JP6669174B2 - Battery separator and method of manufacturing the same - Google Patents

Battery separator and method of manufacturing the same Download PDF

Info

Publication number
JP6669174B2
JP6669174B2 JP2017536475A JP2017536475A JP6669174B2 JP 6669174 B2 JP6669174 B2 JP 6669174B2 JP 2017536475 A JP2017536475 A JP 2017536475A JP 2017536475 A JP2017536475 A JP 2017536475A JP 6669174 B2 JP6669174 B2 JP 6669174B2
Authority
JP
Japan
Prior art keywords
plate
battery separator
particles
substantially spherical
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017536475A
Other languages
Japanese (ja)
Other versions
JPWO2017033993A1 (en
Inventor
水野 直樹
直樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017033993A1 publication Critical patent/JPWO2017033993A1/en
Application granted granted Critical
Publication of JP6669174B2 publication Critical patent/JP6669174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Description

本発明は電極材料との密着性を有する多孔層とポリオレフィン微多孔膜からなる、体積エネルギー密度の高いリチウムイオン二次電池に適した電池用セパレータである。   The present invention is a battery separator suitable for a lithium ion secondary battery having a high volume energy density, comprising a porous layer having adhesion to an electrode material and a polyolefin microporous film.

ポリエチレン微多孔膜に代表されるポリオレフィン微多孔膜は、電気絶縁性、電解液含浸によりイオン透過性、耐電解液性、耐酸化性などに優れ、さらに約120〜150℃という電池の異常昇温時において微多孔膜の細孔を閉塞し、電流を遮断することで過度の昇温を抑制するシャットダウン特性を備えており、非水電解質二次電池用セパレータとして好適に使用されている。しかしながら、何らかの原因でシャットダウン後も電池の昇温が続く場合、ポリオレフィンの粘度が低下し、微多孔膜が収縮することで微多孔膜の破膜を生じることがある。   Polyolefin microporous membranes typified by polyethylene microporous membranes are excellent in electrical insulation, ion permeability, electrolyte resistance, oxidation resistance, etc. by impregnation with electrolyte, and abnormal battery temperature rise of about 120 to 150 ° C. In some cases, it has a shutdown characteristic that closes the pores of the microporous membrane and cuts off the current to suppress excessive temperature rise, and is suitably used as a separator for nonaqueous electrolyte secondary batteries. However, if the temperature of the battery continues to rise even after shutdown for some reason, the viscosity of the polyolefin decreases, and the microporous membrane shrinks, which may cause the microporous membrane to break.

特に、リチウムイオン電池用セパレータは電池特性、電池生産性及び電池安全性に深く関わっており、透過性、機械的特性、耐熱性、シャットダウン特性、溶融破膜特性(メルトダウン特性)等が要求される。近年では、電池のサイクル特性の観点から電極材料との密着性の向上、生産性の観点からは電解液浸透性の向上などが要求され、これまでに微多孔膜に多孔層を設けることでこれら機能を向上させることが検討されている。   In particular, lithium ion battery separators are closely related to battery characteristics, battery productivity, and battery safety, and are required to have permeability, mechanical characteristics, heat resistance, shutdown characteristics, melt rupture characteristics (melt down characteristics), and the like. You. In recent years, it has been required to improve the adhesion to the electrode material from the viewpoint of battery cycle characteristics, and to improve the electrolyte permeability from the viewpoint of productivity. Improving the function is being considered.

さらに、捲回型電池においては体積エネルギー密度の向上のため、負極、セパレータ、正極を重ね合わせた電極体を高密度に容器内に充填できることが望まれており、今後、セパレータには薄膜化のみならず、高密度の捲回性が要求されることが予測される。   Furthermore, in order to improve the volume energy density of the wound type battery, it is desired that the electrode body in which the negative electrode, the separator, and the positive electrode are overlapped can be filled into the container at a high density. However, it is expected that high-density winding property is required.

特許文献1には、電極材料との接着性を向上させるために、平均粒径1〜1.8μmの水酸化酸化アルミニウムなどの無機粒子と、アクリル系ラテックスを含む塗布液を用いて、厚さ9〜18μmのポリオレフィン樹脂多孔膜の片面に厚さ2〜7μmの無機フィラー層を積層し、その両面に平均粒径60〜161nmでガラス転移温度(Tg)の異なる2種のアクリル系樹脂を含むラテックスをドット状に形成させた蓄電デバイス用セパレータが例示されている。   Patent Literature 1 discloses that a coating liquid containing an inorganic particle such as aluminum hydroxide oxide having an average particle diameter of 1 to 1.8 μm and an acrylic latex is used to improve the adhesiveness to an electrode material. An inorganic filler layer having a thickness of 2 to 7 μm is laminated on one surface of a polyolefin resin porous film having a thickness of 9 to 18 μm, and two types of acrylic resins having an average particle size of 60 to 161 nm and different glass transition temperatures (Tg) are contained on both surfaces. A separator for an electric storage device in which latex is formed in a dot shape is illustrated.

特許文献2には、平均粒径250nmのフッ化ビニリデン−アクリル共重体樹脂を含む微粒子と、平均粒径200〜1800nmの無機粒子または有機粒子と、水系エマルジョンを混合した塗工液を膜厚9〜12μmのポリオレフィン微多孔膜の両面に塗工厚1.3〜15μmで積層した非水系二次電池用セパレータを例示されている。   Patent Document 2 discloses a coating liquid obtained by mixing a fine particle containing a vinylidene fluoride-acryl copolymer resin having an average particle size of 250 nm, inorganic particles or organic particles having an average particle size of 200 to 1800 nm, and an aqueous emulsion with a thickness of 9 μm. A separator for a non-aqueous secondary battery in which a coating thickness of 1.3 to 15 μm is laminated on both surfaces of a polyolefin microporous membrane having a thickness of 12 μm is illustrated.

ポリオレフィン微多孔膜と多孔層を備えた電池用セパレータにおいて、溶融破膜特性や電極材料との接着性を付与または向上させるためにこれら機能を多孔層に持たせた場合、多孔層の厚みを厚くするほどその機能は十分に発揮される。一方で、多孔層の厚みを厚くすることで高密度の捲回が難しくなり捲回型電池の体積エネルギー密度が低下するといった問題が生じる。すなわち、多孔層に求める機能と高密度の捲回性とは二律背反の関係にあると言っても過言ではない。   In a battery separator provided with a polyolefin microporous membrane and a porous layer, when the porous layer is provided with these functions in order to impart or improve melt rupture characteristics and adhesion to an electrode material, the thickness of the porous layer is increased. The more the function is exhibited. On the other hand, when the thickness of the porous layer is increased, high-density winding becomes difficult, and there is a problem that the volume energy density of the wound battery is reduced. That is, it is not an exaggeration to say that the function required of the porous layer and the high-density winding property have a trade-off relationship.

国際公開2014/017651号International Publication No. 2014/017765 国際公開2013/133074号International Publication 2013/133074

本発明は今後ますます電池の高容量化が進んだ場合を想定し、電池用セパレータを薄膜化した場合においても電極材料との接着性を有し、かつ、電極材料とセパレータ間の不要な空間を最小限にすることで電極体の巻き数、積層数を増加させ、高い体積エネルギー密度の電極体を得ることができる、特にリチウムイオン二次電池用セパレータに好適な電池用セパレータの提供を目指したものである。   The present invention assumes that the battery capacity will further increase in the future, and has an adhesive property with the electrode material even when the battery separator is thinned, and an unnecessary space between the electrode material and the separator. With the aim of providing a battery separator suitable for a lithium ion secondary battery separator, in particular, it is possible to increase the number of windings and laminations of the electrode body by minimizing the number of electrodes and obtain an electrode body having a high volume energy density. It is a thing.

上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
すなわち、
(1)ポリオレフィン微多孔膜と、少なくともその片面にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子と板状無機粒子を含む多孔層とを有し、略球状有機粒子が膜厚方向に対して多孔層の表面に偏在しており、かつ、前記板状無機粒子は前記多孔層表面に大きさ1μmを超えるような突起の発生を抑制できる程度にポリオレフィン微多孔膜の面方向に対して略平行方向に配置されており、略球状有機粒子の平均粒径r(μm)と板状無機粒子の平均厚さt(μm)の比(r/t)が式1及び式2を満足する電池用セパレータ、である。
0.1μm≦r≦0.8μm・・・・式1
0.3≦r/t≦1.0 ・・・・式2
ここで、前記略球状有機粒子の平均粒径r(μm)は、顕微鏡により観察される投影像の円相当径とし、
前記板状無機粒子の平均厚さt(μm)は、両面テープ上に固着させた板状無機粒子をSEM観察し、垂直に立っている任意の20個を選択し、観察される投影像の外接矩形の短辺とする。
(2)本発明の電池用セパレータは、板状無機粒子はアルミナまたはベーマイトであることが好ましい。
(3)本発明の電池用セパレータは、略球状有機粒子の体積が略球状有機粒子と板状無機粒子の総体積に対して10〜30体積%であることが好ましい。
(4)本発明の電池用セパレータは、リチウムイオン二次電池用セパレータであることが好ましい。
上記課題を解決するために本発明の電池用セパレータの製造方法は以下の構成を有する。
すなわち、
(5)以下の工程(a)及び(b)を順次含む電池用セパレータの製造方法、である。
(a)ポリオレフィン微多孔膜に板状無機粒子を含む塗工液Aをリバースグラビアコート法で塗布し、乾燥させ、板状無機粒子層を積層させる工程。
(b)板状無機粒子層上にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子を含む塗工液Bをリバースグラビアコート法で塗布し、乾燥させ電池用セパレータを得る工程。
(6)本発明の電池用セパレータの製造方法は、塗工液Aの粘度が10〜30mPa・sであることが好ましい。
(7)本発明の電池用セパレータの製造方法は、塗工液Bの粘度が1〜10mPa・sであることが好ましい。
In order to solve the above problems, a battery separator of the present invention has the following configuration.
That is,
(1) having a microporous polyolefin membrane and a porous layer containing substantially spherical organic particles made of acrylic resin or fluorine-based resin and plate-like inorganic particles on at least one surface thereof, wherein the substantially spherical organic particles are arranged in the film thickness direction. Is unevenly distributed on the surface of the porous layer, and the plate-like inorganic particles are substantially in the plane direction of the polyolefin microporous membrane to such an extent that the occurrence of projections having a size exceeding 1 μm can be suppressed on the surface of the porous layer. A battery which is arranged in a parallel direction and has a ratio (r / t) of the average particle diameter r (μm) of the substantially spherical organic particles to the average thickness t (μm) of the plate-like inorganic particles satisfies the formulas 1 and 2. Separator.
0.1 μm ≦ r ≦ 0.8 μm ... Equation 1
0.3 ≦ r / t ≦ 1.0 Equation 2
Here, the average particle diameter r (μm) of the substantially spherical organic particles is a circle equivalent diameter of a projected image observed by a microscope,
The average thickness t (μm) of the plate-like inorganic particles is determined by observing the plate-like inorganic particles fixed on the double-sided tape with a SEM, selecting any 20 particles standing vertically, and selecting the projected image to be observed. It is the short side of the circumscribed rectangle.
(2) In the battery separator of the present invention, the plate-like inorganic particles are preferably alumina or boehmite.
(3) In the battery separator of the present invention, the volume of the substantially spherical organic particles is preferably 10 to 30% by volume based on the total volume of the substantially spherical organic particles and the plate-like inorganic particles.
(4) The battery separator of the present invention is preferably a lithium ion secondary battery separator.
In order to solve the above problems, a method for manufacturing a battery separator of the present invention has the following configuration.
That is,
(5) A method for producing a battery separator, which sequentially includes the following steps (a) and (b).
(A) A step of applying a coating liquid A containing plate-like inorganic particles to a polyolefin microporous membrane by a reverse gravure coating method, drying and coating a plate-like inorganic particle layer.
(B) A step of applying a coating liquid B containing substantially spherical organic particles made of an acrylic resin or a fluorine resin on the plate-like inorganic particle layer by a reverse gravure coating method, followed by drying to obtain a battery separator.
(6) In the method for producing a battery separator of the present invention, the viscosity of the coating liquid A is preferably 10 to 30 mPa · s.
(7) In the method for producing a battery separator of the present invention, the viscosity of the coating liquid B is preferably 1 to 10 mPa · s.

本発明は今後ますます電池の高容量化が進んだ場合を想定し、電池用セパレータを薄膜化した場合においても電極材料との接着性を有し、かつ、電極材料とセパレータ間の不要な空間を最小限にすることで電極体の巻き数、積層数を増加させ、高い体積エネルギー密度の電極体を得ることができる、特にリチウムイオン二次電池用セパレータに好適な電池用セパレータである。   The present invention assumes that the battery capacity will further increase in the future, and has an adhesive property with the electrode material even when the battery separator is thinned, and an unnecessary space between the electrode material and the separator. The number of turns and the number of laminations of the electrode body can be increased by minimizing the number of the electrodes, and an electrode body having a high volume energy density can be obtained. This is a battery separator particularly suitable for a lithium ion secondary battery separator.

本発明のセパレータの断面拡大模式図である。It is a cross-sectional enlarged schematic diagram of the separator of this invention. 本発明のセパレータにおける多孔層表面の拡大模式図である。FIG. 4 is an enlarged schematic view of a porous layer surface in the separator of the present invention. 本発明に用いる塗工装置の概略図である。It is a schematic diagram of a coating device used for the present invention.

1.ポリオレフィン微多孔膜
まず、本発明で用いるポリオレフィン微多孔膜について説明する。
ポリオレフィン微多孔膜は、充放電反応の異常時に孔が閉塞する機能の観点から、融点(軟化点)が70〜150℃のポリオレフィン樹脂を含有することが好ましい。ポリオレフィン樹脂は、ポリエチレンやポリプロピレンなどの単一物、これらの混合物、2種以上の異なるポリオレフィン樹脂の混合物、又は異なるオレフィンの共重合体であってもよい。特に、孔が閉塞する機能の観点からポリエチレン樹脂が好ましい。
1. First, the microporous polyolefin membrane used in the present invention will be described.
The polyolefin microporous film preferably contains a polyolefin resin having a melting point (softening point) of 70 to 150 ° C from the viewpoint of a function of closing pores when a charge / discharge reaction is abnormal. The polyolefin resin may be a single material such as polyethylene or polypropylene, a mixture thereof, a mixture of two or more different polyolefin resins, or a copolymer of different olefins. Particularly, a polyethylene resin is preferable from the viewpoint of the function of closing the holes.

ポリオレフィン微多孔膜は、単層であってもよいし、分子量あるいは平均細孔径の異なる二層以上からなる多層膜であってもよい。二層以上からなる多層膜の製造方法としては、例えば、A1層またはA2層を構成するポリオレフィン樹脂をそれぞれ成膜用溶剤と溶融混練し、得られた溶融混合物をそれぞれの押出機から1つのダイに供給し各成分を構成するゲルシートを一体化させて共押出する方法や、各層を構成するゲルシートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、高い層間接着強度を得やすく、層間に連通孔を形成しやすいために高透過性を維持しやすく、生産性にも優れているためにより好ましい。   The polyolefin microporous membrane may be a single layer or a multilayer film composed of two or more layers having different molecular weights or average pore diameters. As a method for producing a multilayer film composed of two or more layers, for example, a polyolefin resin constituting the A1 layer or the A2 layer is melt-kneaded with a film-forming solvent, respectively, and the obtained molten mixture is subjected to one die from each extruder. And co-extrusion by integrating the gel sheets constituting the respective components and a method in which the gel sheets constituting the respective layers are superposed and thermally fused. The co-extrusion method is more preferable because high interlayer adhesive strength can be easily obtained, communication holes can be easily formed between the layers, so that high permeability can be easily maintained, and productivity is excellent.

ポリオレフィン微多孔膜の膜厚は、今後、進むであろう電池の体積エネルギーの高密度化の観点から、3μm以上10μm未満が好ましく、より好ましくは5μm以上9.0μm未満、さらに好ましくは6μm以上8μm未満である。   The thickness of the polyolefin microporous film is preferably 3 μm or more and less than 10 μm, more preferably 5 μm or more and less than 9.0 μm, and still more preferably 6 μm or more and 8 μm from the viewpoint of increasing the volume energy of the battery, which will proceed in the future. Is less than.

ポリオレフィン微多孔膜の平均孔径は、孔閉塞速度と孔閉塞温度の観点から、0.01〜1.0μm、好ましくは0.05〜0.5μm、さらに好ましくは0.1〜0.3μmである。ポリオレフィン微多孔膜の平均孔径が上記好ましい範囲内であると、多孔層を積層した際に透気抵抗度が大幅に悪化することなく、多孔層の樹脂によるアンカー効果が得られる。   The average pore diameter of the polyolefin microporous membrane is 0.01 to 1.0 μm, preferably 0.05 to 0.5 μm, and more preferably 0.1 to 0.3 μm, from the viewpoint of the pore closing speed and the pore closing temperature. . When the average pore diameter of the polyolefin microporous membrane is within the above-mentioned preferred range, an anchor effect by the resin of the porous layer can be obtained without greatly deteriorating the air resistance when the porous layers are laminated.

ポリオレフィン微多孔膜の透気抵抗度は50〜500sec/100ccAirが好ましい。ポリオレフィン微多孔膜の空孔率は30〜70%が好ましい。ポリオレフィン微多孔膜の透気抵抗度及び空孔率が上記好ましい範囲内であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)、電池の寿命(電解液の保持量と密接に関係する)を得ることができる。   The air permeability resistance of the microporous polyolefin membrane is preferably 50 to 500 sec / 100 cc Air. The porosity of the microporous polyolefin membrane is preferably 30 to 70%. When the air permeation resistance and the porosity of the microporous polyolefin membrane are within the above preferred ranges, sufficient charge / discharge characteristics of the battery, particularly ion permeability (charge / discharge operating voltage), battery life (the amount of retained electrolyte) And closely related).

2.多孔層
次に多孔層について説明する。
多孔層は板状無機粒子と略球状有機粒子を含む。板状無機粒子はその耐熱性によりポリオレフィン微多孔膜を補強し溶融破膜特性を向上させる役割を担う。略球状有機粒子は電極材料との接着性を向上させ、電池に組み込んだときのサイクル特性を向上させる役割を担う。多孔層はポリオレフィン微多孔膜に板状無機粒子を含む塗工液A、略球状有機粒子を含む塗工液Bを順次塗布することで形成される。ポリオレフィン微多孔膜に多孔層を設けることで高い安全性を確保でき、さらに長寿命の電池が得られる。
2. Next, the porous layer will be described.
The porous layer contains plate-like inorganic particles and substantially spherical organic particles. The plate-like inorganic particles play a role of reinforcing the microporous polyolefin membrane by its heat resistance and improving the melt rupture characteristics. The substantially spherical organic particles have a role of improving the adhesiveness to the electrode material and improving the cycle characteristics when incorporated into a battery. The porous layer is formed by sequentially applying a coating liquid A containing plate-like inorganic particles and a coating liquid B containing substantially spherical organic particles to a polyolefin microporous membrane. By providing a porous layer on the polyolefin microporous membrane, high safety can be ensured, and a battery with a longer life can be obtained.

(1)塗工液A
塗工液Aは板状無機粒子と分散媒を含み、必要に応じてバインダーを含んでもよい。
板状無機粒子の材質は特に限定されないが、アルミナ、ベーマイト、雲母が比較的入手しやすく好適である。特に、ベーマイトは硬度が低く、塗工ロールなどの摩耗を抑えられるという観点から好ましい。
(1) Coating liquid A
The coating liquid A contains plate-like inorganic particles and a dispersion medium, and may contain a binder if necessary.
The material of the plate-like inorganic particles is not particularly limited, but alumina, boehmite, and mica are relatively easily available and suitable. In particular, boehmite is preferable from the viewpoint that hardness is low and abrasion of a coating roll or the like can be suppressed.

本明細書でいう板状無機粒子とは、アスペクト比(長径/厚さ)が1.5以上であり、長径/短径の比は1以上、10以下のものをいう。板状無機粒子のアスペクト比の下限値は2が好ましく、より好ましくは3、さらに好ましくは5である。上限値は50が好ましく、より好ましくは20、さらに好ましくは10である。板状無機粒子の平均粒径(平均長径)は0.5μmから2.0μmが好ましく、平均厚さは0.1μm以上、0.5μm未満が好ましい。板状無機粒子のアスペクト比と平均粒径が上記好ましい範囲内であると、板状無機粒子をポリオレフィン微多孔膜の面方向に対して略平行方向に配置しやすい。略平行方向に配置することによって、多孔層に比較的高密度に充填でき、多孔層に大きさ1μmを超えるような粗大な空隙や表面突起の発生を抑制できる。   As used herein, the term “plate-like inorganic particles” refers to particles having an aspect ratio (major axis / thickness) of 1.5 or more and a major axis / minor axis ratio of 1 or more and 10 or less. The lower limit of the aspect ratio of the plate-like inorganic particles is preferably 2, more preferably 3, and still more preferably 5. The upper limit is preferably 50, more preferably 20, and still more preferably 10. The average particle diameter (average major axis) of the plate-like inorganic particles is preferably from 0.5 μm to 2.0 μm, and the average thickness is preferably from 0.1 μm to less than 0.5 μm. When the aspect ratio and the average particle size of the plate-like inorganic particles are within the above preferred ranges, the plate-like inorganic particles are easily arranged in a direction substantially parallel to the surface direction of the microporous polyolefin membrane. By arranging in a substantially parallel direction, the porous layer can be filled at a relatively high density, and the generation of coarse voids and surface protrusions exceeding 1 μm in the porous layer can be suppressed.

板状無機粒子の平板面の長軸方向長さと短軸方向長さの比(長径/短径)の平均値は3以下が好ましく、より好ましくは2以下、1に近い値であることが望ましい。   The average value of the ratio (major axis / minor axis) of the major axis direction length to the minor axis direction of the flat surface of the plate-like inorganic particles is preferably 3 or less, more preferably 2 or less and a value close to 1. .

バインダーは、ポリオレフィン微多孔膜と多孔層の接着性を付与し、板状無機粒子同士を接着させるものであれば特に限定されない。作業環境の観点から、水溶性樹脂または水分散性樹脂が好ましい。水溶性樹脂または水分散性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等のアクリル系樹脂が挙げられる。特に、ポリビニルアルコール、アクリル系樹脂が好ましい。アクリル系樹脂は市販されているアクリルエマルジョンを用いることができ、例えば、(株)日本触媒製“アクリセット“(登録商標)TF−300、昭和電工(株)製“ポリゾール“(登録商標)AP−4735が挙げられる。   The binder is not particularly limited as long as it imparts adhesion between the microporous polyolefin membrane and the porous layer and bonds the plate-like inorganic particles to each other. From the viewpoint of the working environment, a water-soluble resin or a water-dispersible resin is preferable. Examples of the water-soluble resin or the water-dispersible resin include acrylic resins such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, and polymethacrylic acid. Particularly, polyvinyl alcohol and acrylic resin are preferable. As the acrylic resin, a commercially available acrylic emulsion can be used. For example, “Acryset” (registered trademark) TF-300 manufactured by Nippon Shokubai Co., Ltd., “Polysol” (registered trademark) AP manufactured by Showa Denko KK -4735.

塗工液Aの分散媒は水を主成分とし、塗工性を向上させるためにエチルアルコール、ブチルアルコール等を添加してもよい。さらに必要に応じてバインダー、分散剤、増粘剤を添加してもよい。   The dispersion medium of the coating liquid A contains water as a main component, and ethyl alcohol, butyl alcohol, or the like may be added to improve coating properties. Further, a binder, a dispersant, and a thickener may be added as necessary.

塗工液Aの粘度は10〜30mPa・sが好ましく、より好ましくは12〜25mPa・s、さらに好ましくは15〜25mPa・sである。塗工液Aの板状無機粒子の含有量は40〜60質量%が好ましい。塗工液Aの粘度及び板状無機粒子の含有量が上記好ましい範囲内であると、板状無機粒子をポリオレフィン微多孔膜の面方向に対して略平行方向にしやすくなる。   The viscosity of the coating liquid A is preferably from 10 to 30 mPa · s, more preferably from 12 to 25 mPa · s, and still more preferably from 15 to 25 mPa · s. The content of the plate-like inorganic particles in the coating liquid A is preferably 40 to 60% by mass. When the viscosity of the coating liquid A and the content of the plate-like inorganic particles are within the above preferred ranges, the plate-like inorganic particles can be easily oriented substantially parallel to the surface direction of the polyolefin microporous membrane.

塗工量は、破膜強度や電極体として捲回体にした時に体積エネルギー密度を考慮すると1g/m以上、3g/m以下が好ましい。The coating amount is preferably 1 g / m 2 or more and 3 g / m 2 or less in consideration of the film breaking strength and the volume energy density when the electrode body is wound.

(2)塗工液B
塗工液Bは略球状有機粒子と分散媒を含み、必要に応じてバインダーを含んでもよい。
略球状有機粒子の円形度は0.97以上、好ましくは0.98以上、最も好ましくは0.99〜1.00である。上記略球状有機粒子の円形度とは、例えば、粒子の投影像(粒子画像)から周囲長と面積を算出し、次の式により求めることができる。
円形度=L0/L1
ここで、上記式中のL0は実際に測定した対象の粒子の投影像(粒子画像)から算出された面積と同一の面積を有する理想円(真円)の周囲長であり、L1は当該測定対象の粒子の粒子投影像(粒子画像)から測定した実際の周囲長である。
(2) Coating liquid B
The coating liquid B contains substantially spherical organic particles and a dispersion medium, and may contain a binder if necessary.
The circularity of the substantially spherical organic particles is 0.97 or more, preferably 0.98 or more, and most preferably 0.99 to 1.00. The circularity of the substantially spherical organic particles can be determined, for example, by calculating the perimeter and the area from the projected image (particle image) of the particles and using the following equation.
Roundness = L0 / L1
Here, L0 in the above equation is the perimeter of an ideal circle (true circle) having the same area as the area calculated from the actually measured projection image (particle image) of the target particle, and L1 is the measurement length. The actual perimeter measured from the particle projection image (particle image) of the target particle.

略球状有機粒子の平均粒径(r)は、下限値が0.1μmであることが好ましく、より好ましくは0.2μmであり、さらに好ましくは0.3μmである。上限値は0.8μmであることが好ましく、より好ましくは0.7μmであり、さらに好ましくは0.6μmである。平均粒径(r)が0.1μm未満であると板状無機粒子間の隙間に奥まで入り込み、電極材料との接着性向上に十分寄与しない場合がある。0.8μmを超えると脱落しやすくなり好ましくない。   The lower limit of the average particle diameter (r) of the substantially spherical organic particles is preferably 0.1 μm, more preferably 0.2 μm, and further preferably 0.3 μm. The upper limit is preferably 0.8 μm, more preferably 0.7 μm, and even more preferably 0.6 μm. If the average particle size (r) is less than 0.1 μm, the particles may penetrate deep into the gaps between the plate-like inorganic particles, and may not sufficiently contribute to improving the adhesion to the electrode material. If it exceeds 0.8 μm, it is easy to fall off, which is not preferable.

略球状有機粒子は、フッ素系樹脂、アクリル系樹脂または両方を含むことが好ましい。フッ素系樹脂は、フッ化ビニリデン単独重合体、フッ化ビニリデン/フッ化オレフィン共重合体、フッ化ビニル単独重合体、及びフッ化ビニル/フッ化オレフィン共重合体からなる群より選ばれる1種以上を使用することができる。特に、電極材料との接着性の観点からフッ化ビニリデン/ヘキサフルオロプロピレン共重合体が好ましい。この共重合体はヘキサフルオロプロピレンのモル%が1〜3モル%であることがより好ましい。この重合体は優れた電極材料との接着性を有し、非水電解液に対して適度な膨潤性を有し、非水電解液に対する化学的、物理的な安定性が高いため、高温下での使用にも電解液との親和性を十分維持できる。   The substantially spherical organic particles preferably contain a fluorine-based resin, an acrylic resin, or both. The fluororesin is at least one selected from the group consisting of vinylidene fluoride homopolymer, vinylidene fluoride / fluorinated olefin copolymer, vinyl fluoride homopolymer, and vinyl fluoride / fluorinated olefin copolymer. Can be used. In particular, a vinylidene fluoride / hexafluoropropylene copolymer is preferable from the viewpoint of adhesiveness to an electrode material. More preferably, the copolymer has a mole% of hexafluoropropylene of 1 to 3 mole%. This polymer has excellent adhesion to electrode materials, has an appropriate swelling property with respect to non-aqueous electrolytes, and has high chemical and physical stability with respect to non-aqueous electrolytes. The compatibility with the electrolyte solution can be sufficiently maintained for use in the above.

フッ素系樹脂は、市販のフッ素系樹脂を必要により球状に微細化加工して用いることができる。市販のフッ素系樹脂とは例えば、ARKEMA社製KYNAR FREX(登録商標)2851−00、2801−00、2821−00、2501−20等が挙げられる。   As the fluorine resin, a commercially available fluorine resin can be used after being finely processed into a spherical shape as necessary. Commercially available fluororesins include, for example, KYNAR FREX (registered trademark) 2851-00, 2801-00, 2821-00, 2501-20, etc., manufactured by ARKEMA.

アクリル系樹脂は、電極材料との接着性を有するものであれば特に限定されないが、好ましくはアクリレートモノマーを重合してなる樹脂が好ましい。アクリレートモノマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プ口ピル(メタ)アクリレート、イソプ口ピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、tーブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ
)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、n−テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート、ヒド口キシエチル(メタ)アクリレート、ヒド口キシプ口ピル(メタ)アクリレート、ヒド口キシブチル(メタ)アクリレート等のヒド口キシ基含有(メタ)アクリレートが挙げられる。また、市販のアクリル系樹脂粒子を分散させた塗工液を用いてもよい。市販のアクリル系樹脂粒子を分散させた塗工液とは例えば、JSR株式会社製アクリルラテックス商品名:TRD202Aなどが挙げられる。架橋していない有機粒子が電極材料との接着性の観点から好ましい。
The acrylic resin is not particularly limited as long as it has adhesiveness to the electrode material, but is preferably a resin obtained by polymerizing an acrylate monomer. The acrylate monomer is, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl pill (meth) acrylate, isopyl pill (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate , Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate And alkyl (meth) acrylates such as n-tetradecyl (meth) acrylate and stearyl (meth) acrylate, xyethyl (meth) acrylate having a lip mouth, pill (meth) acrylate having a lip mouth, and xybutyl (meth) acrylate having a lip mouth. De port carboxymethyl group-containing (meth) acrylate. Further, a coating liquid in which commercially available acrylic resin particles are dispersed may be used. Commercially available coating liquids in which acrylic resin particles are dispersed include, for example, TRD202A (trade name of acrylic latex manufactured by JSR Corporation). Non-crosslinked organic particles are preferred from the viewpoint of adhesiveness to the electrode material.

塗工液Bの分散媒は水を主成分とし、塗工性を向上させるために必要に応じてエチルアルコール、ブチルアルコール等を添加してもよい。さらに必要に応じて、バインダー、分散剤、増粘剤を添加してもよい。   The dispersion medium of the coating liquid B contains water as a main component, and ethyl alcohol, butyl alcohol, or the like may be added as needed to improve coating properties. Further, if necessary, a binder, a dispersant, and a thickener may be added.

バインダーは、ポリオレフィン微多孔膜と多孔層の接着性を付与し、略球状有機粒子同士を接着させるものであれば特に限定されない。例えば、第一の層と同じバインダーを用いることができる。   The binder is not particularly limited as long as it imparts adhesion between the microporous polyolefin membrane and the porous layer and bonds the substantially spherical organic particles to each other. For example, the same binder as the first layer can be used.

塗工液Bの粘度は、1〜10mPa・sが好ましく、より好ましくは2〜8mPa・s、さらに好ましくは3〜6mPa・sである。塗工液Bの略球状有機粒子の含有量は、3〜10質量%が好ましい。塗工液Bの略球状有機粒子の粘度及び含有量が上記好ましい範囲内であると、略球状有機粒子が板状無機粒子の上を転がり、板状無機粒子間の表面凹部入り込みやすくなり、図1及び2に示すような、略球状有機粒子の集合体と板状無機粒子の海島構造状態を得やすくなる。   The viscosity of the coating liquid B is preferably 1 to 10 mPa · s, more preferably 2 to 8 mPa · s, and still more preferably 3 to 6 mPa · s. The content of the substantially spherical organic particles in the coating liquid B is preferably 3 to 10% by mass. When the viscosity and the content of the substantially spherical organic particles of the coating liquid B are within the above preferred ranges, the substantially spherical organic particles roll on the plate-like inorganic particles and easily enter the surface recesses between the plate-like inorganic particles, As shown in 1 and 2, it is easy to obtain the sea-island structure state of the aggregate of the substantially spherical organic particles and the plate-like inorganic particles.

略球状有機粒子の体積は、略球状有機粒子と板状無機粒子の総体積に対して10〜30体積%であることが好ましい。10体積%以上であればと電極材料との接着性を付与または向上させる機能が得られやすい。30体積%以下であれば相対的に板状無機粒子の含有量を多く保つことができ、十分な破膜強度を得られやすい。   The volume of the substantially spherical organic particles is preferably 10 to 30% by volume based on the total volume of the substantially spherical organic particles and the plate-like inorganic particles. When the content is 10% by volume or more, a function of imparting or improving the adhesiveness to the electrode material is easily obtained. When the content is 30% by volume or less, the content of the plate-like inorganic particles can be kept relatively large, and sufficient membrane rupture strength can be easily obtained.

略球状有機粒子の平均粒径r(μm)と板状無機粒子の平均厚さt(μm)の比(r/t)を0.3≦r/t≦1.0の範囲内にすることが重要である。上記好ましい範囲内であると、板状無機粒子層に塗工液Bを塗布する際に略球状有機粒子が板状無機粒子層の表面を転がり、板状無機粒子層の凹部に入り込みやすくなる。この結果、多孔層の断面は略球状有機粒子が電極との接着性を有するように板状無機粒子層の表面の凹部に入り込んだ形態を有する(図1参照)。多孔層の表面を拡大観察すると、略球状有機粒子が板状無機粒子層の表面の凹部を埋めるように存在することで板状無機粒子と球状有機粒子の集合体が認められ、海島構造様の形態を有する(図2参照)。なお、図2は板状無機粒子が島、球状有機粒子の集合体が海の例である。ここで全ての略球状有機粒子が凹部に入り込む必要はない。多孔層が海島構造の形態となることで、多孔層の厚さが増加するのを抑制しながら、電極材料との接着性向上が図れる。強いては得られる電池の体積エネルギー密度の向上に繋がる。   The ratio (r / t) of the average particle diameter r (μm) of the substantially spherical organic particles to the average thickness t (μm) of the plate-like inorganic particles is in the range of 0.3 ≦ r / t ≦ 1.0. is important. When the content is within the above preferred range, the substantially spherical organic particles roll on the surface of the plate-like inorganic particle layer when the coating liquid B is applied to the plate-like inorganic particle layer, and easily enter the concave portions of the plate-like inorganic particle layer. As a result, the cross section of the porous layer has a form in which the substantially spherical organic particles have entered the concave portions on the surface of the plate-like inorganic particle layer so as to have adhesiveness to the electrode (see FIG. 1). When the surface of the porous layer is enlarged and observed, an aggregate of the plate-like inorganic particles and the spherical organic particles is observed due to the existence of the substantially spherical organic particles so as to fill the concave portions on the surface of the plate-like inorganic particle layer, and the sea-island structure-like It has a form (see FIG. 2). FIG. 2 is an example in which the plate-like inorganic particles are islands and the aggregate of spherical organic particles is the sea. Here, it is not necessary that all substantially spherical organic particles enter the concave portion. When the porous layer has a sea-island structure, the adhesion to the electrode material can be improved while suppressing an increase in the thickness of the porous layer. If this is the case, it leads to an improvement in the volume energy density of the obtained battery.

多孔層の膜厚は得られた電池の使用目的によっても異なるが、0.5〜2.5μmが好ましく、より好ましくは0.8〜2.2μm、さらに好ましくは1.0〜2.0μmである。多孔層の膜厚が上記好ましい範囲内であると、電極材料との接着性を付与または向上させることができる。また、ポリオレフィン微多孔膜がポリオレフィンの融点以上で溶融・収縮した際の破膜強度を維持し、絶縁性を確保できる。さらに、電極体として捲回体にした時に高い体積エネルギー密度が得られる。   The thickness of the porous layer varies depending on the intended use of the obtained battery, but is preferably 0.5 to 2.5 μm, more preferably 0.8 to 2.2 μm, and still more preferably 1.0 to 2.0 μm. is there. When the thickness of the porous layer is within the above preferred range, the adhesiveness to the electrode material can be imparted or improved. In addition, it is possible to maintain film-breaking strength when the polyolefin microporous film is melted or shrunk at a temperature equal to or higher than the melting point of the polyolefin, thereby ensuring insulation. Furthermore, a high volume energy density can be obtained when a wound body is used as the electrode body.

多孔層の空孔率は、膜の電気抵抗と膜強度の観点から30〜90%が好ましい。   The porosity of the porous layer is preferably 30 to 90% from the viewpoint of the electric resistance and the film strength of the film.

多孔層の透気抵抗度は、膜強度とサイクル特性の観点から、JIS P 8117に準拠した方法により測定した値が1〜600sec/100ccAirであることが好ましい。   The air resistance of the porous layer is preferably 1 to 600 sec / 100 cc Air measured by a method based on JIS P 8117 from the viewpoint of the film strength and cycle characteristics.

3.電池用セパレータ
電池用セパレータについて説明する。
本発明の電池用セパレータは、板状無機粒子を含む塗工液Aと略球状有機粒子を含む塗工液Bをポリオレフィン微多孔膜に塗布することで得られる。例えば、板状無機粒子をポリオレフィン微多孔膜に対して略平行方向となるように塗工液Aをポリオレフィン微多孔膜に塗工し、乾燥して板状無機粒子層を形成し、その後、板状無機粒子層上に塗工液Bを塗工、乾燥して、ポリオレフィン微多孔膜に多孔層を設けることで得られる。つまり、2段階の塗工工程を得て多孔層を積層するのが好ましい。これにより、略球状有機粒子を板状無機粒子層の表面に偏在させ薄くて十分な電極材料との接着性を得ることができる。あらかじめ板状無機粒子と略球状有機粒子を混合した塗工液を用いると、略球状有機粒子を多孔層の表層に偏在させることが困難となる。また、十分な電極材料との接着性を得ようとすれば多孔層を厚くする必要がある。さらに、板状無機粒子の方向が不規則となり、多孔層内に大きさ1μmを超えるような空隙ができやすく、略平行になっていない板状無機粒子が表面に突起として発生しやすくなり電極体として捲回した際、空隙が発生しやすくなる。
3. Battery Separator The battery separator will be described.
The battery separator of the present invention is obtained by applying a coating liquid A containing plate-like inorganic particles and a coating liquid B containing substantially spherical organic particles to a microporous polyolefin membrane. For example, the coating liquid A is applied to the microporous polyolefin membrane so that the plate-like inorganic particles are in a direction substantially parallel to the microporous polyolefin membrane, and dried to form a plate-like inorganic particle layer. It is obtained by applying the coating liquid B on the inorganic particle layer and drying it, and providing a porous layer on the polyolefin microporous membrane. That is, it is preferable to obtain a two-step coating process and laminate the porous layers. Thereby, the substantially spherical organic particles are unevenly distributed on the surface of the plate-like inorganic particle layer, and a thin and sufficient adhesiveness to the electrode material can be obtained. When a coating liquid in which plate-like inorganic particles and substantially spherical organic particles are mixed in advance is used, it is difficult to unevenly distribute the substantially spherical organic particles on the surface of the porous layer. In addition, in order to obtain sufficient adhesiveness with an electrode material, it is necessary to increase the thickness of the porous layer. Further, the direction of the plate-like inorganic particles becomes irregular, voids having a size exceeding 1 μm are easily formed in the porous layer, and the plate-like inorganic particles that are not substantially parallel are easily generated as projections on the surface, and the electrode body becomes When wound up, voids are likely to be generated.

塗工液Bは板状無機粒子層上にのみ塗布してもよいし、さらに板状無機粒子層が設けられていないポリオレフィン微多孔膜のもう一方の面に塗布してもよい。電極材料との接着性を得るため塗工液Bの略球状有機粒子が表面に偏在するように塗布できればよい。   The coating liquid B may be applied only on the plate-like inorganic particle layer, or may be further applied on the other surface of the polyolefin microporous membrane on which the plate-like inorganic particle layer is not provided. In order to obtain adhesiveness to the electrode material, it is only necessary that the coating liquid B can be applied so that substantially spherical organic particles are unevenly distributed on the surface.

湿式塗工方法は公知の方法を採用することができる。例えば、ロールコート法、グラビアコート法、キスコート法、ディップコート法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられる。特に、ポリオレフィン微多孔膜上で塗工液に比較的強い剪断力を加えながら塗工する方法が好ましく、ロールコート法、グラビアコート法の内、リバースロールコート法、リバースグラビアコート法が好ましい。これらの塗工方法はポリオレフィン微多孔膜の走行方向と対する塗工ロールの回転方向が逆であるため、塗工液に強い剪断力を与えることができ、板状無機粒子がポリオレフィン微多孔膜に対して略平行になるようにできる。   As the wet coating method, a known method can be adopted. For example, a roll coating method, a gravure coating method, a kiss coating method, a dip coating method, a spray coating method, an air knife coating method, a Meyer bar coating method, a pipe doctor method, a blade coating method, a die coating method and the like can be mentioned. In particular, a method of applying a relatively strong shearing force to the coating liquid on the polyolefin microporous membrane while applying the coating liquid is preferable, and among the roll coating method and the gravure coating method, a reverse roll coating method and a reverse gravure coating method are preferable. In these coating methods, since the rotation direction of the coating roll is opposite to the running direction of the microporous polyolefin membrane, a strong shearing force can be applied to the coating liquid, and the plate-like inorganic particles are applied to the microporous polyolefin membrane. Can be made substantially parallel to each other.

ポリオレフィン微多孔膜の搬送速度(F)と逆回転する塗工ロールの周速(S)との比(以下、S/F比と略記する。)は、1.02以上が好ましい。より好ましい下限値は1.05、さらに好ましくは1.07である。1.02以上であれば塗工液に十分な剪断力を掛けることができる。上限は特に定めないが1.20とすることができる。   The ratio between the transport speed (F) of the microporous polyolefin membrane and the peripheral speed (S) of the coating roll rotating in the reverse direction (hereinafter abbreviated as S / F ratio) is preferably 1.02 or more. A more preferred lower limit is 1.05, and still more preferably 1.07. If it is 1.02 or more, a sufficient shearing force can be applied to the coating liquid. The upper limit is not particularly defined, but can be 1.20.

電池用セパレータの全体の膜厚は、機械強度と絶縁性の観点から、6〜13μmが好ましく、より好ましくは7〜12μmである。また、電極体として捲回体にした時に高い体積エネルギー密度が得られことができる。   The total thickness of the battery separator is preferably from 6 to 13 μm, more preferably from 7 to 12 μm, from the viewpoint of mechanical strength and insulation. In addition, a high volume energy density can be obtained when a wound body is used as the electrode body.

以下実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. In addition, the measured value in an Example is a value measured by the following method.

1.高密度捲回性の評価
実施例、比較例で得られた電池用セパレータを外形96mm、肉厚10mmの紙管に50N/mの張力でセパレータの肉厚が15mmになるまで巻き付け、その巻き長さを計測した。セパレータの肉厚は巻き取り前の任意の紙管表面位置を0mmとし、レーザーセンサーによって検知した。比較例1の巻き長さを100とし、各実施例、比較例のセパレータ巻き長さを相対的に比較した。値が大きいほど高密度捲回性が優れることを意味する。
1. Evaluation of high-density winding property The battery separators obtained in Examples and Comparative Examples were wound around a paper tube having an outer diameter of 96 mm and a thickness of 10 mm with a tension of 50 N / m until the thickness of the separator became 15 mm, and the winding length thereof. Was measured. The thickness of the separator was detected by a laser sensor at an arbitrary paper tube surface position of 0 mm before winding. The winding length of Comparative Example 1 was set to 100, and the winding lengths of the separators of the respective Examples and Comparative Examples were relatively compared. The higher the value, the better the high-density winding property.

2.略球状有機粒子の平均粒径の測定
(1)分散媒に分散されている場合
試料を適当な濃度(固形分濃度2〜3質量%)に希釈し、該希釈液をスライドガラス上に滴下し、光学顕微鏡で観察した。光学顕微鏡観察で得られた画像上で任意の20個を選択し、それら20個の粒径の平均値を略球状有機粒子の平均粒径とした。
(2)粉末の場合
測定用セルに上に両面テープを貼り、該両面テープ上全面に略球状有機粒子を固着させた。次いで、プラチナまたは金を数分間真空蒸着させ、SEM観察用試料を得た。得られた試料を倍率20,000倍でSEM観察をおこなった。SEM測定で得られた画像上で任意の20個を選択し、それら20個の粒径の平均値を略球状有機粒子の平均粒径とした。
2. Measurement of average particle size of substantially spherical organic particles (1) When dispersed in a dispersion medium A sample is diluted to an appropriate concentration (solid content concentration of 2 to 3% by mass), and the diluted solution is dropped on a slide glass. And observed with an optical microscope. An arbitrary 20 particles were selected on an image obtained by observation with an optical microscope, and the average value of the particle sizes of the 20 particles was defined as the average particle size of the substantially spherical organic particles.
(2) In the case of powder A double-sided tape was stuck on the measurement cell, and substantially spherical organic particles were fixed on the entire surface of the double-sided tape. Next, platinum or gold was vacuum-deposited for several minutes to obtain a sample for SEM observation. The obtained sample was subjected to SEM observation at a magnification of 20,000 times. Any 20 particles were selected on the image obtained by the SEM measurement, and the average value of the particle diameters of the 20 particles was defined as the average particle size of the substantially spherical organic particles.

3.板状無機粒子の平均厚さの測定
測定用セルに上に両面テープを貼り、該両面テープ上全面に板状無機粒子を固着させた。次いで、プラチナまたは金を数分間真空蒸着させSEM観察用試料を得た。得られた試料を倍率20,000倍でSEM観察をおこなった。SEM測定で得られた画像上で両面テープに対し、垂直に立っている任意の20個を選択し、それら20個の板状無機粒子の厚さの平均値を板状無機粒子の平均厚さとした。
3. Measurement of average thickness of plate-like inorganic particles A double-sided tape was stuck on the measuring cell, and the plate-like inorganic particles were fixed on the entire surface of the double-sided tape. Next, platinum or gold was vacuum-deposited for several minutes to obtain a sample for SEM observation. The obtained sample was subjected to SEM observation at a magnification of 20,000 times. On the double-sided tape on the image obtained by the SEM measurement, select any 20 standing vertically and average the thickness of the 20 plate-like inorganic particles with the average thickness of the plate-like inorganic particles. did.

4.板状無機粒子の平均粒径
上記3で用いたSEM測定で得られた画像上の中から、両面テープに対し画像上で平面形状が観察される任意の20個を選択し、それら20個の長径の長さの平均値を板状無機粒子の平均粒径とした。
4. Average particle size of plate-like inorganic particles From the images obtained by the SEM measurement used in the above item 3, select any 20 particles whose planar shape is observed on the image with respect to the double-sided tape, and select those 20 particles. The average length of the major axis was defined as the average particle size of the plate-like inorganic particles.

5.膜厚
接触式膜厚計(ソニーマニュファクチュアリングシステムズ(株)製 デジタルマイクロメーター M−30)を使用して測定した。
5. The film thickness was measured using a contact type film thickness meter (Digital Micrometer M-30, manufactured by Sony Manufacturing Systems Corporation).

6.電極材料との接着性
負極および電池用セパレータをそれぞれ2cm×5cmの大きさに切り出し、負極の活物質面と電池用セパレータの改質多孔層面を合わせ、1MのLiPF濃度の1:2の重量組成を有するEC(Ethylene Carbonate)/EMC(Ethyl Methyl Carbonate)を含んでなる液体電解質に浸した。貼り合わせ面の温度を50℃に保持しながら2MPaの圧力で3分間プレスした。その後、負極と電池用セパレータを剥がし、電池用セパレータの剥離面を観察して以下の基準より判定した。なお、負極電極としてパイオトレック社製、層コート電極A100(1.6mAh/cm)を用いた。
◎:負極の活物質が電池用セパレータの改質多孔層に面積比で80%以上付着
○:負極の活物質が電池用セパレータの改質多孔層に面積比で50%以上、80%未満付着
△:負極の活物質が電池用セパレータの改質多孔層に面積比で30%以上、50%未満付着
×:負極の活物質が電池用セパレータの改質多孔層に面積比で30%未満付着
6. Adhesiveness to electrode material The negative electrode and the battery separator were each cut out to a size of 2 cm × 5 cm, and the active material surface of the negative electrode and the modified porous layer surface of the battery separator were put together and weighed 1: 2 of 1M LiPF 6 concentration. It was immersed in a liquid electrolyte containing EC (Ethylene Carbonate) / EMC (Ethyl Methyl Carbonate) having a composition. Pressing was performed at a pressure of 2 MPa for 3 minutes while maintaining the temperature of the bonding surface at 50 ° C. Thereafter, the negative electrode and the battery separator were peeled off, and the peeled surface of the battery separator was observed to make a judgment based on the following criteria. Note that a layer-coated electrode A100 (1.6 mAh / cm 2 ) manufactured by PIOTREK was used as the negative electrode.
:: The active material of the negative electrode adheres to the modified porous layer of the battery separator in an area ratio of 80% or more. :: The active material of the negative electrode adheres to the modified porous layer of the battery separator in an area ratio of 50% or more and less than 80%. Δ: The active material of the negative electrode adheres to the modified porous layer of the battery separator in an area ratio of 30% or more and less than 50%. X: The active material of the negative electrode adheres to the modified porous layer of the battery separator in an area ratio of less than 30%.

7.溶融破膜特性(メルトダウン特性)
実施例及び比較例で得られたセパレータを5℃/分の昇温速度で加熱しながら、王研式透気抵抗度計(旭精工株式会社製、EGO-1T)により透気抵抗度を測定し、透気抵抗度が検出限界である1×10sec/100ccに到達した後、再び1×10sec/100cc以下に降下し始めた温度を求め、メルトダウン温度(℃)とした。
判定
メルトダウン温度(℃)が200℃を超える場合・・・○
メルトダウン温度(℃)が200℃以下の場合・・・・×
7. Melt rupture characteristics (melt down characteristics)
While heating the separators obtained in Examples and Comparative Examples at a heating rate of 5 ° C./min, the air resistance was measured by an Oken type air resistance meter (EGO-1T, manufactured by Asahi Seiko Co., Ltd.). After the air resistance reached the detection limit of 1 × 10 5 sec / 100 cc, the temperature at which it began to drop again to 1 × 10 5 sec / 100 cc or less was determined as the meltdown temperature (° C.).
When the judgment meltdown temperature (℃) exceeds 200 ℃ ・ ・ ・ ○
When the meltdown temperature (℃) is 200 ℃ or less ・ ・ ・ ・ ×

8.塗工液の粘度
粘度計(BROOKFIELD社製DV-I PRIME)を用い、25℃での塗工液の粘度を測定した。
8. Viscosity of Coating Liquid The viscosity of the coating liquid at 25 ° C. was measured using a viscometer (DV-I PRIME manufactured by BROOKFIELD).

実施例1
(塗工液Aの調製)
イオン交換水58質量部とブタノール1質量部からなる混合液に(平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイト、長径/短径比2)を40質量部、バインダーとしてケン化度95%のポリビニルアルコール1質量部を添加しよく分散させた。次いで、増粘剤としてカルボキシメチルセルロース(CMC)添加し、液粘度を20mPa・sに調整して塗工液A1とした。
(塗工液Bの調製)
イオン交換水79質量部とブタノール1質量部からなる混合液にアクリル系樹脂からなる略球状有機粒子分散液(JSR株式会社製TRD202A、平均粒径0.2μm、固形分濃度40質量%)を20質量部添加し、攪拌して均一に分散させた。次いで、カルボキシメチルセルロース(CMC)添加し、液粘度を5mPa・sに調整して塗工液B1とした。
(多孔層の積層)
ポリエチレン微多孔膜(厚さ7μm、空孔率21%、透気抵抗度120秒/100cc)の片面にリバースグラビアコート法を用いて搬送速度30m/分、S/F比1.05の条件で塗工液A1を塗布、乾燥し、板状無機粒子層を積層した。板状無機粒子層の乾燥時の目付は2.5g/mであった。次いで、板状無機粒子層上に塗工液B1を塗工液A1と同様にして塗布、乾燥して電池用セパレータを得た。なお、塗工目付は略球状有機粒子と板状無機粒子の総体積に対して、略球状有機粒子の体積が15体積%となるようにした。
Example 1
(Preparation of coating liquid A)
A mixture of 58 parts by mass of ion-exchanged water and 1 part by mass of butanol was added with 40 parts by mass of a plate-like boehmite having an average particle size of 1.0 μm and an average thickness of 0.4 μm, a ratio of major axis / minor axis of 2 and 40 parts by mass of ken as a binder. One part by mass of polyvinyl alcohol having a chemical degree of 95% was added and dispersed well. Next, carboxymethylcellulose (CMC) was added as a thickener, and the liquid viscosity was adjusted to 20 mPa · s to obtain a coating liquid A1.
(Preparation of coating liquid B)
A mixture of approximately 79 parts by mass of ion-exchanged water and 1 part by mass of butanol was mixed with a substantially spherical organic particle dispersion (TRD202A manufactured by JSR Corporation, average particle size 0.2 μm, solid content concentration 40% by mass) composed of an acrylic resin. Parts by mass were added and stirred to disperse uniformly. Next, carboxymethylcellulose (CMC) was added, and the liquid viscosity was adjusted to 5 mPa · s to obtain a coating liquid B1.
(Lamination of porous layer)
Using a reverse gravure coating method on one side of a polyethylene microporous membrane (thickness 7 μm, porosity 21%, air permeability resistance 120 sec / 100 cc) at a transport speed of 30 m / min and an S / F ratio of 1.05. The coating liquid A1 was applied and dried, and a plate-like inorganic particle layer was laminated. The basis weight during drying of the plate-like inorganic particle layer was 2.5 g / m 2 . Next, the coating liquid B1 was applied and dried on the plate-like inorganic particle layer in the same manner as the coating liquid A1, to obtain a battery separator. The coating weight was set so that the volume of the substantially spherical organic particles was 15% by volume based on the total volume of the substantially spherical organic particles and the plate-like inorganic particles.

実施例2
板状ベーマイトに替えて板状ベーマイト粒子(平均粒径2.0μm、平均厚さ0.4μm、長径/短径比3)とした塗工液A2を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 2
In the same manner as in Example 1 except that the coating liquid A2 having plate-like boehmite particles (average particle diameter 2.0 μm, average thickness 0.4 μm, ratio of long diameter / short diameter 3) was used instead of the plate-like boehmite. A battery separator was obtained.

実施例3
液粘度を10mPa・sに調整した塗工液A3を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 3
A battery separator was obtained in the same manner as in Example 1, except that the coating liquid A3 whose liquid viscosity was adjusted to 10 mPa · s was used.

実施例4
液粘度を30mPa・sに調整した塗工液A4を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 4
A battery separator was obtained in the same manner as in Example 1, except that the coating liquid A4 whose liquid viscosity was adjusted to 30 mPa · s was used.

実施例5
板状ベーマイト粒子の平均粒径1.0μm、平均厚さを0.2μm、長径/短径比3とした塗工液A5を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 5
A battery separator was obtained in the same manner as in Example 1, except that the coating liquid A5 having an average particle size of the plate-like boehmite particles of 1.0 μm, an average thickness of 0.2 μm, and a major axis / minor axis ratio of 3 was used. .

実施例6
板状ベーマイト粒子を平均粒径2.0μm、平均厚さ0.6μm、長径/短径比3とした塗工液A6を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 6
A battery separator was obtained in the same manner as in Example 1 except that the coating liquid A6 in which the plate-like boehmite particles had an average particle diameter of 2.0 μm, an average thickness of 0.6 μm, and a major axis / minor axis ratio of 3 was used.

実施例7
塗工液Bの塗工量を調整し、略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が25体積%となるようにした以外は実施例1と同様にして電池用セパレータを得た。
Example 7
The same procedure as in Example 1 was performed except that the coating amount of the coating liquid B was adjusted so that the volume of the substantially spherical organic particles was 25% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles. Thus, a battery separator was obtained.

実施例8
塗工液Aを塗布する際にS/F比1.18の条件とした以外は実施例1と同様にして電池用セパレータを得た。
Example 8
A battery separator was obtained in the same manner as in Example 1, except that the condition of the S / F ratio was 1.18 when applying the coating liquid A.

実施例9
塗工液Bの調製において、液粘度を10mPa・sに調整した塗工液B2を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 9
A battery separator was obtained in the same manner as in Example 1 except that in the preparation of the coating liquid B, the coating liquid B2 whose liquid viscosity was adjusted to 10 mPa · s was used.

実施例10
塗工液Bの調製において、液粘度を2mPa・sに調整した塗工液B3を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 10
A battery separator was obtained in the same manner as in Example 1, except that in the preparation of the coating liquid B, the coating liquid B3 whose liquid viscosity was adjusted to 2 mPa · s was used.

比較例1
(塗工液の調製)
イオン交換水58質量部とブタノール1質量部からなる混合液に平均粒径1.0μm、平均厚さ0.4μmの板状ベーマイトを40質量部、バインダーとしてケン化度95%のポリビニルアルコール1質量部、及び平均粒径0.2μmのアクリル系樹脂からなる略球状有機粒子分散液(JSR株式会社製TRD202A、固形分濃度40質量%)を略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が15体積%となるように添加し、よく分散させた。この分散液に増粘剤としてカルボキシメチルセルロース(CMC)添加し、液粘度を20mPa・sに調整して塗工液Cとした。
(多孔層の積層)
ポリエチレン微多孔膜(厚さ7μm、空孔率21%、透気抵抗度120秒/100cc)に図3に示す塗工装置(リバースグラビアコート法)を用いて搬送速度30m/分、S/F比1.05の条件で塗布、乾燥し、多孔層を積層し、電池用セパレータを得た。多孔層の乾燥時の目付は2.7g/mであった。
Comparative Example 1
(Preparation of coating liquid)
40 parts by mass of plate-like boehmite having an average particle size of 1.0 μm and an average thickness of 0.4 μm were added to a mixture of 58 parts by mass of ion-exchanged water and 1 part by mass of butanol, and 1 part of polyvinyl alcohol having a saponification degree of 95% was used as a binder. Part, and a substantially spherical organic particle dispersion (TRD202A manufactured by JSR Corporation, solid content concentration: 40% by mass) composed of an acrylic resin having an average particle diameter of 0.2 μm based on the total volume of the substantially spherical organic particles and the plate-like inorganic particles. The organic particles were added so that the volume of the substantially spherical organic particles became 15% by volume and dispersed well. Carboxymethylcellulose (CMC) was added to this dispersion as a thickener, and the liquid viscosity was adjusted to 20 mPa · s to obtain a coating liquid C.
(Lamination of porous layer)
Using a coating apparatus (reverse gravure coating method) shown in FIG. 3 on a polyethylene microporous membrane (thickness: 7 μm, porosity: 21%, air resistance: 120 seconds / 100 cc), S / F, S / F It was applied and dried under the condition of a ratio of 1.05, and a porous layer was laminated to obtain a battery separator. The basis weight of the porous layer at the time of drying was 2.7 g / m 2 .

比較例2
塗工液Aの調製において、板状ベーマイトに替えて平均粒径0.4μmのアルミナ粒子とした塗工液A7を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 2
A battery separator was obtained in the same manner as in Example 1, except that in the preparation of the coating liquid A, a coating liquid A7 having alumina particles having an average particle diameter of 0.4 μm was used instead of the plate-like boehmite.

比較例3
塗工液Aの調製において、液粘度を8mPa・sに調整した塗工液A8を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 3
A battery separator was obtained in the same manner as in Example 1, except that in the preparation of the coating liquid A, a coating liquid A8 whose liquid viscosity was adjusted to 8 mPa · s was used.

比較例4
塗工液Bの調製において、液粘度を20mPa・sに調整した塗工液B4を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 4
A battery separator was obtained in the same manner as in Example 1, except that in the preparation of the coating liquid B, the coating liquid B4 whose liquid viscosity was adjusted to 20 mPa · s was used.

比較例5
塗工液Bの調製において、略球状有機粒子分散液をメラミン・ホルムアルデヒド縮合物球状粒子(平均粒径0.4μm)の水分散液(固形分濃度15質量%)に替えた塗工液B5を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 5
In the preparation of the coating liquid B, a coating liquid B5 obtained by replacing the substantially spherical organic particle dispersion liquid with an aqueous dispersion liquid (solid content concentration: 15% by mass) of melamine / formaldehyde condensate spherical particles (average particle diameter: 0.4 μm) was used. A battery separator was obtained in the same manner as in Example 1 except that the separator was used.

比較例6
塗工液Bの塗工量を調整し、略球状有機粒子と板状無機粒子の総体積に対して略球状有機粒子の体積が5体積%となるようにした以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 6
The same procedure as in Example 1 was performed except that the coating amount of the coating liquid B was adjusted so that the volume of the substantially spherical organic particles was 5% by volume with respect to the total volume of the substantially spherical organic particles and the plate-like inorganic particles. Thus, a battery separator was obtained.

比較例7
塗工液Aを塗布する際にS/F比0.50の条件とした以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 7
A battery separator was obtained in the same manner as in Example 1, except that the condition that the S / F ratio was 0.50 when applying the coating liquid A was used.

比較例8
塗工液A1を塗布する際にグラビアロールの回転方向をポリエチレン微多孔膜の搬送方向と同じにし、S/F比1.25の条件で塗工液A1を塗布した以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 8
Same as Example 1 except that the rotation direction of the gravure roll was the same as the transport direction of the polyethylene microporous membrane when applying the coating liquid A1, and the coating liquid A1 was applied under the condition of an S / F ratio of 1.25. Thus, a battery separator was obtained.

比較例9
比較例1の電池用セパレータと同厚みのポリエチレン微多孔膜(空孔率23%、透気抵抗度110秒/100cc)を電池用セパレータとした。
Comparative Example 9
A microporous polyethylene membrane (porosity: 23%, air resistance: 110 sec / 100 cc) having the same thickness as the battery separator of Comparative Example 1 was used as the battery separator.

実施例1〜10及び比較例1〜9で得られた電池用セパレータの特性を表1に示す。
なお、多孔層の表面、及び断面を拡大観察した結果、実施例1〜10、及び、比較例3、5〜7は略球状有機粒子が多孔層の表面に偏在し、板状無機粒子が島、略球状有機粒子を海とする海島構造であった。比較例1及び4は板状無機粒子と略球状有機粒子が混在し、海島構造ではなかった。
Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 10 and Comparative Examples 1 to 9.
As a result of enlarged observation of the surface and cross section of the porous layer, in Examples 1 to 10 and Comparative Examples 3 and 5 to 7, substantially spherical organic particles were unevenly distributed on the surface of the porous layer, and plate-like inorganic particles were islands. And a sea-island structure having substantially spherical organic particles as the sea. In Comparative Examples 1 and 4, the plate-like inorganic particles and the substantially spherical organic particles were mixed and did not have the sea-island structure.

Figure 0006669174
Figure 0006669174

1.略球状有機粒子
2.板状無機粒子
3.ポリオレフィン微多孔膜
4.ポリオレフィン微多孔膜の搬送方向
5.グラビアロール
6.グラビアロールの回転方向
1. 1. substantially spherical organic particles 2. plate-like inorganic particles 3. microporous polyolefin membrane 4. Transport direction of microporous polyolefin membrane Gravure roll 6. Rotation direction of gravure roll

Claims (7)

ポリオレフィン微多孔膜と、少なくともその片面にアクリル系樹脂またはフッ素系樹脂からなる略球状有機粒子と板状無機粒子を含む多孔層と、を有し、
前記略球状有機粒子が膜厚方向に対して前記多孔層の表面に偏在しており、
かつ、前記板状無機粒子は前記多孔層表面に大きさ1μmを超えるような突起の発生を抑制できる程度にポリオレフィン微多孔膜の面方向に対して略平行方向に配置されており、
前記略球状有機粒子の平均粒径r(μm)と前記板状無機粒子の平均厚さt(μm)の比(r/t)が式1及び式2を満足する電池用セパレータ。
0.1μm≦r≦0.8μm・・・・式1
0.3≦r/t≦1.0 ・・・・式2
ここで、前記略球状有機粒子の平均粒径r(μm)は、顕微鏡により観察される投影像の円相当径とし、
前記板状無機粒子の平均厚さt(μm)は、両面テープ上に固着させた板状無機粒子をSEM観察し、垂直に立っている任意の20個を選択し、観察される投影像の外接矩形の短辺とする。
Polyolefin microporous membrane, and a porous layer containing substantially spherical organic particles and plate-like inorganic particles made of acrylic resin or fluorine resin on at least one surface thereof,
The substantially spherical organic particles are unevenly distributed on the surface of the porous layer in the thickness direction,
And, the plate-like inorganic particles are arranged in a direction substantially parallel to the surface direction of the polyolefin microporous membrane to such an extent that the occurrence of projections exceeding 1 μm in size on the porous layer surface can be suppressed ,
A battery separator in which the ratio (r / t) of the average particle diameter r (μm) of the substantially spherical organic particles to the average thickness t (μm) of the plate-like inorganic particles satisfies Formulas 1 and 2.
0.1 μm ≦ r ≦ 0.8 μm ... Equation 1
0.3 ≦ r / t ≦ 1.0 Equation 2
Here, the average particle diameter r (μm) of the substantially spherical organic particles is a circle equivalent diameter of a projected image observed by a microscope,
The average thickness t (μm) of the plate-like inorganic particles is determined by observing the plate-like inorganic particles fixed on the double-sided tape with a SEM, selecting any 20 particles standing vertically, and selecting the projected image to be observed. It is the short side of the circumscribed rectangle.
前記板状無機粒子がアルミナまたはベーマイトである請求項1に記載の電池用セパレータ。   The battery separator according to claim 1, wherein the plate-like inorganic particles are alumina or boehmite. 前記略球状有機粒子の体積が前記略球状有機粒子と前記板状無機粒子の総体積に対して10〜30体積%である請求項1又は2に記載の電池用セパレータ。   3. The battery separator according to claim 1, wherein the volume of the substantially spherical organic particles is 10 to 30% by volume based on the total volume of the substantially spherical organic particles and the plate-like inorganic particles. 4. 前記電池用セパレータがリチウムイオン二次電池用セパレータである請求項1〜3のいずれか1項に記載の電池用セパレータ。   The battery separator according to any one of claims 1 to 3, wherein the battery separator is a lithium ion secondary battery separator. 以下の工程(a)及び(b)を順次含む、請求項1〜4のいずれか1項に記載の電池用セパレータの製造方法。
(a)ポリオレフィン微多孔膜に板状無機粒子を含む塗工液Aをリバースグラビアコート法で塗布し、乾燥させ、板状無機粒子層を積層させる工程。
(b)前記板状無機粒子層上に電極材料との密着性を付与または向上させる樹脂からなる略球状有機粒子を含む塗工液Bをリバースグラビアコート法で塗布し、乾燥させ電池用セパレータを得る工程。
The method for producing a battery separator according to any one of claims 1 to 4, comprising the following steps (a) and (b) sequentially.
(A) A step of applying a coating liquid A containing plate-like inorganic particles to a polyolefin microporous membrane by a reverse gravure coating method, drying and coating a plate-like inorganic particle layer.
(B) A coating liquid B containing substantially spherical organic particles made of a resin for imparting or improving adhesion to an electrode material is applied on the plate-like inorganic particle layer by a reverse gravure coating method, and dried to form a battery separator. The step of obtaining.
前記塗工液Aの粘度が10〜30mPa・sである請求項5に記載の電池用セパレータの製造方法。   The method for producing a battery separator according to claim 5, wherein the viscosity of the coating liquid A is 10 to 30 mPa · s. 前記塗工液Bの粘度が1〜10mPa・sである請求項5または6に記載の電池用セパレータの製造方法。   The method for producing a battery separator according to claim 5, wherein the viscosity of the coating liquid B is 1 to 10 mPa · s.
JP2017536475A 2015-08-27 2016-08-25 Battery separator and method of manufacturing the same Active JP6669174B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015168183 2015-08-27
JP2015168183 2015-08-27
PCT/JP2016/074774 WO2017033993A1 (en) 2015-08-27 2016-08-25 Cell separator and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017033993A1 JPWO2017033993A1 (en) 2018-06-14
JP6669174B2 true JP6669174B2 (en) 2020-03-18

Family

ID=58100300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536475A Active JP6669174B2 (en) 2015-08-27 2016-08-25 Battery separator and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP6669174B2 (en)
KR (1) KR102187519B1 (en)
CN (1) CN107925034B (en)
WO (1) WO2017033993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12119515B2 (en) 2022-05-26 2024-10-15 Lg Energy Solution, Ltd. Separator for an electrochemical device including a porous organic/inorganic composite coating layer and an electrochemical device including same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604599B1 (en) * 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 Multi-layered lithium ion battery separator and method of manufacturing the same
KR101918448B1 (en) * 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery insulating porous layer
JPWO2019003770A1 (en) * 2017-06-30 2020-03-19 日立オートモティブシステムズ株式会社 Secondary battery and method of manufacturing the same
CN110959204A (en) * 2017-09-29 2020-04-03 东丽株式会社 Porous composite membrane, battery separator, and method for producing porous composite membrane
WO2019117687A1 (en) * 2017-12-15 2019-06-20 주식회사 엘지화학 Porous separator and electrochemical device comprising same
KR102207528B1 (en) 2017-12-15 2021-01-26 주식회사 엘지화학 POROUS SEPARATING FiLM AND ELECTROCHEMICAL DEVICE CONTAINING THE SAME
WO2019124213A1 (en) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldh separator and zinc secondary battery
KR102209826B1 (en) 2018-03-06 2021-01-29 삼성에스디아이 주식회사 Separator, method for preparing the same, and lithium battery comprising the same
JP7032180B2 (en) * 2018-03-07 2022-03-08 トヨタ自動車株式会社 Batteries and their manufacturing methods
CN110660948B (en) * 2018-06-29 2022-06-10 宁德时代新能源科技股份有限公司 Isolation membrane, preparation method thereof and electrochemical device containing isolation membrane
KR102388261B1 (en) 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 Porous separating film and lithium sencondary battery containing the same
KR20210092191A (en) 2018-11-22 2021-07-23 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery
CN109524603B (en) * 2018-11-26 2020-08-25 深圳市星源材质科技股份有限公司 Functional diaphragm and preparation method thereof
KR102704393B1 (en) * 2019-07-30 2024-09-06 주식회사 엘지화학 Composite separator for electrochemical device and electrochemical device containing the same
KR20220086574A (en) * 2019-10-31 2022-06-23 니폰 제온 가부시키가이샤 Functional layer for electrochemical element and manufacturing method thereof, functional layer-forming separator for electrochemical element and manufacturing method thereof, and electrochemical element and manufacturing method thereof
CN111653717B (en) * 2020-07-10 2022-08-12 东莞市魔方新能源科技有限公司 Preparation method of composite diaphragm, composite diaphragm and lithium ion battery
CN114024100B (en) * 2022-01-05 2022-04-15 湖南中锂新材料科技有限公司 Separator for nonaqueous electrolyte lithium secondary battery and nonaqueous electrolyte lithium secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166091B1 (en) * 2005-12-08 2012-07-23 히다치 막셀 가부시키가이샤 Separator for electrochemical device
JP5530353B2 (en) * 2008-06-09 2014-06-25 日立マクセル株式会社 Porous membrane for separator, battery separator, battery electrode and manufacturing method thereof, and lithium secondary battery
JP5648284B2 (en) * 2009-12-24 2015-01-07 住友化学株式会社 Laminated film and non-aqueous electrolyte secondary battery
JP2014517580A (en) 2011-05-06 2014-07-17 富士通株式会社 Transmission mode setting method, user equipment and base station
JP5751414B2 (en) * 2011-07-11 2015-07-22 日本ゼオン株式会社 Slurry composition for secondary battery porous membrane
US10803970B2 (en) 2011-11-14 2020-10-13 Seagate Technology Llc Solid-state disk manufacturing self test
WO2013080701A1 (en) * 2011-12-02 2013-06-06 三菱樹脂株式会社 Laminate porous film roll and manufacturing method thereof
JP2014137985A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Secondary battery
US10038174B2 (en) * 2013-04-16 2018-07-31 Samsung Sdi Co., Ltd. Separator and lithium battery including the separator
JP6281220B2 (en) * 2013-09-26 2018-02-21 日本ゼオン株式会社 Manufacturing method of heat-resistant separator for secondary battery
JP5702873B2 (en) * 2014-04-04 2015-04-15 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12119515B2 (en) 2022-05-26 2024-10-15 Lg Energy Solution, Ltd. Separator for an electrochemical device including a porous organic/inorganic composite coating layer and an electrochemical device including same

Also Published As

Publication number Publication date
CN107925034A (en) 2018-04-17
KR20180041137A (en) 2018-04-23
CN107925034B (en) 2020-12-18
JPWO2017033993A1 (en) 2018-06-14
KR102187519B1 (en) 2020-12-07
WO2017033993A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6669174B2 (en) Battery separator and method of manufacturing the same
JP6657055B2 (en) Non-aqueous electrolyte secondary battery separator
JP6220415B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
JP6185133B2 (en) LAMINATED POROUS FILM AND PROCESS FOR PRODUCING THE SAME, LAMINATED ELECTRODE SHEET, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2023058556A (en) Improved coated separators for lithium batteries and related methods
EP4235891A2 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP6193333B2 (en) Separator and manufacturing method thereof
JP5882549B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JPWO2011129169A1 (en) Electrochemical element separator, electrochemical element using the same, and method for producing the electrochemical element separator
JP5865168B2 (en) Method for producing laminated porous film, laminated porous film, and non-aqueous electrolyte secondary battery
KR102192537B1 (en) Method for producing separator
KR102272013B1 (en) Layered porous film, and non-aqueous electrolyte secondary battery
JP2012226921A (en) Porous laminate film
KR102304695B1 (en) Layered porous film, and non-aqueous electrolyte secondary battery
TWI709267B (en) Separator for battery and manufacturing method thereof
JP5964493B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
JP2016193613A (en) Laminated porous film, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R151 Written notification of patent or utility model registration

Ref document number: 6669174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151