JP6639097B2 - Temperature detector and temperature detector - Google Patents

Temperature detector and temperature detector Download PDF

Info

Publication number
JP6639097B2
JP6639097B2 JP2015045137A JP2015045137A JP6639097B2 JP 6639097 B2 JP6639097 B2 JP 6639097B2 JP 2015045137 A JP2015045137 A JP 2015045137A JP 2015045137 A JP2015045137 A JP 2015045137A JP 6639097 B2 JP6639097 B2 JP 6639097B2
Authority
JP
Japan
Prior art keywords
temperature
detection
wire
detection lines
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015045137A
Other languages
Japanese (ja)
Other versions
JP2016164527A (en
Inventor
片岡 義範
義範 片岡
泰利 洲崎
泰利 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ELECTRONICS CO., LTD.
Original Assignee
TOYO ELECTRONICS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ELECTRONICS CO., LTD. filed Critical TOYO ELECTRONICS CO., LTD.
Priority to JP2015045137A priority Critical patent/JP6639097B2/en
Publication of JP2016164527A publication Critical patent/JP2016164527A/en
Application granted granted Critical
Publication of JP6639097B2 publication Critical patent/JP6639097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、非接触給電装置の給電コイル近傍の温度検出に適した温度検出体及び温度検出装置に関する。   The present invention relates to a temperature detector and a temperature detector suitable for detecting a temperature near a power supply coil of a non-contact power supply device.

従来、温度センサとしては、サーミスタ、熱電対、感熱抵抗線等が広く使用されている。サーミスタは、最も広く使用されており、多くの種類のものが市販されている。また、感熱抵抗線を用いた温度センサとしては、例えば、特許文献1〜5に記載のものが公知である。   Conventionally, as a temperature sensor, a thermistor, a thermocouple, a thermosensitive resistance wire, and the like have been widely used. Thermistors are the most widely used and many types are commercially available. Further, as a temperature sensor using a heat-sensitive resistance wire, for example, those described in Patent Documents 1 to 5 are known.

特許文献1には、棒等の支持体の表面に被覆銅細線(0.03mm)を捲回し銅抵抗として、これを熱伝導膜(エポキシ樹脂)で覆ってなる温度測定素子が記載されている。   Patent Literature 1 describes a temperature measuring element in which a coated copper fine wire (0.03 mm) is wound on a surface of a support such as a rod to form a copper resistor, which is covered with a heat conductive film (epoxy resin). .

特許文献2,3,4には、温度係数の大きい素材で構成された細い抵抗線を、盤状且つ単一層に渦状に捲回し、これを合成樹脂等の可塑性絶縁材料により被覆してフィルム状の薄い平盤片に形成した温度抵抗体が記載されている。   Patent Documents 2, 3, and 4 disclose that a thin resistance wire composed of a material having a large temperature coefficient is spirally wound into a disk and a single layer, which is coated with a plastic insulating material such as a synthetic resin to form a film. A temperature resistor formed on a thin flat plate piece is described.

特許文献5には、ベークライト紙等の円筒の側面に、感熱抵抗帯又は感熱抵抗線を巻装し、その表面を絶縁塗料により被覆した抵抗温度計用感熱素子が記載されている。   Patent Literature 5 describes a thermosensitive element for a resistance thermometer in which a thermosensitive resistance band or a thermosensitive resistance wire is wound around a side surface of a cylinder such as bakelite paper and the surface thereof is covered with an insulating paint.

特開昭57−63429号公報JP-A-57-63429 特公昭12−000695号公報Japanese Patent Publication No. 12-000695 特明120476号明細書Japanese Patent Publication No. 120476 特明120213号明細書Japanese Patent Publication No. 120213 実明361930号明細書The specification of Jitsumei 361930

近年、電話機の子機や携帯電話,スマートフォン等の携帯端末機器、電動歯ブラシ、掃除ロボット、電気自動車などの給電装置として、非接触型の給電装置(非接触給電装置)が開発されている。非接触給電装置では、受電装置(携帯機器等)を給電装置に脱着自在とし、給電装置側において給電コイルに交流電流を給電し、受電装置側において、給電コイルと磁気共鳴結合する受電コイルを設け、給電コイルに交流電流により受電コイルに遊動電流を発生させることにより、受電装置への給電を行う。   2. Description of the Related Art In recent years, a non-contact power supply device (non-contact power supply device) has been developed as a power supply device for a portable terminal device such as a telephone handset, a mobile phone, a smartphone, and the like, an electric toothbrush, a cleaning robot, an electric vehicle, and the like. In a non-contact power feeding device, a power receiving device (portable device or the like) is detachably attached to the power feeding device, an AC current is fed to the power feeding coil on the power feeding device side, and a power receiving coil is provided on the power receiving device side for magnetic resonance coupling with the power feeding coil. Power is supplied to the power receiving device by generating a floating current in the power receiving coil by the AC current in the power feeding coil.

このような非接触給電装置においては、給電装置から受電装置が取り外されている状態に於いて、給電装置の給電コイルの近傍に、金属などの伝導性異物が置かれると、給電装置からの交番磁場により伝導性異物内に渦電流が発生し発熱する。そのため、火災などの事故を防止するために、伝導性異物を検出する異物検出機構が不可欠である。特に、電気自動車の非接触給電装置のように、大電力を給電する非接触給電装置ではこれが重要となる。   In such a non-contact power feeding device, when a conductive foreign object such as a metal is placed near a power feeding coil of the power feeding device in a state where the power receiving device is detached from the power feeding device, an alternation from the power feeding device is caused. An eddy current is generated in the conductive foreign object by the magnetic field, and generates heat. Therefore, in order to prevent an accident such as a fire, a foreign substance detection mechanism for detecting a conductive foreign substance is indispensable. This is particularly important for a non-contact power supply device that supplies a large amount of power, such as a non-contact power supply device of an electric vehicle.

異物検出機構の一つとして、伝導性異物が発熱した際に生じる温度上昇を検出する手法が考えられる。温度上昇を検出するには、給電コイルの近傍に温度センサを配設し、温度センサにより温度上昇を検出する必要がある。   As one of the foreign matter detection mechanisms, a method of detecting a temperature rise that occurs when the conductive foreign matter generates heat can be considered. In order to detect a temperature rise, it is necessary to arrange a temperature sensor near the power supply coil and detect the temperature rise with the temperature sensor.

温度センサとして、そこで市販のサーミスタを使用して給電コイルの近傍の温度測定を行う実験を行ったところ、給電コイルからの交番磁場により、サーミスタ内に誘導電流が発生し、この誘導電流によりサーミスタ自体が発熱し、正常な温度検出ができないことが判明した。温度センサとして熱電対を使用した場合にも、同様の現象が観測された。また、上記特許文献1〜5に記載の温度測定素子、温度抵抗体、抵抗温度計用感熱素子を使用した場合も、同様の現象が生じ、正常な温度検出ができないことが想定される。   As a temperature sensor, we conducted an experiment to measure the temperature near the power supply coil using a commercially available thermistor, and an alternating magnetic field from the power supply coil generated an induced current in the thermistor. Generated heat, and normal temperature detection was not possible. A similar phenomenon was observed when a thermocouple was used as a temperature sensor. Also, when the temperature measuring element, the temperature resistor, and the thermal element for a resistance thermometer described in Patent Documents 1 to 5 are used, the same phenomenon occurs, and normal temperature detection cannot be performed.

そこで、本発明の目的は、非接触給電装置の給電コイル近傍の温度検出を精度よく行うことが可能な温度検出体及び温度検出装置を提供することにある。   Therefore, an object of the present invention is to provide a temperature detecting body and a temperature detecting device capable of accurately detecting a temperature near a power feeding coil of a non-contact power feeding device.

本発明に係る温度検出体の第1の構成は、少なくとも2本の電気抵抗が温度変化する導体からなる素線が、互いに絶縁した状態で束ねられた素線束を備え、
前記素線束は、該素線束を構成する素線のうち2本の素線を検出線L,Lとし、前記検出線L,Lは、先端が短絡されており、
前記検出線L,Lの基端側に抵抗検出用接続端子を設けたことを特徴とする。
A first configuration of the temperature detector according to the present invention includes a strand bundle in which at least two strands of a conductor whose electric resistance changes in temperature are bundled in a state of being insulated from each other,
In the element bundle, two elements among the elements constituting the element bundle are set as detection lines L 1 and L 2 , and the detection lines L 1 and L 2 are short-circuited at their ends.
A connection terminal for resistance detection is provided on the base end side of the detection lines L 1 and L 2 .

この構成によれば、複数の素線が束ねられた素線束は、2本の検出線L,Lの先端が短絡された折り返し構造であり、その基端側に、電気抵抗を測定する接続端子が設けられた構造であるため、検出線L,Lで作られる回路ループの開口面積はほぼゼロであるとともに、誘導電圧が往き帰りでキャンセルされる。従って、検出線L,Lで作られる回路ループを通過する磁束は殆ど無視でき、また誘導電圧が発生したとしてもキャンセルされるため、外部の交番磁場が強い場合でも、検出線L,Lで作られる回路ループには誘導電圧が殆ど生じない。従って、接続端子間の抵抗を検出する際に誘導電流が発生しないため、誘導電流による温度検出体の温度上昇を無視することができ、外部からの強い交番磁場がある環境に於いても、正確な温度検出が可能となる。 According to this configuration, the wire bundle in which the plurality of wires are bundled has a folded structure in which the distal ends of the two detection lines L 1 and L 2 are short-circuited, and the electrical resistance is measured at the base end side. Because of the structure provided with the connection terminals, the opening area of the circuit loop formed by the detection lines L 1 and L 2 is substantially zero, and the induced voltage is canceled by going back and forth. Therefore, magnetic flux passing through the circuit loop made by the detection lines L 1, L 2 are almost negligible, and because the induced voltage is also canceled as occurs, even if an external alternating magnetic field is strong, the detection line L 1, the circuit loop produced by L 2 no induced voltage is almost. Therefore, since no induced current is generated when detecting the resistance between the connection terminals, the temperature rise of the temperature detector due to the induced current can be ignored, and even in an environment where there is a strong alternating magnetic field from outside, accurate detection is possible. Temperature detection becomes possible.

本発明に係る温度検出体の第2の構成は、前記第1の構成に於いて、前記素線束は、該素線束を構成する各素線が、互いに撚り合わされていることを特徴とする。   A second configuration of the temperature detector according to the present invention is characterized in that, in the first configuration, each of the strands in the strand bundle is twisted with each other.

この構成によれば、素線束を構成する各素線を互いに撚り合わすことで、素線束を構成する2本の素線の間の僅かな隙間による、外部磁束の通るループがあっても、撚り合わせによって外部磁束方向に対するループの向きは交互に反転するため、鎖交磁束による誘導電圧は隣接する反転したループ間で打ち消し合う。従って、全体として誘導電圧の発生がほぼ完全に抑えられ、外部の交番磁場がある環境に於いても、より正確な温度検出が可能となる。   According to this configuration, by twisting the respective wires constituting the wire bundle with each other, even if there is a loop through which an external magnetic flux passes due to a small gap between the two wires constituting the wire bundle, the twisting is performed. Since the direction of the loop with respect to the direction of the external magnetic flux is alternately reversed by the matching, the induced voltage due to the interlinkage magnetic flux cancels out between the adjacent inverted loops. Therefore, the generation of induced voltage is almost completely suppressed as a whole, and more accurate temperature detection is possible even in an environment where an external alternating magnetic field exists.

本発明に係る温度検出体の第3の構成は、前記第1又は2の構成に於いて、前記素線束が、所定の環状面内を充填するように渦巻状に配線され若しくは所定の面内を充填するようにジグザグ状又はミアンダ状に配線されていることを特徴とする。   A third configuration of the temperature detector according to the present invention is the temperature detection device according to the first or second configuration, wherein the wire bundle is spirally wired or filled in a predetermined plane so as to fill a predetermined annular plane. Are wired in a zigzag or meandering shape so as to fill the space.

この構成によれば、温度検出を行う範囲が面状に広がった領域である場合にも、温度検出体をその領域に設置することにより、その領域内における部分的な温度変化を検出することができる。例えば、非接触給電装置においては、給電コイルと受電コイルとは、一定の面積を持った面(以下「磁界放射面」という。)を挟んで相対し、その磁界放射面を通して磁気回路が形成される。従って、受電コイルがないときにこの磁界放射面に金属などの異物が置かれた場合、当該異物が発熱して磁界放射面の一部が部分的に温度上昇する。そこで、この磁界放射面に温度検出体を設置することで、この部分的な温度上昇も検知することができる。   According to this configuration, even when the temperature detection range is an area that is spread in a plane, it is possible to detect a partial temperature change in the area by installing the temperature detector in that area. it can. For example, in a non-contact power supply device, a power supply coil and a power receiving coil face each other across a surface having a certain area (hereinafter, referred to as a “magnetic field emission surface”), and a magnetic circuit is formed through the magnetic field emission surface. You. Therefore, when a foreign substance such as a metal is placed on the magnetic field radiation surface when there is no power receiving coil, the foreign substance generates heat and a part of the magnetic field radiation surface partially rises in temperature. Therefore, by installing a temperature detector on this magnetic field emission surface, this partial temperature rise can be detected.

ここで、「所定の面」とは、温度検出を行う範囲を被覆する面であり、その形状については特に限定しない。「所定の面内を充填するように配線」とは、必ずしも隙間なく充填されている必要はなく、若干の隙間があっても全体としてみたときに所定の面内が素線束により充填されていればよい。また、必ずしも素線束が1層に充填されている必要はなく、素線束が2層又はそれ以上の層に重なった状態で所定の面内を充填するように配線されていてもよい。「所定の面内を充填するように配線」する例として、例えば、円状、三角形状、矩形状若しくは多角形状の面を充填するように素線束を渦巻状に配線したり、ジグザグ状又はミアンダ状(葛折状)に配線したりすることができる。   Here, the “predetermined surface” is a surface that covers a range in which temperature detection is performed, and its shape is not particularly limited. "Wiring to fill a predetermined plane" does not necessarily mean that the wiring is filled without gaps, and even if there are some gaps, the predetermined plane is filled with the element bundle when viewed as a whole. I just need. Further, the wire bundle does not necessarily have to be filled in one layer, and the wire bundle may be wired so as to fill a predetermined plane in a state where the wire bundle overlaps with two or more layers. As an example of “wiring to fill a predetermined surface”, for example, a wire bundle is spirally wired to fill a circular, triangular, rectangular or polygonal surface, or a zigzag or meander. It can be wired in a shape (conformity).

本発明に係る温度検出体の第4の構成は、前記第1乃至3の何れか一の構成に於いて、前記素線束を構成する前記検出線は、その線径が0.2mm以下であることを特徴とする。   In a fourth configuration of the temperature detector according to the present invention, in any one of the first to third configurations, the detection wire forming the strand bundle has a wire diameter of 0.2 mm or less. It is characterized by the following.

この構成によれば、外部磁界により検出線内に渦電流が生じることが抑えられ、検出線内に生じる渦電流により温度変化が生じることが防止できる。従って、より正確な温度検出が可能となる。   According to this configuration, generation of an eddy current in the detection line due to the external magnetic field is suppressed, and a temperature change due to the eddy current generated in the detection line can be prevented. Therefore, more accurate temperature detection becomes possible.

本発明に係るケーブルは、前記第1,2,4の何れか一の構成の温度検出体を備え、
通電用の電線又は通光用の光ファイバに、前記素線束が、絶縁した状態で束ねられていることを特徴とする。
A cable according to the present invention includes a temperature detector having any one of the first, second, and fourth configurations,
The wire bundle is bundled in an insulated state with a current-carrying electric wire or a light-transmitting optical fiber.

この構成によれば、ケーブルの一部分に異常が生じて、ケーブルの一部の温度が局所的に上昇した場合、ケーブル端の抵抗検出用接続端子間の抵抗値を測定することで、その温度上昇を容易に検出することができる。   According to this configuration, when an abnormality occurs in a part of the cable and the temperature of the part of the cable locally rises, the resistance value between the resistance detection connection terminals at the cable end is measured to increase the temperature. Can be easily detected.

本発明に係るコイルは、通電用の電線が捲回されたコイルであって、
前記第1,2,4の何れか一の構成の温度検出体を備え、
前記通電用の電線に、前記素線束が、絶縁した状態で束ねられていることを特徴とする。
The coil according to the present invention is a coil in which a current-carrying wire is wound,
A temperature detector having any one of the first, second, and fourth configurations,
The wire bundle is bundled in an insulated state with the conducting wire.

この構成によれば、通電用の電線の一部分に、断線等の異常が生じて、コイル内の電線の一部の温度が局所的に上昇した場合、電線とともに捲回された温度検出体の抵抗検出用接続端子間の抵抗値を測定することで、その温度上昇を容易に検出することができる。   According to this configuration, when an abnormality such as a disconnection occurs in a part of the energizing electric wire and the temperature of the part of the electric wire in the coil locally rises, the resistance of the temperature detector wound together with the electric wire is reduced. By measuring the resistance between the connection terminals for detection, the temperature rise can be easily detected.

本発明に係る温度検出装置は、前記第1乃至4の何れか一の構成の温度検出体を備え、2つの前記抵抗検出端子間に接続され、前記両抵抗検出端子間の電気抵抗値を検出する抵抗検出回路を備えたことを特徴とする。   A temperature detection device according to the present invention includes a temperature detection body having any one of the first to fourth configurations, is connected between two resistance detection terminals, and detects an electric resistance value between the two resistance detection terminals. And a resistance detection circuit that performs the operation.

以上のように、本発明によれば、温度検出体の素線束を、2本の検出線L,Lの先端を短絡したものとし、その基端に電気抵抗を測定する接続端子が設けた構成とし、検出線L,Lで作られる回路ループの開口面積をほぼゼロとすることで、外部交番磁場により検出線L,Lで作られる回路ループに誘導電圧が発生することを防止し、誘導電流による温度検出体の温度上昇を無視することができ、外部の交番磁場がある環境に於いても、正確な温度検出が可能となる。 As described above, according to the present invention, the wire bundle of the temperature detector is configured such that the distal ends of the two detection lines L 1 and L 2 are short-circuited, and the connection terminal for measuring the electric resistance is provided at the proximal end. By setting the opening area of the circuit loop formed by the detection lines L 1 and L 2 to be substantially zero, an induced voltage is generated in the circuit loop formed by the detection lines L 1 and L 2 due to an external alternating magnetic field. And the temperature rise of the temperature detector due to the induced current can be ignored, and accurate temperature detection is possible even in an environment having an external alternating magnetic field.

また、素線束を構成する各素線を互いに撚り合わすことで、全体として誘導電圧の発生がほぼ完全に抑えられ、外部の交番磁場がある環境に於いても、より正確な温度検出が可能となる。   In addition, by twisting each of the wires that compose the wire bundle, the generation of induced voltage is almost completely suppressed as a whole, enabling more accurate temperature detection even in an environment with an external alternating magnetic field. Become.

また、検出線の線径を0.2mm以下とすることで、外部磁界により検出線内に渦電流が生じることが抑えられ、検出線内に生じる渦電流により温度変化が生じることが防止できる。従って、より正確な温度検出が可能となる。   Further, by setting the diameter of the detection line to 0.2 mm or less, generation of an eddy current in the detection line due to an external magnetic field can be suppressed, and a temperature change due to the eddy current generated in the detection line can be prevented. Therefore, more accurate temperature detection becomes possible.

本発明の実施例1に係る温度検出体の斜視図である。FIG. 2 is a perspective view of a temperature detector according to the first embodiment of the present invention. 図1の素線束を表す図である。FIG. 2 is a diagram illustrating a strand bundle of FIG. 1. 銅及びアルミニウムの外部磁場周波数に対する表皮深さの関係を表す図である。It is a figure showing the relationship of the skin depth with respect to the external magnetic field frequency of copper and aluminum. 図1の素線束2の外部磁場に対する関係を説明する図である。FIG. 2 is a diagram illustrating a relationship of the strand bundle 2 of FIG. 1 to an external magnetic field. 実施例1の温度検出体を非接触給電装置の給電コイルに設置した例を示す図である。FIG. 4 is a diagram illustrating an example in which the temperature detector according to the first embodiment is installed in a power supply coil of a non-contact power supply device. 本発明の実施例2に係る温度検出体の斜視図である。FIG. 6 is a perspective view of a temperature detector according to a second embodiment of the present invention. 本発明の実施例3に係る温度検出体の斜視図である。FIG. 9 is a perspective view of a temperature detector according to a third embodiment of the present invention. 本発明の実施例4に係る温度検出体の斜視図である。FIG. 13 is a perspective view of a temperature detector according to Embodiment 4 of the present invention. 本発明の実施例5に係る温度検出体の斜視図である。FIG. 13 is a perspective view of a temperature detector according to a fifth embodiment of the present invention. 本発明の実施例6に係るケーブルの正面図である。It is a front view of the cable concerning Example 6 of the present invention. 本発明の実施例7に係るケーブルの正面図である。It is a front view of the cable concerning Example 7 of the present invention. 本発明の実施例8に係るコイルの斜視図である。It is a perspective view of the coil concerning Example 8 of the present invention.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る温度検出体の斜視図である。本実施例の温度検出体1は、温度により電気抵抗が変化する2本の細線導体である検出線L,Lを、互いに絶縁した状態で束ねた素線束2を渦巻円板状に捲回した素線束面充填体4を備えている。検出線L,Lは、先端2aが短絡されており、検出線L,Lの基端側には接続端子3,3が設けられている。また、素線束2を構成する2本の素線L,Lは、互いに撚り合わされている。 FIG. 1 is a perspective view of the temperature detector according to the first embodiment of the present invention. The temperature detector 1 of the present embodiment winds a wire bundle 2 in which detection wires L 1 and L 2 , which are two fine wire conductors whose electric resistance changes with temperature, are bundled in a state of being insulated from each other. The wire bundle surface filling body 4 is provided. The detection lines L 1 and L 2 are short-circuited at the distal end 2 a, and connection terminals 3 and 3 are provided on the base end sides of the detection lines L 1 and L 2 . Further, the two strands L 1 and L 2 constituting the strand bundle 2 are twisted with each other.

渦巻円板状に捲回された素線束2は、散けないように接着剤によって隣り合う周の素線束同士が接着されている。検出線L,Lとしては、本実施例では、エナメル線等の樹脂により絶縁被覆された銅線が使用されているが、温度変化が容易に検出できる程度に電気抵抗の温度係数が大きいもの(例えば、アルミニウム,タングステン等)であればよい。接続端子3,3は、R型圧着端子,Y型圧着端子などの圧着端子、その他の電気コネクタを用いることができる。また、検出線L,Lの基端の被覆を剥がせて半田で固めて接続端子3,3としてもよい。 In the wire bundle 2 wound in a spiral disk shape, adjacent wire bundles are adhered to each other by an adhesive so as not to be scattered. In this embodiment, as the detection lines L 1 and L 2 , a copper wire coated with a resin such as an enamel wire is used. However, the temperature coefficient of electric resistance is large enough to easily detect a temperature change. (For example, aluminum, tungsten, etc.). As the connection terminals 3 and 3, crimp terminals such as an R-type crimp terminal and a Y-type crimp terminal, and other electric connectors can be used. Alternatively, the connection terminals 3 and 3 may be formed by peeling off the coating of the base ends of the detection lines L 1 and L 2 and solidifying them with solder.

図2は、図1の素線束2を表す図である。図2(a)において、素線束2は、検出線L,Lを互いに絶縁した状態で互いに撚り合わせて構成されている。図2では、検出線L,Lは1本の繋がった長尺の被覆導線とし、先端2aにおいてこの被覆素線を折り返し、先端2aを挟んで両側の折り返された被覆導線の部分を検出線L,Lとしている。 FIG. 2 is a diagram showing the strand bundle 2 of FIG. In FIG. 2A, the strand bundle 2 is configured by twisting each other with the detection lines L 1 and L 2 insulated from each other. In FIG. 2, the detection lines L 1 and L 2 are one continuous elongated covered conductor, and the covered wire is folded back at the tip 2 a to detect the folded covered wire on both sides with the tip 2 a interposed therebetween. The lines are L 1 and L 2 .

各検出線L,Lの直径は、0.2mm以下とされている。一般に、素線の内部に生じる渦電流を低減するためには、素線の直径を次式(1)で表される表皮電流が発生する表皮深さdよりも小さくすればよいことが知られている。ここで、ρは導体の電気抵抗率、ωは電流の角周波数(又は誘導磁界の角周波数)、μは導体の絶対透磁率である。 The diameter of each of the detection lines L 1 and L 2 is set to 0.2 mm or less. Generally, in order to reduce the eddy current generated inside the wire, it is known that the diameter of the wire should be smaller than the skin depth d at which the skin current represented by the following equation (1) occurs. ing. Here, ρ is the electrical resistivity of the conductor, ω is the angular frequency of the current (or the angular frequency of the induced magnetic field), and μ is the absolute magnetic permeability of the conductor.

図3に、銅及びアルミニウムの外部磁場周波数に対する表皮深さの関係を表す。通常、非接触給電装置において使用される磁界の周波数は50〜200kHzである。従って、200kHzにおける表皮深さは、銅線の場合は約0.17mm,アルミ線の場合は約0.21mmである。従って、検出線L,Lの直径を0.2mm以下としておけば、外部磁場により検出線L,L内に生じる渦電流をほぼ完全に抑えることができる。 FIG. 3 shows the relationship between the skin magnetic depth and the external magnetic field frequency of copper and aluminum. Usually, the frequency of the magnetic field used in the non-contact power feeding device is 50 to 200 kHz. Therefore, the skin depth at 200 kHz is about 0.17 mm for a copper wire and about 0.21 mm for an aluminum wire. Therefore, if the diameters of the detection lines L 1 and L 2 are set to 0.2 mm or less, the eddy current generated in the detection lines L 1 and L 2 due to the external magnetic field can be almost completely suppressed.

また、検出線L,Lは、先端折り返し構造のため、外部から強い交番磁場が加わった際に仮に誘導電圧が発生したとしても、往き帰りでキャンセルされ、交番磁場の影響を極めて受けにくい。 Further, since the detection lines L 1 and L 2 are folded back, even if an induced voltage is generated when a strong alternating magnetic field is applied from the outside, the detection lines L 1 and L 2 are canceled by going back and forth, and are hardly affected by the alternating magnetic field. .

別の構成例として、図2(b)のように、2本の被覆導線を検出線L,Lとし、これを撚り合わせて素線束2を構成し、その先端2aにおいて検出線L,Lを半田づけにより短絡して構成することもできる。図2(b)では、検出線L,Lの他に、未使用の素線L,Lも検出線L,Lとともに撚り合わされている。本発明では、このように使用しない素線L,Lがあってもよい。図2(b)では、未使用素線が2本の例を示すが、未使用素線の本数は何本でもよい。このような未使用素線は、熱拡散体として作用する。検出線L,Lに加えて未使用素線が熱伝導体となり、検出線L,Lのみの場合(図2(a))に比べて、素線束2の沿線方向への伝熱率が大きくなる。従って、素線束2の1カ所が加熱されると、その熱は加熱箇所の近傍の素線束へと速やかに拡散し、より広範囲の素線束2の温度が変化する。これにより、検出線L,Lの全体としての温度による抵抗変化量が大きくなるため、温度検出感度が向上する。また、検出線L,Lに加えて未使用素線を束ねることで、素線束2の機械的強度が上がり、より断線しにくくなる。 As another configuration example, as shown in FIG. 2B, two covered conductors are used as detection wires L 1 and L 2 , which are twisted to form a wire bundle 2, and a detection wire L 1 is provided at a tip 2 a thereof. , it is also possible to configure the L 2 shorted by soldering. In FIG. 2B, in addition to the detection lines L 1 and L 2 , unused strands L 3 and L 4 are twisted together with the detection lines L 1 and L 2 . In the present invention, there may be wires L 3 and L 4 not used in this way. FIG. 2B shows an example in which there are two unused strands, but the number of unused strands may be any number. Such unused wires act as heat spreaders. Unused wire in addition to the detection line L 1, L 2 is a heat conductor, heat transfer in the case of only detecting lines L 1, L 2 compared to (FIG. 2 (a)), the wayside direction Motosentaba 2 The heat rate increases. Therefore, when one portion of the wire bundle 2 is heated, the heat is quickly diffused to the wire bundle near the heated portion, and the temperature of the wire bundle 2 in a wider range changes. Thereby, the resistance change amount due to the temperature of the detection lines L 1 and L 2 as a whole increases, and the temperature detection sensitivity improves. Also, by bundling unused strands in addition to the detection lines L 1 and L 2 , the mechanical strength of the strand bundle 2 is increased, and disconnection is more difficult.

尚、図2(b)のような素線束2は、市販のリッツ線を使用して簡単に構成することができる。未使用素線の数が多い場合には、検出線L,Lを他の未使用素線と区別しやすくするため、検出線L,Lの被覆の色を他の未使用素線の被覆の色と変えておくことが好ましい。 Note that the wire bundle 2 as shown in FIG. 2B can be easily configured using a commercially available litz wire. When the number of unused wires is large, the colors of the coating of the detection wires L 1 and L 2 are changed to other unused wires so that the detection lines L 1 and L 2 can be easily distinguished from other unused wires. It is preferable to change the color of the wire coating.

図4は、図1の素線束2の外部磁場に対する関係を説明する図である。尚、図4では、説明の便宜上、検出線L,Lを大きく離隔させて示している。検出線L,Lは、互いに撚り合わされているが、外部磁場Bが加わったとき、検出線L,Lの隙間に、外部磁場Bに対して垂直な面(「磁場鎖交面」という。)ができる。検出線L,Lは撚り合わされているため、1撚り毎に1つの磁場鎖交面ができる。図4のように、隣り合う磁場鎖交面をS,Sとする。検出線L,Lの撚合巻数は、局所的に見ればほぼ一定であるため、磁場鎖交面S,Sの面積はほぼ一定とみなすことができる。磁場鎖交面Sには局所的な磁場(磁束密度)Bが鎖交し、磁場鎖交面Sには局所的な磁場Bが鎖交する。通常の給電コイルが作る交番磁場は、コイルに極めて近接しない限りは、検出線L,Lが1回撚合される距離に比べて磁場勾配は大きくないため、磁場Bと磁場Bとは略等しいとみなすことができる。従って、磁場鎖交面S,Sを鎖交磁束の大きさは、S≒Sである。一方、磁場鎖交面Sと磁場鎖交面Sとは、検出線L,Lの回路ループからみて磁束の鎖交する方向は逆向きとなっているため、磁場鎖交面Sにおいて回路ループに発生する誘導電流と、磁場鎖交面Sにおいて回路ループに発生する誘導電流は逆向きとなる。従って、両者は打ち消し合って、検出線L,Lの回路ループ全体からみて、誘導電流は発生しない。従って、全体として誘導電圧の発生がほぼ完全に抑えられ、外部の交番磁場がある環境に於いても、より正確な温度検出が可能となる。 FIG. 4 is a view for explaining the relationship of the wire bundle 2 of FIG. 1 to an external magnetic field. In FIG. 4, for convenience of description, the detection lines L 1 and L 2 are shown with a large separation. The detection lines L 1 and L 2 are twisted with each other, but when an external magnetic field B is applied, a plane perpendicular to the external magnetic field B (“the magnetic field interlinking plane”) is formed in the gap between the detection lines L 1 and L 2. "). Since the detection lines L 1 and L 2 are twisted, one magnetic field interlinking surface is formed for each twist. As shown in FIG. 4, adjacent magnetic field interlinking surfaces are S 1 and S 2 . Since the number of twisted turns of the detection lines L 1 and L 2 is substantially constant when viewed locally, the areas of the magnetic-field intersecting surfaces S 1 and S 2 can be regarded as substantially constant. The magnetic chain交面S 1 interlinked local magnetic field (magnetic flux density) B 1 is a chain, local magnetic field B 2 is interlinked to the magnetic field chain交面S 2. As long as the alternating magnetic field generated by a normal power supply coil is not very close to the coil, the magnetic field gradient is not large compared to the distance at which the detection lines L 1 and L 2 are twisted once, so that the magnetic field B 1 and the magnetic field B 2 Can be considered to be approximately equal to Therefore, the magnitude of the magnetic flux linking the magnetic field linkage surfaces S 1 and S 2 is S 1 B 1 ≒ S 2 B 2 . Meanwhile, since the magnetic field chains交面S 1 and the magnetic strand交面S 2 is the interlinked direction of the magnetic flux as viewed from the circuit loop of the detection lines L 1, L 2 has a reversed magnetic field chains交面S an induction current generated in the circuit loop at 1, the induction current generated in the circuit loop in a magnetic field chains交面S 2 is the opposite direction. Therefore, the two cancel each other out, and no induced current is generated when viewed from the entire circuit loop of the detection lines L 1 and L 2 . Therefore, generation of induced voltage is almost completely suppressed as a whole, and more accurate temperature detection is possible even in an environment where an external alternating magnetic field exists.

尚、本発明に於いては、検出線L,Lは、図2の如く互いに撚り合わせて素線束2とすることが好ましいが、例えば、図2(c)のように、検出線L,Lを十分に密着させて、検出線L,Lの回路ループを通過する外部磁場を、誘導電流が無視できる程度に十分に小さくすることができれば、必ずしも撚り合わされていなくてもよい。 In the present invention, it is preferable that the detection lines L 1 and L 2 are twisted with each other as shown in FIG. 2 to form the wire bundle 2. For example, as shown in FIG. 1, L 2 and by sufficiently close contact, the external magnetic field that passes through the circuit loop of the detection lines L 1, L 2, if it is possible to sufficiently small that the induced current is negligible, even if not necessarily twisted Good.

図5は、実施例1の温度検出体2を非接触給電装置の給電コイルに設置して温度検出装置を構成した例を示す図である。素線束面充填体4は、給電コイルケース5の表面(又は裏面)に貼り付けて使用する。素線束面充填体4の上方から受電コイル(図示せず)が接近し、給電コイルケース5内部の給電コイル(図示せず)との間で非接触送電が行われる。給電コイルケース5の上部に、金属片などの異物が置かれると、給電コイルの発生する磁場によって、異物内部に誘導電流(渦電流)が生じ、異物が発熱する。この熱により温度検出体1の抵抗値が変化し、この抵抗変化を、接続端子3に接続される抵抗検出回路6で検出することによって異物が検出される。また、これにより給電コイルへの送電を停止し、火災等の事故を未然に防ぐことができる。   FIG. 5 is a diagram illustrating an example in which the temperature detector 2 according to the first embodiment is installed in a power supply coil of a non-contact power supply device to configure a temperature detection device. The wire bundle surface filling body 4 is used by being attached to the front surface (or the back surface) of the power feeding coil case 5. A power receiving coil (not shown) approaches from above the wire bundle filling member 4, and non-contact power transmission is performed with a power feeding coil (not shown) inside the power feeding coil case 5. When a foreign substance such as a metal piece is placed on the upper part of the power supply coil case 5, an induced current (eddy current) is generated inside the foreign substance due to a magnetic field generated by the power supply coil, and the foreign substance generates heat. The resistance of the temperature detector 1 changes due to this heat, and the resistance change is detected by the resistance detection circuit 6 connected to the connection terminal 3 to detect foreign matter. In addition, power transmission to the power supply coil can be stopped, thereby preventing an accident such as a fire.

図6は、本発明の実施例2に係る温度検出体の斜視図である。本実施例の温度検出体1は、基本的には実施例1と同様の構成を有するが、素線束面充填体4を、エポキシなどの熱伝導性のモールド樹脂7により封止しモールド成形した点が異なる。このように、モールド成形することで、素線束2が散けることがなく、設置や取り扱いが容易となる。   FIG. 6 is a perspective view of the temperature detector according to the second embodiment of the present invention. The temperature detector 1 of this embodiment has basically the same configuration as that of the first embodiment, but the wire bundle surface filling body 4 is sealed and molded by a heat conductive mold resin 7 such as epoxy. The points are different. In this way, by molding, the strand bundle 2 is not scattered, and installation and handling are easy.

図7は、本発明の実施例3に係る温度検出体の斜視図である。本実施例の温度検出体1は、素線束2が矩形面を充填するように渦巻状に捲回され、素線束面充填体4が形成されている。素線束面充填体4は、実施例2と同様、モールド樹脂7に封止されている。   FIG. 7 is a perspective view of a temperature detector according to Embodiment 3 of the present invention. In the temperature detector 1 of the present embodiment, a wire bundle 2 is spirally wound so as to fill a rectangular surface, and a wire bundle surface filling body 4 is formed. The wire bundle surface filling body 4 is sealed in the mold resin 7 as in the second embodiment.

図8は、本発明の実施例4に係る温度検出体の斜視図である。本実施例の温度検出体1は、素線束2が矩形面を充填するようにジグザグ状に配線され、素線束面充填体4が形成されている。素線束面充填体4は、実施例2と同様、モールド樹脂7に封止されている。   FIG. 8 is a perspective view of a temperature detector according to Embodiment 4 of the present invention. In the temperature detector 1 of the present embodiment, the wire bundle 2 is wired in a zigzag shape so as to fill a rectangular surface, and a wire bundle surface filling body 4 is formed. The wire bundle surface filling body 4 is sealed in the mold resin 7 as in the second embodiment.

図9は、本発明の実施例5に係る温度検出体の斜視図である。本実施例の温度検出体1は、素線束2が矩形面を充填するようにミアンダ状に配線され、素線束面充填体4が形成されている。素線束面充填体4は、実施例2と同様、モールド樹脂7に封止されている。   FIG. 9 is a perspective view of a temperature detector according to Embodiment 5 of the present invention. In the temperature detector 1 of the present embodiment, the wire bundle 2 is wired in a meander shape so as to fill a rectangular surface, and a wire bundle surface filling body 4 is formed. The wire bundle surface filling body 4 is sealed in the mold resin 7 as in the second embodiment.

図10は、本発明の実施例6に係るケーブルの正面図である。図10のケーブル8は、送電ケーブルであり、通電用の電線9に、2本の検出線L,Lからなる素線束2が、互いに絶縁した状態で、スリーブ10により束ねられている。電線9及び検出線L,Lは、絶縁被覆された複数の素線が蔓巻状に撚り合わされたリッツ線であり、素線のうちの隣り合う2本の素線を検出線L,Lとして利用している。検出線L,Lの先端2aは短絡されており、また、検出線L,Lの基端側には、接続端子3,3が設けられている。 FIG. 10 is a front view of a cable according to Embodiment 6 of the present invention. A cable 8 in FIG. 10 is a power transmission cable, and a wire bundle 2 including two detection lines L 1 and L 2 is bundled by a sleeve 10 in a state insulated from each other on a current-carrying wire 9. The electric wire 9 and the detection wires L 1 and L 2 are litz wires in which a plurality of insulated wires are twisted in a spiral shape, and two adjacent wires among the wires are connected to the detection wire L 1. , it has been used as L 2. The front ends 2a of the detection lines L 1 and L 2 are short-circuited, and connection terminals 3 and 3 are provided on the base end sides of the detection lines L 1 and L 2 .

この両接続端子3,3間の抵抗値を検出することにより、電線9の全体を通した温度を検出することができる。例えば、電線9の全区間のうちの一部で温度上昇が生じた場合にも、検出することが可能となる。   By detecting the resistance value between the two connection terminals 3, 3, the temperature through the entire wire 9 can be detected. For example, even when a temperature rise occurs in a part of the entire section of the electric wire 9, the detection can be performed.

図11は、本発明の実施例7に係るケーブルの正面図である。図11のケーブル8は、光ファイバ・ケーブルであり、通光用の光ファイバ線束11に、2本の検出線L,Lからなる素線束2が、互いに絶縁した状態で、蔓巻状に撚り合わせて巻き付けられ、スリーブ10により散けないように束ねられている。光ファイバ線束11は、複数の光ファイバの素線が束ねられたものである。検出線L,Lの先端2aは短絡されており、また、検出線L,Lの基端側には、接続端子3,3が設けられている。 FIG. 11 is a front view of the cable according to the seventh embodiment of the present invention. A cable 8 in FIG. 11 is an optical fiber cable, and a wire bundle 2 composed of two detection lines L 1 and L 2 is wound around an optical fiber bundle 11 for light transmission in a state where the wire bundle 2 is insulated from each other. And wound around the sleeve 10 so as not to be scattered. The optical fiber bundle 11 is a bundle of a plurality of optical fibers. The front ends 2a of the detection lines L 1 and L 2 are short-circuited, and connection terminals 3 and 3 are provided on the base end sides of the detection lines L 1 and L 2 .

この両接続端子3,3間の抵抗値を検出することにより、光ファイバ線束11の全体を通した温度を検出することができる。例えば、何らかの異常により光ファイバ線束11の一部の温度が上昇すると、両接続端子3,3間の抵抗値の変化として現れる。これにより、光ファイバ線束11のどの部分に異常が生じた場合にも、検出することが可能となる。   By detecting the resistance value between the two connection terminals 3, 3, the temperature of the entire optical fiber bundle 11 can be detected. For example, if the temperature of a part of the optical fiber bundle 11 rises due to some abnormality, it appears as a change in the resistance value between the two connection terminals 3. This makes it possible to detect any abnormality of the optical fiber bundle 11 in any part.

図12は、本発明の実施例8に係るコイルの斜視図である。図12のコイル12は、
両端にフランジ13a,13aが形成された円柱形の芯部材13の、両フランジ13a,13a間の側面に、図10に示した実施例6のケーブル8(但し、本実施例ではスリーブ10は省略されている。)が捲回された構成を有する。実施例6で説明した通り、ケーブル8には、絶縁被覆された複数の素線が蔓巻状に撚り合わされたリッツ線が利用され、素線のうちの隣り合う2本の素線を検出線L,Lとして利用している。また、検出線L,Lの先端2aは短絡されており、また、検出線L,Lの基端側には、接続端子3,3が設けられている。
FIG. 12 is a perspective view of the coil according to the eighth embodiment of the present invention. The coil 12 in FIG.
The cable 8 of the sixth embodiment shown in FIG. 10 (however, the sleeve 10 is omitted in this embodiment) is provided on the side face between the two flanges 13a, 13a of the cylindrical core member 13 having the flanges 13a, 13a formed at both ends. ) Is wound. As described in the sixth embodiment, the cable 8 is a litz wire in which a plurality of insulated wires are twisted in a spiral shape, and two adjacent wires among the wires are detected. They are used as L 1 and L 2 . The distal ends 2a of the detection lines L 1 and L 2 are short-circuited, and connection terminals 3 and 3 are provided on the base end sides of the detection lines L 1 and L 2 .

これにより、通常であれば測定が困難な、コイル12内の電線9の温度を、リアルタイムに検出することが可能となる。   This makes it possible to detect the temperature of the electric wire 9 in the coil 12, which is normally difficult to measure, in real time.

1 温度検出体
2 素線束
2a 先端
3 接続端子
4 素線束面充填体
5 給電コイルケース
6 抵抗検出回路
7 モールド樹脂
8 ケーブル
9 電線
10 スリーブ
11 光ファイバ線束
12 コイル
13 芯部材
13a フランジ
DESCRIPTION OF SYMBOLS 1 Temperature detector 2 Wire bundle 2a Tip 3 Connection terminal 4 Wire bundle surface filling material 5 Power supply coil case 6 Resistance detection circuit 7 Mold resin 8 Cable 9 Electric wire 10 Sleeve 11 Optical fiber bundle 12 Coil 13 Core member 13a Flange

Claims (2)

50〜200kHzの交番磁場内において温度を検出する温度検出体であって、
少なくとも2本の電気抵抗が温度変化する導体からなる素線が、互いに絶縁した状態で束ねられた素線束を備え、
前記素線束は、該素線束を構成する素線のうち2本の素線を検出線L,Lとし、前記検出線L,Lは、先端が短絡され、且つ、該素線束を構成する各検出線L,Lが、互いに撚り合わされており、
前記検出線L,Lの基端側に抵抗検出用接続端子を設けられており、
前記素線束を構成する前記検出線L,Lは、該検出線L,Lの電気抵抗率をρ、絶対透磁率をμ、前記交番磁場の角周波数をωとしたとき、その線径が(2ρ/ωμ)1/2以下とされており、
前記素線束が、所定の環状面内を充填するように渦巻状に配線され若しくは所定の面内を充填するようにジグザグ状又はミアンダ状に配線されており、且つ熱伝導性のモールド樹脂により封止されていること、
又は、所定の環状面内を充填するように渦巻状に捲回され接着剤によって隣り合う素線束同士が接着されていることを特徴とする温度検出体。
A temperature detector for detecting a temperature in an alternating magnetic field of 50 to 200 kHz,
At least two wires made of a conductor whose electrical resistance changes in temperature include a wire bundle bundled in a state insulated from each other,
In the element bundle, two of the elements constituting the element bundle are set as detection lines L 1 and L 2 , and the ends of the detection lines L 1 and L 2 are short-circuited. , Each of the detection lines L 1 and L 2 is twisted with each other,
A connection terminal for resistance detection is provided on the base end side of the detection lines L 1 and L 2 ,
The detection lines L 1, L 2 constituting the wire bundle, the該検outgoing line L 1, the electrical resistivity of the L 2 [rho, the absolute magnetic permeability mu, when the angular frequency of the alternating magnetic field omega, the The wire diameter is (2ρ / ωμ) 1/2 or less ,
The wire bundle is spirally wired so as to fill a predetermined annular surface or is wired in a zigzag or meander shape so as to fill a predetermined surface, and is sealed with a thermally conductive mold resin. Being stopped,
Alternatively, a temperature detector is provided, wherein adjacent wire bundles are spirally wound so as to fill a predetermined annular surface, and adjacent wire bundles are adhered to each other with an adhesive .
請求項1に記載の温度検出体を備え、2つの前記接続端子間に接続され、前記両接続端子間の電気抵抗値を検出する抵抗検出回路を備えた温度検出装置。 A temperature detection device comprising: the temperature detection body according to claim 1 ; and a resistance detection circuit connected between the two connection terminals and configured to detect an electric resistance value between the two connection terminals.
JP2015045137A 2015-03-06 2015-03-06 Temperature detector and temperature detector Expired - Fee Related JP6639097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045137A JP6639097B2 (en) 2015-03-06 2015-03-06 Temperature detector and temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045137A JP6639097B2 (en) 2015-03-06 2015-03-06 Temperature detector and temperature detector

Publications (2)

Publication Number Publication Date
JP2016164527A JP2016164527A (en) 2016-09-08
JP6639097B2 true JP6639097B2 (en) 2020-02-05

Family

ID=56876219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045137A Expired - Fee Related JP6639097B2 (en) 2015-03-06 2015-03-06 Temperature detector and temperature detector

Country Status (1)

Country Link
JP (1) JP6639097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001511A1 (en) * 2019-07-04 2021-01-07 Philip Morris Products S.A. Inductive heater assembly with temperature sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707686A (en) * 1986-04-03 1987-11-17 General Electric Company Over temperature sensing system for power cables
CH669041A5 (en) * 1986-04-18 1989-02-15 Mettler Instrumente Ag ELECTROMAGNETIC FORCE COMPENSATING SCALE.
JPH02216105A (en) * 1989-02-17 1990-08-29 Matsushita Electric Ind Co Ltd Optical fiber cable
JPH03199934A (en) * 1989-12-27 1991-08-30 Shunsaku Nakauchi Distribution-type temperature detecting apparatus, distribution-type fire sensor and fire sensing system
JPH08222426A (en) * 1995-02-15 1996-08-30 Hitachi Ltd Coil structure of superconducting magnet

Also Published As

Publication number Publication date
JP2016164527A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
KR101034386B1 (en) Temperature measuring cable
US9791474B2 (en) Current sensing device, and method of manufacturing the same
US20040233034A1 (en) Flexible averaging resistance temperature detector
TW201625965A (en) Flexible current sensor
US20140204973A1 (en) Temperature measuring system of electric motor having holding member holding coil end
CN110501079B (en) Temperature abnormality detection system, temperature abnormality detection cable, and cable
EP3654043B1 (en) Multi-use test lead
JP7175251B2 (en) Temperature sensor and power distribution component with the same, motor with power distribution component
CN109313461A (en) Power connector with integrated power monitoring
JP6639097B2 (en) Temperature detector and temperature detector
CN105556619A (en) Method and armoured power cable for transporting alternate current
US20170052053A1 (en) Water level sensor
US3378761A (en) Nondestructive testing device for testing wire ropes and similarly shaped objects
JPH10340778A (en) Heater wire
JPWO2019087572A1 (en) Current detection coil
US11874181B2 (en) Sensor line and measuring assembly
JP5562168B2 (en) Resistance temperature detector manufacturing method, and temperature measurement sensor incorporating resistance temperature detector
JP2010153164A (en) Spiral tube heater with temperature measurement function
CN109328306A (en) The combined type flux ring and B-DOT line of mineral insulation
RU124103U1 (en) FLEXIBLE ELECTRIC HEATER
CN203858044U (en) Temperature measuring probe capable of rising temperature
KR101375700B1 (en) Coil having multi-layered structure
JP5646203B2 (en) Current sensor
JP2019129564A (en) Foreign-matter detecting element for non-contact power feed device and non-contact power feed device
KR100895931B1 (en) NON-MAGNETIC and NON-ELECTRIC FIELD HEATING WIRE IN BEDDING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees