JP6750376B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP6750376B2 JP6750376B2 JP2016150861A JP2016150861A JP6750376B2 JP 6750376 B2 JP6750376 B2 JP 6750376B2 JP 2016150861 A JP2016150861 A JP 2016150861A JP 2016150861 A JP2016150861 A JP 2016150861A JP 6750376 B2 JP6750376 B2 JP 6750376B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode plate
- shrink
- lead
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.
鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と、正極板と、電解液とを含む。負極板と正極板との間にはセパレータが配置される。正極板は、正極集電体と正極電極材料とを備え、負極板は、負極集電体と負極電極材料とを備える。 Lead acid batteries are used in various applications such as in-vehicle and industrial applications. The lead storage battery includes a negative electrode plate, a positive electrode plate, and an electrolytic solution. A separator is arranged between the negative electrode plate and the positive electrode plate. The positive electrode plate includes a positive electrode current collector and a positive electrode electrode material, and the negative electrode plate includes a negative electrode current collector and a negative electrode electrode material.
負極電極材料は、酸化還元反応により容量を発現する活物質(鉛もしくは硫酸鉛)と、各種添加剤とを含んでいる。例えば、負極電極材料に有機防縮剤を添加することで、鉛蓄電池の放電性能を高めることができる。有機防縮剤としては、天然物由来のリグニンもしくはリグノスルホン酸の他に、合成有機防縮剤の使用が提案されている。 The negative electrode material contains an active material (lead or lead sulfate) that exhibits a capacity by a redox reaction, and various additives. For example, the discharge performance of the lead storage battery can be improved by adding an organic shrinkage preventive agent to the negative electrode material. As organic shrinkage inhibitors, it has been proposed to use synthetic organic shrinkage inhibitors in addition to lignin or lignosulfonic acid derived from natural products.
特許文献1は、合成有機防縮剤として、ビスフェノール類縮合物を負極電極材料に含有させている。
In
特許文献2は、リグニンを含有する負極活物質を用いている。特許文献2では、ベースとリブを有する厚さ0.7mm以上1.7mm以下のセパレータが使用されている。 Patent Document 2 uses a negative electrode active material containing lignin. In Patent Document 2, a separator having a base and ribs and having a thickness of 0.7 mm or more and 1.7 mm or less is used.
一方、特許文献3は、鉛/硫酸蓄電池において、約1〜約3.75mm、好適には約1.5〜2.5mmの合計厚さを有し、微孔性プラスチックスもしくはガラス−繊維またはそれらの両者からなるセパレータを配置している。
On the other hand,
有機防縮剤を負極電極材料に添加すると、負極電極材料の比抵抗が減少し、鉛蓄電池の低温での高率放電性能が向上する。中でも、合成有機防縮剤を用いる場合には、比抵抗が顕著に減少する。しかし、その一方で鉛蓄電池の重負荷寿命性能が低くなることがある。 Addition of the organic anti-shrink agent to the negative electrode material reduces the specific resistance of the negative electrode material and improves the high rate discharge performance of the lead storage battery at low temperatures. Above all, when a synthetic organic shrinkproofing agent is used, the specific resistance is remarkably reduced. However, on the other hand, the heavy load life performance of the lead storage battery may be reduced.
本発明の一態様は、負極板と、正極板と、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料は、合成有機防縮剤を含み、前記負極板と前記正極板との間の距離が、0.9mm以上かつ2mm以下である、鉛蓄電池に関する。 One embodiment of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, the negative electrode plate includes a negative electrode current collector, and a negative electrode material, and the negative electrode material is synthetic organic shrink-proof. And a distance between the negative electrode plate and the positive electrode plate of 0.9 mm or more and 2 mm or less.
本発明の別の態様は、負極板と、正極板と、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料は、有機防縮剤を含み、前記負極板と前記正極板との間の距離が、0.9mm以上かつ2mm以下であり、前記有機防縮剤は、硫黄元素を3000μmol/g以上含有する、鉛蓄電池に関する。 Another aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, the negative electrode plate includes a negative electrode current collector and a negative electrode material, and the negative electrode material is an organic shrink-proof material. The present invention relates to a lead storage battery, which contains an agent, has a distance between the negative electrode plate and the positive electrode plate of 0.9 mm or more and 2 mm or less, and contains the element sulfur of 3000 μmol/g or more.
本発明によれば、重負荷寿命性能に優れた鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a lead storage battery having excellent heavy load life performance.
本発明の一態様に係る鉛蓄電池は、負極板と、正極板と、電解液とを備え、負極板は、負極集電体と、負極電極材料とを備え、負極電極材料は、合成有機防縮剤を含み、負極板と正極板との間の距離は、0.9mm以上かつ2mm以下であり、1mm以上かつ1.8mm以下であることが好ましい。 A lead-acid battery according to an aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, the negative electrode plate includes a negative electrode current collector, and a negative electrode material, and the negative electrode material is synthetic organic shrink-proof. The distance between the negative electrode plate and the positive electrode plate including the agent is 0.9 mm or more and 2 mm or less, and preferably 1 mm or more and 1.8 mm or less.
また、本発明の別の態様に係る鉛蓄電池は、負極板と、正極板と、電解液とを備え、負極板は、負極集電体と、負極電極材料とを備え、負極電極材料は、有機防縮剤を含み、負極板と正極板との間の距離が0.9mm以上かつ2mm以下であり、1mm以上かつ1.8mm以下であることが好ましく、有機防縮剤は、硫黄元素を3000μmol/g以上含有し、4000μmol/g以上含有することが好ましい。 Further, a lead storage battery according to another aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, the negative electrode plate includes a negative electrode current collector and a negative electrode material, the negative electrode material, The organic anti-shrink agent contains an organic anti-shrink agent, and the distance between the negative electrode plate and the positive electrode plate is 0.9 mm or more and 2 mm or less, preferably 1 mm or more and 1.8 mm or less. g or more, and preferably 4000 μmol/g or more.
鉛蓄電池は、液式(ベント式)鉛蓄電池でもよく、制御弁式(密閉式)鉛蓄電池でもよいが、本発明の実施形態としては液式鉛蓄電池が適している。 The lead acid battery may be a liquid type (vent type) lead acid battery or a control valve type (sealed type) lead acid battery, but a liquid type lead acid battery is suitable as an embodiment of the present invention.
有機防縮剤を負極電極材料に含有させると、重負荷寿命性能が低下することがある。重負荷寿命性能が低下する理由は、負極板から電解液中に溶出した有機防縮剤が、正極電極材料を軟化させるためであると考えられる。 If the organic shrink-proofing agent is contained in the negative electrode material, the heavy load life performance may decrease. It is considered that the reason why the heavy load life performance is deteriorated is that the organic shrinkage preventer eluted from the negative electrode plate into the electrolytic solution softens the positive electrode material.
これに対し、負極板と正極板との間の距離(以下、極間距離とも称する。)を0.9mm以上、好ましくは1mm以上に設定する場合には、優れた重負荷寿命性能が得られる。極間距離を0.9mm以上にすることで、電解液中に溶出した有機防縮剤が正極電極材料に作用しにくくなるものと考えられる。これにより、正極電極材料の脱落量が減少し、正極板の劣化が抑制されることが、重負荷寿命性能の向上に大きく関連しているものと考えられる。 On the other hand, when the distance between the negative electrode plate and the positive electrode plate (hereinafter, also referred to as inter-electrode distance) is set to 0.9 mm or more, preferably 1 mm or more, excellent heavy load life performance is obtained. .. It is considered that by setting the distance between the electrodes to be 0.9 mm or more, it becomes difficult for the organic anti-shrink agent dissolved in the electrolytic solution to act on the positive electrode material. As a result, it is considered that the amount of the positive electrode material dropped off and the deterioration of the positive electrode plate being suppressed are largely related to the improvement of the heavy load life performance.
なお、天然物由来のリグニンを用いる場合には、極間距離を0.9mm以上にしても、正極電極材料の軟化を抑制する傾向は見られない。極間距離を0.9mm以上にすることで正極板の劣化が抑制されるのは、合成有機防縮剤もしくは硫黄元素の含有量が3000μmol/g以上の有機防縮剤を用いる場合に特有の現象であると考えられる。 When using lignin derived from a natural product, there is no tendency to suppress softening of the positive electrode material even if the distance between the electrodes is 0.9 mm or more. Deterioration of the positive electrode plate is suppressed by setting the distance between the electrodes to 0.9 mm or more because it is a unique phenomenon when a synthetic organic shrinkage inhibitor or an organic shrinkage inhibitor with a sulfur element content of 3000 μmol/g or more is used. It is believed that there is.
合成有機防縮剤の溶出は、合成有機防縮剤中の硫黄元素の含有量が3000μmol/g以下のときに顕著になり、2500μmol/g以下のときに更に顕著になる。この場合、極間距離が重負荷寿命性能に与える影響が大きくなるため、極間距離を0.9mm以上にすることがより重要となる。 The elution of the synthetic organic shrink-proofing agent becomes remarkable when the content of the elemental sulfur in the synthetic organic shrink-proofing agent is 3000 μmol/g or less, and becomes more remarkable when it is 2500 μmol/g or less. In this case, the distance between the poles has a large influence on the heavy load life performance, so it is more important to set the distance between the poles to 0.9 mm or more.
一方、有機防縮剤中の硫黄元素の含有量が3000μmol/g以上もしくは3000μmol/gを超える場合、負極板から有機防縮剤が電解液中に溶出しにくく、有機防縮剤による重負荷寿命性能を向上させる効果が非常に大きくなる。また、低温高率放電性能を向上させる効果も大きい。よって、極間距離を0.9mm以上にすることで、低温高率放電性能と重負荷寿命性能とを、より優れた水準で両立させることができる。中でも、有機防縮剤中の硫黄元素の含有量が4000μmol/g以上である場合には、有機防縮剤の溶出量が非常に少なくなるとともに、重負荷放電性能を非常に高い水準で安定化させることができる。 On the other hand, when the content of elemental sulfur in the organic anti-shrink agent is 3000 μmol/g or more or exceeds 3000 μmol/g, the organic anti-shrink agent is difficult to elute from the negative electrode plate into the electrolytic solution, and the heavy load life performance of the organic anti-shrink agent is improved. The effect of making it extremely large. Moreover, the effect of improving the low temperature high rate discharge performance is also large. Therefore, by setting the inter-electrode distance to be 0.9 mm or more, the low temperature high rate discharge performance and the heavy load life performance can be compatible at a more excellent level. Above all, when the content of the elemental sulfur in the organic anti-shrink agent is 4000 μmol/g or more, the elution amount of the organic anti-shrink agent becomes very small and the heavy load discharge performance should be stabilized at a very high level. You can
良好な重負荷寿命性能を得る観点からは、極間距離が大きいほどよい。具体的には、極間距離は1mmを超えることが好ましく、1.2mm以上がより好ましく、1.4mm以上が更に好ましい。なお、負極電極材料に有機防縮剤を添加すると、負極電極材料の比抵抗が減少し、鉛蓄電池の低温での高率放電性能が向上するが、極間距離が大きすぎると、低温高率放電性能の向上が抑制される。よって、極間距離は2.0mm以下が望ましく、1.8mm以下が好ましい。 From the viewpoint of obtaining good heavy load life performance, the larger the inter-electrode distance, the better. Specifically, the distance between the electrodes is preferably more than 1 mm, more preferably 1.2 mm or more, further preferably 1.4 mm or more. It should be noted that when an organic shrinkage inhibitor is added to the negative electrode material, the specific resistance of the negative electrode material decreases and the high rate discharge performance at low temperature of the lead storage battery improves, but if the inter-electrode distance is too large, low temperature high rate discharge will occur. Performance improvement is suppressed. Therefore, the distance between the electrodes is preferably 2.0 mm or less, and preferably 1.8 mm or less.
合成有機防縮剤は、天然物に由来する従来のリグニンもしくはリグノスルホン酸(以下、リグニンと称する。)に比べ、硫黄元素の含有量を大きくすることができる。よって、リグニンに代えて合成有機防縮剤を用いる場合には、鉛蓄電池の低温高率放電性能と重負荷放電性能とを大きく向上させることが可能である。 The synthetic organic anti-shrink agent can increase the content of elemental sulfur as compared with conventional lignin or lignosulfonic acid derived from a natural product (hereinafter referred to as lignin). Therefore, when a synthetic organic shrink proofing agent is used instead of lignin, it is possible to greatly improve the low temperature high rate discharge performance and the heavy load discharge performance of the lead storage battery.
低温高率放電性能とともに重負荷寿命性能を向上させる作用を高める観点からは、有機防縮剤中の硫黄元素の含有量は、3000μmol/g以上が好ましく、4000μmol/g以上がより好ましく、5000μmol/g以上が更に好ましい。一方、有機防縮剤中の硫黄元素の含有量を大きくするには限界がある。よって、有機防縮剤中の硫黄元素の含有量は、10000μmol/g以下が好ましく、9000μmol/g以下がより好ましく、8000μmol/g以下が更に好ましい。なお、リグニン中に含まれる硫黄元素の含有量は、通常、500〜600μmol/gである。 From the viewpoint of enhancing the effect of improving low-temperature high-rate discharge performance and heavy load life performance, the content of the elemental sulfur in the organic anti-shrink agent is preferably 3000 μmol/g or more, more preferably 4000 μmol/g or more, and 5000 μmol/g The above is more preferable. On the other hand, there is a limit in increasing the content of elemental sulfur in the organic shrink-proofing agent. Therefore, the content of elemental sulfur in the organic anti-shrink agent is preferably 10,000 μmol/g or less, more preferably 9000 μmol/g or less, and further preferably 8000 μmol/g or less. The content of elemental sulfur contained in the lignin is usually 500 to 600 μmol/g.
ここで、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。 Here, the content of the elemental sulfur in the organic anti-shrink agent is X μmol/g means that the content of the elemental sulfur contained in 1 g of the organic anti-shrink agent is X μmol.
有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に1つ以上、好ましくは複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The organic anti-shrink agent is an organic polymer containing elemental sulfur, and generally contains one or more, preferably a plurality of aromatic rings in the molecule, and contains elemental sulfur as a sulfur-containing group. Among the sulfur-containing groups, sulfonic acid groups or sulfonyl groups, which are stable forms, are preferable. The sulfonic acid group may be present in an acid form or in a salt form such as Na salt.
有機防縮剤の具体例としては、硫黄含有基を有するとともに1つ以上、好ましくは2つ以上の芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。2つ以上の芳香環を有する化合物としては、ビスフェノール類、ビフェニル類、ナフタレン類などを用いることが好ましい。ビスフェノール類、ビフェニル類およびナフタレン類とは、それぞれビスフェノール骨格、ビフェニル骨格およびナフタレン骨格を有する化合物の総称であり、それぞれが置換基を有してもよい。これらは、有機防縮剤中に単独で含まれてもよく、複数種が含まれてもよい。ビスフェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、ビスフェノール骨格内にスルホニル基(−SO2−)を有するため、硫黄元素の含有量を大きくすることが容易である。 As a specific example of the organic anti-shrink agent, a condensate of formaldehyde with a compound having a sulfur-containing group and having one or more, preferably two or more aromatic rings is preferable. As the compound having two or more aromatic rings, it is preferable to use bisphenols, biphenyls, naphthalenes and the like. Bisphenols, biphenyls, and naphthalenes are generic terms for compounds having a bisphenol skeleton, a biphenyl skeleton, and a naphthalene skeleton, and each may have a substituent. These may be contained alone or in plural kinds in the organic anti-shrink agent. As the bisphenol, bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, bisphenol S is a sulfonyl group in the bisphenol skeleton (-SO 2 -) because they have, it is easy to increase the content of the sulfur element.
硫黄含有基は、ビスフェノール類、ビフェニル類、ナフタレン類などの芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、例えばアミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の芳香族化合物を、2つ以上の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。なお、ビスフェノール類の縮合物は、常温より高い温度環境を経験しても、低温での性能が損なわれないので、常温より高い温度環境におかれる鉛蓄電池に適している。ナフタレンスルホン酸の縮合物は、ビスフェノール類の縮合物に比べ、分極が小さくなりにくいので、減液特性が重要な鉛蓄電池に適している。 The sulfur-containing group may be directly bonded to an aromatic ring such as bisphenols, biphenyls and naphthalene, and may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group. Alternatively, a monocyclic aromatic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings. The bisphenol condensate is suitable for a lead storage battery that is exposed to a temperature environment higher than room temperature because the performance at a low temperature is not impaired even if it experiences a temperature environment higher than room temperature. Compared to condensates of bisphenols, the condensate of naphthalene sulfonic acid is less likely to have a smaller polarization, so it is suitable for lead acid batteries where liquid reduction characteristics are important.
N,N'-(スルホニルジ-4,1-フェニレン)ビス(1,2,3,4-テトラヒドロ-6-メチル-2,4-ジオキソピリミジン-5-スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。 Organic compounds such as N,N'-(sulfonyldi-4,1-phenylene)bis(1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) condensate You may use as a shrinkproofing agent.
負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。 The content of the organic anti-shrink agent contained in the negative electrode material does not greatly affect the action of the organic anti-shrink agent within the general range. The content of the organic anti-shrink agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, further preferably 0.05% by mass or more, while 1.0 The content is preferably not more than mass%, more preferably not more than 0.8 mass%, further preferably not more than 0.3 mass%. Here, the content of the organic anti-shrink agent contained in the negative electrode material is the content in the negative electrode material obtained by the method described later from the already-formed fully charged lead storage battery.
負極電極材料の密度は、鉛蓄電池の軽量化の観点からは、例えば2.5〜4.0g/cm3が好ましく、2.5〜3.8g/cm3がより好ましく、2.5〜3.5g/cm3が更に好ましく、2.5〜3.0g/cm3が特に好ましい。ただし、負極電極材料が上記のように低密度であり、かつ有機防縮剤中の硫黄元素の含有量が3000μmol/g以下である場合には、重負荷寿命性能が低下しやすい。重負荷寿命性能の低下を抑制する観点から、負極電極材料の密度が2.5〜4.0g/cm3である場合には、有機防縮剤中の硫黄元素の含有量が3000μmol/gを超えることが好ましく、4000μmol/g以上がより好ましく、5000μmol/g以上が更に好ましい。 The density of the negative electrode material, from the viewpoint of weight reduction of the lead-acid battery, for example, preferably 2.5~4.0g / cm 3, more preferably 2.5~3.8g / cm 3, 2.5~3 0.5 g/cm 3 is more preferable, and 2.5 to 3.0 g/cm 3 is particularly preferable. However, when the negative electrode material has a low density as described above and the content of the sulfur element in the organic shrink proofing agent is 3000 μmol/g or less, the heavy load life performance is likely to deteriorate. From the viewpoint of suppressing deterioration of heavy load life performance, when the density of the negative electrode material is 2.5 to 4.0 g/cm 3 , the content of the sulfur element in the organic shrink proofing agent exceeds 3000 μmol/g. It is preferably 4000 μmol/g or more, more preferably 5000 μmol/g or more.
次に、各物性の分析方法について説明する。
(1)負極電極材料の密度
負極電極材料の密度は化成後の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後の電池を満充電してから解体し、入手した負極板に、水洗と乾燥とを施すことにより、負極板中の電解液を除く。次いで、負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5〜0.55psiaの圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
Next, a method of analyzing each physical property will be described.
(1) Density of Negative Electrode Material The density of the negative electrode material means the value of the bulk density of the negative electrode material after chemical conversion, and is measured as follows. The battery after chemical formation is fully charged and then disassembled, and the obtained negative electrode plate is washed with water and dried to remove the electrolytic solution in the negative electrode plate. Then, the negative electrode material is separated from the negative plate to obtain an uncrushed measurement sample. After charging the sample into the measuring container and evacuating it, filling the mercury with a pressure of 0.5 to 0.55 psia, measuring the bulk volume of the negative electrode material, and dividing the mass of the measurement sample by the bulk volume. The bulk density of the negative electrode material is determined. The volume obtained by subtracting the volume of mercury injected from the volume of the measurement container is the bulk volume.
鉛蓄電池を満充電状態にする補充電条件は以下の通りである。
液式の鉛蓄電池の場合、25℃、水槽中、5時間率電流で2.5V/セルに達するまで定電流充電を行った後、さらに5時間率電流で2時間、定電流充電を行う。また、制御弁式の鉛蓄電池の場合、25℃、気槽中、5時間率電流で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了する。
この明細書における5時間率電流は、電池公称容量を5時間で放電する電流値であり、例えば公称容量が30Ahの電池であれば、5時間率電流は6Aであり、1mCAは30mAである。
The auxiliary charging conditions for fully charging the lead storage battery are as follows.
In the case of a liquid lead-acid battery, constant current charging is performed at 25° C. in a water tank at a rate current of 5 hours until reaching 2.5 V/cell, and then at a rate current of 5 hours for 2 hours. Further, in the case of a control valve type lead-acid battery, constant-current constant-voltage charging of 2.23 V/cell is performed at 25° C. in a gas tank in a 5-hour rate current, and the charging current during constant-voltage charging becomes 1 mCA or less. Charging is terminated when
The 5-hour rate current in this specification is a current value at which the battery nominal capacity is discharged in 5 hours. For example, in the case of a battery having a nominal capacity of 30 Ah, the 5-hour rate current is 6 A and 1 mCA is 30 mA.
(2)有機防縮剤の分析
まず、化成後に満充電した鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、乾燥する。次に、乾燥した負極板から負極電極材料(初期試料)を採取し、初期試料を下記方法で分析する。
(2) Analysis of Organic Shrinkproof Agent First, a lead storage battery which has been fully charged after formation is decomposed, a negative electrode plate is taken out, sulfuric acid is removed by washing with water, and dried. Next, a negative electrode material (initial sample) is collected from the dried negative electrode plate, and the initial sample is analyzed by the following method.
(2−1)負極電極材料中の有機防縮剤の定性
初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を脱塩した後、濃縮し、乾燥する。脱塩は、濾液を透析チューブに入れて蒸留水中に浸すことにより行えばよい。これにより有機防縮剤の粉末試料が得られる。
(2-1) Qualitative determination of organic shrinkage inhibitor in negative electrode material An initial sample is immersed in a 1 mol/L NaOH aqueous solution to extract the organic shrinkage inhibitor. Next, insoluble components are removed by filtration from the extracted NaOH aqueous solution containing an organic shrinkage inhibitor, and the obtained filtrate is desalted, then concentrated and dried. Desalting may be performed by putting the filtrate in a dialysis tube and immersing it in distilled water. This gives a powder sample of the organic shrink proofing agent.
粉末試料を用いて測定した赤外分光スペクトル、粉末試料を蒸留水等で溶解し紫外可視光度計で測定した紫外可視吸収スペクトル、粉末試料を重水等の所定の溶媒で溶解して得られた溶液のNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤を特定することが可能である。 Infrared spectrum measured using a powder sample, UV-visible absorption spectrum measured with an ultraviolet-visible photometer by dissolving the powder sample with distilled water, etc., a solution obtained by dissolving the powder sample with a predetermined solvent such as heavy water It is possible to specify the organic anti-shrink agent by combining the information obtained from the NMR spectrum of the above.
(2−2)負極電極材料中における有機防縮剤の含有量の定量
上記(2−1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量することができる。
電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できない場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定する。
(2-2) Quantification of Content of Organic Strain Retardant in Negative Electrode Material In the same manner as in (2-1) above, after obtaining a filtrate of an aqueous NaOH solution containing an organic strain suppressor, an ultraviolet-visible absorption spectrum of the filtrate was measured. To do. The content of the organic anti-shrinking agent in the negative electrode material can be quantified using the spectral intensity and the calibration curve prepared in advance.
When obtaining the battery and measuring the content of the organic strain suppressor, if the same organic strain suppressor cannot be used in the calibration curve because the structural formula of the organic strain suppressor cannot be rigorously specified, the negative electrode of the battery By preparing a calibration curve using an organic shrinkage agent extracted from the above-mentioned organic shrinkage agent, which has a similar shape to the UV-visible absorption spectrum, infrared spectrum, and NMR spectrum, etc. The content of the organic shrink proofing agent is measured using the absorption spectrum.
(2−3)有機防縮剤中の硫黄元素の含有量
上記(2−1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液が得られる。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(2-3) Content of elemental sulfur in organic strain suppressor As in (2-1) above, after obtaining a powder sample of the organic strain suppressor, the content of 0.1 g of the organic strain suppressor was measured by the oxygen combustion flask method. The elemental sulfur is converted to sulfuric acid. At this time, by burning the powder sample in the flask containing the adsorbent, an eluate in which sulfate ions are dissolved in the adsorbent is obtained. Next, the eluate is titrated with barium perchlorate using thorin as an indicator to determine the content (C1) of the elemental sulfur in 0.1 g of the organic shrink proofing agent. Next, C1 is multiplied by 10 to calculate the content (μmol/g) of the elemental sulfur in the organic shrink-proofing agent per 1 g.
(3)極間距離の測定(算出)
極間距離としては、化成後に満充電した鉛蓄電池のCT画像もしくはX線写真を撮影し、互いに隣接する負極板と正極板との高さ方向の中心において、負極板と正極板との距離を求めればよい。通常、鉛蓄電池は、それぞれ複数の負極板と正極板とを具備する。よって、複数対(好ましくは3対以上)の互いに隣接する負極板と正極板との上記距離を求め、これらの平均値を極間距離とすることが好ましい。
(3) Measurement (calculation) of distance between poles
As the inter-electrode distance, a CT image or an X-ray photograph of a lead storage battery that has been fully charged after formation is taken, and the distance between the negative electrode plate and the positive electrode plate at the center of the height direction of the negative electrode plate and the positive electrode plate adjacent to each other Just ask. Generally, a lead-acid battery includes a plurality of negative electrode plates and a plurality of positive electrode plates, respectively. Therefore, it is preferable that the above-mentioned distances between a plurality of pairs (preferably three or more pairs) of the negative electrode plate and the positive electrode plate adjacent to each other be obtained, and the average value thereof be set as the inter-electrode distance.
極間距離は、計算により求めてもよい。鉛蓄電池は、一般に、複数の負極板と複数の正極板とを、セパレータを介して交互に積層した極板群を具備する。ここで、複数の負極板は、棚状の接続部材によって互いに並列に接続され、複数の正極板も同様に、棚状の接続部材によって互いに並列に接続されている。よって、鉛蓄電池内での負極板と正極板の配置は、棚状の接続部材によって規制されており、極板群の厚さも決定される。また、極板群が収容される空間によって極板群の厚さが規制される場合もある。いずれの場合にも、負極板および正極板のそれぞれの枚数と厚さが決まれば、極間距離も決まることになる。例えば、液式の鉛蓄電池の場合、極板群の厚さと、負極板および正極板のそれぞれの枚数および厚さとから、極間距離を一義的に算出することが可能である。また、制御弁式の鉛蓄電池の場合、極板群の厚さまたは極板群が収容される空間のサイズと、負極板および正極板のそれぞれの枚数および厚さとから、極間距離を一義的に算出することが可能である。 The distance between the poles may be calculated. Lead-acid batteries generally include an electrode plate group in which a plurality of negative electrode plates and a plurality of positive electrode plates are alternately stacked with a separator interposed therebetween. Here, the plurality of negative electrode plates are connected to each other in parallel by the shelf-shaped connecting members, and the plurality of positive electrode plates are similarly connected to each other in parallel to each other by the shelf-shaped connecting members. Therefore, the arrangement of the negative electrode plate and the positive electrode plate in the lead storage battery is regulated by the shelf-shaped connecting member, and the thickness of the electrode plate group is also determined. In addition, the thickness of the electrode plate group may be restricted by the space in which the electrode plate group is housed. In any case, if the number and thickness of each of the negative electrode plate and the positive electrode plate are determined, the distance between the electrodes is also determined. For example, in the case of a liquid lead-acid battery, it is possible to uniquely calculate the inter-electrode distance from the thickness of the electrode plate group and the number and thickness of each of the negative electrode plate and the positive electrode plate. In the case of a control valve type lead storage battery, the distance between the electrodes is uniquely determined from the thickness of the electrode plate group or the size of the space in which the electrode plate group is housed and the number and thickness of each of the negative electrode plate and the positive electrode plate. Can be calculated.
以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とを具備する。負極電極材料は、負極集電体に保持されている。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)が挙げられる。
Hereinafter, the lead-acid battery according to the embodiment of the present invention will be described for each main constituent element, but the present invention is not limited to the following embodiment.
(Negative electrode plate)
A negative electrode plate of a lead storage battery includes a negative electrode current collector and a negative electrode material. The negative electrode material is held on the negative electrode current collector. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching.
負極集電体に用いられる鉛合金は、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種の元素を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。 The lead alloy used for the negative electrode current collector may be any of a Pb-Sb alloy, a Pb-Ca alloy, and a Pb-Ca-Sn alloy. These lead or lead alloy may further contain at least one element selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additional element. The negative electrode current collector may have lead alloy layers having different compositions, and may have a plurality of lead alloy layers.
負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、既に述べた合成有機防縮剤、もしくは硫黄元素を3000μmol/g以上含有する有機防縮剤とを所定の含有量で含む。負極電極材料は、更に、無機防縮剤として、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode material contains a predetermined amount of a negative electrode active material (lead or lead sulfate) that develops a capacity by an oxidation-reduction reaction, and the above-mentioned synthetic organic shrink proof agent or an organic shrink proof agent containing 3000 μmol/g or more of sulfur element. Include in quantity. The negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate or the like as an inorganic shrink-proofing agent, and may further contain other additives as required.
充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、負極活物質の原料となる鉛粉末を用いて作製される。 The negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually produced by using lead powder which is a raw material of the negative electrode active material.
負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。未化成の負極板の熟成、乾燥は、室温より高温かつ高湿度で行うことが好ましい。負極ペーストは、鉛粉と有機防縮剤と各種添加剤に、水と硫酸を加えて混練することで調製すればよい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. It is preferable that the unformed negative electrode plate is aged and dried at a temperature higher than room temperature and a high humidity. The negative electrode paste may be prepared by adding water and sulfuric acid to lead powder, an organic shrink proofing agent, and various additives, and kneading the mixture.
化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unformed negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the battery case of the lead storage battery. However, the formation may be performed before the lead storage battery or the electrode plate group is assembled. By formation, spongy lead is produced.
(正極)
鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。
ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
クラッド式正極は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。
(Positive electrode)
The positive electrode plate of the lead storage battery can be classified into a paste type and a clad type.
The paste-type positive electrode plate includes a positive electrode current collector and a positive electrode material. The positive electrode material is held on the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and may be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
The clad type positive electrode includes a plurality of porous tubes, a core metal inserted into each tube, a positive electrode material filled in the tube in which the core metal is inserted, and a connecting plate connecting the plurality of tubes. To have.
正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb−Ca系合金、Pb−Ca−Sn系などが好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、鉛合金層は複数でもよい。芯金には、Pb−Sb系合金を用いることが好ましい。 The lead alloy used for the positive electrode current collector is preferably a Pb-Ca-based alloy, a Pb-Ca-Sn-based alloy, or the like, in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and may have a plurality of lead alloy layers. It is preferable to use a Pb-Sb alloy for the core metal.
正極電極材料は、酸化還元反応により容量を発現する正極活物質(酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、正極活物質に加え、必要に応じて、硫酸スズ、鉛丹などの添加剤を含んでもよい。 The positive electrode material contains a positive electrode active material (lead oxide or lead sulfate) that exhibits a capacity by a redox reaction. In addition to the positive electrode active material, the positive electrode material may contain an additive such as tin sulfate or red lead if necessary.
未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより得られる。正極ペーストは、鉛粉、添加剤、水、硫酸を混練することで調製すればよい。その後、未化成の正極板を化成する。クラッド式正極板は、芯金が挿入された多孔質なガラスチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。 The unformed paste-type positive electrode plate is obtained by filling the positive electrode current collector with the positive electrode paste, aging and drying, as in the case of the negative electrode plate. The positive electrode paste may be prepared by kneading lead powder, an additive, water and sulfuric acid. After that, an unformed positive electrode plate is formed. The clad-type positive electrode plate is formed by filling a porous glass tube in which a core metal is inserted with lead powder or slurry-like lead powder, and connecting a plurality of tubes with a seat.
(セパレータ)
セパレータには、不織布シート、微多孔膜などが用いられる。負極板と正極板との間に介在させるセパレータの厚さや枚数は、極間距離に応じて適宜選択すればよい。不織布シートは、ポリマー繊維および/またはガラス繊維を主体とするシートであり、例えば60質量%以上が繊維成分で形成されている。一方、微多孔膜は、繊維成分以外を主体とするシートであり、例えば、ポリマー粉末、シリカ粉末およびオイルを含む組成物をシート状に押し出し成形した後、オイルを抽出して細孔を形成することにより得られる。セパレータを構成する材料は、耐酸性を有するものが好ましく、ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
(Separator)
A nonwoven fabric sheet, a microporous membrane, or the like is used as the separator. The thickness and the number of separators interposed between the negative electrode plate and the positive electrode plate may be appropriately selected according to the distance between the electrodes. The non-woven sheet is a sheet mainly composed of polymer fibers and/or glass fibers, and for example, 60% by mass or more is formed of a fiber component. On the other hand, the microporous membrane is a sheet mainly composed of components other than fiber components, for example, a composition containing polymer powder, silica powder and oil is extruded into a sheet shape, and then oil is extracted to form pores. It is obtained by The material forming the separator is preferably acid resistant, and the polymer component is preferably polyolefin such as polyethylene or polypropylene.
(電解液)
電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。ゲル化の程度は、特に限定されない。流動性を有するゾルからゲル状態の電解液を用いてもよく、流動性を有さないゲル状態の電解質を用いてもよい。満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.1〜1.35g/cm3であり、1.2〜1.35g/cm3であることが好ましい。
(Electrolyte)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary. The degree of gelation is not particularly limited. An electrolytic solution in the gel state from a sol having fluidity may be used, or an electrolyte in the gel state having no fluidity may be used. The specific gravity of the electrolytic solution in the fully charged lead storage battery at 20° C. is, for example, 1.1 to 1.35 g/cm 3 , and preferably 1.2 to 1.35 g/cm 3 .
図1に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。
鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で密閉されている。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
FIG. 1 shows an external appearance of an example of a lead storage battery according to an embodiment of the present invention.
The
極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状セパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚6に負極柱9が接続され、正極棚5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。
The electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and a plurality of
以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
《実施例1》
(1)負極板の作製
原料の鉛粉と、硫酸バリウムと、カーボンブラックと、所定量の合成有機防縮剤とを、適量の硫酸水溶液と混合して負極ペーストを得た。負極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の負極板を得た。
<<Example 1>>
(1) Preparation of Negative Electrode Plate Raw material lead powder, barium sulfate, carbon black, and a predetermined amount of a synthetic organic shrink proof agent were mixed with an appropriate amount of sulfuric acid aqueous solution to obtain a negative electrode paste. The negative electrode paste was filled in the mesh portion of the expanded lattice made of Pb-Ca-Sn alloy, aged, and dried to obtain an unformed negative electrode plate.
合成有機防縮剤は、化成後に満充電した鉛蓄電池の負極電極材料における合成有機防縮剤の含有量が0.2質量%になるように、負極ペーストに配合した。また、化成後に満充電した鉛蓄電池の負極電極材料の密度が3.3g/cm3になるように、負極ペーストに配合する水量や硫酸量を制御した。
ここで、負極電極材料の密度は、化成後の鉛蓄電池を満充電してから解体し、前述の方法で測定した。測定装置には、島津製作所製、自動ポロシメータ、オートポアIV9505を用いた。
The synthetic organic shrink proofing agent was added to the negative electrode paste so that the content of the synthetic organic shrink proofing agent in the negative electrode material of the lead storage battery that had been fully charged after chemical formation was 0.2% by mass. Further, the amount of water and the amount of sulfuric acid blended in the negative electrode paste were controlled so that the density of the negative electrode material of the fully charged lead storage battery after formation was 3.3 g/cm 3 .
Here, the density of the negative electrode material was measured by the method described above after the lead storage battery after chemical formation was fully charged and then disassembled. As the measuring device, an automatic porosimeter, Autopore IV9505 manufactured by Shimadzu Corporation was used.
合成有機防縮剤には、スルホン酸基を導入したビスフェノール類のホルムアルデヒドによる縮合物を用いた。ここでは、合成有機防縮剤中の硫黄元素の含有量が4000μmol/gになるように、導入するスルホン酸基の量を制御した。 As the synthetic organic shrinkproofing agent, a condensate of bisphenols having sulfonic acid groups introduced therein with formaldehyde was used. Here, the amount of sulfonic acid groups to be introduced was controlled so that the content of elemental sulfur in the synthetic organic shrink-proofing agent was 4000 μmol/g.
(2)正極板の作製
原料の酸化鉛粉を硫酸水溶液と混合して、正極ペーストを得た。正極ペーストを、Pb−Ca−Sn合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得た。
(2) Preparation of positive electrode plate Lead oxide powder as a raw material was mixed with a sulfuric acid aqueous solution to obtain a positive electrode paste. The positive electrode paste was filled in the mesh portion of the expanded lattice made of Pb-Ca-Sn alloy, aged and dried to obtain an unformed positive electrode plate.
(3)鉛蓄電池の作製
未化成の負極板を、ポリエチレン製の微多孔膜で形成された袋状セパレータに収容し、負極板5枚と正極板4枚とで極板群を形成した。ただし、化成後に満充電した鉛蓄電池における極間距離が0.4mm〜1.8mmの範囲で、0.2mm間隔で変化するように、極間距離の異なる複数種の極板群を作製した。極間距離は、正極棚および負極棚に接続する各極板のピッチにより制御した。
(3) Production of Lead Acid Battery An unformed negative electrode plate was housed in a bag-shaped separator formed of a polyethylene microporous film, and an electrode plate group was formed by 5 negative electrode plates and 4 positive electrode plates. However, a plurality of types of electrode plate groups having different inter-electrode distances were produced so that the inter-electrode distance in the fully charged lead-acid battery after formation was 0.4 mm to 1.8 mm and changed at 0.2 mm intervals. The distance between the electrodes was controlled by the pitch of each electrode plate connected to the positive electrode shelf and the negative electrode shelf.
極板群をポリプロピレン製の電槽に電解液とともに収容して、電槽内で化成を施し、極間距離が異なる極板群ごとに、液式の自動車用鉛蓄電池を組み立てた。鉛蓄電池の出力は12Vで、定格5時間率容量は55Ahである。なお、極間距離が1mm未満の極板群を用いた鉛蓄電池は参考例である。 The electrode plate group was housed in a polypropylene battery case together with the electrolytic solution and was subjected to chemical formation in the battery case to assemble a liquid lead acid battery for automobiles for each electrode plate group having a different distance between electrodes. The output of the lead storage battery is 12V, and the rated 5-hour rate capacity is 55Ah. In addition, the lead storage battery using the electrode plate group in which the distance between the electrodes is less than 1 mm is a reference example.
《比較例1》
合成有機防縮剤の代わりに、天然物に由来し、硫黄元素の含有量が600μmol/gであるリグニンを用いたこと以外、実施例1と同様に、極間距離の異なる複数種の極板群を作製し、鉛蓄電池を組み立てた。
<<Comparative Example 1>>
A plurality of kinds of electrode plate groups having different distances between the electrodes were prepared in the same manner as in Example 1 except that lignin derived from a natural product and having a sulfur element content of 600 μmol/g was used in place of the synthetic organic shrink-proofing agent. Was prepared and a lead storage battery was assembled.
[評価1]
実施例1および比較例1で作製した鉛蓄電池に関し、以下の条件で、JIS D5301:2006に準拠して重負荷寿命試験を行った。
<サイクル条件>
放電:20A×1時間、充電:5A×5時間
ただし、25サイクルごとに端子電圧が10.2Vになるまで連続放電する。
[Evaluation 1]
With respect to the lead storage batteries produced in Example 1 and Comparative Example 1, a heavy load life test was performed under the following conditions according to JIS D5301:2006.
<Cycle conditions>
Discharge: 20 A x 1 hour, charge: 5 A x 5 hours However, continuous discharge is performed every 25 cycles until the terminal voltage becomes 10.2V.
以下のように、重負荷寿命試験の200サイクル時点での正極電極材料の脱落量を測定した。まず、初期の既化成の満充電状態の鉛蓄電池を分解し、正極板を取り出し、水洗により硫酸を除去し、乾燥し、正極板の質量Aを測定した。一方、重負荷寿命試験の200サイクル後の鉛蓄電池から正極板を取り出し、その質量Bを同様に求めた。AとBとの差から正極電極材料(活物質)の脱落量を下記式より算出した。
正極電極材料の脱落量(%)={(A−B)/A}×100
The amount of fall of the positive electrode material at the time of 200 cycles of the heavy load life test was measured as follows. First, an initial already formed fully charged lead storage battery was disassembled, the positive electrode plate was taken out, the sulfuric acid was removed by washing with water, and dried, and the mass A of the positive electrode plate was measured. On the other hand, the positive electrode plate was taken out from the lead storage battery after 200 cycles of the heavy load life test, and its mass B was similarly obtained. From the difference between A and B, the amount of fall of the positive electrode material (active material) was calculated by the following formula.
Dropping amount (%) of positive electrode material={(A−B)/A}×100
極間距離と正極電極材料の脱落量との関係を表1および図2に示す。200サイクル時点での正極電極材料の脱落量が多いほど、電解液に溶出した有機防縮剤による正極電極材料の軟化が進行し、正極板が劣化しているといえる。 The relationship between the distance between the electrodes and the amount of fall of the positive electrode material is shown in Table 1 and FIG. It can be said that the larger the amount of the positive electrode material dropped out at the time of 200 cycles, the more the softening of the positive electrode material due to the organic shrink proofing agent eluted in the electrolytic solution progresses, and the more the positive electrode plate deteriorates.
図2では、合成有機防縮剤を用いる場合、極間距離が0.9mm未満で小さくなるほど、正極電極材料の脱落量が多くなっている。また、極間距離0.9mmを境界に、合成有機防縮剤とリグニンとの間で、極間距離に対する正極電極材料の脱落量の依存性に逆転現象が見られる。すなわち、リグニンを用いる場合には、極間距離を0.9mm以上にすると、かえって正極電極材料の脱落量が増加する傾向が見られる。以上より、正極電極材料の脱落が多くなるのは、合成有機防縮剤を用いる場合に特有の現象であり、極間距離を0.9mm以上にすることで、その現象を抑制できることがわかる。 In FIG. 2, when the synthetic organic shrink-proofing agent is used, the smaller the inter-electrode distance is less than 0.9 mm, the larger the amount of the positive electrode material dropped. Further, with the interelectrode distance of 0.9 mm as a boundary, a reversal phenomenon is observed between the synthetic organic shrink proofing agent and the lignin in the dependence of the amount of the positive electrode material dropped on the interelectrode distance. That is, when lignin is used, if the distance between the electrodes is set to 0.9 mm or more, the amount of the positive electrode material dropped tends to increase. From the above, it can be understood that the fact that the positive electrode material is frequently dropped is a phenomenon peculiar to the use of the synthetic organic shrink proofing agent, and that the phenomenon can be suppressed by setting the distance between the electrodes to 0.9 mm or more.
《実施例2》
化成後に満充電した鉛蓄電池において、極間距離を1.2mmに、負極電極材料の密度を3.3g/cm3に統一し、その一方、負極電極材料における合成有機防縮剤の含有量を0.05質量%〜0.3質量%の範囲で変化させた。上記以外、実施例1と同様に極板群を作製し、鉛蓄電池を組み立て、上記評価1と同様に評価した。
<<Example 2>>
In the lead-acid battery fully charged after formation, the inter-electrode distance was 1.2 mm and the density of the negative electrode material was 3.3 g/cm 3 , while the content of the synthetic organic shrink proofing agent in the negative electrode material was 0. It was changed in the range of 0.05% by mass to 0.3% by mass. Except for the above, an electrode plate group was prepared in the same manner as in Example 1, a lead storage battery was assembled, and the same evaluation as in
《比較例2》
化成後に満充電した鉛蓄電池において、極間距離を1.2mmに、負極電極材料の密度を3.3g/cm3に統一し、その一方、負極電極材料におけるリグニンの含有量を0.05質量%〜0.3質量%の範囲で変化させた。上記以外、比較例1と同様に極板群を作製し、鉛蓄電池を組み立て、上記評価1と同様に評価した。
<<Comparative example 2>>
In the lead storage battery fully charged after formation, the distance between the electrodes was 1.2 mm and the density of the negative electrode material was 3.3 g/cm 3 , while the content of lignin in the negative electrode material was 0.05 mass. % To 0.3% by mass. Except for the above, an electrode plate group was prepared in the same manner as in Comparative Example 1, a lead storage battery was assembled, and the same evaluation as in
実施例2および比較例2に関し、負極電極材料における有機防縮剤の含有量と正極電極材料の脱落量との関係を表2および図3に示す。図3は、有機防縮剤の含有量を所定の範囲内で変化させても、正極電極材料の脱落量は、それほど大きく影響を受けないことを示している。 Regarding Example 2 and Comparative Example 2, Table 2 and FIG. 3 show the relationship between the content of the organic shrink-proofing agent in the negative electrode material and the falling amount of the positive electrode material. FIG. 3 shows that even if the content of the organic anti-shrink agent is changed within a predetermined range, the amount of the positive electrode material removed is not significantly affected.
《実施例3》
合成有機防縮剤に含まれる硫黄元素の含有量を3000μmol/g、4000μmol/gまたは6000μmol/gとし、化成後に満充電した鉛蓄電池の極間距離を0.3〜1.8mmの範囲で細かく変化させた。上記以外、実施例1と同様に、極間距離の異なる複数種の極板群を作製し、鉛蓄電池を組み立てた。
<<Example 3>>
The content of elemental sulfur contained in the synthetic organic anti-shrink agent is 3000 μmol/g, 4000 μmol/g or 6000 μmol/g, and the inter-electrode distance of the lead storage battery fully charged after formation is finely changed within a range of 0.3 to 1.8 mm. Let Except for the above, in the same manner as in Example 1, a plurality of types of electrode plate groups having different inter-electrode distances were produced and a lead storage battery was assembled.
[評価2]
実施例3で作製した鉛蓄電池に関し、上記と同じ重負荷寿命試験を行い、端子電圧が10.2Vになるまで連続放電したときの容量が、5時間率放電容量の50%になるまでのサイクル数を測定した。極間距離とサイクル数との関係を表3および図4に示す。
[Evaluation 2]
With respect to the lead-acid battery manufactured in Example 3, the same heavy load life test as described above was performed, and the cycle when the capacity when continuously discharged until the terminal voltage became 10.2 V became 50% of the 5-hour rate discharge capacity was cycled. The number was measured. The relationship between the distance between the electrodes and the number of cycles is shown in Table 3 and FIG.
図4より、有機防縮剤に含まれる硫黄元素の含有量にかかわらず、極間距離が0.9mm未満で小さくなるほど、重負荷寿命性能が低下する傾向があることが理解できる。ただし、その傾向は、有機防縮剤に含まれる硫黄元素の含有量が小さいほど顕著になっている。一方、極間距離が0.9mm以上(特に1.0mm以上もしくは1.2mm以上)になると、重負荷寿命性能が高い水準で安定化しており、特に有機防縮剤に含まれる硫黄元素の含有量が3000μmol/g以上、更には4000μmol/g以上の場合に優れた重負荷寿命性能が得られている。なお、このような重負荷寿命性能の向上には、正極電極材料の脱落量の減少が大きく影響していると考えられる。よって、合成有機防縮剤に含まれる硫黄元素の含有量にかかわらず、図2と同様の傾向もしくは極間距離に対する正極電極材料の脱落量の依存性におけるリグニンとの逆転現象が起こっているものと考えられる。 From FIG. 4, it can be understood that the heavy load life performance tends to decrease as the inter-electrode distance decreases below 0.9 mm, regardless of the content of the elemental sulfur contained in the organic anti-shrink agent. However, this tendency becomes more remarkable as the content of the elemental sulfur contained in the organic shrink-proofing agent is smaller. On the other hand, when the distance between the electrodes is 0.9 mm or more (particularly 1.0 mm or more or 1.2 mm or more), the heavy load life performance is stabilized at a high level, and especially the content of the sulfur element contained in the organic shrink proofing agent. Is 3000 μmol/g or more, and further 4000 μmol/g or more, excellent heavy load life performance is obtained. In addition, it is considered that the reduction of the amount of the positive electrode material dropped greatly influences the improvement of the heavy load life performance. Therefore, regardless of the content of the elemental sulfur contained in the synthetic organic anti-shrink agent, the same tendency as in FIG. 2 or the phenomenon of reversal of lignin in the dependence of the amount of the positive electrode material dropped off on the inter-electrode distance occurs. Conceivable.
《実施例4》
化成後に満充電した鉛蓄電池において、極間距離を1.0mmに、負極電極材料の密度を3.3g/cm3に統一し、その一方、合成有機防縮剤に含まれる硫黄元素の含有量を3000〜7500μmol/gの範囲で細かく変化させた。上記以外、実施例1と同様に、合成有機防縮剤中の硫黄元素の含有量が異なる複数種の極板群を作製し、鉛蓄電池を組み立てた。
<<Example 4>>
In the lead-acid battery fully charged after formation, the distance between the electrodes was set to 1.0 mm and the density of the negative electrode material was unified to 3.3 g/cm 3 , while the content of elemental sulfur contained in the synthetic organic shrink proofing agent was changed. It was finely changed in the range of 3000 to 7500 μmol/g. Except for the above, in the same manner as in Example 1, a plurality of types of electrode plate groups having different sulfur element contents in the synthetic organic shrink proofing agent were prepared and a lead storage battery was assembled.
[評価3]
実施例4で作製した鉛蓄電池に関し、低温高率(低温HR)放電持続時間として、鉛蓄電池を−15℃で放電電流150Aの条件で放電し、端子間電圧が6.0Vに低下するまでの秒数を測定した。有機防縮剤中の硫黄元素の含有量と、低温高率放電持続時間との関係を表4および図5に示す。
[Evaluation 3]
Regarding the lead-acid battery manufactured in Example 4, the lead-acid battery was discharged at a low-temperature high-rate (low-temperature HR) discharge duration at −15° C. under a discharge current of 150 A, and the inter-terminal voltage was reduced to 6.0 V. The number of seconds was measured. Table 4 and FIG. 5 show the relationship between the content of elemental sulfur in the organic anti-shrink agent and the low-temperature high-rate discharge duration.
図5より、低温高率放電性能を向上させるには、有機防縮剤中の硫黄元素の含有量を3500μmol/g以上、更には4000μmol/g以上にすることが有利であることが理解できる。 From FIG. 5, it can be understood that in order to improve the low-temperature high-rate discharge performance, it is advantageous to set the content of the sulfur element in the organic anti-shrink agent to 3500 μmol/g or more, and further to 4000 μmol/g or more.
《実施例5》
化成後に満充電した鉛蓄電池において、極間距離を1.0mmに、負極電極材料の密度を3.3g/cm3に統一し、その一方、合成有機防縮剤に含まれる硫黄元素の含有量を500〜8000μmol/gの範囲で変化させた。上記以外、実施例1と同様に、合成有機防縮剤の硫黄元素の含有量が異なる複数種の極板群を作製し、鉛蓄電池を組み立てた。
<<Example 5>>
In the lead-acid battery fully charged after formation, the distance between the electrodes was set to 1.0 mm and the density of the negative electrode material was unified to 3.3 g/cm 3 , while the content of elemental sulfur contained in the synthetic organic shrink proofing agent was changed. It was changed in the range of 500 to 8000 μmol/g. Except for the above, in the same manner as in Example 1, a plurality of kinds of electrode plate groups having different sulfur element contents of the synthetic organic shrink proofing agent were prepared and a lead storage battery was assembled.
[評価4]
実施例5で作製した鉛蓄電池に関し、負極板からの有機防縮剤の溶出量を測定した。ここでは、重負荷寿命試験の200サイクル時点の鉛蓄電池から負極板を取り出し、負極電極材料中における有機防縮剤の含有量C1を測定し、初期の有機防縮剤の含有量C2との差から有機防縮剤の溶出量を下記式より算出した。有機防縮剤中の硫黄元素の含有量と、有機防縮剤の溶出量との関係を表5および図6に示す。
溶出量(%)={1−(C1/C2)}×100
[Evaluation 4]
With respect to the lead storage battery manufactured in Example 5, the amount of the organic shrinkproofing agent eluted from the negative electrode plate was measured. Here, the negative electrode plate was taken out from the lead-acid battery at the time of 200 cycles of the heavy load life test, the content C1 of the organic shrink proof agent in the negative electrode material was measured, and the organic shrink proof agent content C2 was compared with the initial content of the organic shrink proof agent. The elution amount of the shrinkproofing agent was calculated by the following formula. Table 5 and FIG. 6 show the relationship between the content of elemental sulfur in the organic anti-shrink agent and the elution amount of the organic anti-shrink agent.
Elution amount (%)={1-(C1/C2)}×100
図6より、有機防縮剤中の硫黄元素の含有量が2000μmol/g以上、更には3000μmol/g以上で、有機防縮剤の溶出量が顕著に低減すること、特に4000μmol/g以上では、溶出量が少量で安定化することが理解できる。 According to FIG. 6, when the content of the elemental sulfur in the organic anti-shrink agent is 2000 μmol/g or more, further 3000 μmol/g or more, the elution amount of the organic anti-shrink agent is remarkably reduced, especially when it is 4000 μmol/g or more. It can be understood that is stabilized in a small amount.
《実施例6》
化成後に満充電した鉛蓄電池において、極間距離を1mmに統一するとともに、合成有機防縮剤に含まれる硫黄元素の含有量を3000μmol/g、4000μmol/gまたは8000μmol/gに統一し、その一方、負極電極材料の密度を2.5〜4.0g/cm3の範囲で変化させた。上記以外、実施例1と同様に、負極電極材料の密度が異なる複数種の極板群を作製し、鉛蓄電池を組み立て、上記評価2と同様に評価した。
<<Example 6>>
In the lead-acid battery fully charged after formation, the inter-electrode distance is unified to 1 mm, and the content of the sulfur element contained in the synthetic organic shrink proof agent is unified to 3000 μmol/g, 4000 μmol/g or 8000 μmol/g, while The density of the negative electrode material was changed in the range of 2.5 to 4.0 g/cm 3 . Except for the above, in the same manner as in Example 1, a plurality of types of electrode plate groups having different negative electrode material densities were prepared, a lead storage battery was assembled, and the same evaluation as in Evaluation 2 was performed.
実施例6に関し、各種有機防縮剤を含む負極電極材料の密度と、重負荷寿命性能との関係を表6および図7に示す。 Regarding Example 6, the relationship between the density of the negative electrode material containing various organic shrink-proofing agents and the heavy load life performance is shown in Table 6 and FIG. 7.
図7では、有機防縮剤中の硫黄元素の含有量が3000μmol/gの場合、負極電極材料の密度が低下するほど、重負荷寿命性能も低下している。一方、有機防縮剤中の硫黄元素の含有量が4000μmol/g以上の場合には、負極電極材料の密度が小さくなっても重負荷寿命性能がほとんど低下せず、良好な性能を維持している。すなわち、有機防縮剤中の硫黄元素の含有量が4000μmol/g以上の場合には、3000μmol/gの場合に比べ、負極電極材料の密度に対する重負荷寿命性能の依存性に顕著な相違が見られる。硫黄元素の含有量が4000μmol/g以上の有機防縮剤は、低密度の負極電極材料で良好な重負荷寿命性能を達成しようとするときに特に有益である。 In FIG. 7, when the content of the elemental sulfur in the organic anti-shrink agent is 3000 μmol/g, the lower the density of the negative electrode material, the lower the heavy load life performance. On the other hand, when the content of the elemental sulfur in the organic anti-shrink agent is 4000 μmol/g or more, even if the density of the negative electrode material becomes small, the heavy load life performance hardly deteriorates and the good performance is maintained. .. That is, when the content of the sulfur element in the organic anti-shrink agent is 4000 μmol/g or more, a remarkable difference is observed in the dependence of the heavy load life performance on the density of the negative electrode material, as compared with the case of 3000 μmol/g. .. The organic anti-shrink agent having a sulfur element content of 4000 μmol/g or more is particularly useful when trying to achieve good heavy load life performance with a low-density negative electrode material.
《実施例7》
有機防縮剤として、硫黄元素の含有量が4000μmol/gのナフタレン類のホルムアルデヒドによる縮合物(ナフタレン系有機防縮剤)を用いたこと以外、実施例1と同様に、化成後に満充電したときの極間距離が1mmであり、負極電極材料の密度が3.3g/cm3の負極板を具備する鉛蓄電池を組み立てた。
<<Example 7>>
As in Example 1, except that a condensate of naphthalene with formaldehyde having a content of elemental sulfur of 4000 μmol/g (naphthalene-based organic anti-shrink agent) was used as the organic anti-shrink agent, the electrode when fully charged after formation A lead storage battery was assembled with a negative electrode plate having a distance of 1 mm and a negative electrode material density of 3.3 g/cm 3 .
[評価4]
実施例7で作製した鉛蓄電池と、実施例1で作製した硫黄元素の含有量が4000μmol/gのビスフェノール類のホルムアルデヒドによる縮合物(ビスフェノール系有機防縮剤)を用いた鉛蓄電池に関し、評価1、3と同様に、重負荷寿命サイクル数および低温高率放電持続時間を測定した。結果を表1に示す。
[Evaluation 4]
The lead acid battery prepared in Example 7 and the lead acid battery prepared in Example 1 using the condensate of bisphenol with formaldehyde (bisphenol organic shrinkage inhibitor) having a sulfur element content of 4000 μmol/g were evaluated 1, Similarly to 3, the heavy load life cycle number and the low temperature high rate discharge duration were measured. The results are shown in Table 1.
表1より、有機防縮剤がナフタレン系である場合にも、有機防縮剤がビスフェノール系である場合と、概ね同様の結果が得られることが理解できる。 It can be understood from Table 1 that substantially the same results can be obtained even when the organic anti-shrink agent is a naphthalene type, when the organic anti-shrink agent is a bisphenol type.
本発明は、液式および制御弁式のいずれの鉛蓄電池にも適用可能であり、自動車、バイク、電動車両(フォークリフトなど)、産業用蓄電装置などの電源として好適に用いられる。 INDUSTRIAL APPLICABILITY The present invention is applicable to both liquid type and control valve type lead storage batteries, and is suitably used as a power source for automobiles, motorcycles, electric vehicles (forklifts, etc.), and industrial power storage devices.
1 鉛蓄電池、2 負極板、3 正極板、4 セパレータ、5 正極棚、6 負極棚、7 正極柱、8 貫通接続体、9 負極柱、11 極板群、12 電槽、13 隔壁、14 セル室、15 蓋、16 負極端子、17 正極端子、18 液口栓
DESCRIPTION OF
Claims (5)
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、合成有機防縮剤を含み、
前記合成有機防縮剤は、硫黄元素を3000μmol/g以上含有し、
前記負極板と前記正極板との間の距離が、0.9mm以上かつ2mm以下である、鉛蓄電池。 A negative electrode plate, a positive electrode plate, and an electrolytic solution,
The negative electrode plate includes a negative electrode current collector and a negative electrode material,
The negative electrode material contains a synthetic organic shrink proofing agent,
The synthetic organic shrink-proofing agent contains elemental sulfur of 3000 μmol/g or more,
Lead acid battery whose distance between the said negative electrode plate and the said positive electrode plate is 0.9 mm or more and 2 mm or less.
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、有機防縮剤を含み、
前記負極板と前記正極板との間の距離が、0.9mm以上かつ2mm以下であり、
前記有機防縮剤は、硫黄元素を3000μmol/g以上含有する、鉛蓄電池。 A negative electrode plate, a positive electrode plate, and an electrolytic solution,
The negative electrode plate includes a negative electrode current collector and a negative electrode material,
The negative electrode material contains an organic shrink-proofing agent,
The distance between the negative electrode plate and the positive electrode plate is 0.9 mm or more and 2 mm or less,
The lead storage battery, wherein the organic anti-shrink agent contains elemental sulfur of 3000 μmol/g or more.
The density of the negative electrode material, 2.5 g / cm 3 or more and is 4.0 g / cm 3 or less, lead-acid battery according to any one of claims 1-4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150861A JP6750376B2 (en) | 2016-07-29 | 2016-07-29 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150861A JP6750376B2 (en) | 2016-07-29 | 2016-07-29 | Lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018018798A JP2018018798A (en) | 2018-02-01 |
JP6750376B2 true JP6750376B2 (en) | 2020-09-02 |
Family
ID=61076381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016150861A Active JP6750376B2 (en) | 2016-07-29 | 2016-07-29 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6750376B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021060327A1 (en) * | 2019-09-27 | 2021-04-01 | 株式会社Gsユアサ | Lead acid storage battery |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7597998B2 (en) * | 2004-04-28 | 2009-10-06 | Panasonic Corporation | Lead acid battery including antimony |
TWI333290B (en) * | 2004-06-16 | 2010-11-11 | Panasonic Corp | Lead-acid battery |
EP2571091B1 (en) * | 2010-05-10 | 2017-11-29 | Hitachi Chemical Company, Ltd. | Lead storage battery |
JP6153074B2 (en) * | 2013-08-02 | 2017-06-28 | 株式会社Gsユアサ | Liquid lead-acid battery |
DE112014006702T5 (en) * | 2014-05-26 | 2017-02-16 | Gs Yuasa International Ltd. | Lead acid battery |
JP2016072105A (en) * | 2014-09-30 | 2016-05-09 | パナソニックIpマネジメント株式会社 | Lead storage battery |
-
2016
- 2016-07-29 JP JP2016150861A patent/JP6750376B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018018798A (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7380580B2 (en) | lead acid battery | |
JP7143927B2 (en) | lead acid battery | |
JP6756182B2 (en) | Lead-acid battery | |
JP6766504B2 (en) | Lead-acid battery | |
JP7355005B2 (en) | lead acid battery | |
JP6750376B2 (en) | Lead acid battery | |
JP6954353B2 (en) | Lead-acid battery | |
JP7099450B2 (en) | Lead-acid battery | |
WO2019087682A1 (en) | Lead storage battery | |
JP6750377B2 (en) | Lead acid battery | |
JP7207408B2 (en) | lead acid battery | |
JP7099448B2 (en) | Lead-acid battery | |
JP7424310B2 (en) | lead acid battery | |
JP7124828B2 (en) | lead acid battery | |
JP7099452B2 (en) | Lead-acid battery | |
JP6750378B2 (en) | Lead acid battery | |
WO2019087679A1 (en) | Lead storage battery | |
WO2023210635A1 (en) | Lead storage battery | |
JP2023094127A (en) | Lead storage battery | |
JP2024104758A (en) | Lead-acid battery | |
CN111971823A (en) | Negative electrode plate for lead storage battery and lead storage battery | |
JP2024005293A (en) | lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6750376 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |