JP6733398B2 - Method for manufacturing RTB-based sintered magnet - Google Patents
Method for manufacturing RTB-based sintered magnet Download PDFInfo
- Publication number
- JP6733398B2 JP6733398B2 JP2016146901A JP2016146901A JP6733398B2 JP 6733398 B2 JP6733398 B2 JP 6733398B2 JP 2016146901 A JP2016146901 A JP 2016146901A JP 2016146901 A JP2016146901 A JP 2016146901A JP 6733398 B2 JP6733398 B2 JP 6733398B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered magnet
- mass
- rtb
- based sintered
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 104
- 238000010438 heat treatment Methods 0.000 claims description 100
- 239000000463 material Substances 0.000 claims description 85
- 238000011282 treatment Methods 0.000 claims description 58
- 238000001816 cooling Methods 0.000 claims description 39
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 24
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 description 39
- 239000000956 alloy Substances 0.000 description 39
- 239000000843 powder Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000005245 sintering Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910000722 Didymium Inorganic materials 0.000 description 3
- 241000224487 Didymium Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 electrolytic Co Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、R−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.
R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、R2T14B型結晶構造を有する化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されており、永久磁石の中で最も高性能な磁石として知られている。 The R-T-B system sintered magnet (R is at least one kind of rare earth element and always contains at least one of Nd and Pr, T is at least one kind of transition metal element and always contains Fe) is It is composed of a main phase composed of a compound having a 2 T 14 B type crystal structure and a grain boundary phase located in the grain boundary portion of this main phase, and is known as the most high-performance permanent magnet. There is.
このため、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。 Therefore, it is used in various applications such as various motors such as voice coil motors (VCM) of hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home electric appliances.
しかし、R−T−B系焼結磁石は、高温になると保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こるという問題がある。従って、電気自動車用モータのように、動作中に100℃〜160℃のような高温に達する用途にR−T−B系焼結磁石が使用される場合、動作中にHcJが低下し、モータの安定した動作が得られない恐れがある。そのため、高温下におけるHcJの低下が少ない、すなわち、R−T−B系焼結磁石のHcJの温度係数の改善(HcJの温度係数の絶対値を小さくすること)が求められている。 However, the R-T-B system sintered magnet has a problem that the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) decreases at high temperature and irreversible thermal demagnetization occurs. Therefore, when the RTB -based sintered magnet is used for an application such as a motor for an electric vehicle that reaches a high temperature such as 100° C. to 160° C. during operation, H cJ decreases during operation, The stable operation of the motor may not be obtained. Therefore, there is a small decrease in H cJ at high temperatures, that is, improvement in the temperature coefficient of H cJ of the R-T-B system sintered magnet ( reduction of the absolute value of the temperature coefficient of H cJ ) is required. ..
特許文献1には、R1(Y、Ceを含まない希土類元素の少なくとも一種)−T−B系結晶層と(Y、Ce)−T−B系結晶層を積層させることにより、HcJの温度係数が改善されることが記載されている。 In Patent Document 1, a temperature of H cJ is obtained by stacking R1 (at least one kind of rare earth element not containing Y and Ce)-T-B based crystal layer and (Y, Ce)-T-B based crystal layer. It is stated that the coefficient is improved.
しかし、特許文献1に記載の方法では、R1−T−B系結晶層と(Y、Ce)−T−B系結晶層とをスパッタリング等により積層しなければならないため、コストがかかるとともに、量産が困難である。また、(Y、Ce)−T−B系結晶層を含有しているため、異方性磁界の低下が避けられず、高いHcJを得ることができない。 However, in the method described in Patent Document 1, the R1-TB system crystal layer and the (Y, Ce)-TB system crystal layer have to be stacked by sputtering or the like, which is costly and mass-produced. Is difficult. Further, since it contains the (Y, Ce)-T-B based crystal layer, a decrease in the anisotropic magnetic field cannot be avoided, and high HcJ cannot be obtained.
本開示の実施形態は、HcJの温度係数が改善され、高温においてHcJの低下が少なく、且つ、高いHcJを得ることができるR−T−B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure, the temperature coefficient of the H cJ is improved, reduction of H cJ at a high temperature is small, and provides a process for producing R-T-B based sintered magnet can obtain a high H cJ ..
本開示の限定的ではない例示的なR−T−B系焼結磁石の製造方法は、
R:29.5質量%以上35.0質量%以下(Rは希土類元素の少なくとも一種でありNd及びPrの少なくとも一方を必ず含む)、B:0.80質量%以上0.90質量%以下、Ga:0.1質量%以上0.8質量%以下、M:0質量%以上2質量%以下(MはCu、Al、Nb、Zrの少なくとも一種)、残部T(Tは遷移金属元素の少なくとも一種でありFeを必ず含み、Feの10%以下をCoで置換できる)及び不可避的不純物を含有するR−T−B系焼結磁石素材を準備する工程と、重希土類元素RH(RHはDy及びTbの少なくとも一種)を含むRH拡散源と、前記R−T−B系焼結磁石素材とを処理容器内に配置し、760℃以上1000℃以下の温度で加熱する第一のRH拡散処理を実施する工程と、前記第一のRH拡散処理後のR−T−B系焼結磁石素材に対し、750℃以上1000℃未満で、且つ、前記第一のRH拡散処理の温度よりも低い温度で加熱する第二のRH拡散処理を実施する工程と、前記第二のRH拡散処理後のR−T−B系焼結磁石に対し、730℃以上850℃以下で、且つ、前記第二のRH拡散処理の温度よりも低い温度で加熱後、5℃/分以上の冷却速度で300℃まで冷却する高温熱処理を実施する工程と、高温熱処理後のR−T−B系焼結磁石に対し、440℃以上550℃以下の温度で加熱する低温熱処理を実施する工程と、を含む。
A non-limiting exemplary method of making an RTB based sintered magnet of the present disclosure is:
R: 29.5 mass% or more and 35.0 mass% or less (R is at least one kind of rare earth element and always contains at least one of Nd and Pr), B: 0.80 mass% or more and 0.90 mass% or less, Ga: 0.1% by mass or more and 0.8% by mass or less, M: 0% by mass or more and 2% by mass or less (M is at least one of Cu, Al, Nb, and Zr), balance T (T is at least a transition metal element) A rare earth element RH (RH is Dy), which is a kind of element and must contain Fe, and 10% or less of Fe can be replaced with Co) and an RTB-based sintered magnet material containing inevitable impurities; And at least one of Tb) and the RTB-based sintered magnet material are placed in a processing container and heated at a temperature of 760° C. or higher and 1000° C. or lower. And a temperature of 750° C. or higher and lower than 1000° C. and lower than the temperature of the first RH diffusion treatment with respect to the RTB-based sintered magnet material after the first RH diffusion treatment. A step of performing a second RH diffusion treatment of heating at a temperature, and 730° C. or more and 850° C. or less for the RTB-based sintered magnet after the second RH diffusion treatment, and the second The step of carrying out a high temperature heat treatment of heating to a temperature lower than the temperature of the RH diffusion treatment of No. 3 and cooling to 300° C. at a cooling rate of 5° C./min or more, and an RTB based sintered magnet after the high temperature heat treatment On the other hand, the step of performing a low temperature heat treatment of heating at a temperature of 440° C. or higher and 550° C. or lower.
ある実施形態において、前記R−T−B系焼結磁石素材のMはCuを必ず含み、Cu:0.05質量%以上0.30質量%以下である。 In one embodiment, M of the RTB-based sintered magnet material always contains Cu, and Cu: 0.05% by mass or more and 0.30% by mass or less.
ある実施形態において、R−T−B系焼結磁石素材は、R:30.0質量%以上34.0質量%以下である。 In one embodiment, the R-T-B based sintered magnet material is R: 30.0 mass% or more and 34.0 mass% or less.
ある実施形態において、R−T−B系焼結磁石素材は、B:0.82質量%以上0.88質量%以下である。 In one embodiment, the RTB-based sintered magnet material is B: 0.82 mass% or more and 0.88 mass% or less.
ある実施形態において、R−T−B系焼結磁石素材は、Ga:0.2質量%以上0.8質量%以下である。 In one embodiment, the R-T-B system sintered magnet material is Ga: 0.2 mass% or more and 0.8 mass% or less.
ある実施形態において、前記高温熱処理を実施する工程における冷却速度は15℃/分以上である。 In one embodiment, the cooling rate in the step of performing the high temperature heat treatment is 15° C./minute or more.
本開示の実施形態によると、HcJの温度係数が改善され、高温においてHcJの低下が少なく、かつ、高いHcJを得ることができるR−T−B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, the temperature coefficient of the H cJ is improved, less decrease in H cJ is at high temperature, and provide a method for producing R-T-B based sintered magnet can obtain a high H cJ can do.
本発明者は、特定組成のR−T−B系焼結磁石素材に対し、RH拡散源からR−T−B系焼結磁石素材に重希土類元素RHを拡散させる第一のRH拡散処理を実施した後に、前記第一のRH拡散処理の温度よりも低い温度で加熱する第二のRH拡散処理を実施し、さらに、前記第二のRH拡散処理の温度よりも低い730℃以上850℃以下の温度に加熱後、5℃/分以上で300℃まで冷却する高温熱処理を実施した後、440℃以上550℃以下の温度に加熱する低温熱処理を実施することにより、R−T−B系焼結磁石のHcJの温度係数が改善され、例えば140℃のような高温においてHcJの低下が少なく、高いHcJを発現するR−T−B系焼結磁石が得られることを見出した。 The present inventor performs a first RH diffusion treatment for diffusing a heavy rare earth element RH from an RH diffusion source into an RTB-based sintered magnet material for an RTB-based sintered magnet material having a specific composition. After carrying out, a second RH diffusion treatment of heating at a temperature lower than the temperature of the first RH diffusion treatment is carried out, and further 730° C. or higher and 850° C. or lower lower than the temperature of the second RH diffusion treatment. After performing the high temperature heat treatment of cooling to 300° C. at 5° C./minute or more, and the low temperature heat treatment of heating to a temperature of 440° C. or more and 550° C. or less, the RTB based firing is performed. It was found that the temperature coefficient of H cJ of the binder magnet is improved, the decrease of H cJ at a high temperature such as 140° C. is small, and an RTB -based sintered magnet that expresses high H cJ can be obtained.
以下、本開示のR−T−B系焼結磁石の製造方法における各工程の詳細を説明する。なお、本開示において、第二のRH拡散処理前及び第二のRH拡散処理中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」と称し、第二のRH拡散熱処理後のR−T−B系焼結磁石を単に「R−T−B系焼結磁石」と称する。 Hereinafter, details of each step in the manufacturing method of the RTB sintered magnet of the present disclosure will be described. In the present disclosure, the RTB-based sintered magnet before the second RH diffusion treatment and during the second RH diffusion treatment is referred to as “RTB-based sintered magnet material”, and the second The R-T-B system sintered magnet after the RH diffusion heat treatment is simply referred to as "R-T-B system sintered magnet".
[R−T−B系焼結磁石素材を準備する工程]
R−T−B系焼結磁石素材が以下に詳述する特定組成となるようにそれぞれの元素の金属又は合金(溶解原料)を準備し、ストリップキャスティング法等によりフレーク状の原料合金を作製する。次に、前記フレーク状の原料合金から合金粉末を作製する。そして、合金粉末を成形して成形体を得る。得られた成形体を焼結することによりR−T−B系焼結磁石素材を準備する。
[Step of preparing an RTB-based sintered magnet material]
A metal or alloy (melting raw material) of each element is prepared so that the RTB sintered magnet material has a specific composition described in detail below, and a flake-shaped raw material alloy is produced by a strip casting method or the like. .. Next, alloy powder is prepared from the flaky raw material alloy. Then, the alloy powder is molded to obtain a molded body. An RTB-based sintered magnet material is prepared by sintering the obtained compact.
合金粉末の作製、合金粉末の成形及び成形体の焼結は、一例として以下のようにして行う。
ストリップキャスティング法等によって得られたフレーク状の原料合金を水素粉砕し、例えば1.0mm以下の粗粉砕粉を得る。次に、粗粉砕粉を不活性ガス中でジェットミル等により微粉砕し、例えば粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値(体積基準メジアン径))が3〜5μmの微粉砕粉(合金粉末)を得る。合金粉末は、1種類の合金粉末(単合金粉末)を用いてもよいし、2種類以上の合金粉末を混合することにより合金粉末(混合合金粉末)を得る、いわゆる2合金法を用いてもよく、公知の方法などを用いて本開示の実施形態の組成となるように合金粉末を作製すればよい。ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中及びジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を添加してもよい。
The production of the alloy powder, the molding of the alloy powder, and the sintering of the molded body are performed as follows as an example.
The flaky raw material alloy obtained by the strip casting method or the like is pulverized with hydrogen to obtain coarsely pulverized powder of 1.0 mm or less, for example. Next, the coarsely pulverized powder is finely pulverized by a jet mill or the like in an inert gas, and has a particle diameter D 50 (volume center value (volume-based median diameter) obtained by measurement by an airflow dispersion laser diffraction method) of 3 to, for example. Finely pulverized powder (alloy powder) of 5 μm is obtained. As the alloy powder, one kind of alloy powder (single alloy powder) may be used, or a so-called two-alloy method may be used in which alloy powder (mixed alloy powder) is obtained by mixing two or more kinds of alloy powder. The alloy powder may be prepared so as to have the composition of the embodiment of the present disclosure by using a known method. A known lubricant may be added as an auxiliary agent to the coarsely pulverized powder before the jet mill pulverization, the alloy powder during the jet mill pulverization and after the jet mill pulverization.
次に得られた合金粉末を磁界中で成形し、成形体を得る。成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、成形する乾式成形法、及び金型のキャビティー内に合金粉末を含むスラリーを注入し、スラリーの分散媒を排出しながら合金粉末を成形する湿式成形法を含む公知の任意の成形方法を用いてよい。 Next, the obtained alloy powder is molded in a magnetic field to obtain a molded body. Molding is performed by inserting dry alloy powder into the cavity of the mold and molding, and by injecting slurry containing alloy powder into the cavity of the mold and discharging the slurry dispersion medium. Any known molding method may be used, including a wet molding method for molding a powder.
成形体を焼結することによりR−T−B系焼結磁石素材を得る。成形体の焼結は公知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中又は不活性ガス雰囲気中で行うことが好ましい。不活性ガスは、例えばヘリウム又はアルゴン等を用いることが好ましい。 An RTB-based sintered magnet material is obtained by sintering the compact. A known method can be used for sintering the molded body. In order to prevent oxidation due to the atmosphere during sintering, it is preferable to perform the sintering in a vacuum atmosphere or an inert gas atmosphere. It is preferable to use, for example, helium or argon as the inert gas.
次に、R−T−B系焼結磁石素材の組成について説明する。R−T−B系焼結磁石素材は、
R:29.5質量%以上35.0質量%以下(Rは希土類元素の少なくとも一種でありNd及びPrの少なくとも一方を必ず含む)、
B:0.80質量%以上0.90質量%以下、
Ga:0.1質量%以上0.8質量%以下、
M:0質量%以上2質量%以下(MはCu、Al、Nb、Zrの少なくとも一種)
残部T(Tは遷移金属元素の少なくとも一種でありFeを必ず含み、Feの10%以下をCoで置換できる)及び不可避的不純物を含有する。
R量、B量、Ga量をそれぞれ前記のような特定範囲とし、後述する第一のRH拡散処理を実施する工程、第二のRH拡散処理を実施する工程、高温熱処理を実施する工程、低温熱処理を実施する工程を行うことにより、HcJの温度係数が改善され、高温においてHcJの低下が少なく、かつ、高いHcJを発現するR−T−B系焼結磁石を得ることができる。
Next, the composition of the RTB-based sintered magnet material will be described. The R-T-B system sintered magnet material is
R: 29.5 mass% or more and 35.0 mass% or less (R is at least one kind of rare earth element and always contains at least one of Nd and Pr),
B: 0.80 mass% or more and 0.90 mass% or less,
Ga: 0.1% by mass or more and 0.8% by mass or less,
M: 0% by mass or more and 2% by mass or less (M is at least one of Cu, Al, Nb, and Zr)
The balance T (T is at least one kind of transition metal element and always contains Fe, and 10% or less of Fe can be replaced with Co) and unavoidable impurities.
The amount of R, the amount of B, and the amount of Ga are set to the above-described specific ranges, respectively, a step of performing a first RH diffusion treatment described below, a step of performing a second RH diffusion treatment, a step of performing a high temperature heat treatment, and a low temperature. By performing the step of carrying out the heat treatment, the temperature coefficient of H cJ is improved, the decrease of H cJ at a high temperature is small, and an RTB -based sintered magnet exhibiting a high H cJ can be obtained. ..
Rは、希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含む。さらに少量のDy、Tb、Gd及びHoのうち少なくとも一種を含有してもよく、その含有量はR−T−B系焼結磁石全体の5質量%以下であることが好ましい。Rの含有量は、29.5質量%以上35.0質量%以下である。Rが29.5質量%未満であると、焼結時の緻密化が困難になる恐れがあり、35.0質量%を超えると、主相比率が低下して高いBrを得ることができない恐れがある。Rの含有量は好ましくは30.0質量%以上34.0質量%以下である。より高いBrを得ることが出来るからである。 R is at least one kind of rare earth element and always contains at least one of Nd and Pr. Further, at least one kind of Dy, Tb, Gd and Ho may be contained in a small amount, and the content thereof is preferably 5% by mass or less based on the entire RTB sintered magnet. The content of R is 29.5% by mass or more and 35.0% by mass or less. When R is less than 29.5 mass%, there is a possibility that the densification during sintering becomes difficult, when it exceeds 35.0 wt%, it is impossible to main phase ratio to obtain a high B r drops There is a fear. The content of R is preferably 30.0 mass% or more and 34.0 mass% or less. This is because a higher Br can be obtained.
Bの含有量は、0.80質量%以上0.90質量%以下である。Bが0.80質量%未満であるとR2T17相が生成されて高いHcJが得られず、0.90質量%を超えると後述する第一のRH拡散処理を実施する工程、第二のRH拡散処理を実施する工程、高温熱処理を実施する工程、低温熱処理を実施する工程を全て行っても、HcJの温度係数を改善することができず、また、高温において高いHcJを得ることができない。Bの含有量は、好ましくは0.82質量%以上0.88質量%以下である。温度係数をより改善することができるからである。 The content of B is 0.80 mass% or more and 0.90 mass% or less. When B is less than 0.80% by mass, R 2 T 17 phase is generated and high H cJ cannot be obtained, and when it exceeds 0.90% by mass, a step of performing a first RH diffusion treatment described below, Even if all the steps of performing the second RH diffusion treatment, the high temperature heat treatment, and the low temperature heat treatment are performed, the temperature coefficient of H cJ cannot be improved, and the high H cJ at high temperature is not increased . Can't get The content of B is preferably 0.82 mass% or more and 0.88 mass% or less. This is because the temperature coefficient can be further improved.
Gaの含有量は、0.1質量%以上0.8質量%以下である。R、Bを前記範囲内とし、さらにGaの含有量を0.1質量%以上0.8質量%以下とすることにより、主相の粒界部分に位置する粒界相にR−T−Ga相及びR−Ga相を生成させて高いHcJを得ることができる。ここで、R−T−Ga相とは、R:15質量%以上65質量%以下、T:20質量%以上80質量%以下、Ga:2質量%以上20質量%以下を含むものであり、例えばLa6Co11Ga3型結晶構造を有するR6Fe13Ga化合物が挙げられる。なお、R−T−Ga相は前述のR、T及びGa以外の他の元素を含んでもよく、例えばAl及びCu等から選択される1つ以上の元素が挙げられる。また、R−Ga相とはR70質量%以上95質量%以下、Ga5質量%以上30質量%以下、Fe20質量%以下(0を含む)を含むものであり、例えばR3Ga化合物が挙げられる。 The content of Ga is 0.1% by mass or more and 0.8% by mass or less. By setting R and B within the above ranges and further setting the Ga content to 0.1% by mass or more and 0.8% by mass or less, R-T-Ga is formed in the grain boundary phase located in the grain boundary part of the main phase. Phase and R-Ga phase can be generated to obtain high HcJ . Here, the RT-Ga phase includes R: 15% by mass or more and 65% by mass or less, T: 20% by mass or more and 80% by mass or less, Ga: 2% by mass or more and 20% by mass or less, For example, an R 6 Fe 13 Ga compound having a La 6 Co 11 Ga 3 type crystal structure can be mentioned. The R-T-Ga phase may contain an element other than R, T, and Ga described above, and examples thereof include one or more elements selected from Al, Cu, and the like. The R-Ga phase includes R 70 mass% or more and 95 mass% or less, Ga 5 mass% or more and 30 mass% or less, and Fe 20 mass% or less (including 0), and examples thereof include R 3 Ga compounds.
Gaの含有量が0.1質量%未満であるとR−T−Ga相及びR−Ga相の生成量が少なすぎて高いHcJを得られない恐れがあり、0.8質量%を超えると不要なGaが存在することになり、主相比率が低下してBrが低下する恐れがある。Gaの含有量は、好ましくは0.2質量%以上0.8質量%以下である。高温においてより高いHcJを得ることができるからである。 If the Ga content is less than 0.1% by mass, the amount of the R-T-Ga phase and the R-Ga phase produced may be too small to obtain high HcJ , and the amount exceeds 0.8% by mass. and will be unnecessary Ga is present, the main phase ratio may be decreased is B r drops. The content of Ga is preferably 0.2 mass% or more and 0.8 mass% or less. This is because higher H cJ can be obtained at high temperature.
MはCu、Al、Nb、Zrの少なくとも一種であり、0質量%であっても本開示の実施形態による効果を奏することができるが、Cu、Al、Nb、Zrの合計で2質量%以下含有することができる。Cu、Alを含有することによりHcJを向上させることができる。また、Nb、Zrを含有することにより焼結時における結晶粒の異常粒成長を抑制することができる。好ましくはMはCuを必ず含み、Cuを0.05質量%以上0.30質量%以下含有する。Cuを0.05質量%以上0.30質量%以下含有することにより、HcJをより向上させることができるからである。 M is at least one of Cu, Al, Nb, and Zr, and the effect of the embodiment of the present disclosure can be obtained even if it is 0% by mass, but the total amount of Cu, Al, Nb, and Zr is 2% by mass or less. Can be included. H cJ can be improved by containing Cu and Al. Further, by containing Nb and Zr, abnormal grain growth of crystal grains during sintering can be suppressed. Preferably, M always contains Cu, and contains Cu in an amount of 0.05% by mass or more and 0.30% by mass or less. This is because H cJ can be further improved by containing Cu in an amount of 0.05% by mass or more and 0.30% by mass or less.
残部Tは、遷移金属元素の少なくとも一種でありFeを必ず含み、Feの10%以下をCoで置換できる。Coを含有することにより、耐食性を向上させることができるが、Coの置換量がFeの10%を超えると高いBrが得られない恐れがある。
さらに、R−T−B系焼結磁石素材は、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si、La、Ce、Sm、Ca、Mgなどを含有してもよい。また、製造工程中の不可避的不純物として、O(酸素)、N(窒素)、C(炭素)などを含有してもよい。さらに、不可避的不純物以外に、少量のTi、V、Ni、Mo、Hf、Ta、Wなどを含有してもよい。
The balance T is at least one of transition metal elements and always contains Fe, and 10% or less of Fe can be replaced with Co. By containing Co, the corrosion resistance can be improved, but if the substitution amount of Co exceeds 10% of Fe, high Br may not be obtained.
Further, the R-T-B system sintered magnet material contains Cr, Mn, Si, La, Ce, Sm, Ca as unavoidable impurities that are usually contained in didymium alloy (Nd-Pr), electrolytic iron, ferroboron, and the like. You may contain Mg etc. Further, O (oxygen), N (nitrogen), C (carbon) and the like may be contained as inevitable impurities in the manufacturing process. Further, in addition to the inevitable impurities, a small amount of Ti, V, Ni, Mo, Hf, Ta, W or the like may be contained.
[第一のRH拡散処理を実施する工程]
重希土類元素RH(Dy及びTbの少なくとも一方)を含むRH拡散源と、上述したR−T−B系焼結磁石素材とを処理容器内に配置し、前記RH拡散源及び前記R−T−B系焼結磁石素材を760℃以上1000℃以下で加熱することにより、R−T−B系焼結磁石素材に対して、重希土類元素RHを拡散させる第一のRH拡散工程を実施する。
加熱する温度が760℃未満であると、重希土類元素RHのR−T−B系焼結磁石素材への供給量が少なすぎて高いHcJを得ることができない恐れがあり、1000℃を超えると、Brが大きく低下する恐れがある。加熱時間は、5分以上500分以下が好ましい。なお、R−T−B系焼結磁石素材は、研削等の機械加工をした後にRH拡散工程を行ってもよい。
第一のRH拡散処理を実施する工程は、重希土類元素RHをR−T−B系焼結磁石素材の表面から拡散し、R2T14B型結晶構造を有する化合物からなる結晶粒の外殻部に重希土類元素RHを濃化できる既知の方法を用いてよい。既知の方法として例えば、以下に詳述する参考文献1〜3に記載される方法を例示する。
[Step of performing first RH diffusion treatment]
An RH diffusion source containing a heavy rare earth element RH (at least one of Dy and Tb) and the above-mentioned R-T-B based sintered magnet material are arranged in a processing container, and the RH diffusion source and the R-T- The first RH diffusion step of diffusing the heavy rare earth element RH is performed on the RTB based sintered magnet material by heating the B based sintered magnet material at 760° C. or higher and 1000° C. or lower.
When the heating temperature is lower than 760°C, the amount of heavy rare earth element RH supplied to the RTB-based sintered magnet material may be too small to obtain a high HcJ, and thus exceeds 1000°C. Then, Br may be significantly reduced. The heating time is preferably 5 minutes or more and 500 minutes or less. The R-T-B based sintered magnet material may be subjected to mechanical processing such as grinding and then subjected to the RH diffusion step.
Step of performing a first RH diffusion process, the heavy rare-earth element RH is diffused from the R-T-B-based sintered magnet material surface of the crystal grains outside made of a compound having a R 2 T 14 B-type crystal structure A known method capable of concentrating the heavy rare earth element RH on the shell may be used. Examples of known methods include the methods described in References 1 to 3 described in detail below.
(1)参考文献1:WO2007/102391号公報に記載の方法。
参考文献1に記載の方法は、R−T−B系焼結磁石素材とDy及びTbの少なくとも一方を含有するRH拡散源とをNb製の網等を介して離間して配置し、R−T−B系焼結磁石素材とRH拡散源とを所定温度に加熱することにより、前記RH拡散源からDy及びTbの少なくとも一方をR−T−B系焼結磁石素材の表面に供給しつつ、内部に拡散させる方法である。R−T−B系焼結磁石素材の加熱温度とRH拡散源の加熱温度は実質的に同じである。
(1) Reference 1: The method described in WO2007/102391.
In the method described in Reference Document 1, an R-T-B based sintered magnet material and an RH diffusion source containing at least one of Dy and Tb are separately arranged via a net made of Nb, and R- While heating the TB-based sintered magnet material and the RH diffusion source to a predetermined temperature, at least one of Dy and Tb is supplied from the RH diffusion source to the surface of the RTB-based sintered magnet material. , Is a method of diffusing inside. The heating temperature of the RTB-based sintered magnet material and the heating temperature of the RH diffusion source are substantially the same.
参考文献1に記載の方法を用いる場合、RH拡散源は、例えば、Dyメタル、DyFe合金、Tbメタル、TbFe合金などから選択される1つ以上である。RH拡散源の形状は、例えば、板状、球状など任意であり、大きさも特に限定されない。
R−T−B系焼結磁石素材及びRH拡散源を加熱する温度は、それぞれ、例えば、760℃以上1000℃以下であり、850℃以上1000℃以下が好ましい。また、処理容器内の雰囲気ガスの圧力は、10−5Pa以上500Pa以下が好ましい。なお、参考文献1における「雰囲気ガス」とは、真空又は不活性ガスを含むものとする。また、「不活性ガス」とは、例えば、アルゴン(Ar)などの希ガスであるが、焼結体、重希土類元素供給源と化学的に反応しないガス(例えば、窒素ガス)は「不活性ガス」に含まれ得る。
When the method described in Reference 1 is used, the RH diffusion source is at least one selected from Dy metal, DyFe alloy, Tb metal, TbFe alloy, and the like. The shape of the RH diffusion source is, for example, a plate shape, a spherical shape, or the like, and the size is not particularly limited.
The temperature at which the RTB-based sintered magnet material and the RH diffusion source are heated is, for example, 760° C. or higher and 1000° C. or lower, and preferably 850° C. or higher and 1000° C. or lower. Further, the pressure of the atmospheric gas in the processing container is preferably 10 −5 Pa or more and 500 Pa or less. In addition, the “atmosphere gas” in Reference Document 1 includes a vacuum or an inert gas. Further, the “inert gas” is, for example, a rare gas such as argon (Ar), but a gas that does not chemically react with the sintered body or the heavy rare earth element supply source (eg, nitrogen gas) is “inert gas”. Gas”.
(2)参考文献2:WO2012/008426号公報に記載の方法。
参考文献2に記載の方法は、R−T−B系焼結磁石素材とRH拡散源とを相対的に移動可能かつ近接または接触可能に処理容器内に挿入し、R−T−B系焼結磁石素材とRH拡散源とを処理容器内にて連続的または断続的に移動させながら、R−T−B系焼結磁石素材及びRH拡散源を加熱することにより、RH拡散源からDy及びTbの少なくとも一方をR−T−B系焼結磁石素材に拡散する方法である。R−T−B系焼結磁石素材の加熱温度とRH拡散源の加熱温度は実質的に同じである。
(2) Reference 2: The method described in WO2012/008426.
In the method described in Reference Document 2, an RTB-based sintered magnet material and an RH diffusion source are inserted into a processing container so as to be relatively movable and close to or in contact with each other, and the RTB-based sintering magnet is burned. By heating the RTB-based sintered magnet material and the RH diffusion source while moving the binder magnet material and the RH diffusion source continuously or intermittently in the processing container, Dy and It is a method of diffusing at least one of Tb into the RTB-based sintered magnet material. The heating temperature of the RTB-based sintered magnet material and the heating temperature of the RH diffusion source are substantially the same.
参考文献2に記載された方法を用いる場合、RH拡散源は、重希土類元素RH(DyやTb等)と30質量%以上80質量%以下のFeとを含有する合金であり、その形態は、例えば、球状、線状、板状、ブロック状、粉末など任意である。ボール形状を有する場合、その直径は例えば数百μm〜数十mmに設定することが好ましい。粉末の場合、その粒径は、例えば、5mm以下の範囲に設定することが好ましい。さらに、RH拡散源とR−T−B系焼結磁石素材に加え、撹拌補助部材を処理容器内へ装入することが好ましい。攪拌補助部材はRH拡散源とR−T−B系焼結磁石素材との接触を促進し、また攪拌補助部材に一旦付着した重希土類元素RHをR−T−B系焼結磁石素材へ間接的に供給する役割をする。さらに、攪拌補助部材は、処理容器内において、R−T−B系焼結磁石素材同士の接触による欠けを防ぐ役割もある。攪拌補助部材は、直径数百μmから数十mmの球状、円柱状などが挙げられる。攪拌補助部材は、RH拡散工程中にR−T−B系焼結磁石素材及びRH拡散源と接触しても反応しにくい材料から形成されることが好ましく、例えば、ジルコニア、窒化ケイ素、炭化ケイ素などが挙げられる。 When the method described in Reference 2 is used, the RH diffusion source is an alloy containing a heavy rare earth element RH (Dy, Tb, etc.) and 30% by mass or more and 80% by mass or less of Fe, and the form thereof is For example, a spherical shape, a linear shape, a plate shape, a block shape, a powder, or the like is arbitrary. When it has a ball shape, its diameter is preferably set to, for example, several hundred μm to several tens mm. In the case of powder, the particle size is preferably set within a range of 5 mm or less, for example. Further, in addition to the RH diffusion source and the R-T-B based sintered magnet material, it is preferable to load a stirring auxiliary member into the processing container. The agitation assisting member promotes contact between the RH diffusion source and the R-T-B based sintered magnet material, and the heavy rare earth element RH once attached to the agitation assisting member is indirectly transferred to the R-T-B based sintered magnet material. Play a role in supplying electricity. Further, the agitation assisting member also has a role of preventing chipping due to contact between the RTB based sintered magnet materials in the processing container. Examples of the agitation assisting member include a spherical shape and a cylindrical shape having a diameter of several hundred μm to several tens mm. The agitation assisting member is preferably formed of a material that does not easily react even if it comes into contact with the R-T-B based sintered magnet material and the RH diffusion source during the RH diffusion process. For example, zirconia, silicon nitride, silicon carbide. And so on.
R−T−B系焼結磁石素材とRH拡散源を加熱する温度は、850℃超1000℃℃以下が好ましい。また、処理容器内の雰囲気ガスの圧力は、大気圧以下で実施でき、例えば0.001Paから大気圧の範囲内に設定することができる。 The temperature for heating the RTB-based sintered magnet material and the RH diffusion source is preferably more than 850°C and 1000°C or less. Further, the pressure of the atmospheric gas in the processing container can be set to be equal to or lower than the atmospheric pressure, and can be set within the range of, for example, 0.001 Pa to the atmospheric pressure.
(3)参考文献3:WO2006/043348号公報に記載の方法。
参考文献3に記載の方法は、RH拡散源をR−T−B系焼結磁石素材の表面に存在させた状態で焼結温度よりも低い温度で加熱することで、前記RH拡散源からDy及びTbの少なくとも一方をR−T−B系焼結磁石素材に拡散させる方法である。
(3) Reference document 3: The method described in WO2006/043348.
In the method described in Reference Document 3, the RH diffusion source is heated at a temperature lower than the sintering temperature in a state where the RH diffusion source is present on the surface of the R-T-B system sintered magnet material, so that the RH diffusion source can generate Dy. And a method of diffusing at least one of Tb into the RTB-based sintered magnet material.
参考文献3に記載された方法を用いる場合、RH拡散源は、Rの酸化物、フッ化物、酸フッ化物などが好ましい。RH拡散源は、粒子状であることが好ましく、その平均粒径は100μm以下が好ましい。
RH拡散源をR−T−B系焼結磁石素材の表面に存在させる方法としては、例えば、粒子状のRH拡散源をそのままR−T−B系焼結磁石素材の表面に吹き付ける方法、RH拡散源を溶媒に溶解した溶液をR−T−B系焼結磁石素材の表面に塗布する方法、RH拡散源を分散媒に分散させたスラリーをR−T−B系焼結磁石素材の表面に塗布する方法等があげられる。スラリーに用いる分散媒としては、例えばアルコール、アルデヒド、エタノール、ケトン等が挙げられる。
When the method described in Reference 3 is used, the RH diffusion source is preferably an R oxide, a fluoride, an oxyfluoride, or the like. The RH diffusion source is preferably in the form of particles, and its average particle size is preferably 100 μm or less.
Examples of the method of allowing the RH diffusion source to exist on the surface of the R-T-B system sintered magnet material include, for example, a method of directly spraying a particulate RH diffusion source onto the surface of the R-T-B system sintered magnet material, and RH. A method in which a solution in which a diffusion source is dissolved in a solvent is applied to the surface of an RTB-based sintered magnet material, and a slurry in which an RH diffusion source is dispersed in a dispersion medium is applied to the surface of an RTB-based sintered magnet material. And the like. Examples of the dispersion medium used for the slurry include alcohol, aldehyde, ethanol, ketone and the like.
R−T−B系焼結磁石素材とRH拡散源を加熱する温度は、焼結温度以下であり、具体的には900℃が好ましい。焼結温度より高い温度であると、R−T−B系焼結磁石素材の組織が変質し、高い磁気特性が得られない場合又はR−T−B系焼結磁石素材が熱変形を引き起こす場合がある。また、処理容器内の雰囲気ガスの圧力は、大気圧以下であることが好ましい。 The temperature at which the RTB-based sintered magnet material and the RH diffusion source are heated is equal to or lower than the sintering temperature, and specifically 900° C. is preferable. If the temperature is higher than the sintering temperature, the structure of the RTB-based sintered magnet material is deteriorated and high magnetic properties cannot be obtained, or the RTB-based sintered magnet material causes thermal deformation. There are cases. The pressure of the atmospheric gas in the processing container is preferably atmospheric pressure or lower.
[第二のRH拡散処理を実施する工程]
前記第一のRH拡散処理後のR−T−B系焼結磁石素材に対し、750℃以上1000℃未満で、且つ、前記第一のRH拡散処理の温度よりも低い温度で加熱する第二のRH拡散処理を実施する。第二のRH拡散処理を実施することにより、第一のRH拡散処理よりもRH拡散源からの重希土類元素RHの拡散を抑制しつつ、重希土類元素RHをR−T−B系焼結磁石素材の内部にまで拡散(磁石素材の表面付近だけでなく中心方向へ拡散)させることができ、高いHcJを得ることができる。第二のRH拡散処理の温度は、第一のRH拡散処理におけるR−T−B系焼結磁石素材の加熱温度よりも低く設定する。例えば、第一のRH拡散処理において900℃でR−T−B系焼結磁石素材を加熱した場合は、第二のRH拡散処理はR−T−B系焼結磁石素材を900℃未満で加熱する。好ましくは、第一のRH拡散処理の温度よりも10℃以上低く設定して加熱する。第二のRH拡散処理を行うことにより、第一のRH拡散処理時にR−T−B系焼結磁石素材の表面付近に供給された重希土類元素RHを、粒界を通じてR−T−B系焼結磁石素材の奥深く(中心部分)にまで拡散させることができる。第二のRH拡散処理におけるR−T−B系焼結磁石素材を加熱する温度が第一のRH拡散処理の温度を超えると、R−T−B系焼結磁石素材の表面付近において主相結晶粒の中心部にまで重希土類元素RHが拡散されてBrが低下する恐れがある。また、第二のRH拡散処理の温度は、750℃未満であると、重希土類元素RHをR−T−B系焼結磁石素材の奥深くにまで拡散させることができず高いHcJを得ることができない恐れがあり、1000℃以上であると、第一のRH拡散処理の温度を超えることとなり、前記の通りBrが低下する恐れがある。第二のRH拡散処理の圧力は200Pa以上2kPa以下に設定してもよい。これによりRH拡散源からの重希土類元素RHの供給がほとんどなくなり、R−T−B系焼結磁石素材内部への拡散のみが進行する。加熱時間は、5分以上300分以下が好ましい。
[Step of performing second RH diffusion treatment]
Second heating to the RTB based sintered magnet material after the first RH diffusion treatment at a temperature of 750° C. or higher and lower than 1000° C. and a temperature lower than the temperature of the first RH diffusion treatment. RH diffusion processing is performed. By performing the second RH diffusion treatment, the heavy rare earth element RH is suppressed from diffusing the heavy rare earth element RH from the RH diffusion source as compared with the first RH diffusion treatment, and the heavy rare earth element RH is added to the RTB-based sintered magnet. It is possible to diffuse into the inside of the material (diffuse not only in the vicinity of the surface of the magnet material but also toward the center), and a high H cJ can be obtained. The temperature of the second RH diffusion treatment is set lower than the heating temperature of the RTB-based sintered magnet material in the first RH diffusion treatment. For example, when the RTB-based sintered magnet material is heated at 900° C. in the first RH diffusion treatment, the second RH-diffusion treatment is performed when the RTB-based sintered magnet material is less than 900° C. To heat. Preferably, the temperature is set to be 10° C. or more lower than the temperature of the first RH diffusion treatment and heating is performed. By performing the second RH diffusion process, the heavy rare earth element RH supplied near the surface of the R-T-B system sintered magnet material during the first RH diffusion process is transferred to the R-T-B system through grain boundaries. The sintered magnet material can be diffused deeply (central portion). When the temperature of heating the RTB-based sintered magnet material in the second RH diffusion treatment exceeds the temperature of the first RH diffusion treatment, the main phase near the surface of the RTB-based sintered magnet material heavy rare-earth element RH to the center of the crystal grains are diffused B r may be lowered. Further, if the temperature of the second RH diffusion treatment is less than 750° C., the heavy rare earth element RH cannot be diffused deep into the RTB-based sintered magnet material, and high H cJ can be obtained. If the temperature is 1000° C. or higher, the temperature exceeds the temperature of the first RH diffusion treatment, and as described above, Br may decrease. The pressure of the second RH diffusion treatment may be set to 200 Pa or more and 2 kPa or less. As a result, the supply of the heavy rare earth element RH from the RH diffusion source is almost eliminated and only diffusion into the RTB-based sintered magnet material proceeds. The heating time is preferably 5 minutes or more and 300 minutes or less.
[高温熱処理を実施する工程]
前記第二のRH拡散処理後のR−T−B系焼結磁石に対して、730℃以上850℃以下で、且つ、前記第二のRH供給拡散処理の温度よりも低い(第二のRH拡散処理におけるR−T−B系焼結磁石素材の加熱温度よりも低い)温度で加熱後、5℃/分以上の冷却速度で300℃まで冷却する高温熱処理を実施する。前記第一のRH拡散処理及び第二のRH拡散処理を実施し、更に前記高温熱処理と、後述する低温熱処理の両方を行うことにより、温度係数を改善し、高温において高いHcJを得ることができる。
[Process for carrying out high temperature heat treatment]
With respect to the RTB-based sintered magnet after the second RH diffusion treatment, the temperature is 730° C. or higher and 850° C. or lower and lower than the temperature of the second RH supply diffusion treatment (second RH). After heating at a temperature lower than the heating temperature of the RTB-based sintered magnet material in the diffusion treatment), a high temperature heat treatment is performed to cool to 300°C at a cooling rate of 5°C/min or more. By performing the first RH diffusion treatment and the second RH diffusion treatment, and further performing both the high temperature heat treatment and the low temperature heat treatment described later, it is possible to improve the temperature coefficient and obtain high H cJ at high temperature. it can.
加熱時間は、5分以上500分以下が好ましい。さらに、本開示の実施形態の高温熱処理を実施する工程は、730℃以上850℃以下の温度に加熱後、5℃/分以上の冷却速度で300℃まで冷却する。冷却速度が5℃/分未満であると、温度係数が改善されず、高温において高いHcJを得ることができない。更に、後述する低温熱処理の温度よりも十分に低い温度である300℃まで冷却しなければ、温度係数が改善されず、高温において高いHcJを得ることができない。冷却速度は5℃/分以上であればよく、冷却速度が変動しても構わない。例えば、冷却開始直後は40℃/分程度の冷却速度で300℃に近づくにしたがって35℃/分や30℃/分などの冷却速度に変化してもよい。また、好ましくは、前記高温熱処理を実施する工程の冷却速度は15℃/分以上で300℃まで冷却する。温度係数をより改善することができるからである。 The heating time is preferably 5 minutes or more and 500 minutes or less. Further, in the step of performing the high temperature heat treatment of the embodiment of the present disclosure, after heating to a temperature of 730° C. or more and 850° C. or less, it is cooled to 300° C. at a cooling rate of 5° C./min or more. If the cooling rate is less than 5° C./minute, the temperature coefficient is not improved, and high H cJ cannot be obtained at high temperature. Furthermore, unless cooled to 300° C., which is a temperature sufficiently lower than the temperature of the low temperature heat treatment described later, the temperature coefficient is not improved and high H cJ cannot be obtained at high temperature. The cooling rate may be 5° C./minute or more, and the cooling rate may vary. For example, immediately after the start of cooling, the cooling rate may be changed to 35° C./minute or 30° C./minute as the temperature approaches 300° C. at a cooling rate of about 40° C./minute. Further, preferably, the cooling rate in the step of carrying out the high temperature heat treatment is 15° C./min or more and cooling to 300° C. This is because the temperature coefficient can be further improved.
[低温熱処理を実施する工程]
高温熱処理後のR−T−B系焼結磁石に対し、440℃以上550℃以下の温度に加熱する低温熱処理を実施する。低温熱処理工程の温度が440℃未満の場合はR−T−Ga相が生成されず、高いHcJを得ることができない恐れがあり、550℃を超えると、高温において高いHcJを得ることができない恐れがある。低温熱処理を実施する工程の温度は、好ましくは480℃以上550℃以下である。加熱時間は、5分以上500分以下が好ましい。また、440℃以上550℃以下に加熱後の冷却速度は特に問わない。
[Step of carrying out low temperature heat treatment]
After the high temperature heat treatment, the RTB-based sintered magnet is subjected to a low temperature heat treatment of heating it to a temperature of 440° C. or higher and 550° C. or lower. If the temperature of the low temperature heat treatment step is lower than 440° C., the RT-Ga phase may not be generated and high H cJ may not be obtained, and if it exceeds 550° C., high H cJ may be obtained at high temperature. I may not be able to. The temperature of the step of carrying out the low temperature heat treatment is preferably 480° C. or higher and 550° C. or lower. The heating time is preferably 5 minutes or more and 500 minutes or less. Further, the cooling rate after heating at 440° C. or higher and 550° C. or lower is not particularly limited.
上述した第一のRH拡散処理を実施する工程、第二のRH拡散処理工程を実施する工程、高温熱処理を実施する工程及び低温熱処理を実施する工程は、別々に行ってもよいし、連続して行ってもよい。例えば、第一のRH拡散処理を実施する工程及び第二のRH拡散処理を実施する工程を行った後、続けて高温熱処理を実施する工程を行ってもよい。さらに高温熱処理を実施する工程後、300℃まで冷却されたR−T−B系焼結磁石に対し、440℃以上550℃以下まで加熱することにより、高温熱処理を実施する工程に続けて低温熱処理を実施する工程を行っても本開示の実施形態の効果を奏することができる。 The step of performing the first RH diffusion treatment step, the step of performing the second RH diffusion treatment step, the step of performing the high temperature heat treatment, and the step of performing the low temperature heat treatment described above may be performed separately or continuously. You may go. For example, after performing the step of performing the first RH diffusion treatment and the step of performing the second RH diffusion treatment, the step of subsequently performing the high temperature heat treatment may be performed. After the step of performing the high-temperature heat treatment, the RTB-based sintered magnet cooled to 300° C. is heated to 440° C. or higher and 550° C. or lower to continue the low-temperature heat treatment after the step of performing the high-temperature heat treatment. The effect of the embodiment of the present disclosure can be obtained even if the step of carrying out is performed.
得られたR−T−B系焼結磁石に磁石寸法の調整のため、研削などの機械加工を施してもよい。その場合、高温熱処理を実施する工程及び低温熱処理を実施する工程は機械加工前でも機械加工後でもよい。さらに、得られたR−T−B系焼結磁石に、表面処理を施してもよい。表面処理は既知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。 The obtained R-T-B based sintered magnet may be subjected to mechanical processing such as grinding in order to adjust the size of the magnet. In that case, the step of performing the high temperature heat treatment and the step of performing the low temperature heat treatment may be performed before or after machining. Further, the obtained RTB-based sintered magnet may be surface-treated. The surface treatment may be a known surface treatment, and for example, surface treatment such as Al vapor deposition, electric Ni plating or resin coating can be performed.
本発明を実験例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of experimental examples, but the present invention is not limited thereto.
<実験例1>
ジジム合金、Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロジルコニウム合金及び電解鉄を用いて(メタルはいずれも純度99%以上)、R−T−B系焼結磁石素材がおよそ表1の組成となるように各メタル及び合金を配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散式によるレーザー回折法で得られた体積基準メジアン径である。
<Experimental Example 1>
R-T-B system using didymium alloy, Nd metal, Pr metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, ferrozirconium alloy and electrolytic iron (all metals are 99% or more in purity) Each metal and alloy are blended so that the sintered magnet material has the composition shown in Table 1, and the raw materials are melted and cast by the strip casting method, and a flake-shaped raw material alloy having a thickness of 0.2 to 0.4 mm. Got The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to dehydrogenation treatment by heating and cooling in vacuum to 550° C. to obtain coarsely pulverized powder. Next, after adding 0.04% by mass of zinc stearate as a lubricant to 100% by mass of the roughly crushed powder and mixing the obtained roughly crushed powder with a jet mill device, a dry method was performed in a nitrogen stream. Pulverization gave a finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume-based median diameter obtained by a laser diffraction method using an air flow dispersion method.
前記合金粉末に、潤滑剤としてステアリン酸亜鉛を合金粉末100質量%に対して0.05質量%添加、混合した後、磁界中で成形し、成形体を得た。成形装置は、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、組成に応じて真空中で1070℃〜1090℃で4時間保持して焼結し、R−T−B系焼結磁石素材を得た。R−T−B系焼結磁石素材の密度は7.5Mg/m3 以上であった。得られたR−T−B系焼結磁石素材の成分の分析結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。表1に示す様に、試料No.1〜3、4〜6、7〜9は、それぞれ、B量が異なる以外はほぼ同じ組成である。 Zinc stearate as a lubricant was added to the alloy powder in an amount of 0.05% by mass with respect to 100% by mass of the alloy powder, and the mixture was molded in a magnetic field to obtain a molded body. As the forming device, a so-called orthogonal magnetic field forming device (transverse magnetic field forming device) in which a magnetic field applying direction and a pressurizing direction are orthogonal to each other was used. The obtained molded body was held in vacuum at 1070°C to 1090°C for 4 hours depending on the composition and sintered to obtain an RTB-based sintered magnet material. The density of the RTB-based sintered magnet material was 7.5 Mg/m 3 or more. Table 1 shows the analysis results of the components of the obtained RTB-based sintered magnet material. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, O (oxygen amount) is a gas melting-infrared absorption method, N (nitrogen amount) is a gas melting-heat conduction method, and C (carbon amount) is a combustion-infrared absorption method. Was measured. As shown in Table 1, the sample No. Each of 1-3, 4-6, and 7-9 has substantially the same composition except that the amount of B is different.
次に、得られたR−T−B系焼結磁石素材に対し第一のRH拡散処理を実施する工程を行った。RH拡散源として、Dyを60質量%含む複数個のDyFe合金を用意した。前記DyFe合金は、1.5mm〜2.5mmであった。また、撹拌補助部材として、直径5mmのジルコニアの球を複数個用意した。 Next, a step of performing the first RH diffusion treatment was performed on the obtained RTB-based sintered magnet material. A plurality of DyFe alloys containing 60% by mass of Dy were prepared as RH diffusion sources. The DyFe alloy had a thickness of 1.5 mm to 2.5 mm. Further, a plurality of zirconia spheres having a diameter of 5 mm were prepared as stirring aid members.
得られたR−T−B系焼結磁石素材とRH拡散源と撹拌補助部材とを処理容器内へ装入し、処理室内を真空排気した後Arガスを導入した。そして処理室内を加熱すると共に回転させ、前記第一のRH拡散処理を行った。処理室は、毎秒0.03mの周速度で回転させ、RH拡散源及びR−T−B系焼結磁石素材を900℃に加熱して4時間保持した後、室温まで冷却した。前記第一のRH拡散処理により、DyをR−T−B系焼結磁石素材に0.4質量%導入した。第一のRH拡散処理後のR−T−B系焼結磁石素材に対し、温度を870℃にする以外は第一のRH拡散処理と同様にして、第二のRH拡散処理を実施した。 The obtained RTB-based sintered magnet material, the RH diffusion source, and the stirring auxiliary member were charged into the processing container, the processing chamber was evacuated, and then Ar gas was introduced. Then, the processing chamber was heated and rotated to perform the first RH diffusion process. The treatment chamber was rotated at a peripheral velocity of 0.03 m/sec, the RH diffusion source and the RTB-based sintered magnet material were heated to 900° C. and held for 4 hours, and then cooled to room temperature. By the first RH diffusion treatment, 0.4% by mass of Dy was introduced into the RTB-based sintered magnet material. A second RH diffusion treatment was carried out on the RTB-based sintered magnet material after the first RH diffusion treatment in the same manner as the first RH diffusion treatment except that the temperature was 870°C.
次に、第二のRH拡散処理後のR−T−B系焼結磁石に対し高温熱処理を行った。高温熱処理は、R−T−B系焼結磁石を800℃に加熱し2時間保持した後R−T−B系焼結磁石を室温まで冷却した。冷却は、炉内にアルゴンガスを導入することにより、平均冷却速度15℃/分で800℃から300℃まで冷却した。300℃未満から室温までは平均冷却速度2℃/分で冷却した。なお、各平均冷却速度(15℃/分及び2℃/分)における冷却速度ばらつき(冷却速度の最高値と最低値の差)は2℃/分以内であった。次いで、高温熱処理後のR−T−B系焼結磁石に対し低温熱処理を行った。低温熱処理は、高温熱処理後のR−T−B系焼結磁石を500℃に加熱し2時間保持した後室温まで20℃/分の冷却速度で冷却した。なお、第一及び第二のRH拡散処理におけるRH拡散源とR−T−B系焼結磁石素材の加熱温度、並びに、高温熱処理及び低温熱処理の加熱温度及び冷却速度は、RH拡散源及びR−T−B系焼結磁石に熱電対を取り付けて測定した。 Next, high temperature heat treatment was performed on the RTB-based sintered magnet after the second RH diffusion treatment. In the high temperature heat treatment, the RTB sintered magnet was heated to 800° C. and held for 2 hours, and then the RTB sintered magnet was cooled to room temperature. Cooling was performed by introducing an argon gas into the furnace, and the average cooling rate was 15° C./min. From less than 300° C. to room temperature, cooling was performed at an average cooling rate of 2° C./min. The variation in cooling rate (difference between the maximum value and the minimum value of the cooling rate) at each average cooling rate (15°C/min and 2°C/min) was within 2°C/min. Next, the RTB-based sintered magnet after the high temperature heat treatment was subjected to the low temperature heat treatment. In the low temperature heat treatment, the RTB-based sintered magnet after the high temperature heat treatment was heated to 500° C. and held for 2 hours, and then cooled to room temperature at a cooling rate of 20° C./min. The heating temperature of the RH diffusion source and the RTB-based sintered magnet material in the first and second RH diffusion treatments, and the heating temperature and cooling rate of the high temperature heat treatment and the low temperature heat treatment are A thermocouple was attached to the -TB sintered magnet for measurement.
得られたR−T−B系焼結磁石の磁気特性測定結果を表2に示す。表2における「HcJ 23℃」は、室温(23℃)におけるHcJの値であり、「Br 140℃」は140℃におけるBrの値であり、「HcJ 140℃」は140℃におけるHcJの値である。これらBr、HcJの値は、低温熱処理工程後のR−T−B系焼結磁石に機械加工を施し、サンプルを7mm×7mm×7mmに加工し、BHトレーサにより測定した。また、「△HcJ」は、「HcJ 23℃」のHcJの値から「HcJ 140℃」のHcJの値を引いた値であり、この値が小さいほど高温においてHcJの低下が少ないことを示す。さらに、温度係数(β:23〜140℃)を以下のようにして求めた。
温度係数=(140℃のHcJ−23℃のHcJ)/23℃のHcJ/(140℃−23℃)×100%
温度係数の絶対値が小さいほど温度係数が改善されていることを示している。
Table 2 shows the results of measuring the magnetic properties of the obtained RTB-based sintered magnet. Table "H cJ 23 ° C." in 2 is the value of H cJ at room temperature (23 ° C.), "B r 140 ° C." is the value of B r at 140 ° C., "H cJ 140 ° C." is 140 ° C. Is the value of H cJ . These B r, the value of H cJ is by machining the R-T-B based sintered magnet after the low temperature heat treatment step, processing the sample to 7 mm × 7 mm × 7 mm, was measured by BH tracer. Further, “ ΔH cJ ” is a value obtained by subtracting the value of H cJ of “H cJ 140° C.” from the value of H cJ of “H cJ 23° C.”, and the smaller this value, the lower the H cJ at high temperature. Is low. Furthermore, the temperature coefficient (β:23 to 140° C.) was determined as follows.
Temperature coefficient=( HcJ of 140° C.− HcJ of 23° C.)/ HcJ of 23° C./(140° C.−23° C.)×100%
The smaller the absolute value of the temperature coefficient, the better the temperature coefficient.
表2に示すように、本発明の組成範囲及び製造方法で作製した試料(No.1、2、4、5、7、8、10〜17)は、HcJの温度係数が改善され、高温においてHcJの低下を少なく、かつ、高いHcJを得ることができる。例えば、試料No.1〜3は、B量以外はほぼ同じ組成であるが、本発明の試料No.1、2は、比較例の試料No.3(B量が本発明の範囲外)と比べて140℃において高いHcJが得られている。さらに、△HcJ及び温度係数は、本発明の試料No.1、2の方が比較例の試料No.3よりも値が小さい(温度係数については絶対値)。試料No.4〜6及び7〜9も同様である。また、本発明の試料No.10〜17は、ほぼ同じ組成の比較例は無いが、いずれも温度係数の絶対値が0.54%/℃以下(0.54%/℃〜0.52%/℃)であり、表2における比較例試料No.3、6、9(0.57%/℃〜0.56%/℃)と比べて温度係数の絶対値が小さい。
また、表2に示すように、Bの範囲は、0.82〜0.88質量%(試料No.2、10、11以外の本発明)が好ましく、温度係数の絶対値(0.53%/℃〜0.49%/℃)が小さい。また、Ga以外はほぼ同じ組成である試料No.12、15〜17に示すように、Gaの範囲は、0.2〜0.8質量%(試料No.12、15、17)が好ましく、高温(140℃)においてより高いHcJが得られている。
As shown in Table 2, the samples (No. 1, 2, 4 , 5, 7 , 8 , 10 to 17) produced by the composition range and the production method of the present invention have an improved temperature coefficient of HcJ and a high temperature. It is possible to obtain a high H cJ with a small decrease in H cJ . For example, sample No. Sample Nos. 1 to 3 of the present invention have almost the same composition except for the amount of B. Sample Nos. 1 and 2 of the comparative example are A high H cJ is obtained at 140° C. as compared with 3 (B amount outside the range of the present invention). Further, ΔH cJ and temperature coefficient are the same as those of the sample No. of the present invention. Sample Nos. 1 and 2 are comparative sample Nos. The value is smaller than 3 (the temperature coefficient is an absolute value). Sample No. The same applies to 4 to 6 and 7 to 9. In addition, the sample No. No. 10 to 17 have no comparative examples having almost the same composition, but all have an absolute value of the temperature coefficient of 0.54%/° C. or less (0.54%/° C. to 0.52%/° C.). Comparative sample No. The absolute value of the temperature coefficient is smaller than that of 3, 6, 9 (0.57%/°C to 0.56%/°C).
Further, as shown in Table 2, the range of B is preferably 0.82 to 0.88 mass% (the present invention other than sample Nos. 2, 10 and 11), and the absolute value of the temperature coefficient (0.53% /°C to 0.49%/°C) is small. In addition, sample No. having almost the same composition except for Ga. 12, 15 to 17, the Ga range is preferably 0.2 to 0.8 mass% (Sample Nos. 12, 15, and 17), and higher H cJ is obtained at high temperature (140° C.). ing.
<実験例2>
ジジム合金、Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロジルコニウム合金及び電解鉄を用いて(メタルはいずれも純度99%以上)、実験例1の試料No.5と同じ組成となるように配合し、実験例1と同じ方法でR−T−B系焼結磁石素材を得た。R−T−B系焼結磁石素材の密度は7.5Mg/m3以上であった。また、得られたR−T−B系焼結磁石素材の成分、ガス分析結果は、実験例1の試料No.5と同等であった。さらに、得られたR−T−B系焼結磁石素材に対し実験例1と同じ方法で第一のRH拡散処理を実施する工程及び第二のRH拡散処理を実施する工程を行った。
<Experimental example 2>
Sample No. of Experimental Example 1 using didymium alloy, Nd metal, Pr metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, ferrozirconium alloy and electrolytic iron (all metals have a purity of 99% or more). . 5 was mixed so as to have the same composition as in Example 5, and an RTB-based sintered magnet material was obtained in the same manner as in Experimental Example 1. The density of the RTB-based sintered magnet material was 7.5 Mg/m 3 or more. The components and gas analysis results of the obtained RTB-based sintered magnet material are shown in Sample No. 1 of Experimental Example 1. It was equivalent to 5. Further, the obtained RTB-based sintered magnet material was subjected to the steps of performing the first RH diffusion treatment and the second RH diffusion treatment in the same manner as in Experimental Example 1.
第一のRH拡散処理を実施する工程及び第二のRH拡散処理を実施する工程後のR−T−B系焼結磁石に対し、表3に示す条件で高温熱処理を実施する工程を行い、さらに高温熱処理後のR−T−B系焼結磁石に対し、表3に示す条件で低温熱処理を実施する工程を行った。表3における高温熱処理及び低温熱処理の温度(℃)は、R−T−B系焼結磁石の加熱温度であり、保持時間(Hr)は、前記加熱温度の保持時間である。冷却速度(℃/分)は、前記保持時間経過後にR−T−B系焼結磁石を保持した温度から300℃までの平均冷却速度を示している。また、高温熱処理及び低温熱処理のいずれも300℃未満から室温までは平均冷却速度7℃/分で冷却した。なお、平均冷却速度(保持した温度から300℃まで、及び、300℃未満から室温まで)における冷却速度ばらつき(冷却速度の最高値と最低値の差)は、2℃/分以内であった。また、高温熱処理及び低温熱処理の加熱温度及び冷却速度は、R−T−B系焼結磁石に熱電対を取り付けて測定した。低温熱処理工のR−T−B系焼結磁石に機械加工を施し、実験例1と同様の方法で、「HcJ 23℃」、「Br 140℃」、「HcJ 140℃」を測定し、実験例1と同様に「△HcJ」及び温度係数を求めた。測定結果を表4に示す。 The step of performing the high temperature heat treatment under the conditions shown in Table 3 is performed on the RTB-based sintered magnet after the step of performing the first RH diffusion treatment and the step of performing the second RH diffusion treatment, Further, the RTB-based sintered magnet after the high temperature heat treatment was subjected to the step of performing the low temperature heat treatment under the conditions shown in Table 3. The temperature (° C.) of the high temperature heat treatment and the low temperature heat treatment in Table 3 is the heating temperature of the RTB based sintered magnet, and the holding time (Hr) is the holding time of the heating temperature. The cooling rate (° C./minute) indicates the average cooling rate from the temperature at which the RTB-based sintered magnet was held to 300° C. after the holding time had elapsed. Further, in both the high temperature heat treatment and the low temperature heat treatment, cooling was performed at an average cooling rate of 7° C./minute from below 300° C. to room temperature. The cooling rate variation (difference between the maximum value and the minimum value of the cooling rate) at the average cooling rate (from the held temperature to 300°C and from less than 300°C to room temperature) was within 2°C/minute. Further, the heating temperature and cooling rate of the high temperature heat treatment and the low temperature heat treatment were measured by attaching a thermocouple to the RTB sintered magnet. By machining the R-T-B based sintered magnet of the low-temperature heat treatment Engineering, in the same manner as in Experimental Example 1, "H cJ 23 ° C.", "B r 140 ° C." measure "H cJ 140 ° C." Then, in the same manner as in Experimental Example 1, “ ΔH cJ ”and the temperature coefficient were obtained. The measurement results are shown in Table 4.
表4に示すように、R−T−B系焼結磁石素材を730℃以上850℃以下の温度に加熱後、5℃/分以上で300℃まで冷却する高温熱処理を行い、高温熱処理後のR−T−B系焼結磁石を440℃以上550℃以下の温度に加熱する低温熱処理を行った実施例(表4中の本発明)は、いずれも比較例と比べて、140℃において高いHcJが得られており、さらに、温度係数の絶対値が小さい。これに対し、高温熱処理の温度が本発明の範囲外である試料No.31や高温熱処理を実施する工程における冷却速度が本発明の範囲外である試料No.26や低温熱処理の温度が本発明の範囲外である試料No.30は、本発明と比べてHcJの温度係数の絶対値が大きく、さらに高温において高いHcJを得ることができない。また、表4に示すように、高温熱処理を実施する工程における冷却速度は、15℃/分以上(試料No.23以外の本発明)が好ましく、温度係数の絶対値(0.53%/℃〜0.52%/℃)が小さい。 As shown in Table 4, after heating the RTB based sintered magnet material to a temperature of 730° C. or more and 850° C. or less, high temperature heat treatment of cooling it to 300° C. at 5° C./min or more is performed, and after the high temperature heat treatment, All of the examples (the present invention in Table 4) in which the RTB-based sintered magnet was subjected to the low-temperature heat treatment of heating it to a temperature of 440° C. or higher and 550° C. or lower were higher at 140° C. than the comparative examples. H cJ is obtained, and the absolute value of the temperature coefficient is small. On the other hand, the sample No. 1 whose temperature of the high temperature heat treatment is out of the range of the present invention. 31 or the sample No. 31 having a cooling rate outside the scope of the present invention in the step of performing the high temperature heat treatment. 26 or the sample No. 6 having a low temperature heat treatment temperature outside the range of the present invention. No. 30 has a large absolute value of the temperature coefficient of H cJ as compared with the present invention, and it is not possible to obtain high H cJ at higher temperatures. Further, as shown in Table 4, the cooling rate in the step of performing the high temperature heat treatment is preferably 15° C./min or more (the present invention other than sample No. 23), and the absolute value of the temperature coefficient (0.53%/° C.). .About.0.52%/° C.) is small.
Claims (6)
B:0.80質量%以上0.90質量%以下、
Ga:0.1質量%以上0.8質量%以下、
M:0質量%以上2質量%以下(MはCu、Al、Nb、Zrの少なくとも一種)
残部T(Tは遷移金属元素の少なくとも一種でありFeを必ず含み、Feの10%以下をCoで置換できる)及び不可避的不純物を含有するR−T−B系焼結磁石素材を準備する工程と、
重希土類元素RH(RHは、Dy及びTbの少なくとも一種)を含むRH拡散源と、前記R−T−B系焼結磁石素材とを処理容器内に配置し、前記RH拡散源及び前記R−T−B系焼結磁石素材を760℃以上1000℃以下の温度で加熱する第一のRH拡散処理を実施する工程と、
前記第一のRH拡散処理後のR−T−B系焼結磁石素材に対し、750℃以上1000℃未満で、且つ、前記第一のRH拡散処理の温度よりも低い温度で加熱する第二のRH拡散処理を実施する工程と、
前記第二のRH拡散処理後のR−T−B系焼結磁石に対し、730℃以上850℃以下で、且つ、前記第二のRH拡散処理の温度よりも低い温度で加熱後、5℃/分以上の冷却速度で300℃まで冷却する高温熱処理を実施する工程と、
高温熱処理後のR−T−B系焼結磁石に対し、440℃以上550℃以下の温度で加熱する低温熱処理を実施する工程と、
を含むR−T−B系焼結磁石の製造方法。 R: 29.5 mass% or more and 35.0 mass% or less (R is at least one kind of rare earth element and always contains at least one of Nd and Pr),
B: 0.80 mass% or more and 0.90 mass% or less,
Ga: 0.1% by mass or more and 0.8% by mass or less,
M: 0% by mass or more and 2% by mass or less (M is at least one of Cu, Al, Nb, and Zr)
A step of preparing an RTB-based sintered magnet material containing the balance T (T is at least one of transition metal elements and always contains Fe, and 10% or less of Fe can be replaced with Co) and unavoidable impurities. When,
An RH diffusion source containing a heavy rare earth element RH (RH is at least one of Dy and Tb) and the R-T-B based sintered magnet material are arranged in a processing container, and the RH diffusion source and the R- A step of performing a first RH diffusion treatment of heating the TB-based sintered magnet material at a temperature of 760° C. or higher and 1000° C. or lower;
Second heating to the RTB based sintered magnet material after the first RH diffusion treatment at a temperature of 750° C. or higher and lower than 1000° C. and a temperature lower than the temperature of the first RH diffusion treatment. Performing a RH diffusion process of
After heating the RTB based sintered magnet after the second RH diffusion treatment at 730° C. or higher and 850° C. or lower and at a temperature lower than the temperature of the second RH diffusion treatment, 5° C. A step of performing a high temperature heat treatment of cooling to 300° C. at a cooling rate of not less than 1 minute/minute
A step of performing a low temperature heat treatment of heating the RTB-based sintered magnet after the high temperature heat treatment at a temperature of 440° C. or higher and 550° C. or lower;
The manufacturing method of the RTB type|system|group sintered magnet containing.
The method for manufacturing an RTB-based sintered magnet according to claim 1, wherein a cooling rate in the step of performing the high-temperature heat treatment is 15° C./min or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146901A JP6733398B2 (en) | 2016-07-27 | 2016-07-27 | Method for manufacturing RTB-based sintered magnet |
CN201710622000.9A CN107665769B (en) | 2016-07-27 | 2017-07-27 | Method for producing R-T-B sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146901A JP6733398B2 (en) | 2016-07-27 | 2016-07-27 | Method for manufacturing RTB-based sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018018911A JP2018018911A (en) | 2018-02-01 |
JP6733398B2 true JP6733398B2 (en) | 2020-07-29 |
Family
ID=61082028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016146901A Active JP6733398B2 (en) | 2016-07-27 | 2016-07-27 | Method for manufacturing RTB-based sintered magnet |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6733398B2 (en) |
CN (1) | CN107665769B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7021577B2 (en) * | 2018-03-22 | 2022-02-17 | 日立金属株式会社 | Manufacturing method of RTB-based sintered magnet |
JP7310499B2 (en) * | 2019-01-28 | 2023-07-19 | 株式会社プロテリアル | Method for producing RTB based sintered magnet |
CN111724985A (en) * | 2019-03-20 | 2020-09-29 | 日立金属株式会社 | Method for producing R-T-B sintered magnet |
JP7572775B2 (en) * | 2019-03-20 | 2024-10-24 | 株式会社プロテリアル | Manufacturing method of RTB based sintered magnet |
CN110853854B (en) * | 2019-11-13 | 2021-03-16 | 北京工业大学 | Method for preparing high-performance double-main-phase sintered mixed rare earth iron boron magnet by two-step diffusion method |
DE102021116156A1 (en) * | 2020-06-24 | 2021-12-30 | Tdk Corporation | R-T-B based permanent magnet and motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012099186A1 (en) * | 2011-01-19 | 2012-07-26 | 日立金属株式会社 | Method of producing r-t-b sintered magnet |
CN102368439B (en) * | 2011-11-22 | 2012-12-05 | 严高林 | Optimization process method for preparing high-coercivity permanent magnet by adding heavy rare earth hydroxide into neodymium iron boron |
JP6249275B2 (en) * | 2013-09-30 | 2017-12-20 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
CN104900359B (en) * | 2015-05-07 | 2017-09-12 | 安泰科技股份有限公司 | The method that composition target gaseous phase deposition prepares grain boundary decision rare earth permanent-magnetic material |
-
2016
- 2016-07-27 JP JP2016146901A patent/JP6733398B2/en active Active
-
2017
- 2017-07-27 CN CN201710622000.9A patent/CN107665769B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107665769B (en) | 2021-02-19 |
JP2018018911A (en) | 2018-02-01 |
CN107665769A (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6521391B2 (en) | Method of manufacturing RTB based sintered magnet | |
JP6733398B2 (en) | Method for manufacturing RTB-based sintered magnet | |
JP6051892B2 (en) | Method for producing RTB-based sintered magnet | |
JP6572550B2 (en) | R-T-B sintered magnet | |
JP7251917B2 (en) | RTB system permanent magnet | |
JPWO2016133071A1 (en) | Method for producing RTB-based sintered magnet | |
JP2012079726A (en) | Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet | |
JP2013102122A (en) | Magnetic member and manufacturing method for magnetic member | |
JP6471669B2 (en) | Manufacturing method of RTB-based magnet | |
JP7424126B2 (en) | RTB series permanent magnet | |
JP6624455B2 (en) | Method for producing RTB based sintered magnet | |
CN111724955B (en) | R-T-B permanent magnet | |
JP6508447B1 (en) | Method of manufacturing RTB based sintered magnet | |
JP2021150547A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
JP6610957B2 (en) | Method for producing RTB-based sintered magnet | |
JP7528437B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP2022008212A (en) | R-t-b based permanent magnet and motor | |
JP2018060931A (en) | Method for producing r-t-b based magnet | |
JP2021155782A (en) | Method of producing r-t-b-based sintered magnet | |
JP7447573B2 (en) | RTB series permanent magnet | |
JP7567558B2 (en) | Manufacturing method of RTB based sintered magnet | |
CN111724961B (en) | R-T-B permanent magnet | |
JP2021153146A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP2024136167A (en) | RTB series permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170622 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6733398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |