents
Immunomagnetic composition, its preparation method, its usage method and cancer treatment kit Download PDFInfo
- Publication number
- JP6771509B2 JP6771509B2 JP2018088193A JP2018088193A JP6771509B2 JP 6771509 B2 JP6771509 B2 JP 6771509B2 JP 2018088193 A JP2018088193 A JP 2018088193A JP 2018088193 A JP2018088193 A JP 2018088193A JP 6771509 B2 JP6771509 B2 JP 6771509B2
- Authority
- JP
- Japan
- Prior art keywords
- antibody
- immunomagnetic composition
- immunomagnetic
- fucoidan
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010028980 Neoplasm Diseases 0.000 title claims description 185
- 239000000203 mixture Substances 0.000 title claims description 157
- 201000011510 cancer Diseases 0.000 title claims description 88
- 238000011282 treatment Methods 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 35
- 238000002360 preparation method Methods 0.000 title description 16
- 229940031182 nanoparticles iron oxide Drugs 0.000 claims description 98
- 229920000855 Fucoidan Polymers 0.000 claims description 62
- 229920002307 Dextran Polymers 0.000 claims description 47
- 239000010410 layer Substances 0.000 claims description 26
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 claims description 22
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 claims description 22
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 claims description 22
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 claims description 22
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 claims description 16
- 239000012792 core layer Substances 0.000 claims description 16
- 239000008346 aqueous phase Substances 0.000 claims description 15
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 14
- 102000008096 B7-H1 Antigen Human genes 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 239000000839 emulsion Substances 0.000 claims description 12
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 11
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 11
- 125000003172 aldehyde group Chemical group 0.000 claims description 11
- 239000012071 phase Substances 0.000 claims description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 230000002062 proliferating effect Effects 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- 108010021064 CTLA-4 Antigen Proteins 0.000 claims description 6
- 102000008203 CTLA-4 Antigen Human genes 0.000 claims description 6
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 6
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 claims description 6
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 claims description 6
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims description 6
- 101710089372 Programmed cell death protein 1 Proteins 0.000 claims description 6
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 241001491705 Macrocystis pyrifera Species 0.000 claims description 4
- 241000227647 Fucus vesiculosus Species 0.000 claims description 3
- 241001261506 Undaria pinnatifida Species 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 description 73
- 238000010586 diagram Methods 0.000 description 61
- 238000012360 testing method Methods 0.000 description 41
- 241000699670 Mus sp. Species 0.000 description 38
- 210000001744 T-lymphocyte Anatomy 0.000 description 37
- 210000004027 cell Anatomy 0.000 description 37
- 239000000243 solution Substances 0.000 description 24
- 206010027476 Metastases Diseases 0.000 description 21
- 230000009401 metastasis Effects 0.000 description 21
- 238000012916 structural analysis Methods 0.000 description 19
- 210000004072 lung Anatomy 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 102000004127 Cytokines Human genes 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 206010006187 Breast cancer Diseases 0.000 description 11
- 208000026310 Breast neoplasm Diseases 0.000 description 11
- 230000001093 anti-cancer Effects 0.000 description 11
- 230000006698 induction Effects 0.000 description 11
- 238000010172 mouse model Methods 0.000 description 11
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 230000008595 infiltration Effects 0.000 description 10
- 238000001764 infiltration Methods 0.000 description 10
- 210000000952 spleen Anatomy 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 206010009944 Colon cancer Diseases 0.000 description 8
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 8
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 8
- 230000000259 anti-tumor effect Effects 0.000 description 8
- 238000009169 immunotherapy Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 102000000588 Interleukin-2 Human genes 0.000 description 7
- 108010002350 Interleukin-2 Proteins 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 230000009702 cancer cell proliferation Effects 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 5
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 238000012742 biochemical analysis Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004108 freeze drying Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000006052 T cell proliferation Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000001640 apoptogenic effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 210000003191 femoral vein Anatomy 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 210000002429 large intestine Anatomy 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 102100032912 CD44 antigen Human genes 0.000 description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 210000003289 regulatory T cell Anatomy 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 206010027458 Metastases to lung Diseases 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000013793 astaxanthin Nutrition 0.000 description 2
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 2
- 229940022405 astaxanthin Drugs 0.000 description 2
- 239000001168 astaxanthin Substances 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BTOOAFQCTJZDRC-UHFFFAOYSA-N 1,2-hexadecanediol Chemical compound CCCCCCCCCCCCCCC(O)CO BTOOAFQCTJZDRC-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 241000195480 Fucus Species 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 1
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- 229910000708 MFe2O4 Inorganic materials 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 206010059516 Skin toxicity Diseases 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 238000003639 Student–Newman–Keuls (SNK) method Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 241000021375 Xenogenes Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002257 antimetastatic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000014508 negative regulation of coagulation Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- 231100000438 skin toxicity Toxicity 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000002100 tumorsuppressive effect Effects 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 238000000733 zeta-potential measurement Methods 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
- Medicinal Preparation (AREA)
Description
本発明は、組成物及びその調製方法に関し、特に、特殊の物理形態を特徴とする医薬組成物及びその調製方法に関する。 The present invention relates to a composition and a method for preparing the same, and more particularly to a pharmaceutical composition characterized by a special physical form and a method for preparing the same.
癌は、悪性腫瘍とも言われ、細胞が異常に増殖する状態であり、これらの増殖性細胞が体の他の部分に侵入する可能性があり、細胞分裂や増殖に対する制御機能の異常による疾患である。全世界に渡って、癌に罹患する人がますます増加しており、癌が台湾人の死亡原由の上位10位にランクインし、27年連続で死亡原因のトップ10になっている。 Cancer, also known as malignant tumor, is a condition in which cells proliferate abnormally, and these proliferative cells can invade other parts of the body, resulting in abnormal control over cell division and proliferation. is there. The number of people suffering from cancer is increasing all over the world, and cancer is ranked in the top 10 causes of death among Taiwanese and has been the top 10 causes of death for 27 consecutive years.
癌に対する常規の治療手段としては、手術治療、放射線療法及び化学療法などが含まれる。免疫療法は、上記の治療法以外の癌治療法であり、患者自身の免疫系を活性化させ、腫瘍細胞又は腫瘍抗原物質によって体の特異的細胞免疫及び体液性免疫応答を誘導して、体の抗癌能力を高め、腫瘍の生長、拡散及び再発を阻止することで、腫瘍の摘出又は制御の目的を達成する。免疫チェックポイント(immune checkpoint)は、幾つかの免疫療法の中で最も重視されるものであり、2015年以来、免疫チェックポイント阻害剤(immune checkpoint inhibitor)による50以上の複合療法が臨床で試験されるようになる。しかしながら、免疫チェックポイント阻害剤は、ヒト免疫系のフィードバック機能をオフにし、細胞傷害性T細胞(CD8+ T細胞)により、癌細胞が攻撃されるほか、皮膚及び胃潰瘍の潰瘍形成等の自己免疫反応も引き起こすことがある。 Regular treatments for cancer include surgical treatment, radiation therapy and chemotherapy. Immunotherapy is a cancer treatment method other than the above-mentioned treatment methods, in which the body activates its own immune system and induces the body's specific cell-mediated immunity and humoral immune response by tumor cells or tumor antigenic substances. Achieve the purpose of tumor resection or control by enhancing the anticancer ability of the tumor and preventing tumor growth, spread and recurrence. Immune checkpoints are the most important of several immunotherapies, and since 2015, more than 50 combined therapies with immune checkpoint inhibitors have been clinically tested. Become so. However, immune checkpoint inhibitors turn off the feedback function of the human immune system, and cytotoxic T cells (CD8 + T cells) attack cancer cells as well as autoimmunity such as ulceration of skin and gastric ulcers. Reactions can also be triggered.
体内の腫瘍に対する特異的な免疫細胞の添加も、癌の治療において非常に有望なリンクであると考えられている。従来の技術の大部分は、患者から腫瘍における免疫細胞を取ってインビトロ培養して、マイクロディメンションのミクロ構造(例えば、マイクロビーズ(microbead))によって抗原提示細胞(antigen presenting cell;APCs)を模倣して、T細胞の増殖や訓練を行い、最後、患者の体に戻って癌細胞を殺す。しかしながら、そのような方法では、時間がかかり、材料をかなり消費し、且つ患者の体内の癌細胞が変異しやすく、再導入された免疫細胞が元々の効果を失う。一方、増殖用のマイクロビーズが大きすぎるため、人の血液循環によって目的領域に入ることができず、インビトロ培養しかで使用できない。また、このような担体は、表面移植抗体又は被覆された活性成分に加えて、通常、担体を形成する材料が賦形剤であり、治療にあまり役立たず、適用時の用量を制限するため、このような素材の固有欠陥となる。 The addition of specific immune cells to tumors in the body is also considered to be a very promising link in the treatment of cancer. Most of the prior art involves taking immune cells in a tumor from a patient and culturing them in vitro to mimic antigen presenting cells (APCs) with microdimensional microstructures (eg, microbeads). It proliferates and trains T cells, and finally returns to the patient's body to kill the cancer cells. However, such a method is time consuming, consumes considerable material, and the cancer cells in the patient's body are susceptible to mutation, and the reintroduced immune cells lose their original effect. On the other hand, the growth microbeads are too large to enter the target area due to human blood circulation and can only be used in in vitro culture. Also, in such carriers, in addition to surface-transplanted antibodies or coated active ingredients, the material forming the carrier is usually an excipient, which is not very therapeutic and limits the dose at the time of application. It becomes an inherent defect of such a material.
これに鑑みて、本発明の一態様は、コア層と、フコイダン(fucoidan)、酸化デキストラン(dextran)及び超常磁性酸化鉄ナノ粒子が疎水性相互作用(hydrophobic interaction)によって結合される複合物からなり、コア層を覆うシェル層と、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤である少なくとも1つの抗体を含む外層と、を備え、前記抗体は、シェル層の外にグラフトされ外層を構成する免疫磁気組成物を提供する。 In view of this, one aspect of the invention consists of a core layer and a complex in which fucoidan, dextran oxide and superparamagnetic iron oxide nanoparticles are bound by a hydrophobic interaction. , A shell layer covering the core layer and an outer layer containing at least one antibody that is an immune checkpoint inhibitor and / or a killer T cell proliferating agent, wherein the antibody is grafted out of the shell layer to form an outer layer. To provide an immunomagnetic composition.
前記の免疫磁気組成物によれば、前記免疫磁気組成物は、粒径が80nm〜350nmにある球体であってもよい。 According to the immunomagnetic composition, the immunomagnetic composition may be a sphere having a particle size of 80 nm to 350 nm.
前記の免疫磁気組成物によれば、前記フコイダンは、ウンデリア・ピンナチフィダ(Undaria pinnatifida)、マクロシスティス・ピリフェラ(Macrocystis pyrifera)又はフーカス・ベシクロサス(Fucus vesiculosus)から抽出されてもよい。 According to immunomagnetic compositions of the said fucoidan, Underia-Pin'nachifida (Undaria pinnatifida), may be extracted from the macro cis infantis-Pirifera (Macrocystis pyrifera) or Fukasu-vesiculosus (Fucus vesiculosus).
前記の免疫磁気組成物によれば、前記酸化デキストランは、アルデヒド基を有してもよい。前記酸化デキストランは、分子量が5kDa〜270kDaにあるデキストランによって調製されてもよい。 According to the immunomagnetic composition, the oxidized dextran may have an aldehyde group. The oxidized dextran may be prepared by dextran having a molecular weight of 5 kDa to 270 kDa.
前記の免疫磁気組成物によれば、前記免疫チェックポイント阻害剤は、PD−L1抗体、PD−1抗体、CTLA−4抗体及びTIM−3抗体からなる群から選ばれてもよい。前記キラーT細胞増殖剤は、CD3抗体、CD28抗体及び4−1BB抗体からなる群から選ばれてもよい。 According to the immunomagnetic composition, the immune checkpoint inhibitor may be selected from the group consisting of PD-L1 antibody, PD-1 antibody, CTLA-4 antibody and TIM-3 antibody. The killer T cell proliferating agent may be selected from the group consisting of CD3 antibody, CD28 antibody and 4-1BB antibody.
前記の免疫磁気組成物によれば、前記コア層は、活性物質を別に含んでもよい。 According to the immunomagnetic composition, the core layer may separately contain an active substance.
これによって、本発明の免疫磁気組成物は、抗癌活性を有するフコイダン、酸化デキストラン及び超常磁性酸化鉄ナノ粒子を担体として構成され、更に外層が抗体を有し且つコア層で活性物質を覆うナノスケール構造を形成してもよく、そのサイズ及び表面電荷は適切であり、体循環時間を増加させ、腫瘍に浸透し、腫瘍に対するフコイダンの役割を強める。外層の抗体は、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤であってもよく、これによって本発明の免疫磁気組成物が自体材料の抗癌作用に加えて、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤の両方であってもよく、腫瘍微小環境が大幅に改善され、且つ本発明の免疫磁気組成物は、単独の同じ抗体による免疫療法の抗癌効果を大幅に改善し、より少ない抗体用量でより良好な腫瘍抑制能力を達成することができる。また、製造された免疫磁気組成物は、凍結乾燥して粉末状の結晶を形成し、無菌条件下で長時間保存することができ、必要に応じて溶媒で再溶解して用いることができ、簡便で安定した特性を示す。 As a result, the immunomagnetic composition of the present invention is composed of fucoidan having anticancer activity, dextran oxide and superparamagnetic iron oxide nanoparticles as carriers, and the outer layer has an antibody and the core layer covers the active substance. Scale structures may be formed, of which size and surface charge are appropriate, to increase body circulation time, penetrate tumors and enhance the role of fucoidan in tumors. The antibody in the outer layer may be an immune checkpoint inhibitor and / or a killer T cell proliferation agent, whereby the immunomagnetic composition of the present invention can be an immune checkpoint inhibitor and / or an immune checkpoint inhibitor in addition to the anti-cancer effect of its own material. / Or both killer T cell proliferators, the tumor microenvironment is significantly improved, and the immunomagnetic compositions of the present invention significantly improve the anti-cancer effect of immunotherapy with the same antibody alone. Better tumor suppressor capacity can be achieved with lower antibody doses. Further, the produced immunomagnetic composition can be freeze-dried to form powdery crystals, can be stored for a long time under aseptic conditions, and can be redissolved in a solvent and used if necessary. Shows simple and stable characteristics.
本発明の別の態様は、フコイダン及び酸化デキストランを含む水相溶液を提供する工程と、有機溶媒及び超常磁性酸化鉄ナノ粒子を含む油相溶液を提供する工程と、水相溶液と油相溶液を混合し乳濁液を形成するエマルジョン反応を行う工程と、乳濁液における有機溶媒を除去して、磁気フコイダン担体を形成する工程と、磁気フコイダン担体と免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤である少なくとも1つの抗体を混合して、免疫磁気組成物を形成するグラフトを行う工程と、を備える免疫磁気組成物の調製方法を提供することにある。 Another aspect of the present invention is a step of providing an aqueous phase solution containing fucoidan and dextran oxide, a step of providing an oil phase solution containing an organic solvent and hypernormal magnetic iron oxide nanoparticles, and an aqueous phase solution and an oil phase solution. A step of performing an emulsion reaction to form an emulsion by mixing the two, a step of removing an organic solvent in the emulsion to form a magnetic fucoidan carrier, a magnetic fucoidan carrier and an immune checkpoint inhibitor and / or a killer T. It is an object of the present invention to provide a method for preparing an immunomagnetic composition, comprising a step of mixing at least one antibody which is a cell proliferation agent and performing a graft to form an immunomagnetic composition.
前記の免疫磁気組成物の調製方法によれば、前記免疫チェックポイント阻害剤は、PD−L1抗体、PD−1抗体、CTLA−4抗体及びTIM−3抗体からなる群から選ばれてもよく、前記キラーT細胞増殖剤は、CD3抗体、CD28抗体及び4−1BB抗体からなる群から選ばれてもよい。 According to the method for preparing an immunomagnetic composition, the immune checkpoint inhibitor may be selected from the group consisting of PD-L1 antibody, PD-1 antibody, CTLA-4 antibody and TIM-3 antibody. The killer T cell proliferating agent may be selected from the group consisting of CD3 antibody, CD28 antibody and 4-1BB antibody.
前記の免疫磁気組成物の調製方法によれば、フコイダンと酸化デキストランとの重量比は、1:0.1〜1:4であってもよい。 According to the method for preparing an immunomagnetic composition, the weight ratio of fucoidan to dextran oxide may be 1: 0.1 to 1: 4.
前記の免疫磁気組成物の調製方法によれば、前記酸化デキストランは、アルデヒド基を有してもよく、前記酸化デキストランは、分子量が5kDa〜270kDaにあるデキストランによって調製されてもよい。 According to the method for preparing an immunomagnetic composition, the oxidized dextran may have an aldehyde group, and the oxidized dextran may be prepared by a dextran having a molecular weight of 5 kDa to 270 kDa.
前記の免疫磁気組成物の調製方法によれば、前記有機溶媒は、メタン(methane)、ジクロロメタン(dichloromethane)又はクロロホルム(chloroform)であってもよい。 According to the method for preparing an immunomagnetic composition, the organic solvent may be methane (methane), dichloromethane (dichloromethane) or chloroform (chloroform).
これによって、本発明の免疫磁気組成物の調製方法は、他のターゲット担体の複雑な製造プロセスと異なり、構造を安定させるために余分な界面活性剤を使用する必要がなく、材料の入手と生産も非常に簡単である。 Thereby, the method for preparing an immunomagnetic composition of the present invention, unlike the complicated manufacturing process of other target carriers, does not require the use of extra surfactants to stabilize the structure, and the acquisition and production of materials. Is also very easy.
これによって、本発明の癌治療用キットは、本発明の免疫磁気組成物及び磁場発生装置を含み、磁場発生装置を磁気誘導の補助工具とすることによって、本発明の免疫磁気組成物を患部に蓄積して、局所的な拡大処置の効果を達成し、全身の免疫応答を回避する。本発明の癌治療用キットは、物理的及び生物学的両方の目的の役割を有し、従来の純粋な粋な抗体用量の1%だけを使用するが、より優れた腫瘍抑制能力を示し、半減期を2倍以上高めることができる。 Thereby, the cancer treatment kit of the present invention includes the immunomagnetic composition of the present invention and the magnetic field generator, and by using the magnetic field generator as an auxiliary tool for magnetic induction, the immunomagnetic composition of the present invention is applied to the affected area. Accumulate to achieve the effect of topical dilation treatment and avoid systemic immune response. The cancer treatment kits of the present invention serve both physical and biological purposes, using only 1% of conventional pure and sensible antibody doses, but exhibiting better tumor suppressor capacity. The half-life can be increased more than twice.
本発明の説明は、読者に本開示内容を基本的に理解させるように、本開示内容の簡略化された概要を提供する。この発明の内容は、本開示内容の完全な記述ではなく、また本発明実施例の重要な又は肝心な素子を指摘し、或いは本発明の範囲を限定するものではない。
下記の添付図面の説明は、本発明の上記及び他の目的、特徴、メリット及び実施例をより分かりやすくするためのものである。また、添付ファイル1〜5は、本明細書とは別に、物件提出書にて提出される。
本発明の上記及び他の目的、特徴、メリット及び実施例をより分かりやすくするために、添付図面の説明は下記の通りである。
The description of the present invention provides a simplified overview of the disclosure so that the reader may have a basic understanding of the disclosure. The content of the present invention is not a complete description of the content of the present invention, nor does it point out important or essential elements of the examples of the present invention, or limit the scope of the present invention.
The description of the accompanying drawings below is for the purpose of making the above and other purposes, features, merits and examples of the present invention easier to understand. In addition, Attachments 1 to 5 are submitted in the property submission form separately from this specification.
In order to make the above and other purposes, features, merits and embodiments of the present invention easier to understand, the accompanying drawings are described below.
本明細書の開示内容は、フコイダン及び酸化デキストランを疎水性相互作用によって超常磁性酸化鉄ナノ粒子と結合した後で、また抗体をグラフトしてなる新規の免疫磁気組成物を提出する。製造された免疫磁気組成物は、単独の同じ抗体による免疫療法の抗癌効果を大幅に改善し、より少ない抗体でより良好な腫瘍抑制能力を達成することができる。また、本明細書は、また、本案の免疫磁気組成物及び磁場発生装置を含み、更に本発明の免疫磁気組成物の抗癌効果を向上させることができる新規の癌治療用のキットを開示する。明細書において、乳癌肺転移及び大腸癌のマウス動物モデルによって、本案の免疫磁気組成物及び癌治療用のキットの免疫療法における有効性及びメカニズムを確認する。 The disclosure of this specification provides a novel immunomagnetic composition comprising binding fucoidan and dextran oxide to superparamagnetic iron oxide nanoparticles by hydrophobic interaction and then grafting an antibody. The immunomagnetic composition produced can significantly improve the anti-cancer effect of immunotherapy with the same antibody alone, and achieve better tumor suppressor capacity with fewer antibodies. The present specification also discloses a novel cancer treatment kit that includes the immunomagnetic composition of the present invention and a magnetic field generator, and can further improve the anticancer effect of the immunomagnetic composition of the present invention. .. In the specification, a mouse animal model of breast cancer lung metastasis and colorectal cancer confirms the efficacy and mechanism of the immunomagnetic composition of the present invention and the kit for treating cancer in immunotherapy.
以下、本明細書に用いられる特定用語の説明である。 The following is a description of specific terms used in the present specification.
明細書における前記の「フコイダン(fucoidan)」とは、茶色の海藻の表面における独特のスティックスリップ成分から抽出された水溶性食物繊維である。フコイダンは、フコースが豊富であり、高い生物安全性、抗酸化、抗凝固、抗血栓、抗ウイルス及び抗癌活性を有する天然多糖類である。 The aforementioned "fucoidan" in the specification is a water-soluble dietary fiber extracted from a unique stick-slip component on the surface of brown seaweed. Fucoidan is a natural polysaccharide rich in fucose and having high biosafety, antioxidant, anticoagulant, antithrombotic, antiviral and anticancer activity.
明細書における前記の「デキストラン(dextran)」とは、3Da〜2000kDaの範囲の分子量を構成する、複雑で分岐したデキストラン(多くのグルコース分子からなる多糖類)である。デキストランの直鎖部分は、α−1,6グリコシド結合によって互いに連結されたグルコース分子からなり、一方、分枝はα−1,3グリコシド結合に由来する。明細書における前記の「酸化デキストラン(oxidized dextran)」は、デキストランに対して表面改質を行い、デキストランにおけるヒドロキシル基をアルデヒド基に酸化して、抗体を更にグラフトすることができる酸化デキストランを得る。 The aforementioned "dextran" in the specification is a complex and branched dextran (polysaccharide consisting of many glucose molecules) having a molecular weight in the range of 3Da to 2000 kDa. The linear portion of dextran consists of glucose molecules linked together by α-1,6 glycosidic bonds, while the branches are derived from α-1,3 glycosidic bonds. The aforementioned "oxidized dextran" in the specification performs surface modification on dextran and oxidizes the hydroxyl group in dextran to an aldehyde group to obtain an oxidized dextran capable of further grafting the antibody.
図1を参照すると、本発明の免疫磁気組成物100を示す模式図である。免疫磁気組成物100は、コア層110と、シェル層120と、外層130と、を含む。 With reference to FIG. 1, it is a schematic view showing the immunomagnetic composition 100 of the present invention. The immunomagnetic composition 100 includes a core layer 110, a shell layer 120, and an outer layer 130.
コア層110は、サイトカイン又は抗癌薬物のような活性物質を含んでもよい。 The core layer 110 may contain active substances such as cytokines or anti-cancer drugs.
シェル層120は、フコイダン、酸化デキストラン及び超常磁性酸化鉄ナノ粒子が疎水性相互作用によって結合される複合物からなり、コア層110を覆う。更に、シェル層120を構成する複合物に用いられるフコイダンは、ウンデリア・ピンナチフィダ(Undaria pinnatifida)、洋ナシの形嚢大型藻類(Macrocystis pyrifera)又はフーカスベシクロサス(Fucus vesiculosus)から抽出されてもよく、用いられる酸化デキストランがアルデヒド基を有してもよく、且つ分子量が5kDa〜270kDaにあるデキストランによって調製されてもよい。フコイダン、酸化デキストラン及び超常磁性酸化鉄ナノ粒子の間の疎水性相互作用は、乳化作用又はナノ沈殿法等のような方法によって形成されてもよいが、本発明はこれらに限定されない。 The shell layer 120 is composed of a composite in which fucoidan, dextran oxide and superparamagnetic iron oxide nanoparticles are bound by a hydrophobic interaction, and covers the core layer 110. Furthermore, the fucoidan used in the complex constituting the shell layer 120 may be extracted from underia pinnatifida, macrocystis pyrifera or fucus dextran, which is a pear-shaped sac. The dextran oxide used may have an aldehyde group and may be prepared by dextran having a molecular weight of 5 kDa to 270 kDa. Hydrophobic interactions between fucoidan, dextran oxide and superparamagnetic iron oxide nanoparticles may be formed by methods such as emulsification or nanoprecipitation, but the present invention is not limited thereto.
外層130は、少なくとも1つの抗体131を含み、且つ抗体131がシェル層120外にグラフトされて外層130を構成する。抗体131は、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤であってもよい。免疫チェックポイント阻害剤は、PD−L1抗体、PD−1抗体、CTLA−4抗体及びTIM−3抗体からなる群から選ばれてもよく、キラーT細胞増殖剤は、CD3抗体、CD28抗体及び4−1BB抗体からなる群から選ばれてもよい。 The outer layer 130 contains at least one antibody 131, and the antibody 131 is grafted outside the shell layer 120 to form the outer layer 130. Antibody 131 may be an immune checkpoint inhibitor and / or a killer T cell proliferation agent. The immune checkpoint inhibitor may be selected from the group consisting of PD-L1 antibody, PD-1 antibody, CTLA-4 antibody and TIM-3 antibody, and the killer T cell proliferating agent is CD3 antibody, CD28 antibody and 4 It may be selected from the group consisting of -1BB antibody.
更に、前記免疫磁気組成物100は、粒径が80nm〜350nmにある球体であってもよい。また、前記免疫磁気組成物は、中空形状になる。 Further, the immunomagnetic composition 100 may be a sphere having a particle size of 80 nm to 350 nm. In addition, the immunomagnetic composition has a hollow shape.
図2を参照すると、本発明の免疫磁気組成物の調製方法300を示す工程フロー図である。図2において、免疫磁気組成物の調製方法300は、工程310、工程320、工程330、工程340と工程350を含む。 With reference to FIG. 2, it is a process flow chart showing the method 300 for preparing the immunomagnetic composition of the present invention. In FIG. 2, the method 300 for preparing an immunomagnetic composition includes step 310, step 320, step 330, step 340 and step 350.
工程310は、フコイダン及び酸化デキストランを含む水相溶液を提供する。用いられるフコイダンは、ウンデリア・ピンナチフィダ(Undaria pinnatifida)、洋ナシの形嚢大型藻類(Macrocystis pyrifera)又はフーカスベシクロサス(Fucus vesiculosus)から抽出されてもよく、用いられる酸化デキストランがアルデヒド基を有してもよく、分子量が5kDa〜270kDaにあるデキストランによって調製されてもよい。フコイダンと酸化デキストランとは、1:0.1〜1:4の重量比で混合される。 Step 310 provides an aqueous phase solution containing fucoidan and dextran oxide. The fucoidan used may be extracted from Undalia pinnatifida, pear-shaped large algae (Macrocystis pyrifera) or Fucus vesiculosus, and the used dextran oxide has an aldehyde group. It may also be prepared by dextran having a molecular weight of 5 kDa to 270 kDa. Fucoidan and dextran oxide are mixed in a weight ratio of 1: 0.1 to 1: 4.
工程320は、有機溶媒及び超常磁性酸化鉄ナノ粒子を含む油相溶液を提供する。有機溶媒は、メタン(methane)、ジクロロメタン(dichloromethane)又はクロロホルム(chloroform)であってもよい。 Step 320 provides an oil phase solution containing an organic solvent and superparamagnetic iron oxide nanoparticles. The organic solvent may be methane (methane), dichloromethane (dichloromethane) or chloroform (chloroform).
工程330は、工程310に提供される水相溶液と工程320に提供される油相溶液を混合して乳濁液を形成するエマルジョン反応を行う。 Step 330 performs an emulsion reaction in which the aqueous phase solution provided in step 310 and the oil phase solution provided in step 320 are mixed to form an emulsion.
工程340において、エマルジョンにおける有機溶媒は、減圧蒸発等の方法によって乳濁液における有機溶媒を除去して、磁気フコイダン担体を形成することができる。 In step 340, the organic solvent in the emulsion can be removed from the emulsion by a method such as evaporation under reduced pressure to form a magnetic fucoidan carrier.
工程350は、磁気フコイダン担体と少なくとも1つの抗体をグラフトして、免疫磁気組成物を形成する抗体のグラフトを行う。用いられる抗体は、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤であってもよい。免疫チェックポイント阻害剤は、PD−L1抗体、PD−1抗体、CTLA−4抗体及びTIM−3抗体からなる群から選ばれてもよく、キラーT細胞増殖剤は、CD3抗体、CD28抗体及び4−1BB抗体からなる群から選ばれてもよい。 In step 350, the magnetic fucoidan carrier is grafted with at least one antibody to graft the antibody to form an immunomagnetic composition. The antibody used may be an immune checkpoint inhibitor and / or a killer T cell proliferator. The immune checkpoint inhibitor may be selected from the group consisting of PD-L1 antibody, PD-1 antibody, CTLA-4 antibody and TIM-3 antibody, and the killer T cell proliferating agent is CD3 antibody, CD28 antibody and 4 It may be selected from the group consisting of -1BB antibody.
これによって、前記の方法で調製された免疫磁気組成物は、後で抗癌剤、例えば、癌細胞増殖抑制剤、癌転移抑制剤、腫瘍免疫反応誘導剤等として使用することができる。上記の方法で調製された免疫磁気組成物は中空形状になり、免疫物質組成物の抗腫瘍効果を高めるためにコア層に活性物質を更に覆ってもよい。 Thereby, the immunomagnetic composition prepared by the above method can be later used as an anticancer agent, for example, a cancer cell growth inhibitor, a cancer metastasis inhibitor, a tumor immune response inducer, or the like. The immunomagnetic composition prepared by the above method has a hollow shape, and the core layer may be further covered with an active substance in order to enhance the antitumor effect of the immune substance composition.
また、前記の方法で調製された免疫磁気組成物は、磁石、三次元磁場磁石又は磁気共鳴スキャナー等の磁場発生装置と組み合わせて、癌を治療するためのキットを構成してもよく、磁場発生装置が発生させた磁場を磁気誘導用の補助工具として使用することによって、本発明の免疫磁気組成物を患部に蓄積させ、局所的な拡大処置の効果を得ることができ、本発明の癌治療用のキットは、従来の純粋な粋な抗体の投与量の1%しか必要としないが、より優れた腫瘍抑制能力を示し、2倍以上の半減期を増加させることができる。 Further, the immunomagnetic composition prepared by the above method may be combined with a magnetic field generator such as a magnet, a three-dimensional magnetic field magnet or a magnetic resonance scanner to form a kit for treating cancer, and the magnetic field generation may be formed. By using the magnetic field generated by the device as an auxiliary tool for magnetic induction, the immunomagnetic composition of the present invention can be accumulated in the affected area, and the effect of local expansion treatment can be obtained, and the cancer treatment of the present invention can be obtained. The kit for the magnet requires only 1% of the dose of conventional pure and stylish antibody, but shows better tumor suppressive ability and can increase the half-life by more than 2 times.
本発明は、本発明の当業者が過度に解読せずに、容易に実施できるように、以下の特定の試験例によって更に説明するが、これらの試験例は本発明の範囲を制限するものではなく、本発明の材料や方法の実施方法を説明するためのものである。
(試験例)
一、本発明の免疫磁気組成物及びその調製方法
1.1 磁気フコイダン担体の構造及び安定性の分析
The present invention will be further described by the following specific test examples so that those skilled in the art of the present invention can easily carry out the invention without undue decipherment, but these test examples do not limit the scope of the present invention. However, it is for explaining the method of carrying out the material and the method of the present invention.
(Test example)
1. Immunomagnetic composition of the present invention and its preparation method 1.1 Analysis of structure and stability of magnetic fucoidan carrier
本試験例において、抗体がグラフトされていない磁気フコイダン担体を調製して、試験の最適な調製条件で、走査型電子顕微鏡(scanning electron microscopy;SEM)及び透過型電子顕微鏡(transmission electron microscopy;TEM)によって磁気フコイダン担体の形態を観察した。ナノ粒径及び界面電位アナライザー(Delsa Nano C particle analyzer,BECKMAN COULTER)によって磁気フコイダン担体のゼータ電位(zeta potential)、粒径及び磁気フコイダン担体が二次蒸留(Double Distilled Water;DDW)及びリン酸緩衝溶液(Phosphate Buffered Saline;PBS)における安定性を分析した。 In this test example, a magnetic fucoidan carrier without antibody grafting was prepared, and under the optimum preparation conditions for the test, a scanning electron microscope (SEM) and a transmission electron microscope (TEM) were used. The morphology of the magnetic fucoidan carrier was observed by. The nanoparticle size and interfacial potential analyzer (Delsa Nano C parameter analyzer, BECKMAN COOLTER) allows the zeta potential of the magnetic fucoidan carrier, and the particle size and magnetic fucoidan carrier to be secondary distilled (Double Distilled Water). Stability in solution (Phosphate Buffered Saline; PBS) was analyzed.
磁気フコイダン担体を調製する前に、まず超常磁性酸化鉄ナノ粒子及び酸化デキストランを別々に調製し、後の抗体のグラフトに寄与するように、本試験例においてアルデヒド基を有する酸化デキストランを使用した。超常磁性酸化鉄ナノ粒子(以下、「IO」で示す)の設計合成は、2004?~のShouheng Sunチームによって発表される文献(Shouheng Sun et al.,Monodisperse MFe2O4(M=Fe,Co,Mn) Nanoparticles.Journal of the American Chemical Society 2004,126(1):273−279)を参照し、調製条件として、2mmolのFe(acac)3、10mmolの1,2−ヘキサデカンジオール、6mmolのオレイン酸及び6mmolのアセトアミドを20mlのベンジルエーテル20mlで混合した後で、窒素雰囲気下、100℃で30分間還流させた。更に、前記反応物を200℃で1時間加熱した後で、また285℃まで30分間加熱してIOの核形成及び生長を完成した。反応物を室温に冷却した後で、6000rpmで遠心分離してIOを10分間回収し、エタノールで3回精製して、IOの調製を完成した。 Before preparing the magnetic fucoidan carrier, superparamagnetic iron oxide nanoparticles and dextran oxide were first prepared separately, and dextran oxide having an aldehyde group was used in this test example so as to contribute to the subsequent grafting of the antibody. The design and synthesis of superparamagnetic iron oxide nanoparticles (hereinafter referred to as “IO”) is described in the literature published by the Shouheng Sun team from 2004? (Shouheng Sun et al., Monodisperse MFe2O4 (M = Fe, Co, Mn)). Refer to Nanoparticles. Journal of the American Chemical Society 2004,126 (1): 273-279), and as preparation conditions, 2 mmol Fe (acac) 3, 10 mmol 1,2-hexadecanediol, 6 mmol oleic acid and 6 mmol. Was mixed with 20 ml of 20 ml of benzyl ether, and then refluxed at 100 ° C. for 30 minutes under a nitrogen atmosphere. Further, after heating the reaction product at 200 ° C. for 1 hour, the reaction product was heated to 285 ° C. for 30 minutes to complete the nucleation and growth of IO. After cooling the reaction to room temperature, the reaction was centrifuged at 6000 rpm to recover IO for 10 minutes and purified 3 times with ethanol to complete the preparation of IO.
アルデヒド基を有する酸化デキストラン(以下「Dex」で示す)の調製方法としては、下記の通りである。デキストラン(分子量:5kDa〜270kDa)を室温で光を避けて過ヨウ素酸ナトリウム溶液(10mM)を含む水性酸化バッファー(0.5−10mgml−1、pH=5.5)に溶解して30分間酸化した。Amicon(分子量:3kDa)によって修飾したDexを透析して過ヨウ素酸ナトリウムを除去した。凍結乾燥機(FreeZone 1L Benchtop Freeze Dry Systems,Labconco,kansas)によって前記Dexを再散在し、凍結乾燥した。製造されたDexについては、核磁気共鳴(Nuclear Magnetic Resonance;nmR)によって構造を分析し、比色アルデヒドベースのアッセイキット(MAK140,sigma)を用いてその修飾度を分析した。 The method for preparing dextran oxide having an aldehyde group (hereinafter referred to as "Dex") is as follows. Dextran (molecular weight: 5 kDa to 270 kDa) is dissolved in an aqueous oxidation buffer (0.5-10 mgml-1, pH = 5.5) containing a sodium periodate solution (10 mM) at room temperature to avoid light and oxidized for 30 minutes. did. Dex modified with Amicon (molecular weight: 3 kDa) was dialyzed to remove sodium periodate. The Dex was re-scattered by a freeze-dryer (FreeZone 1L Benchtop Freeze Dry Systems, Labconco, Kansas) and freeze-dried. The structure of the produced Dex was analyzed by Nuclear Magnetic Resonance (nmR), and the degree of modification was analyzed using a colorimetric aldehyde-based assay kit (MAK140, sigma).
本試験例において、磁気フコイダン担体の調製条件としては、下記の通りである。0.5mg/mlのフコイダン(フーカスベシクロサスから抽出)と0.5mg/mlのDexを混合して水相溶液とした。2mgのIOを0.2mlのジクロロメタンに溶解して油相溶液とした。前記水相溶液及び油相溶液を混合した後で、ホモジナイザー(Double Eagle Enterprise Co,Ltd)で120Wのパワーで50秒乳化して、乳濁液を得た。ロータリーエバポレーターでジクロロメタンを除去した後で、磁気分離装置(MagniSort、eBioscience)によって製造された磁気フコイダン担体(以下、「IO@FuDex」で示す)を精製し、IO@FuDexをDDW又は0.1MのPBS(pH=6)で再懸濁して更に抗体のグラフトを行った。
また、本試験例において、別にそれぞれ0.5mg/mlのフコイダン又は0.5mg/mlのDexを水相溶液として、ジクロロメタンに溶解するIOを油相溶液として、同じ調製方法によって磁気担体IO@Fu(水相溶液:フコイダン)又はIO@Dex(水相溶液:アルデヒド基を有する酸化デキストラン)を調製した。調製されたIO@FuDex、IO@Fu及びIO@Dexに対しては、走査型電子顕微鏡及び透過型電子顕微鏡によって形態を分析し、ナノ粒径及び界面電位アナライザーによってゼータ電位と粒径を分析し、超伝導量子干渉磁力計によって磁気分析を分析した。
In this test example, the preparation conditions for the magnetic fucoidan carrier are as follows. 0.5 mg / ml fucoidan (extracted from fucas becyclosus) and 0.5 mg / ml Dex were mixed to prepare an aqueous phase solution. 2 mg of IO was dissolved in 0.2 ml of dichloromethane to prepare an oil phase solution. After mixing the aqueous phase solution and the oil phase solution, they were emulsified with a homogenizer (Double Eagle Enterprise Co, Ltd) at a power of 120 W for 50 seconds to obtain an emulsion. After removing dichloromethane with a rotary evaporator, a magnetic fucoidan carrier (hereinafter referred to as "IO @ FuDex") produced by a magnetic separation device (MagniSort, eBioscience) is purified to obtain IO @ FuDex in DDW or 0.1 M. It was resuspended in PBS (pH = 6) and further grafted with antibodies.
Further, in this test example, 0.5 mg / ml fucoidan or 0.5 mg / ml Dex was used as an aqueous phase solution, and IO dissolved in dichloromethane was used as an oil phase solution, respectively, using the same preparation method as the magnetic carrier IO @ Fu. (Aqueous phase solution: fucoidan) or IO @ Dex (aqueous phase solution: dextran oxide having an aldehyde group) was prepared. For the prepared IO @ FuDex, IO @ Fu and IO @ Dex, the morphology was analyzed by a scanning electron microscope and a transmission electron microscope, and the zeta potential and particle size were analyzed by a nano-particle size and interfacial potential analyzer. , Magnetic analysis was analyzed by a superconducting quantum interference magnetometer.
図3A〜図6Cを参照すると、図3A〜図3Fは、磁気フコイダン担体を示す構造分析図である。図3Aは、IO@FuDexの走査電子顕微鏡写真図である。図3B〜図3Fは、IO@FuDexの透過電子顕微鏡写真図である。
図4A〜図4Cは、磁気担体IO@Fuを示す構造分析図である。図4Aと図4Bは、IO@Fuの走査電子顕微鏡写真図である。図4Cは、IO@Fuの透過電子顕微鏡写真図である。
図5Aと図5Bは、磁気担体IO@Dexを示す構造分析図である。図5Aは、IO@Dexの走査電子顕微鏡写真図である。図5Bは、IO@Dexの透過電子顕微鏡写真図である。
図6A〜図6Cは、磁気フコイダン担体の安定性を示す分析結果図である。図6Aは、IO@FuDex、IO@FuとIO@Dexの流体力学的サイズ分布図である。図6Bは、IO@FuDex、IO@FuとIO@Dexのゼータ電位分析図である。図6Cは、IO@FuDexとIOの磁気分析図である。
With reference to FIGS. 3A to 6C, FIGS. 3A to 3F are structural analysis diagrams showing a magnetic fucoidan carrier. FIG. 3A is a scanning electron micrograph of IO @ FuDex. 3B to 3F are transmission electron micrographs of IO @ FuDex.
4A to 4C are structural analysis diagrams showing the magnetic carrier IO @ Fu. 4A and 4B are scanning electron micrographs of IO @ Fu. FIG. 4C is a transmission electron micrograph of IO @ Fu.
5A and 5B are structural analysis diagrams showing the magnetic carrier IO @ Dex. FIG. 5A is a scanning electron micrograph of IO @ Dex. FIG. 5B is a transmission electron micrograph of IO @ Dex.
6A to 6C are analysis result diagrams showing the stability of the magnetic fucoidan carrier. FIG. 6A is a hydrodynamic size distribution diagram of IO @ FuDex, IO @ Fu and IO @ Dex. FIG. 6B is a zeta potential analysis diagram of IO @ FuDex, IO @ Fu and IO @ Dex. FIG. 6C is a magnetic analysis diagram of IO @ FuDex and IO.
図3Aの結果から、走査型電子顕微鏡の観察によって、IO@FuDexが球状構造であることが分かり、電子顕微鏡の中空環境によって崩壊の現象があり、それは中空構造であることを示す。
図3Bの結果から分かるように、透過型電子顕微鏡によってIO@FuDexが崩壊で重なるシェル層による暗いコントラストが観察された。図3Cは、シェル層を拡大する透過電子顕微鏡写真図である。数多くのサイズが約5nmの超常磁性酸化鉄ナノ粒子が見られ、それはシェル層の組成の構造であることが証明される。図3Dの暗視野観察及び図3Eと図3Fの要素分布の検出で、再び明らかな中空構造及び酸化鉄が担体に散在している状況が見られる。
From the results of FIG. 3A, it can be seen that IO @ FuDex has a spherical structure by observation with a scanning electron microscope, and there is a phenomenon of collapse due to the hollow environment of the electron microscope, which indicates that it is a hollow structure.
As can be seen from the results of FIG. 3B, a dark contrast was observed by the transmission electron microscope due to the shell layer in which IO @ FuDex collapsed and overlapped. FIG. 3C is a transmission electron micrograph of the shell layer magnified. A large number of superparamagnetic iron oxide nanoparticles with a size of about 5 nm are found, which proves to be the structure of the shell layer composition. The dark-field observation in FIG. 3D and the detection of the element distributions in FIGS. 3E and 3F show that the hollow structure and iron oxide are scattered on the carrier again.
図4A〜図5Bの結果から分かるように、IO@FuとIO@FuDexは同様に均一な構造を有し、IO@Dexが安定ではなく、蒸発プロセスで凝集しやすくて、広い範囲の粒径分布及びランダムな形態学的外観が観察された。 As can be seen from the results of FIGS. 4A to 5B, IO @ Fu and IO @ FuDex have a similarly uniform structure, IO @ Dex is not stable, easily aggregates in the evaporation process, and has a wide range of particle sizes. Distribution and random morphological appearance were observed.
図6Aと図6Bの結果から分かるように、IO@FuDexは流体中に均一な粒径が現れ、粒径サイズが80nm〜350nmにあり、且つ平均粒径が141.5nmであり、IO@Fuの平均粒径(241nm)より小さい。IO@FuDexとIO@Fuは主体がフコイダンからなり、その中に含まれる硫酸塩によってIO@FuDexとIO@Fuに強い負ゼータ電位を持たせるが、IO@FuDexの主体に別にDexを有するので、IO@FuDexの負ゼータ電位(−32.8mV)がIO@Fuの負ゼータ電位(−58.4mV)よりも低くなるため、IO@FuDexの間の強い反発力がコロイドの安定性と良好な散在性を維持することができる。
図6Cの結果から分かるように、超常磁性酸化鉄ナノ粒子(IO)がかなり高い単位重量あたりの飽和磁化強度があり、IO@FuDexは、超常磁性酸化鉄ナノ粒子、フコイダン及び酸化デキストランを含むので、その数値がやや低減するが、やはり57.5emu g−1の高数値を保有し、その磁気の強度が複合担体構造の形成によって低減しなく、磁気分離装置によって磁気精製を行うことに寄与して、高収率のIO@FuDexを得た。
As can be seen from the results of FIGS. 6A and 6B, IO @ FuDex has a uniform particle size in the fluid, a particle size of 80 nm to 350 nm, and an average particle size of 141.5 nm. It is smaller than the average particle size (241 nm) of. IO @ FuDex and IO @ Fu are mainly composed of fucoidan, and the sulfate contained in them gives IO @ FuDex and IO @ Fu a strong negative zeta potential, but since the main body of IO @ FuDex has a separate Dex. , IO @ FuDex negative zeta potential (-32.8 mV) is lower than IO @ Fu negative zeta potential (-58.4 mV), so strong repulsive force between IO @ FuDex is good for colloidal stability. Can be maintained in a scattered manner.
As can be seen from the results of FIG. 6C, the superparamagnetic iron oxide nanoparticles (IO) have a fairly high saturation magnetization strength per unit weight, and IO @ FuDex contains superparamagnetic iron oxide nanoparticles, fucoidan and dextran oxide. Although the value is slightly reduced, it also has a high value of 57.5 emu g-1, and its magnetic strength is not reduced by the formation of the composite carrier structure, which contributes to magnetic purification by the magnetic separator. A high yield of IO @ FuDex was obtained.
本試験例において、別に異なる分子量の酸化デキストランで磁気フコイダン担体を調製し、それは、図2の工程310のように提供される水相溶液に、分子量が5kDa〜270kDaであるデキストランによって酸化デキストランを調製し、また酸化デキストランとフコイダンとを1:0.2の重量比で混合した。残りの工程320〜工程340の細部については、試験例1.1に記載のものとほぼ同じであるので、ここで説明しない。更に製造された磁気フコイダン担体の粒径サイズをナノ粒径及び界面電位アナライザーによって分析して、その結果を下記の表1に示す。 In this test example, a magnetic fucoidan carrier is separately prepared with dextran oxide having a different molecular weight, and it is prepared by preparing dextran oxide having a molecular weight of 5 kDa to 270 kDa in an aqueous phase solution provided as in step 310 of FIG. Then, dextran oxide and fucoidan were mixed at a weight ratio of 1: 0.2. The details of the remaining steps 320 to 340 are almost the same as those described in Test Example 1.1, and will not be described here. Further, the particle size of the produced magnetic fucoidan carrier was analyzed by a nano-particle size and an interfacial potential analyzer, and the results are shown in Table 1 below.
また、本試験例において、異なるフコイダンと酸化デキストランとの混合比例で磁気フコイダン担体を調製して、図2の工程310のように提供された水相溶液に、フコイダンとデキストランとを1:0.1〜1:4の重量比で混合した。残りの工程320〜工程340の細部については、試験例1.1に記載のものとほぼ同じであるので、ここで説明しない。更に製造された磁気フコイダン担体の粒径サイズをナノ粒径及び界面電位アナライザーによって分析して、その結果を下記の表2に示す。 Further, in this test example, a magnetic fucoidan carrier was prepared in a mixed proportion of different fucoidan and dextran oxide, and fucoidan and dextran were added to the aqueous phase solution provided as shown in step 310 of FIG. The mixture was mixed in a weight ratio of 1 to 1: 4. The details of the remaining steps 320 to 340 are almost the same as those described in Test Example 1.1, and will not be described here. Further, the particle size of the produced magnetic fucoidan carrier was analyzed by a nano-particle size and an interfacial potential analyzer, and the results are shown in Table 2 below.
凍結乾燥されて再溶解した後のIO@FuDexが同じ構造を有するかをテストするために、本試験例では、更に調製されたIO@FuDexを凍結乾燥機によって凍結乾燥して粉末状の結晶を形成し、また凍結乾燥された結晶を水溶液に再溶解し、透過型電子顕微鏡によってIO@FuDexの凍結乾燥前と凍結乾燥された構造を観察した。 In order to test whether IO @ FuDex after being lyophilized and redissolved has the same structure, in this test example, further prepared IO @ FuDex was lyophilized by a lyophilizer to obtain powdery crystals. The formed and lyophilized crystals were redissolved in an aqueous solution, and the pre-lyophilized and lyophilized structures of IO @ FuDex were observed with a transmission electron microscope.
図7Aと図7Bを参照すると、図7Aは、IO@FuDexの凍結乾燥前の透過電子顕微鏡写真図である。図7Bは、IO@FuDexが凍結乾燥されて再溶解した後の透過電子顕微鏡写真図である。結果から分かるように、IO@FuDexの凍結乾燥前の構造は、中空の球状であり、サイズが約80nm〜350nmにある。凍結乾燥された結晶は、快速に水溶液に再溶解でき、且つ再溶解のIO@FuDex構造が透過型電子顕微鏡で、やはり中空であり、且つサイズが凍結乾燥前の担体と合致する球体となるように保持する。IO@FuDexの安定性が非常に優れたと示す。 Referring to FIGS. 7A and 7B, FIG. 7A is a transmission electron micrograph of IO @ FuDex before lyophilization. FIG. 7B is a transmission electron micrograph after lyophilized and redissolved IO @ FuDex. As can be seen from the results, the structure of IO @ FuDex before lyophilization is a hollow spherical shape with a size of about 80 nm to 350 nm. The lyophilized crystals can be rapidly redissolved in an aqueous solution, and the redissolved IO @ FuDex structure is a transmission electron microscope, which is also hollow and has a size that matches the carrier before freeze-drying. Hold on. It shows that the stability of IO @ FuDex is very good.
(1.2 実施例1−3の調製)
前記最適なIO@FuDexの調製条件で、更に本発明の免疫磁気組成物を調製した。調製されたIO@FuDexをそれぞれ異なる抗体を含み且つシアノ水素化ホウ素ナトリウム(5μM)を含む緩衝液(0.1M,pH=6)と4℃で抗体のグラフトを4〜6時間行い、Dexにおけるアルデヒド基が抗体上の第一級アミンとシッフ塩基を形成し、シアノ水素化ホウ素ナトリウムによって還元アミノ化を行った後で、抗体のグラフトを化学的に安定な状態にした。最後に、製造された免疫磁気組成物を磁気分離装置によって精製した。表3を参照すると、本発明の実施例1−3に用いられる抗体であり、実施例1に用いられる抗体がCD3抗体及びCD28抗体であり、実施例2に用いられる抗体がPD−L1抗体であり、実施例3に用いられる抗体がPD−L1抗体、CD3抗体及びCD28抗体であった。
(1.2 Preparation of Examples 1-3)
Further, the immunomagnetic composition of the present invention was prepared under the optimum preparation conditions of IO @ FuDex. The prepared IO @ FuDex was grafted with a buffer solution (0.1 M, pH = 6) containing different antibodies and containing sodium cyanoborohydride (5 μM) at 4 ° C. for 4 to 6 hours in Dex. The aldehyde group formed a Schiff base with the primary amine on the antibody and was reductively aminated with sodium cyanoborohydride, after which the antibody graft was chemically stabilized. Finally, the immunomagnetic composition produced was purified by a magnetic separation device. Referring to Table 3, the antibody used in Examples 1-3 of the present invention, the antibody used in Example 1 is a CD3 antibody and a CD28 antibody, and the antibody used in Example 2 is a PD-L1 antibody. Yes, the antibodies used in Example 3 were PD-L1 antibody, CD3 antibody and CD28 antibody.
調製された実施例は、透過型電子顕微鏡分析の形態、元素分析、及びX線光電子分光法(XPS)によって実施例3における元素構成を測定した。 In the prepared examples, the elemental composition in Example 3 was measured by the form of transmission electron microscopy, elemental analysis, and X-ray photoelectron spectroscopy (XPS).
図8を参照すると、実施例3の構造分析図である。結果から分かるように、実施例3の構造は、サイズが約80〜350nmの球状の中空構造であった。そして、電子顕微鏡の元素分析によって、実施例3の外層が抗体の存在のため、均一に明らかな窒素信号(N)が見られた。抗体がグラフトされる前に、担体成分として糖及び酸化鉄だけがあり、窒素を有する材料がないが、抗体がグラフトされた後で、抗体がアミノ基及びペプチド結合を有するので、多量の窒素を有して、本発明の免疫磁性組成物は抗体を有することが実証された。 With reference to FIG. 8, it is a structural analysis diagram of Example 3. As can be seen from the results, the structure of Example 3 was a spherical hollow structure having a size of about 80 to 350 nm. Then, by elemental analysis with an electron microscope, a uniformly clear nitrogen signal (N) was observed due to the presence of the antibody in the outer layer of Example 3. Before the antibody is grafted, there are only sugar and iron oxide as carrier components and no material with nitrogen, but after the antibody is grafted, the antibody has amino groups and peptide bonds, so a large amount of nitrogen is added. It has been demonstrated that the immunomagnetic compositions of the present invention have antibodies.
また図9を参照すると、本発明の実施例3のX線光電子分光法分析結果図である。結果から分かるように、IO@FuDexに対して実施例3は結合エネルギーが399eVに位置する1本の信号があり、この信号が窒素信号であり、これは実施例3において抗体が担体にうまくグラフトされていることを示す。 Further, referring to FIG. 9, it is an X-ray photoelectron spectroscopy analysis result diagram of Example 3 of the present invention. As can be seen from the results, for IO @ FuDex, Example 3 has a single signal with a binding energy located at 399 eV, which is the nitrogen signal, which in Example 3 the antibody successfully grafted onto the carrier. Indicates that it has been done.
(1.3 実施例5の調製及び構造確認)
本発明の免疫磁気組成物は、中空形状になるので、更にコア層でサイトカイン又は抗癌薬物等のような活性物質を覆うことができた。本試験例における活性物質は、インターロイキン−2(Interleukin−2,IL−2)を例として、更にIL−2を覆う実施例5を調製した。
(1.3 Preparation of Example 5 and structural confirmation)
Since the immunomagnetic composition of the present invention has a hollow shape, the core layer can further cover an active substance such as a cytokine or an anticancer drug. As the active substance in this test example, Interleukin-2 (Interleukin-2, IL-2) was taken as an example, and Example 5 covering IL-2 was prepared.
本試験例において、実施例5の調製条件は下記の通りである。0.5mg/mlのフコイダン、0.5mg/mlのDex及び50μgのIL−2を混合して水相溶液とした。2mgのIOを0.2mlのジクロロメタンに溶解して油相溶液とした。前記水相溶液と油相溶液を混合した後で、ホモジナイザーで120Wのパワーで50秒乳化して、乳濁液を得た。ロータリーエバポレーターでジクロロメタンを除去した後で、製造された実施例5を磁気分離装置によって精製した。調製された実施例については、走査型電子顕微鏡によって形態を分析し、ナノ粒径及び界面電位アナライザーによってその粒径を分析した。 In this test example, the preparation conditions of Example 5 are as follows. 0.5 mg / ml fucoidan, 0.5 mg / ml Dex and 50 μg IL-2 were mixed to prepare an aqueous phase solution. 2 mg of IO was dissolved in 0.2 ml of dichloromethane to prepare an oil phase solution. After mixing the aqueous phase solution and the oil phase solution, they were emulsified with a homogenizer at a power of 120 W for 50 seconds to obtain an emulsion. After removing dichloromethane with a rotary evaporator, the manufactured Example 5 was purified by a magnetic separation device. For the prepared examples, the morphology was analyzed by a scanning electron microscope, and the particle size was analyzed by a nanoparticle size and an interfacial potential analyzer.
図10Aと図10Bを参照すると、実施例5を示す構造分析図である。
図10Aは、実施例5の走査電子顕微鏡写真図である。図10Bは、実施例5の流体力学的サイズ分布図である。結果から分かるように、実施例5のIL−2のカバー率は99.93%まで達する。IL−2がコア層を満たして、実施例5の平均粒径サイズが純粋な担体の161.2nmから356.2nmに増加し、本発明の免疫磁気組成物が更にコア層で活性物質を覆うことが証明され、例えばドキソルビシン薬物(Doxorubicin)、ドセタキセル薬物(Docetaxel又はPaclitaxel)及びアスタキサンチン(Astaxanthin;ASTX)等の活性物質も、同じ方式によって本発明の免疫磁気組成物に覆われることができる。
With reference to FIGS. 10A and 10B, it is a structural analysis diagram showing Example 5.
FIG. 10A is a scanning electron micrograph of Example 5. FIG. 10B is a hydrodynamic size distribution map of Example 5. As can be seen from the results, the coverage of IL-2 in Example 5 reaches 99.93%. IL-2 fills the core layer, the average particle size of Example 5 increases from 161.2 nm of the pure carrier to 356.2 nm, and the immunomagnetic composition of the invention further covers the active material with the core layer. It has been demonstrated that active substances such as, for example, doxorubicin, docetaxel or paclitaxel and astaxanthin (ASTX) can also be covered with the immunomagnetic composition of the invention by the same method.
(1.4 本発明の免疫磁気組成物の目的能力の分析)
本試験例において、本発明の免疫磁気組成物がT細胞免疫力の低下を逆転してマウスの腫瘍退縮を促進することができるかを検証するために、調製された実施例1−3に対して目的能力分析及び細胞結合能力分析を行った。試験的に、実験モデルとして、転移能力、浸潤性及びPD−L1発現を有するトリ陰性乳癌細胞株(4T1)を選択した。蛍光顕微鏡下での観察を容易にするために、蛍光顕微鏡分析群の実施例1−3でそれぞれ量子ドットに接続した。
(1.4 Analysis of Objective Capability of Immunomagnetic Composition of the Present Invention)
In this test example, with respect to Examples 1-3 prepared in order to verify whether the immunomagnetic composition of the present invention can reverse the decrease in T cell immunity and promote tumor regression in mice. The purpose and ability analysis and cell binding ability analysis were performed. Experimentally, a trinegative breast cancer cell line (4T1) with metastatic potential, invasiveness and PD-L1 expression was selected as an experimental model. In order to facilitate observation under a fluorescence microscope, each quantum dot was connected in Example 1-3 of the fluorescence microscope analysis group.
目的効率を評価するために、試験的に、実施例1−3及び4T1細胞株(4×105)を、ウシ血清アルブミン(Bovine Serum Albumin;BSA)を基礎とする培養液の中で、4℃で30分間培養し、次いでフローサイトメトリー(Novocyte Flow Cytometer;ACEA Biosciences)によって分析した。細胞結合能力を評価するために、量子ドットに接続したIO@FuDex及び実施例2をそれぞれ4T1細胞株と1、4、12と24時間培養し、またフローサイトメトリー又は蛍光顕微鏡(Carl Zeiss;Thornwood)によって分析した。 To assess the efficiency of interest, on a trial basis, Examples 1-3 and 4T1 cell lines (4 × 105) were placed in a culture medium based on bovine serum albumin (BSA) at 4 ° C. The cells were cultured for 30 minutes and then analyzed by flow cytometry (Novocate Flow Cytometer; ACEA Biosciences). To assess cell binding capacity, quantum dot-connected IO @ FuDex and Example 2 were cultured with a 4T1 cell line for 1, 4, 12 and 24 hours, respectively, and flow cytometry or fluorescence microscopy (Carl Zeiss; Hornwood). ).
図11A〜図11Fを参照すると、本発明の免疫磁気組成物の目的能力と細胞結合能力の分析結果図である。
図11Aは、グラフト濃度が1.4μg/ml(低濃度;L)、7μg/ml(中濃度;M)と35μg/ml(高濃度;H)であるPD−L1抗体の実施例2の体外の目的能力のテスト結果である。図11Bは、実施例2とIgGがグラフトされたIO@FuDexの体外の目的能力のテスト結果である。図11Cは、IO@FuDexが第1、4、12と24時間に4T1細胞株との結合能力の分析結果図である。図11Dは、実施例2が第1、4、12と24時間に4T1細胞株との結合能力の分析結果図である。図11Eは、グラフト濃度が1.4μg/ml(低濃度;L)、7μg/ml(中濃度;M)と35μg/ml(高濃度;H)であるCD3抗体/CD28抗体の実施例3の体外の目的能力のテスト結果である。図11Fは、実施例2と実施例3が第1と24時間に4T1細胞株との結合能力の分析結果図である。
With reference to FIGS. 11A to 11F, it is an analysis result diagram of the objective ability and the cell binding ability of the immunomagnetic composition of the present invention.
FIG. 11A shows the in vitro PD-L1 antibody Example 2 having graft concentrations of 1.4 μg / ml (low concentration; L), 7 μg / ml (medium concentration; M) and 35 μg / ml (high concentration; H). It is a test result of the purpose ability of. FIG. 11B shows the test results of the in vitro target ability of IO @ FuDex grafted with Example 2 and IgG. FIG. 11C is an analysis result diagram of the binding ability of IO @ FuDex to the 4T1 cell line at the first, fourth, twelfth and 24 hours. FIG. 11D is an analysis result diagram of the binding ability of Example 2 to the 4T1 cell line at the first, fourth, twelfth and 24 hours. FIG. 11E shows Example 3 of the CD3 / CD28 antibody having graft concentrations of 1.4 μg / ml (low concentration; L), 7 μg / ml (medium concentration; M) and 35 μg / ml (high concentration; H). It is a test result of the purpose ability outside the body. FIG. 11F is an analysis result diagram of the binding ability of Example 2 and Example 3 to the 4T1 cell line in the first and 24 hours.
図11Aの結果から分かるように、1時間培養した後で、実施例2(H)の群が一番高い平均蛍光強度(median fluorescence index;MDI)を有し実施例2が4T1細胞株(PD−L1を発見する)と結合する量がその表面抗体密度と緊密な関係があるので、後の試験実施例2にグラフトされるPD−L1濃度が高濃度(35μg/ml)であった。
図11Bの結果から分かるように、IgGが接続されるIO@FuDexにMDI変位が観察されなく、実施例2が4T1細胞株に対する親和性はIO@FuDexとの非特異的相互作用ではなく、PD−L1抗体に由来することを示す。
As can be seen from the results of FIG. 11A, after culturing for 1 hour, the group of Example 2 (H) had the highest average fluorescence intensity (MDI), and Example 2 had a 4T1 cell line (PD). Since the amount that binds to (discovering -L1) is closely related to its surface antibody density, the PD-L1 concentration grafted in Test Example 2 later was high (35 μg / ml).
As can be seen from the results of FIG. 11B, no MDI displacement was observed in IO @ FuDex to which IgG was connected, and in Example 2, the affinity for the 4T1 cell line was not a non-specific interaction with IO @ FuDex, but PD. It is shown that it is derived from the -L1 antibody.
図11C図と図11Dの結果から分かるように、IO@FuDexと細胞結合の量が時間依存性を有し、培養後の第12時間後に明らかな細胞取り込みがあった。対照的に、実施例2において培養後の第1時間に細胞結合の現象があり、その後、MDIが緩い変位になり、培養時間の増加につれて、実施例2が細胞との結合量が向上することを示し、この結果から分かるように、PD−L1抗体をIO@FuDexにグラフトした後で、元のIO@FuDex及び4T1細胞株の結合能力が変わった。 As can be seen from the results of FIGS. 11C and 11D, the amount of IO @ FuDex and cell binding was time-dependent, and there was clear cell uptake 12 hours after culturing. In contrast, in Example 2, there is a phenomenon of cell binding in the first hour after culturing, after which the MDI becomes loosely displaced, and as the culturing time increases, the amount of binding to cells in Example 2 increases. As can be seen from this result, the binding ability of the original IO @ FuDex and 4T1 cell lines changed after grafting the PD-L1 antibody to IO @ FuDex.
本発明の免疫磁気組成物を同時に免疫チェックポイント阻害剤とキラーT細胞増殖剤にするために、実施例3は、同時にPD−L1抗体、CD3抗体及びCD28抗体をIO@FuDexにグラフトしてなる免疫磁気組成物であった。図11Eを参照すると、異なる濃度のCD3抗体/CD28抗体をグラフトする実施例3の目的能力分析であった。
図11Eの結果から分かるように、1時間のインビトロ培養後、実施例3(H)の群が一番高いMDIを有し、実施例3(H)群がCD8+ T細胞に対して強い親和性を有することを示す。図11Fの結果から分かるように、実施例3が4T1細胞株との間に実施例2と類似する結合力を有し、IO@FuDexに複数の抗体がグラフトされては4T1細胞株に対する親和性を影響しないことを示す。
In order to simultaneously make the immunomagnetic composition of the present invention an immune checkpoint inhibitor and a killer T cell proliferation agent, Example 3 comprises grafting PD-L1 antibody, CD3 antibody and CD28 antibody into IO @ FuDex at the same time. It was an immunomagnetic composition. With reference to FIG. 11E, it was a purpose-ability analysis of Example 3 in which different concentrations of CD3 antibody / CD28 antibody were grafted.
As can be seen from the results of FIG. 11E, after 1 hour of in vitro culture, the group of Example 3 (H) had the highest MDI, and the group of Example 3 (H) had a strong affinity for CD8 + T cells. Indicates that it has sex. As can be seen from the results of FIG. 11F, Example 3 has a binding force similar to that of Example 2 with the 4T1 cell line, and has an affinity for the 4T1 cell line when multiple antibodies are grafted on IO @ FuDex. Indicates that it does not affect.
図12A〜図12Dを参照すると、実施例3がCD8+ T細胞との結合能力の分析結果図である。試験的に、量子ドットが接続される実施例3をCD8+ T細胞と30分間培養し、Alexa Fluor 488 PhalloidinとDAPIによってCD8+ T細胞に対して固定染色を行い、共役焦点顕微鏡によって実施例3がCD8+ T細胞の細胞内部位に位置することを確認した。
図12Aは、細胞核の位置を示し、図12Bは、実施例3の位置を示し、図12Cは、明視野下の顕微鏡写真図である。図12Dは、合併後の顕微鏡写真図であり、スケールバーは、5μMの長さを示す。結果から分かるように、CD8+ T細胞で複数の実施例3が見られ、実施例3が確実にCD8+ T細胞と結合できることが証明された。
With reference to FIGS. 12A to 12D, Example 3 is an analysis result diagram of the binding ability to CD8 + T cells. On a trial basis, the Example 3 in which the quantum dots are connected by culturing CD8 + T cells and 30 minutes, subjected to fixed stained for CD8 + T cells by Alexa Fluor 488 Phalloidin and DAPI, Example 3 by conjugate focal microscopy Was confirmed to be located at the intracellular site of CD8 + T cells.
12A shows the position of the cell nucleus, FIG. 12B shows the position of Example 3, and FIG. 12C is a photomicrograph under a bright field of view. FIG. 12D is a photomicrograph after the merger, with scale bars showing a length of 5 μM. As can be seen from the results, CD8 + T cells several of Example 3 was observed in proved to be Example 3 can be combined reliably CD8 + T cells.
(二、免疫磁気組成物の用途)
(2.1 本発明の免疫磁気組成物による癌治療の治療効果)
本試験例は、乳癌肺転移及び大腸癌のマウスモデルで更に本発明の免疫磁気組成物が癌治療の効能を有するか、そして磁気誘導によって患部に蓄積されるかをテストした。
(Second, use of immunomagnetic composition)
(2.1 Therapeutic effect of cancer treatment by the immunomagnetic composition of the present invention)
This test example is a mouse model of breast cancer lung metastasis and colorectal cancer, and further tested whether the immunomagnetic composition of the present invention has a cancer therapeutic effect and whether it is accumulated in the affected area by magnetic induction.
(2.1.1 本発明の免疫磁気組成物による乳癌肺転移の治療効果)
本試験例は、生物発光酵素を安定に発現するluciferase遺伝子を持つ4T1−Luc腫瘍マウスを乳癌肺転移の動物モデル(中国医薬大学付属病院分子医療センターによって提供される)として、マーカー125Iを含む実施例1−3の製剤を右大腿静脈を介して4T1−Luc腫瘍マウスに投与し、試験的に、別に実施例4(本発明の癌治療用のキット)があり、実施例4においてマーカー125Iを含む実施例3の製剤を投与し、円状表面の磁石(直径0.5cm,0.5Tesla)を合わせて磁気誘導を行った。続いて、単一光子放出コンピュータ断層撮影法(Single Photon Emission Computed Tomography;SPECT)によって実施例3及び実施例4の腫瘍組織における動的蓄積をモニターした。
(2.1.1 Therapeutic effect of the immunomagnetic composition of the present invention on breast cancer lung metastasis)
In this test example, a 4T1-Luc tumor mouse having a luciferase gene that stably expresses bioluminescent enzyme was used as an animal model of breast cancer lung metastasis (provided by the Molecular Medical Center of China Pharmaceutical University Hospital), and included the marker 125I. The preparation of Example 1-3 was administered to 4T1-Luc tumor mice via the right femoral vein, and there is another Example 4 (kit for cancer treatment of the present invention) on a trial basis, and the marker 125I was used in Example 4. The preparation of Example 3 including the above was administered, and magnetic induction was performed by aligning a magnet (diameter 0.5 cm, 0.5 Tesla) with a circular surface. Subsequently, dynamic accumulation in the tumor tissues of Examples 3 and 4 was monitored by single photon emission computed tomography (SPECT).
図13A〜図13Cを参照すると、本発明の癌治療用のキットが集中的に腫瘍に蓄積する分析結果図である。
図13Aは、125Iが標識される実施例3又は実施例4が4T1−Luc腫瘍マウスで第0、4、6、12と24時間にある時間活性曲線であり、n=4である。図13Bは、4T1−Luc腫瘍マウスが125Iが標識される実施例3又は実施例4が投与された後の第24時間の全身単一光子放出コンピュータ断層撮影法図である。図13Cは、4T1−Luc腫瘍マウスが125Iが標識される実施例3又は実施例4が投与された後の、第24時間の生体分布定量図であり、n=4であり、*は統計的に明らかな差を示す(p<0.05)。
With reference to FIGS. 13A to 13C, it is an analysis result diagram in which the kit for cancer treatment of the present invention intensively accumulates in a tumor.
FIG. 13A is a time activity curve in Example 3 or Example 4 labeled 125I at 0, 4, 6, 12 and 24 hours in 4T1-Luc tumor mice, n = 4. FIG. 13B is a 24 hour systemic single photon emission computed tomography diagram after administration of Example 3 or Example 4 in which 4T1-Luc tumor mice are labeled with 125I. FIG. 13C is a biological distribution quantitative chart at 24 hours after administration of Example 3 or Example 4 in which 4T1-Luc tumor mice are labeled with 125I, n = 4, and * is statistical. Shows a clear difference in (p <0.05).
図13Aの結果から分かるように、実施例3の腫瘍における蓄積は、投与後の第6時間に組織1gあたりに注射される用量の最大濃度(5.08%ID/g)に達した。対照的に、実施例4は、磁気誘導によって腫瘍の用量投与の領域性を促進し、実施例4が24時間内に腫瘍で持続に蓄積することが見られ、第24時間に、実施例4が腫瘍における蓄積量は実施例3の3.6倍となった。
図13Bの結果から分かるように、実施例3又は実施例4を投与した後の24時間後に、実施例3及び実施例4の間の放射性同位体は異なる生体分布パターンを有した。
図13Cの生体分布定量図から分かるように、実施例3及び実施例4において、主に腫瘍、肝臓、脾臓及び膀胱に蓄積するが、筋肉、脳、心臓、肺、胃、腎臓、結腸と血液に蓄積されにくい(5%ID/gよりも小さい)。実施例3は実施例4と比べて、実施例4が腫瘍における蓄積を向上させることだけでなく、著しく肝臓と脾臓におけるその全身蓄積を低減して、実施例4が効果的に作用部位に集中し得ることを示す。
As can be seen from the results of FIG. 13A, the accumulation in the tumor of Example 3 reached the maximum concentration (5.08% ID / g) of the dose injected per 1 g of tissue 6 hours after administration. In contrast, Example 4 promoted the regionality of dose administration of the tumor by magnetic induction, and Example 4 was found to accumulate persistently in the tumor within 24 hours, and at 24 hours, Example 4 However, the amount accumulated in the tumor was 3.6 times that of Example 3.
As can be seen from the results of FIG. 13B, 24 hours after administration of Example 3 or Example 4, the radioisotopes between Examples 3 and 4 had different biodistribution patterns.
As can be seen from the biological distribution quantitative diagram of FIG. 13C, in Examples 3 and 4, the accumulation mainly in the tumor, liver, spleen and bladder, but in muscle, brain, heart, lung, stomach, kidney, colon and blood. Hard to accumulate in (smaller than 5% ID / g). In Example 3, as compared to Example 4, Example 4 not only improves the accumulation in the tumor, but also significantly reduces its systemic accumulation in the liver and spleen, and Example 4 effectively concentrates on the site of action. Show that it can be done.
本試験例は、更にそれぞれ右大腿静脈を介してIgG(対照組)、IO@FuDex、実施例1−4を4T1−Luc腫瘍マウスに投与し、投与形態として腫瘍接種の8日後、4日ごとに連続して3回(q4dx3)投与した。図13D及び添付ファイル1を参照すると、添付ファイル1は、図13Dのカラー図面である。4T1−Luc腫瘍マウスに実施例1−4を投与した後の4週のヘマトキシリン−エオシン染色がプロシアンブルー染色に合わせる結果図である。スケールバーは50μMの長さを示す。図13Dの結果から分かるように、他の群と比べて、実施例4は腫瘍組織において散在したプロシアンブルー染色結果が観察された。 In this test example, IgG (control group), IO @ FuDex, and Example 1-4 were further administered to 4T1-Luc tumor mice via the right femoral vein, respectively, and the administration form was 8 days after tumor inoculation and every 4 days. Was administered three times in succession (q4dx3). With reference to FIG. 13D and Attachment 1, Attachment 1 is a color drawing of FIG. 13D. It is a result figure that hematoxylin-eosin staining at 4 weeks after administration of Example 1-4 to 4T1-Luc tumor mice is matched with Procyan blue staining. The scale bar indicates a length of 50 μM. As can be seen from the results in FIG. 13D, compared with the other groups, Example 4 observed scattered Procyan blue staining results in the tumor tissue.
本発明の免疫磁気組成物及び癌治療用のキットが4T1−Luc腫瘍マウスに対して治療効果を有することを確認するために、本試験例では、更に右大腿静脈からIgG(対照組)、IO@FuDex、実施例1−4を4T1−Luc腫瘍マウスに投与し、投与形態として腫瘍接種の8日後、4日ごとに連続して3回(q4dx3)投与した。腫瘍体積をデジタルキャリパー(mitutoyo)を用いて2〜3日ごとにモニターし、腫瘍体積を以下の式Iに基づいて計算した。 In order to confirm that the immunomagnetic composition of the present invention and the kit for treating cancer have a therapeutic effect on 4T1-Luc tumor mice, in this test example, IgG (control group) and IO from the right femoral vein are further added. @ FuDex, Examples 1-4 were administered to 4T1-Luc tumor mice, and as the administration form, 8 days after tumor inoculation, 3 times (q4dx3) were continuously administered every 4 days. Tumor volume was monitored every 2-3 days using a digital caliper (mitutoyo) and tumor volume was calculated based on Formula I below.
非侵襲的生体内分子イメージングシステム(Non Invasion In Vivo Imaging System,IVIS;Xenogen)によって生物発光評価を行った。4T1−Luc腫瘍マウスの生存率は、Kaplan−Meier法によって分析した。 Bioluminescence evaluation was performed by a non-invasive in vivo molecular imaging system (Non Invasion In Vivo Imaging System, IVIS; Xenogen). Survival rates of 4T1-Luc tumor mice were analyzed by the Kaplan-Meier method.
図14A〜図14E及び添付ファイル2を参照すると、本発明の免疫磁気組成物及び癌治療用のキットが乳癌肺転移マウスモデルで癌細胞増殖と癌転移を阻害する分析結果図である。
図14Aは、4T1−Luc腫瘍マウスに実施例1−4が投与された後の24時間の非侵襲的生体内分子イメージングシステムスキャン結果図である。添付ファイル2は、図14Aのカラー図面である。図14Bは、4T1−Luc腫瘍マウスに実施例1−4が投与された後の腫瘍体積統計図である。図14Cは、4T1−Luc腫瘍マウスに実施例1−4が投与された後の生存曲線である。図14Dは、4T1−Luc腫瘍マウスに実施例1−4が投与された後の腫瘍と肺臓の写真図である。図14Eは、4T1−Luc腫瘍マウスに実施例1−4が投与された後の肺転移の統計図である。
With reference to FIGS. 14A-14E and Attachment 2, it is an analysis result diagram in which the immunomagnetic composition of the present invention and a kit for treating cancer inhibit cancer cell proliferation and cancer metastasis in a mouse model of breast cancer lung metastasis.
FIG. 14A is a 24-hour non-invasive in-vivo molecular imaging system scan result diagram after administration of Example 1-4 to 4T1-Luc tumor mice. Attachment 2 is a color drawing of FIG. 14A. FIG. 14B is a tumor volume statistical diagram after administration of Example 1-4 to 4T1-Luc tumor mice. FIG. 14C is a survival curve after administration of Examples 1-4 to 4T1-Luc tumor mice. FIG. 14D is a photograph of the tumor and lung after administration of Example 1-4 to 4T1-Luc tumor mice. FIG. 14E is a statistical diagram of lung metastasis after administration of Example 1-4 to 4T1-Luc tumor mice.
図14Aと図14Bの結果から分かるように、対照組と比べて、IO@FuDexは、腫瘍生長を阻害できるが、統計的に明らかな差異がなかった。実施例1−4は、抗腫瘍効果を有する以外、且つ統計的に明らかな差異があり(*はp<0.05を示し、**はp<0.01を示す)、特に、実施例4は、30日以内に腫瘍の増殖をほとんど阻害した。
図14Cの結果から分かるように、対照組、IO@FuDex、実施例1、実施例2、実施例3及び実施例4を投与した4T1−Luc腫瘍マウスの生存期間の中央値は、それぞれ24日、34日、34日、43天と44日であった。実施例4を投与した4T1−Luc腫瘍マウスの生存期間の中央値は、著しく63日まで延長した。実施例4におけるPD−L1抗体の投与量は、普通の純粋な抗体投与量の1%しかないが、より優れた腫瘍抑制能力を示して、半減期が2倍以上に増加した。
また、図14Dの結果から分かるように、実施例1−4は何れも抗腫瘍転移能力を有した。図14Dにおいて、他の群と比べて、実施例3及び実施例4の投与は著しく肺腫瘍転移を阻害できる。
別に図14Eの結果から分かるように、対照組の4T1−Luc腫瘍マウスの肺に20の結節を超える肺転移を有し、実施例4が投与される4T1−Luc腫瘍マウスの肺に平均して5つの結節未満の肺転移が発見された。従って、上記の結果から分かるように、本発明の免疫磁気組成物及び癌治療用のキットは、明らかな阻害腫瘍と抗腫瘍転移作用を有した。対照組と比べて、IO@FuDexは、腫瘍の転移を著しく減少させなかった。本発明の免疫磁気組成物及び癌治療用のキットの有する抗腫瘍転移作用は、フコイダンの阻害作用に加え、腫瘍微小環境の動的応答に関連することを推測した。
As can be seen from the results of FIGS. 14A and 14B, IO @ FuDex was able to inhibit tumor growth as compared to the control group, but there was no statistically clear difference. Examples 1-4 have a statistically clear difference other than having an antitumor effect (* indicates p <0.05, ** indicates p <0.01), and in particular, Examples. 4 almost inhibited the growth of the tumor within 30 days.
As can be seen from the results in FIG. 14C, the median survival time of 4T1-Luc tumor mice treated with the control group, IO @ FuDex, Example 1, Example 2, Example 3 and Example 4 was 24 days, respectively. , 34th, 34th, 43rd and 44th. The median survival time of 4T1-Luc tumor mice treated with Example 4 was significantly extended to 63 days. The dose of PD-L1 antibody in Example 4 was only 1% of the normal pure antibody dose, but showed better tumor suppressor capacity and the half-life was more than doubled.
Moreover, as can be seen from the results of FIG. 14D, all of Examples 1-4 had antitumor metastasis ability. In FIG. 14D, administration of Example 3 and Example 4 can significantly inhibit lung tumor metastasis as compared to the other groups.
Separately, as can be seen from the results of FIG. 14E, the lungs of the 4T1-Luc tumor mice of the control group had lung metastases exceeding 20 nodules, and the lungs of the 4T1-Luc tumor mice to which Example 4 was administered were averaged. Less than 5 nodules of lung metastases were found. Therefore, as can be seen from the above results, the immunomagnetic composition of the present invention and the kit for treating cancer had a clear inhibitory tumor and antitumor metastatic effect. Compared to the control group, IO @ FuDex did not significantly reduce tumor metastasis. It was speculated that the antitumor metastatic effect of the immunomagnetic composition of the present invention and the kit for treating cancer is related to the dynamic response of the tumor microenvironment in addition to the inhibitory effect of fucoidan.
(2.1.2 本発明の免疫磁気組成物による大腸癌の治療効果)
本試験例は、生物発光酵素を安定に発現するluciferase遺伝子を持つCT−26細胞株を大腸癌の動物モデル(中国医薬大学付属病院分子医療センターによって提供される)として、IgG(対照組)、IO@FuDex及び実施例3を右大腿静脈を介してCT−26腫瘍マウスに投与し、試験的に、別に実施例3が投与され円状表面の磁石(直径0.5cm,0.5Tesla)を合わせて磁気誘導を行う実施例4(本発明の癌治療用のキット)、及びIO@FuDexが投与され円状表面の磁石を合わせて磁気誘導を行う比較例1があった。投与形態として、腫瘍接種の8日後、4日ごとに連続して3回(q4dx3)投与した。腫瘍体積をデジタルキャリパーを用いて2〜3日ごとにモニターし、腫瘍体積を前記の式Iに基づいて計算し、非侵襲的生体内分子イメージングシステムによって生物発光評価を行った。CT−26腫瘍マウスの生存率は、Kaplan−Meier法によって分析した。
(2.1.2 Therapeutic effect of the immunomagnetic composition of the present invention on colorectal cancer)
In this test example, a CT-26 cell line having a luciferase gene that stably expresses bioluminescent enzyme was used as an animal model of colorectal cancer (provided by the Molecular Medical Center of the Chinese Pharmaceutical University Hospital), and IgG (control group), IO @ FuDex and Example 3 were administered to CT-26 tumor mice via the right femoral vein, and Example 3 was separately administered on a trial basis to magnetize a circular surface (0.5 cm in diameter, 0.5 Tesla). There was Example 4 (kit for cancer treatment of the present invention) in which magnetic induction was performed together, and Comparative Example 1 in which IO @ FuDex was administered and magnets on a circular surface were combined to perform magnetic induction. As an administration form, 8 days after tumor inoculation, 3 times (q4dx3) were continuously administered every 4 days. Tumor volume was monitored every 2-3 days using a digital caliper, tumor volume was calculated based on Formula I above, and bioluminescence evaluation was performed by a non-invasive in vivo molecular imaging system. Survival of CT-26 tumor mice was analyzed by the Kaplan-Meier method.
図15A〜図15C及び添付ファイル3を参照すると、本発明の免疫磁気組成物及び癌治療用のキットが大腸癌マウスモデルで癌細胞増殖を阻害する分析結果図である。
図15Aは、CT−26腫瘍マウスに実施例3−4が投与された後の24時間の非侵襲的生体内分子イメージングシステムスキャン結果図である。添付ファイル3は、図15Aのカラー図面であり。図15Bは、CT−26腫瘍マウスに実施例3−4が投与された後の腫瘍体積統計図である。図15Cは、CT−26腫瘍マウスに実施例3−4が投与された後の生存曲線である。
With reference to FIGS. 15A-15C and Attachment 3, it is an analysis result diagram in which the immunomagnetic composition of the present invention and a kit for treating cancer inhibit cancer cell growth in a mouse model of colorectal cancer.
FIG. 15A is a 24-hour non-invasive in-vivo molecular imaging system scan result diagram after administration of Example 3-4 to CT-26 tumor mice. Attachment 3 is a color drawing of FIG. 15A. FIG. 15B is a tumor volume statistical diagram after administration of Example 3-4 to CT-26 tumor mice. FIG. 15C is a survival curve after administration of Example 3-4 to CT-26 tumor mice.
図15Aと図15Bの結果から分かるように、対照組と比べて、IO@FuDexは、腫瘍生長を阻害できるが、統計的に明らかな差異がなかった。IO@FuDexを投与し磁気誘導を合わせる比較例1は、IO@FuDexの治療効果を向上させることができた。本発明の実施例3−4は、抗腫瘍効果を有する以外、且つ統計的に明らかな差異があり(*はp<0.05を示し、**はp<0.01を示す)、特に、実施例4は、30日以内に腫瘍の増殖をほとんど阻害した。
図15Cの結果から分かるように、実施例3及び実施例4を投与すると、著しくマウスの生存時間を延長して、本発明の免疫磁気組成物が腫瘍生長と転移を阻害する効果があることが再び証明された。
As can be seen from the results of FIGS. 15A and 15B, IO @ FuDex was able to inhibit tumor growth as compared to the control group, but there was no statistically clear difference. In Comparative Example 1 in which IO @ FuDex was administered and the magnetic induction was combined, the therapeutic effect of IO @ FuDex could be improved. Examples 3-4 of the present invention have a statistically clear difference other than having an antitumor effect (* indicates p <0.05, ** indicates p <0.01), and in particular. Example 4 almost inhibited the growth of the tumor within 30 days.
As can be seen from the results of FIG. 15C, administration of Example 3 and Example 4 significantly prolongs the survival time of mice, and the immunomagnetic composition of the present invention has an effect of inhibiting tumor growth and metastasis. Proven again.
(2.2 本発明の免疫磁気組成物を投与した後の免疫作用の分析)
本試験例は、更に4T1腫瘍モデルで、本発明の免疫磁気組成物及び癌治療用のキットの腫瘍内の微環境における免疫作用を検討した。初期腫瘍(10日)から晩期(30日)の4T1−Luc腫瘍マウスの腫瘍、血液、腹水及び脾臓におけるリンパ球の数の変化を実験的にモニターした。
(2.2 Analysis of immune action after administration of the immunomagnetic composition of the present invention)
In this test example, a 4T1 tumor model was used to examine the immune action of the immunomagnetic composition of the present invention and the kit for treating cancer in the microenvironment within the tumor. Changes in the number of lymphocytes in tumors, blood, ascites and spleen of 4T1-Luc tumor mice from early tumor (10 days) to late (30 days) were experimentally monitored.
図16A〜図16Iを参照すると、本発明の免疫磁気組成物及び癌治療用のキットを投与した後の腫瘍微小環境における腫瘍浸潤リンパ球数変化とサイトカイン含有量変化の分析結果図である。
図16Aと図16Bの結果から分かるように、実施例1−4が投与される群、特に、実施例4が投与される群(p<0.01)は、著しく抗腫瘍リンパ球細胞、例えば、CD8+ T細胞とCD4+ T細胞の数を向上させることができた。
図16Cと図16Dの結果から分かるように、実施例1−4が投与される群は、著しく前腫瘍抗腫瘍リンパ球細胞、例えばCD4+CD225+Foxp3+Treg(調節性T細胞)とCD11b+CD206+F4/80+TAM(腫瘍関連マクロファージ)の数を低減させることができ、特に、実施例4が投与される群は、大幅に調節性T細胞(Treg)数(p<0.01)を低減させることができた。
図16E〜図16Gにおいて、異なる群の4T1−Luc腫瘍マウス血清を回収し、TAMによって分泌されたTNF−α、VEGFとTGF−βの含有量を分析し、実施例1−4が投与される群、特に、実施例4が投与される群(p<0.01)は、著しくTNF−α、VEGFとTGF−β等の前炎症性サイトカインの含有量を低減させることができた。
図16Hと図16Iにおいて、細胞内グランザイムB(GrB+)とKi67の発現レベルによってCD8+ T細胞の活性化程度を評価して、実施例1−4が投与される群、特に、実施例4が投与される群(p<0.01)は、CD8+腫瘍浸潤リンパ球細胞の機能を効果的に活性化することができた。
With reference to FIGS. 16A to 16I, it is an analysis result diagram of the change in the number of tumor-infiltrating lymphocytes and the change in the cytokine content in the tumor microenvironment after administration of the immunomagnetic composition of the present invention and the kit for treating cancer.
As can be seen from the results of FIGS. 16A and 16B, the group to which Examples 1-4 are administered, particularly the group to which Example 4 is administered (p <0.01), are markedly antitumor lymphocyte cells, eg, , CD8 + T cells and CD4 + T cells could be improved.
As can be seen from the results of FIGS. 16C and 16D, the group to which Example 1-4 was administered was significantly pretumor antitumor lymphocyte cells such as CD4 + CD225 + Foxp3 + Treg (regulatory T cells) and CD11b +. The number of CD206 + F4 / 80 + TAM (tumor-related macrophages) can be reduced, especially in the group to which Example 4 is administered, the number of regulatory T cells (Tregs) (p <0.01). Was able to be reduced.
In FIGS. 16E-16G, different groups of 4T1-Luc tumor mouse sera are collected, the content of TNF-α, VEGF and TGF-β secreted by TAM is analyzed and Example 1-4 is administered. The group, in particular the group to which Example 4 was administered (p <0.01), was able to significantly reduce the content of pre-inflammatory cytokines such as TNF-α, VEGF and TGF-β.
In FIGS. 16H and 16I, the degree of activation of CD8 + T cells was evaluated based on the expression levels of intracellular granzyme B (GrB + ) and Ki67, and the group to which Examples 1-4 were administered, particularly Example 4. The group to which was administered (p <0.01) was able to effectively activate the function of CD8 + tumor-infiltrating lymphocyte cells.
前記試験例で本発明の免疫磁気組成物及び癌治療用のキットを投与すると腫瘍微小環境を変えることができると確認した後で、本試験例で更に本発明の免疫磁気組成物及び癌治療用のキットの腫瘍に対する特異的免疫応答と全身作用の変化を検討した。試験的に、異なる群の4T1−Luc腫瘍マウスの腫瘍、血清、脾臓を回収し、INF−γ +CD44+ T細胞とCD8+CD3+ T細胞の変化をモニターして、TUNELテストによって異なる群の4T1−Luc腫瘍マウスの皮膚組織のアポトーシス状況を観察した。 After confirming that the tumor microenvironment can be changed by administering the immunomagnetic composition of the present invention and the kit for cancer treatment in the above test example, the immunomagnetic composition of the present invention and the kit for cancer treatment are further described in the present test example. The kit's specific immune response to tumors and changes in systemic effects were investigated. On a trial basis, tumors, serum, and spleen of 4T1-Luc tumor mice in different groups were collected, and changes in INF- γ + CD44 + T cells and CD8 + CD3 + T cells were monitored, and different groups were tested by the TUNEL test. The apoptosis status of the skin tissue of 4T1-Luc tumor mice was observed.
図17Aと図17Bを参照すると、本発明の免疫磁気組成物及び癌治療用のキットの反応部位の分析結果図である。図17Aは、異なる群の4T1−Luc腫瘍マウスのINF−γ +CD44+ T細胞の変化結果図である。図17Bは、異なる群の4T1−Luc腫瘍マウスのCD8+CD3+ T細胞の変化結果図である。 With reference to FIGS. 17A and 17B, it is an analysis result diagram of the reaction site of the immunomagnetic composition of the present invention and the kit for treating cancer. FIG. 17A is a change result diagram of INF- γ + CD44 + T cells of 4T1-Luc tumor mice in different groups. FIG. 17B is a change result diagram of CD8 + CD3 + T cells of 4T1-Luc tumor mice in different groups.
図17Aの結果から分かるように、INF−γ +CD44+ T細胞は実施例1−4が投与された後で増殖の数が向上し、特に、実施例4が投与される群は高く増殖した。図17Bの結果から分かるように、実施例1−3が投与された後で、CD8+CD3+ T細胞が血清と脾臓で何れも増殖するが、実施例4が投与される群と実施例3が投与される群と比べて、磁気誘導によってCD8+CD3+ T細胞が血清と脾臓における増殖を低減させた。 As can be seen from the results of FIG. 17A, the number of proliferation of INF- γ + CD44 + T cells increased after the administration of Examples 1-4, and in particular, the group to which Example 4 was administered proliferated highly. .. As can be seen from the results of FIG. 17B, after the administration of Example 1-3, both CD8 + CD3 + T cells proliferate in the serum and spleen, but the group to which Example 4 is administered and Example 3 CD8 + CD3 + T cells reduced proliferation in serum and spleen by magnetic induction compared to the group receiving.
皮膚の毒性によるかゆみや白斑が免疫チェックポイント阻害剤治療における副作用の一つであり、免疫関連の有害事象がしばしば長期間の場合に起こるので、本試験例では、腫瘍が接種された4週間後で、4T1−Luc腫瘍マウスの皮膚組織に対してTUNELテストを行って、浸潤しているT細胞が免疫応答を誘発し皮膚組織損傷を引き起こすかを評価した。 Itching and white spots due to skin toxicity are one of the side effects of immune checkpoint inhibitor treatment, and immune-related adverse events often occur over a long period of time. Therefore, in this study example, 4 weeks after tumor infiltration. Then, a TUNEL test was performed on the skin tissue of 4T1-Luc tumor mice to evaluate whether the infiltrating T cells induce an immune response and cause skin tissue damage.
添付ファイル4、図17Cと図17Dを参照すると、本発明の免疫磁気組成物及び癌治療用のキットのTUNELテスト結果図である。図17Cは、TUNELテストによる異なる群の4T1−Luc腫瘍マウスの皮膚組織アポトーシス指数の統計結果図である。アポトーシス指数は、TUNEL+アポトーシス核の比例を細胞核総数(ランダムに選択された微小範囲)で割ったものとして、2因子の変動性の分析とNewman−Keuls事後比較試験を用いて異なる群の間の差異を評価した。図17Dは、TUNELテストによる異なる群の4T1−Luc腫瘍マウスの蛍光顕微鏡写真図であり、スケールバーは、50μMの長さを示す。添付ファイル4は、図17Dのカラー図面である。 With reference to Attachment 4, FIGS. 17C and 17D, it is a TUNEL test result diagram of the immunomagnetic composition of the present invention and the kit for treating cancer. FIG. 17C is a statistical result diagram of the skin tissue apoptosis index of 4T1-Luc tumor mice in different groups by the TUNEL test. The apoptotic index is the proportion of TUNEL + apoptotic nuclei divided by the total number of cell nuclei (a small range randomly selected) between different groups using a two-factor variability analysis and a Newman-Keuls ex-post comparison study. The difference was evaluated. FIG. 17D is a fluorescence micrograph of 4T1-Luc tumor mice from different groups by TUNEL test, with scale bars showing a length of 50 μM. Attachment 4 is a color drawing of FIG. 17D.
図17Cと図17Dの結果から分かるように、実施例1−3が投与された後で、TUNELで標識される(緑色)アポトーシス細胞が増加し、対照群と比べて実施例3が投与される群のアポトーシス指数が3.3倍増加した。しかしながら、実施例4が投与される群は実施例3が投与される群と比べて、磁気誘導は効果的に皮膚組織におけるアポトーシス細胞の数を低減させることができた。 As can be seen from the results of FIGS. 17C and 17D, after the administration of Examples 1-3, the number of TUNEL-labeled (green) apoptotic cells increased, and Example 3 was administered as compared to the control group. The apoptosis index of the group increased by 3.3 times. However, in the group to which Example 4 was administered, magnetic induction was able to effectively reduce the number of apoptotic cells in the skin tissue as compared with the group to which Example 3 was administered.
(2.3 本発明の免疫磁気組成物の免疫関連の有害事象試験)
本試験例において更に本発明の免疫磁気組成物又は癌治療用のキットを投与した4T1腫瘍モデルで、試験的に実施例3又は実施例4を4T1腫瘍マウスに投与し、腫瘍が接種された4週後、4T1腫瘍マウスに対して免疫関連有害事象(Immune−related adverse events;irAEs)をテストして、本発明の免疫磁気組成物及び癌治療用のキットの安全性を分析した。
(2.3 Immunity-related adverse event test of the immunomagnetic composition of the present invention)
In this test example, in a 4T1 tumor model further administered with the immunomagnetic composition of the present invention or a kit for treating cancer, Example 3 or Example 4 was experimentally administered to 4T1 tumor mice, and the tumor was inoculated 4 After a week, 4T1 tumor mice were tested for immune-related advanced events (irAEs) to analyze the safety of the immunomagnetic compositions of the invention and kits for the treatment of cancer.
本試験例は、実施例3及び実施例4によって治療された4週後のマウスのCD4+ T細胞及びCD8+ T細胞の主要臓器への浸潤程度を観察して副作用の影響を判断した。図18A〜図18Eを参照すると、本発明の免疫磁気組成物及び癌治療用のキットを投与した後のマウスCD4+ T細胞とCD8+ T細胞の浸潤程度の分析図である。
図18Aは、肝臓の分析結果図である。図18Bは、肺臓の分析結果図である。図18Cは、脾臓の分析結果図である。図18Dは、腎臓の分析結果図である。図18Eは、大腸の分析結果図である。結果から分かるように、実施例3は肝臓、肺臓、脾臓、腎臓と大腸へのT細胞浸潤程度が対照組よりも低く、実施例4は磁石の吸引作用によって、更に周りへの蓄積(肝臓、肺臓、脾臓、腎臓と大腸)を著しく低減させることができ、更にT細胞の浸潤を低減させた。
In this test example, the effect of side effects was determined by observing the degree of infiltration of CD4 + T cells and CD8 + T cells of mice treated by Example 3 and Example 4 into major organs after 4 weeks. 18A-18E are analytical diagrams of the degree of infiltration of mouse CD4 + T cells and CD8 + T cells after administration of the immunomagnetic composition of the present invention and the kit for treating cancer.
FIG. 18A is an analysis result diagram of the liver. FIG. 18B is an analysis result diagram of the lungs. FIG. 18C is an analysis result diagram of the spleen. FIG. 18D is an analysis result diagram of the kidney. FIG. 18E is an analysis result diagram of the large intestine. As can be seen from the results, Example 3 has a lower degree of T cell infiltration into the liver, lungs, spleen, kidneys and large intestine than the control group, and Example 4 further accumulates around (liver,) due to the attractive action of the magnet. The liver, spleen, kidneys and large intestine) could be significantly reduced, and the infiltration of T cells was further reduced.
本試験例において更に血液生化分析によって、肝機能指標(ASTとALT)、腎機能指標(クレアチニン)及び血糖値を分析して副作用の影響を判断する。図19A〜図19Dを参照すると、本発明の免疫磁気組成物及び癌治療用のキットを投与した後のマウス血液生化学分析の結果図である。
図19Aは、AST値分析図である。図19Bは、ALT値分析図である。図19Cは、クレアチニン値分析図である。図19Dは、血糖値分析図である。図面から分かるように、実施例3又は実施例4を投与した治療群と対照組の生化値がやはり正常値の範囲に保持され、本発明の免疫磁気組成物及び癌治療用のキットはある程度の安全性を有することを示す。
In this test example, liver function indexes (AST and ALT), renal function indexes (creatinine) and blood glucose levels are further analyzed by blood biochemistry analysis to determine the effects of side effects. 19A to 19D are the results of mouse blood biochemical analysis after administration of the immunomagnetic composition of the present invention and the kit for treating cancer.
FIG. 19A is an AST value analysis diagram. FIG. 19B is an ALT value analysis diagram. FIG. 19C is a creatinine level analysis diagram. FIG. 19D is a blood glucose level analysis diagram. As can be seen from the drawings, the biochemical values of the treatment group and the control group to which Example 3 or Example 4 was administered are also maintained in the normal range, and the immunomagnetic composition of the present invention and the kit for cancer treatment have a certain degree. Shows that it has safety.
また、腫瘍が接種された4週後のマウスに対して病理学的切片の分析を行い、図20及添付ファイル5を参照すると、実施例3及び実施例4を投与した後のマウスの病理学的切片の画像である。添付ファイル5は、図5Aのカラー図面である。結果から分かるように、対照組と比べて、実施例3又は実施例4を投与した治療群は、肝臓、肺臓、脾臓、腎臓及び大腸において明らかな組織損傷がなく、本発明の免疫磁気組成物及び癌治療用のキットはある程度の安全性を有することを示す。 In addition, pathological sections were analyzed for mice 4 weeks after inoculation with the tumor, and referring to FIG. 20 and Attachment 5, the pathology of the mice after administration of Examples 3 and 4 It is an image of a target section. Attachment 5 is a color drawing of FIG. 5A. As can be seen from the results, the treatment group to which Example 3 or Example 4 was administered had no obvious tissue damage in the liver, lungs, spleen, kidneys and large intestine as compared to the control group, and the immunomagnetic composition of the present invention. And the kits for cancer treatment are shown to have some degree of safety.
要するに、本発明の免疫磁気組成物は、調製方法の製造プロセスが簡単であり、抗癌活性を有するフコイダンを担体の構成として、超常磁性酸化鉄ナノ粒子を組み合わせて、外層が抗体をグラフトすることができ活性物質をコア層に覆うことができる免疫磁気組成物を形成して、調製された免疫磁気組成物は、ナノスケール構造であり、そのサイズが適切で腫瘍に浸透して、腫瘍に対するフコイダンの役割を強めることができた。外層の抗体は、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤であってもよく、これによって本発明の免疫磁気組成物が自体材料の抗癌作用に加えて、免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤の両方であってもよく、腫瘍微小環境が大幅に改善され、且つ本発明の免疫磁気組成物は、単独の同じ抗体による免疫療法の抗癌効果を大幅に改善し、より少ない抗体用量でより良好な腫瘍抑制能力を達成することができた。また、製造された免疫磁気組成物は、凍結乾燥して粉末状の結晶を形成し、無菌条件下で長時間保存することができ、必要に応じて溶媒で再溶解して用いることができ、簡便で安定した特性を示す。 In short, in the immunomagnetic composition of the present invention, the manufacturing process of the preparation method is simple, fucoidan having anticancer activity is used as a carrier, and superparamagnetic iron oxide nanoparticles are combined, and the outer layer grafts the antibody. The immunomagnetic composition prepared by forming an immunomagnetic composition capable of covering the core layer with an active substance can have a nanoscale structure, is of an appropriate size and penetrates the tumor, and fucoidan against the tumor. I was able to strengthen the role of. The antibody in the outer layer may be an immune checkpoint inhibitor and / or a killer T cell proliferation agent, whereby the immunomagnetic composition of the present invention can be an immune checkpoint inhibitor and / or an immune checkpoint inhibitor in addition to the anti-cancer effect of its own material. / Or both killer T cell proliferators, the tumor microenvironment is significantly improved, and the immunomagnetic compositions of the present invention significantly improve the anti-cancer effect of immunotherapy with the same antibody alone. Better tumor suppressor capacity could be achieved with lower antibody doses. Further, the produced immunomagnetic composition can be freeze-dried to form powdery crystals, can be stored for a long time under aseptic conditions, and can be redissolved in a solvent and used if necessary. Shows simple and stable characteristics.
本発明の癌治療用キットは、本発明の免疫磁気組成物及び磁場発生装置を含み、磁場発生装置によって磁場を発生させ、磁気誘導の補助工具として、本発明の免疫磁気組成物を患部に蓄積して、腫瘍で免疫細胞の増殖が強く、且つ全身の免疫応答を低下させることができ、本発明の免疫磁気組成物の抗癌効果を更に高めることができる。前記試験のデータから確認されるように、局所に対する治療能力を有し、本発明の癌治療用キットは、同時に物理的及び生物学的目的作用を有するので、免疫療法及び化学療法の組み合わせ、又は免疫療法の化合物治療に寄与し、過剰な免疫反応による重篤な副作用を避ける。 The cancer treatment kit of the present invention includes the immunomagnetic composition of the present invention and a magnetic field generator, generates a magnetic field by the magnetic field generator, and accumulates the immunomagnetic composition of the present invention in an affected area as an auxiliary tool for magnetic induction. Thus, the proliferation of immune cells in the tumor is strong, the systemic immune response can be reduced, and the anticancer effect of the immunomagnetic composition of the present invention can be further enhanced. As confirmed from the data of the test, the kit for treating cancer of the present invention has a therapeutic ability locally and has physical and biological objective effects at the same time, so that it is a combination of immunotherapy and chemotherapy, or Contributes to compound therapy of immunotherapy and avoids serious side effects due to excessive immune response.
本発明の実施形態を前述の通りに開示したが、これは、本発明を限定するものではなく、当業者であれば、本発明の精神と範囲から逸脱しない限り、多様の変更や修飾を加えてもよく、したがって、本発明の保護範囲は、特許請求の範囲で指定した内容を基準とするものである。 Although the embodiments of the present invention have been disclosed as described above, this does not limit the present invention, and those skilled in the art can make various changes and modifications as long as they do not deviate from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is based on the content specified in the claims.
100 免疫磁気組成物
110 コア層
120 シェル層
130 外層
131 抗体
300 免疫磁気組成物の調製方法
310、320、330、340、350 工程
100 Immunomagnetic composition 110 Core layer 120 Shell layer 130 Outer layer 131 Antibody 300 Preparation method of immunomagnetic composition 310, 320, 330, 340, 350 steps
Claims (16)
フコイダン、酸化デキストラン及び複数の超常磁性酸化鉄ナノ粒子が疎水性相互作用によって結合される複合物からなり、前記コア層を覆うシェル層と、
免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤である少なくとも1つの抗体を含む外層と、
を備え、
前記抗体は、前記シェル層の外にグラフトされ前記外層を構成する免疫磁気組成物。 With the core layer
A shell layer comprising fucoidan, dextran oxide and a plurality of superparamagnetic iron oxide nanoparticles bonded by hydrophobic interaction, and a shell layer covering the core layer.
An outer layer containing at least one antibody that is an immune checkpoint inhibitor and / or a killer T cell proliferative agent.
With
The antibody is an immunomagnetic composition that is grafted on the outside of the shell layer to form the outer layer.
有機溶媒及び超常磁性酸化鉄ナノ粒子を含む油相溶液を提供する工程と、
前記水相溶液及び前記油相溶液を混合し乳濁液を形成するエマルジョン反応を行う工程と、
前記乳濁液における前記有機溶媒を除去して、磁気フコイダン担体を形成する工程と、
前記磁気フコイダン担体と免疫チェックポイント阻害剤及び/又はキラーT細胞増殖剤である少なくとも1つの抗体を混合して、免疫磁気組成物を形成するグラフトを行う工程と、
を備える免疫磁気組成物の調製方法。 A step of providing an aqueous phase solution containing fucoidan and dextran oxide,
A step of providing an oil phase solution containing an organic solvent and superparamagnetic iron oxide nanoparticles,
A step of performing an emulsion reaction in which the aqueous phase solution and the oil phase solution are mixed to form an emulsion, and
A step of removing the organic solvent in the emulsion to form a magnetic fucoidan carrier, and
A step of mixing the magnetic fucoidan carrier with at least one antibody which is an immune checkpoint inhibitor and / or a killer T cell proliferating agent to perform a graft to form an immunomagnetic composition.
A method for preparing an immunomagnetic composition comprising.
磁場発生装置と、
を含む癌治療用キット。 The immunomagnetic composition according to any one of claims 1 to 8, and the immunomagnetic composition.
Magnetic field generator and
Cancer treatment kit including.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762492525P | 2017-05-01 | 2017-05-01 | |
US62/492,525 | 2017-05-01 | ||
TW107101583A TWI664983B (en) | 2017-05-01 | 2018-01-16 | Immunomagnetic nanocomposite, method for fabricating the same, uses thereof and test kit for cancer treatment |
TW107101583 | 2018-01-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018188435A JP2018188435A (en) | 2018-11-29 |
JP6771509B2 true JP6771509B2 (en) | 2020-10-21 |
Family
ID=64479421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018088193A Active JP6771509B2 (en) | 2017-05-01 | 2018-05-01 | Immunomagnetic composition, its preparation method, its usage method and cancer treatment kit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6771509B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115120736B (en) * | 2022-06-28 | 2024-07-02 | 中国科学院海洋研究所 | Multifunctional gene vector and application thereof in delivery of miRNA |
-
2018
- 2018-05-01 JP JP2018088193A patent/JP6771509B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018188435A (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiang et al. | Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy | |
Chen et al. | Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein | |
Sun et al. | Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer | |
Mu et al. | Nanoparticles for imaging and treatment of metastatic breast cancer | |
Li et al. | Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor | |
Lin et al. | GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy | |
Luo et al. | Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy | |
CA3062089C (en) | Immunomagnetic nanocapsule, fabrication method and use thereof, and kit for treating cancer | |
Li et al. | Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor | |
Hu et al. | Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment | |
US9782342B2 (en) | Composite magnetic nanoparticle drug delivery system | |
Cobaleda‐Siles et al. | An iron oxide nanocarrier for dsRNA to target lymph nodes and strongly activate cells of the immune system | |
Goldman et al. | Nanoparticles target early-stage breast cancer metastasis in vivo | |
CN111888336B (en) | Calcium carbonate poly (lactic acid-glycolic acid) composite particles and preparation and application thereof | |
Rosenberger et al. | Physico-chemical and toxicological characterization of iron-containing albumin nanoparticles as platforms for medical imaging | |
Li et al. | Temperature-and pH-responsive injectable chitosan hydrogels loaded with doxorubicin and curcumin as long-lasting release platforms for the treatment of solid tumors | |
Liu et al. | Inflammation-responsive functional Ru nanoparticles combining a tumor-associated macrophage repolarization strategy with phototherapy for colorectal cancer therapy | |
Li et al. | Polysialic acid-functionalized liposomes for efficient honokiol delivery to inhibit breast cancer growth and metastasis | |
Liu et al. | Thermosensitive selenium hydrogel boosts antitumor immune response for hepatocellular carcinoma chemoradiotherapy | |
Chen et al. | Leveraging tumor cell ferroptosis for colorectal cancer treatment via nanoelicitor-activated tumoricidal immunity | |
Wang et al. | cRGD-conjugated magnetic-fluorescent liposomes for targeted dual-modality imaging of bone metastasis from prostate cancer | |
JP6771509B2 (en) | Immunomagnetic composition, its preparation method, its usage method and cancer treatment kit | |
Wang et al. | CD133-targeted hybrid nanovesicles for fluorescent/ultrasonic imaging-guided HIFU pancreatic cancer therapy | |
Yu et al. | Nanotechnology-mediated immunochemotherapy with ingenol-3-mebutate for systematic anti-tumor effects | |
Singh et al. | Delivery systems for lymphatic targeting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190709 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6771509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |