JP6628473B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6628473B2
JP6628473B2 JP2014265773A JP2014265773A JP6628473B2 JP 6628473 B2 JP6628473 B2 JP 6628473B2 JP 2014265773 A JP2014265773 A JP 2014265773A JP 2014265773 A JP2014265773 A JP 2014265773A JP 6628473 B2 JP6628473 B2 JP 6628473B2
Authority
JP
Japan
Prior art keywords
sealing member
light emitting
light
refractive index
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014265773A
Other languages
Japanese (ja)
Other versions
JP2016127095A (en
Inventor
基貴 竹内
基貴 竹内
博史 市川
博史 市川
泰典 清水
泰典 清水
蔵本 雅史
雅史 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014265773A priority Critical patent/JP6628473B2/en
Publication of JP2016127095A publication Critical patent/JP2016127095A/en
Application granted granted Critical
Publication of JP6628473B2 publication Critical patent/JP6628473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

近年、照明用光源として半導体発光素子を搭載した発光装置が利用されており、次世代照明の光源として注目を集めている。この照明用光源に用いられる発光装置は、所望の発光色を得るために、例えば、半導体発光素子と、その半導体発光素子を覆う波長変換部と、波長変換部を覆う透光性部材とを含んで構成される。ここで、波長変換層は、例えば、蛍光体を含む透光性を有する樹脂からなり、透光性部材は、例えば、レンズ形状に成形された透光性を有する樹脂からなる。   2. Description of the Related Art In recent years, light emitting devices equipped with semiconductor light emitting elements have been used as light sources for illumination, and have attracted attention as light sources for next generation illumination. The light-emitting device used for the illumination light source includes, for example, a semiconductor light-emitting element, a wavelength conversion unit covering the semiconductor light-emitting element, and a light-transmitting member covering the wavelength conversion unit in order to obtain a desired emission color. It consists of. Here, the wavelength conversion layer is made of, for example, a light-transmitting resin containing a phosphor, and the light-transmitting member is made of, for example, a resin having a light-transmitting property molded into a lens shape.

この照明用光源に用いられる発光装置には、さらなる光取り出し効率の向上及び信頼性の向上が求められている。
例えば、特許文献1には、半導体発光素子と、半導体発光素子を覆う内部光透過層と、内部光透過層を覆う外部光透過層とを、備える発光装置が開示されている。内部光透過層の屈折率を、外部光透過層の屈折率より高くして光取り出し効率を向上させることが開示されている。半導体発光素子を構成する半導体層の屈折率が高いことを考慮して、内部光透過層の屈折率を、半導体層の屈折率と外部光透過層の屈折率の中間的な値に設定したものである。内部光透過層の材料には、金属アルコキシドにゾル・ゲル法を施して形成されたポリメタロキサンゲル、超微粒子状金属酸化物にゾル・ゲル法を施して形成されたポリメタロキサンゲル、低融点ガラスを使用している。
The light emitting device used for the illumination light source is required to further improve light extraction efficiency and reliability.
For example, Patent Document 1 discloses a light emitting device including a semiconductor light emitting element, an internal light transmitting layer covering the semiconductor light emitting element, and an external light transmitting layer covering the internal light transmitting layer. It is disclosed that the light extraction efficiency is improved by making the refractive index of the internal light transmitting layer higher than the refractive index of the external light transmitting layer. Considering that the refractive index of the semiconductor layer constituting the semiconductor light emitting element is high, the refractive index of the internal light transmitting layer is set to an intermediate value between the refractive index of the semiconductor layer and the refractive index of the external light transmitting layer. It is. Examples of the material of the internal light transmission layer include polymetalloxane gel formed by applying sol-gel method to metal alkoxide, polymetalloxane gel formed by applying sol-gel method to ultrafine metal oxide, Melting glass is used.

また、特許文献2では、LED素子と、蛍光物質を含み、LED素子を覆う光波長変換部と、光波長変換部を覆う透光性部材と、を備えるLED光源が開示されている。光波長変換部は、略円柱形状若しくは略円錐台形状を有し、略円柱形状若しくは略円錐台形状の側面は凹状曲面部分を形成している。凹状曲面部分を持つ光波長変換部の屈折率は、レンズ形状に成形された透光性部材の屈折率よりも小さいことが開示されている。すなわち、光波長変換部の形状が略円柱形状若しくは略円錐台形状であってかつその側面が特定の凹状曲面であるときには、光波長変換部の屈折率が透光性部材の屈折率より小さい場合に光取り出し効率が高くなることが示されている。一方、光波長変換部の屈折率が透光性部材の屈折率より大きい場合であっても、光波長変換部の形状を最適化することにより、光取り出し効果が向上すると記載されている。透光性部材の材質は、エポキシ樹脂を使用している。   Patent Literature 2 discloses an LED light source that includes an LED element, a light wavelength conversion unit that includes a fluorescent substance, and covers the LED element, and a translucent member that covers the light wavelength conversion unit. The light wavelength conversion unit has a substantially cylindrical shape or a substantially truncated cone shape, and the substantially cylindrical or substantially truncated cone-shaped side surface forms a concave curved surface portion. It is disclosed that the refractive index of a light wavelength conversion section having a concave curved surface portion is smaller than the refractive index of a light-transmitting member formed into a lens shape. That is, when the shape of the light wavelength conversion portion is substantially cylindrical or substantially truncated cone and the side surface is a specific concave curved surface, the refractive index of the light wavelength conversion portion is smaller than the refractive index of the light transmitting member. It is shown that the light extraction efficiency is increased. On the other hand, it is described that, even when the refractive index of the light wavelength conversion part is larger than the refractive index of the translucent member, the light extraction effect is improved by optimizing the shape of the light wavelength conversion part. The material of the translucent member uses an epoxy resin.

特開2001−24236号公報JP 2001-24236 A 特開2005−123588号公報JP 2005-123588 A

しかしながら、初期性能において光取り出し効率を高くしても、長期間の使用により透光性部材が変色して出力が低下することがある。   However, even if the light extraction efficiency is increased in the initial performance, the light-transmitting member may be discolored and the output may be reduced due to long-term use.

そこで、光取り出し効率が高く、樹脂の変色による出力低下が抑制された発光装置を提供することを目的とする。   Accordingly, it is an object of the present invention to provide a light emitting device having high light extraction efficiency and suppressing a decrease in output due to discoloration of resin.

本実施形態にかかる発光装置は、発光素子と、前記発光素子を覆う第一封止部材と、前記第一封止部材を覆う第二封止部材と、を備え、前記第一封止部材及び前記第二封止部材はそれぞれシリコーン樹脂を主成分として含み、前記第一封止部材の第一屈折率は、前記第二封止部材の第二屈折率より小さい。   The light emitting device according to the present embodiment includes a light emitting element, a first sealing member covering the light emitting element, and a second sealing member covering the first sealing member, and the first sealing member and The second sealing members each include a silicone resin as a main component, and the first refractive index of the first sealing member is smaller than the second refractive index of the second sealing member.

本発明の実施形態に係る発光装置は、光取り出し効率が高く、樹脂の変色による出力低下および色ずれが抑制された発光装置を提供することができる。   The light-emitting device according to the embodiment of the present invention can provide a light-emitting device with high light extraction efficiency and with suppressed output reduction and color shift due to discoloration of the resin.

実施形態にかかる発光装置の模式平面図である。FIG. 2 is a schematic plan view of the light emitting device according to the embodiment. 実施形態にかかる発光装置の模式断面図である。FIG. 2 is a schematic cross-sectional view of the light emitting device according to the embodiment.

以下、図面を参照しながら実施形態に係る発光装置について説明する。図1は、実施形態にかかる発光装置の模式平面図である。図2は、実施形態にかかる発光装置の模式断面図である。図2は、図1のII−II線の断面図である。
本実施形態の発光装置は、導電性部材5が配置された支持体6と、支持体6上に載置された発光素子1と、発光素子1を覆う波長変換部材2と、波長変換部材2と支持体6の一部とを覆う第一封止部材3と、第一封止部材3を覆う第二封止部材4とを備える。波長変換部材2は層状に設けてもよい。第二封止部材4は、例えば、凸レンズ形状を成している。発光素子1と導電性部材5とは、接合部材7を用いて電気的に接合している。支持体6の上面には導電性部材5が配置されており、支持体6の下面には正極の電極端子9、負極の電極端子10が配置されており、導電性部材5と、正極の電極端子9、負極の電極端子10とは、貫通孔等を介して電気的に接続している。発光素子1の外周の波長変換部材2上には、発光素子1からの光や外部からの光を効率的に反射する反射部材8が設けられている。
Hereinafter, a light emitting device according to an embodiment will be described with reference to the drawings. FIG. 1 is a schematic plan view of the light emitting device according to the embodiment. FIG. 2 is a schematic cross-sectional view of the light emitting device according to the embodiment. FIG. 2 is a sectional view taken along line II-II in FIG.
The light emitting device according to the present embodiment includes a support 6 on which a conductive member 5 is disposed, a light emitting element 1 placed on the support 6, a wavelength conversion member 2 covering the light emitting element 1, and a wavelength conversion member 2. A first sealing member covering the first sealing member; and a second sealing member covering the first sealing member. The wavelength conversion member 2 may be provided in a layer shape. The second sealing member 4 has, for example, a convex lens shape. The light emitting element 1 and the conductive member 5 are electrically connected using the bonding member 7. The conductive member 5 is disposed on the upper surface of the support 6, and the positive electrode terminal 9 and the negative electrode terminal 10 are disposed on the lower surface of the support 6. The conductive member 5 and the positive electrode The terminal 9 and the negative electrode terminal 10 are electrically connected through a through hole or the like. On the wavelength conversion member 2 on the outer periphery of the light emitting element 1, a reflecting member 8 that efficiently reflects light from the light emitting element 1 and light from the outside is provided.

ここで、発光素子1は、例えば、成長基板上に、半導体層を含む半導体積層構造を有し、成長基板側を主光取出し面としており、支持体6上にフリップチップ実装にて搭載されている。支持体6の表面には正負の導電性部材が設けられ、発光素子1と導電性部材とは例えば導電性の接合部材を介して電気的に接続される。また、波長変換部材2は、発光素子1より放出される光の波長を変換して異なる波長の光を出射する。   Here, the light emitting element 1 has, for example, a semiconductor laminated structure including a semiconductor layer on a growth substrate, and has the growth substrate side as a main light extraction surface, and is mounted on the support 6 by flip chip mounting. I have. Positive and negative conductive members are provided on the surface of the support 6, and the light emitting element 1 and the conductive member are electrically connected via, for example, a conductive bonding member. Further, the wavelength conversion member 2 converts the wavelength of light emitted from the light emitting element 1 and emits light of a different wavelength.

また、第一封止部材3及び第二封止部材4はそれぞれシリコーン樹脂を主成分として含んでいる。シリコーン樹脂は、エポキシ樹脂よりも耐熱性および耐光性が高い。第一封止部材3及び第二封止部材4がそれぞれシリコーン樹脂を主成分として含むことにより、長期間にわたって安定して発光する発光装置を提供できる。   The first sealing member 3 and the second sealing member 4 each contain a silicone resin as a main component. Silicone resin has higher heat resistance and light resistance than epoxy resin. Since the first sealing member 3 and the second sealing member 4 each include a silicone resin as a main component, a light emitting device that emits light stably for a long period of time can be provided.

それぞれシリコーン樹脂を主成分として含む第一封止部材3と第二封止部材4とを用いて発光装置を構成する場合、第一封止部材3の屈折率と第二封止部材4の屈折率を共に大きくした方が取り出し効率は高くなるものの、屈折率がある値より大きくなると長期間の使用により封止部材が変色し易くなり、光の取り出し効率の劣化、色ずれも大きくなる。   When the light emitting device is configured using the first sealing member 3 and the second sealing member 4 each containing a silicone resin as a main component, the refractive index of the first sealing member 3 and the refraction of the second sealing member 4. When both the refractive indices are increased, the extraction efficiency is increased. However, when the refractive index is larger than a certain value, the sealing member is liable to be discolored due to long-term use, and the light extraction efficiency is deteriorated and the color shift is increased.

それぞれシリコーン樹脂を主成分として含む第一封止部材3と第二封止部材4とを用いて発光装置を構成する場合には、第一封止部材3の第一屈折率を、第二封止部材4の第二屈折率より小さくなるように設定することにより、比較的高い光の取り出し効率を確保することができる。また、発光装置を長期間使用した場合であっても第一封止部材3及び第二封止部材4の変色が抑制される。   When the light emitting device is configured using the first sealing member 3 and the second sealing member 4 each containing a silicone resin as a main component, the first refractive index of the first sealing member 3 is set to the second sealing member. By setting the stop member 4 to be smaller than the second refractive index, a relatively high light extraction efficiency can be secured. Further, even when the light emitting device is used for a long time, discoloration of the first sealing member 3 and the second sealing member 4 is suppressed.

そこで、本実施形態の発光装置では、第一封止部材3及び第二封止部材4はそれぞれシリコーン樹脂を主成分として含むものとし、かつ第一封止部材3の第一屈折率を、第二封止部材4の第二屈折率より小さくなるように設定している。これにより、光の取り出し効率を高くしつつ、長期間使用した場合であっても第一封止部材3及び第二封止部材4の変色を抑制することができる。   Therefore, in the light emitting device of the present embodiment, the first sealing member 3 and the second sealing member 4 each include a silicone resin as a main component, and the first refractive index of the first sealing member 3 is set to the second refractive index. It is set to be smaller than the second refractive index of the sealing member 4. Thereby, the discoloration of the first sealing member 3 and the second sealing member 4 can be suppressed even when the device is used for a long time, while increasing the light extraction efficiency.

すなわち、第一封止部材3は、シリコーン樹脂を主成分として含んでいるとはいえ、発光素子1の直近にあるため発光素子1による光や熱の影響を強く受け、変色しやすい環境にある。この点を考慮して、第一封止部材3に主成分として含まれるシリコーン樹脂を第二封止部材4に主成分として含まれるシリコーン樹脂より屈折率が低いものとし、耐光性及び耐熱性をより高めている。長期間の使用による変色を効果的に抑えるためには、第一封止部材3に主成分として含まれるシリコーン樹脂の屈折率は1.42以上1.50以下であることが好ましい。屈折率の調整は、例えば、メチルフェニルシリコーン樹脂を用いる場合には、メチル基に対するフェニル基の割合を調整することにより、所望の屈折率を実現できる。
具体的には、メチルフェニルシリコーン樹脂は、メチル基に対するフェニル基の割合を高くすることにより、屈折率を高くすることができる。しかしながら、フェニル基の割合を高くし過ぎると変色しやすくなり、光取り出し効率を劣化させる原因となる。
That is, although the first sealing member 3 contains the silicone resin as a main component, it is located in the immediate vicinity of the light emitting element 1 and thus is strongly influenced by light and heat by the light emitting element 1 and is in an environment where the color is easily changed. . In consideration of this point, the silicone resin contained as a main component in the first sealing member 3 has a lower refractive index than the silicone resin contained as a main component in the second sealing member 4, and has light resistance and heat resistance. More expensive. In order to effectively suppress discoloration due to long-term use, the refractive index of the silicone resin contained as a main component in the first sealing member 3 is preferably 1.42 or more and 1.50 or less. For example, when a methylphenyl silicone resin is used, a desired refractive index can be achieved by adjusting the ratio of a phenyl group to a methyl group.
Specifically, the methylphenyl silicone resin can increase the refractive index by increasing the ratio of phenyl groups to methyl groups. However, if the ratio of the phenyl group is too high, the color tends to be discolored, which causes the light extraction efficiency to deteriorate.

また、第二封止部材4は、発光素子1からの光の影響が第一封止部材3よりも小さく、また発光装置の光取り出し効率を高くするためには、第二封止部材4の屈折率を高くすることが好ましい。そこで、第二封止部材4に主成分として含まれるシリコーン樹脂の屈折率を、第一封止部材3に主成分として含まれるシリコーン樹脂をより高くして、光取り出し効率を高くしている。第二封止部材4に主成分として含まれるシリコーン樹脂の屈折率は、1.51以上1.54以下であることが好ましく、これにより、光取り出し効率を高くしつつ、かつ長期間の使用による第二封止部材4自身の変色を抑えることができる。   Further, the second sealing member 4 is less affected by light from the light emitting element 1 than the first sealing member 3, and in order to increase the light extraction efficiency of the light emitting device, the second sealing member 4 It is preferable to increase the refractive index. Therefore, the refractive index of the silicone resin contained as a main component in the second sealing member 4 is made higher than that of the silicone resin contained in the first sealing member 3 as a main component, thereby increasing the light extraction efficiency. The refractive index of the silicone resin contained as a main component in the second sealing member 4 is preferably 1.51 or more and 1.54 or less, whereby the light extraction efficiency can be increased and the silicone resin can be used for a long time. Discoloration of the second sealing member 4 itself can be suppressed.

また、第二封止部材4に主成分として含まれるシリコーン樹脂の屈折率を、第一封止部材3に主成分として含まれるシリコーン樹脂の屈折率より高くすることにより、第一封止部材3と第二封止部材4の界面における全反射を防ぐことができ、光の損失を減らすことができる。   Further, by setting the refractive index of the silicone resin contained as a main component in the second sealing member 4 higher than the refractive index of the silicone resin contained as a main component in the first sealing member 3, And total reflection at the interface between the first sealing member 4 and the second sealing member 4 can be prevented, and light loss can be reduced.

ここで、本明細書における屈折率は(株)アタゴ製アッベ屈折計にて25℃条件下、液状状態、ナトリウムD線(589nm)の屈折率をいう。
また、第一封止部材3の膜厚は波長変換部材2および反射部材8の剥がれを防止する為に両者を被覆する様に形成する厚さであることが好ましい。第一封止部材3の厚さは、好ましくは1μm〜150μmである。より好ましくは10μm〜100μmである。特に好ましくは30μm〜80μmである。
Here, the refractive index in the present specification refers to the refractive index of sodium D line (589 nm) in a liquid state at 25 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd.
Further, the film thickness of the first sealing member 3 is preferably a thickness formed so as to cover both the wavelength conversion member 2 and the reflection member 8 in order to prevent the wavelength conversion member 2 and the reflection member 8 from peeling off. The thickness of the first sealing member 3 is preferably 1 μm to 150 μm. More preferably, it is 10 μm to 100 μm. Particularly preferably, it is 30 μm to 80 μm.

・評価1
本実施形態の発光装置の効果を実証するために、図1及び図2に示す構成の発光装置を作製して、光取り出し効率(相対光束)と長期信頼性(通電による色ずれ確認)を評価した。
ここでは、屈折率の異なるシリコーン樹脂を用いた6種類の発光装置を作製して評価した。この評価1では、各発光装置において、第一封止部材3及び第二封止部材4を屈折率が同じシリコーン樹脂により形成した。
発光素子1は発光ピーク波長450nmの発光ダイオードであり、フリップチップ状態で導電性部材5上に接合部材7(例えばAuバンプ)を使用し載置される。
波長変換部材2はYAG系の蛍光体粒子(平均粒径8μm)を用い、電着法にて発光素子1を覆うように形成する。波長変換部材2の厚みは約30μmである。
反射部材8は酸化チタン(平均粒径約0.3μm)を用い、電着法にて発光素子1上の波長変換部材2以外の波長変換部材2上を覆う様に形成する。反射部材8の厚みは約20μmである。
第一封止部材3は、透光性樹脂であり、波長変換部材2および反射部材8の剥がれ防止の為、第一封止部材を含浸させ、また、両者を被覆する様に形成する。第一封止部材3はシリコーン樹脂を用いる。
第二封止部材4は、第一封止部材同様に透光性樹脂であり、圧縮成形により形成し、凸レンズ形状を有しており、第一封止部材と同一の材料としている。

また、光取り出し効率は、第一封止部材、第二封止部材の屈折率がともに1.496である発光装置の光束を100とし、これを基準として、他の屈折率条件における出力値を算出した。長期信頼性試験(通電による色ずれ確認)は、常温で一定時間通電した後の初期値からの色ずれ量により評価した。その結果を、以下の表1に示す。
・ Evaluation 1
In order to demonstrate the effect of the light emitting device of the present embodiment, a light emitting device having the configuration shown in FIGS. 1 and 2 was manufactured, and light extraction efficiency (relative luminous flux) and long-term reliability (confirmation of color shift due to energization) were evaluated. did.
Here, six types of light emitting devices using silicone resins having different refractive indexes were manufactured and evaluated. In Evaluation 1, in each light emitting device, the first sealing member 3 and the second sealing member 4 were formed of a silicone resin having the same refractive index.
The light-emitting element 1 is a light-emitting diode having an emission peak wavelength of 450 nm, and is mounted on the conductive member 5 in a flip-chip state using a bonding member 7 (for example, an Au bump).
The wavelength conversion member 2 is formed using YAG-based phosphor particles (average particle diameter: 8 μm) so as to cover the light emitting element 1 by an electrodeposition method. The thickness of the wavelength conversion member 2 is about 30 μm.
The reflecting member 8 is formed using titanium oxide (average particle size: about 0.3 μm) so as to cover the wavelength conversion members 2 other than the wavelength conversion member 2 on the light emitting element 1 by an electrodeposition method. The thickness of the reflection member 8 is about 20 μm.
The first sealing member 3 is a translucent resin, and is formed so as to impregnate the first sealing member and cover both of the wavelength conversion member 2 and the reflection member 8 in order to prevent the wavelength conversion member 2 and the reflection member 8 from peeling off. The first sealing member 3 uses a silicone resin.
The second sealing member 4 is a light-transmitting resin like the first sealing member, is formed by compression molding, has a convex lens shape, and is made of the same material as the first sealing member.

In addition, the light extraction efficiency is defined as 100 with the luminous flux of the light emitting device in which the refractive indexes of the first sealing member and the second sealing member are both 1.496, and the output value under other refractive index conditions is set based on this. Calculated. The long-term reliability test (confirmation of color misregistration by energization) was evaluated based on the amount of color misregistration from an initial value after energization at room temperature for a certain time. The results are shown in Table 1 below.

表1に示すように、屈折率が高くなるにつれ相対光束が高くなる傾向を示した。しかし、屈折率上昇させると発光装置の長期信頼性に関わる通電試験色ずれ量が大きくなる傾向が確認された。具体的には、表1に示すように、屈折率を例えば、1.55とした場合、初期的に光取り出し効率が向上するが、長期間の使用により第一、第二封止部材3,4を構成する樹脂が変色して光取り出し効率は低下して発光出力が低下、及び色ずれが発生する。この樹脂の変色による光取り出し効率の低下は、主として、発光素子直近の第一封止部材3の樹脂の劣化が原因である。また、第一封止部材3と第二封止部材4の屈折率を同じにし、屈折率が1.42より低くなると、目標とする光取り出し効率が得られない。   As shown in Table 1, the relative luminous flux tended to increase as the refractive index increased. However, it was confirmed that when the refractive index was increased, the amount of color shift in the power-on test related to the long-term reliability of the light emitting device tended to increase. Specifically, as shown in Table 1, when the refractive index is set to, for example, 1.55, the light extraction efficiency is initially improved, but the first and second sealing members 3 and 3 are used over a long period of time. The resin constituting 4 is discolored, the light extraction efficiency is reduced, the light emission output is reduced, and color shift occurs. The decrease in the light extraction efficiency due to the discoloration of the resin is mainly caused by the deterioration of the resin of the first sealing member 3 near the light emitting element. If the refractive indexes of the first sealing member 3 and the second sealing member 4 are the same and the refractive index is lower than 1.42, the target light extraction efficiency cannot be obtained.

・評価2
評価1により屈折率が高くなることで光束が高くなることが確認されたが、評価2では、第二封止部材4の屈折率を1.535とし、第一封止部材3の屈折率を1.46,1.484,1.496,1.522とした4種類の発光装置を作製して光取り出し効率(相対光束)と長期信頼性(通電による色ずれ確認)を評価した。光取り出し効率の評価は、第二封止部材4の屈折率を1.535とし、第一封止部材3の屈折率を1.460とした発光装置の光束を100とし、これを基準として、相対光束により評価した。長期信頼性(通電による色ずれ確認)については、評価1と同様にした。
その結果を以下の表2に示す。
・ Evaluation 2
Evaluation 1 confirmed that the luminous flux was increased by increasing the refractive index. However, in Evaluation 2, the refractive index of the second sealing member 4 was set to 1.535, and the refractive index of the first sealing member 3 was set to 1.535. Four types of light emitting devices of 1.46, 1.484, 1.496 and 1.522 were manufactured, and light extraction efficiency (relative luminous flux) and long-term reliability (color shift confirmation by energization) were evaluated. The light extraction efficiency was evaluated by setting the refractive index of the second sealing member 4 to 1.535, the refractive index of the first sealing member 3 to 1.460, and the luminous flux of the light-emitting device to 1.460. It was evaluated by relative luminous flux. The long-term reliability (confirmation of color shift by energization) was the same as in Evaluation 1.
The results are shown in Table 2 below.

表2に示した結果から、第二封止部材4の屈折率を1.535に固定した場合、第一封止部材3の屈折率を、1.460まで低くしても相対光束を低下させることなく、長期信頼性に関わる通電試験色ずれを抑えることできることが確認された。また、長期信頼性に関わる通電試験色ずれを抑えるために、第一封止部材3の屈折率は1.50以下であることが好ましいことがわかる。   From the results shown in Table 2, when the refractive index of the second sealing member 4 is fixed at 1.535, the relative luminous flux is reduced even if the refractive index of the first sealing member 3 is reduced to 1.460. It was confirmed that the color shift in the current test related to the long-term reliability could be suppressed without any problem. In addition, it can be seen that the refractive index of the first sealing member 3 is preferably 1.50 or less in order to suppress the color shift in the current test related to long-term reliability.

1 発光素子
2 波長変換部材
3 第一封止部材
4 第二封止部材
5 導電性部材
6 支持体
7 接合部材
8 反射部材
9 正極の電極端子
10 負極の電極端子
REFERENCE SIGNS LIST 1 light emitting element 2 wavelength conversion member 3 first sealing member 4 second sealing member 5 conductive member 6 support 7 bonding member 8 reflecting member 9 positive electrode terminal 10 negative electrode terminal

Claims (5)

発光素子と、
前記発光素子を覆う第一封止部材と、
前記第一封止部材を覆う第二封止部材と、
を備え、
前記第一封止部材及び前記第二封止部材はそれぞれシリコーン樹脂を主成分として含み、前記第一封止部材の第一屈折率は、1.46以上1.50以下であり、前記第二封止部材の第二屈折率は、1.51以上1.54以下であり、
前記シリコーン樹脂はメチル基とフェニル基を含み、
前記第一封止部材に含まれるシリコーン樹脂におけるメチル基に対するフェニル基の割合は、前記第二封止部材に含まれるシリコーン樹脂におけるメチル基に対するフェニル基の割合より小さいことを特徴とする発光装置。
A light emitting element,
A first sealing member that covers the light emitting element,
A second sealing member that covers the first sealing member,
With
The first sealing member and the second sealing member each include a silicone resin as a main component, the first refractive index of the first sealing member is 1.46 or more and 1.50 or less, The second refractive index of the sealing member is 1.51 or more and 1.54 or less,
The silicone resin contains a methyl group and a phenyl group,
The light emitting device according to claim 1, wherein a ratio of a phenyl group to a methyl group in the silicone resin included in the first sealing member is smaller than a ratio of a phenyl group to a methyl group in the silicone resin included in the second sealing member.
第二封止部材は、凸レンズ形状を有することを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the second sealing member has a convex lens shape. 前記発光素子と前記第一封止部材との間に波長変換部材を含むことを特徴とする請求項1または2に記載の発光装置。   The light emitting device according to claim 1, further comprising a wavelength conversion member between the light emitting element and the first sealing member. 前記波長変換部材は、前記発光素子を覆う複数の蛍光体粒子からなり、前記蛍光体粒子間に前記第一封止部材が含浸されてなる請求項3に記載の発光装置。   The light emitting device according to claim 3, wherein the wavelength conversion member includes a plurality of phosphor particles that cover the light emitting element, and the first sealing member is impregnated between the phosphor particles. 前記第一封止部材の厚さは、1μm〜150μmである請求項1〜4のうちのいずれか1つに記載の発光装置。   The light emitting device according to claim 1, wherein a thickness of the first sealing member is 1 μm to 150 μm.
JP2014265773A 2014-12-26 2014-12-26 Light emitting device Active JP6628473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265773A JP6628473B2 (en) 2014-12-26 2014-12-26 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265773A JP6628473B2 (en) 2014-12-26 2014-12-26 Light emitting device

Publications (2)

Publication Number Publication Date
JP2016127095A JP2016127095A (en) 2016-07-11
JP6628473B2 true JP6628473B2 (en) 2020-01-08

Family

ID=56359663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265773A Active JP6628473B2 (en) 2014-12-26 2014-12-26 Light emitting device

Country Status (1)

Country Link
JP (1) JP6628473B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138418A (en) 2018-06-05 2019-12-13 삼성전자주식회사 Light emitting diode apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318383B2 (en) * 2007-08-07 2013-10-16 デクセリアルズ株式会社 Optical component sealing material and light emitting device
DE102008025491A1 (en) * 2008-05-28 2009-12-03 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and printed circuit board
JP2011129901A (en) * 2009-11-19 2011-06-30 Mitsubishi Chemicals Corp Method of manufacturing semiconductor light emitting device
JP5704168B2 (en) * 2010-05-18 2015-04-22 Jnc株式会社 Novel organosilicon compound, thermosetting resin composition containing the organosilicon compound, cured resin, and sealing material for optical semiconductor
CN102959745B (en) * 2010-12-17 2016-04-20 松下知识产权经营株式会社 LED matrix and manufacture method thereof
US10147853B2 (en) * 2011-03-18 2018-12-04 Cree, Inc. Encapsulant with index matched thixotropic agent
WO2013011628A1 (en) * 2011-07-19 2013-01-24 パナソニック株式会社 Light emitting device and method for manufacturing same

Also Published As

Publication number Publication date
JP2016127095A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
TWI712181B (en) Light-emitting device, integrated light-emitting device, and light-emitting module
JP4789672B2 (en) Light emitting device and lighting device
TWI311803B (en)
JP5047162B2 (en) Light emitting device
US20150270450A1 (en) Semiconductor light-emitting device
JP3978451B2 (en) Light emitting device
TW201117435A (en) Reduced angular emission cone illumination LEDs
JP2011222641A (en) Light-emitting device
US20160190409A1 (en) Light-emitting device
JP6622032B2 (en) Light emitting device
JP5036222B2 (en) Light emitting device
JP2016219613A (en) Light-emitting device
JP2007194675A (en) Light emitting device
GB2551048A (en) Light emitting device
JP4847793B2 (en) Light emitting device
JPWO2013179623A1 (en) LED module
US20210217936A1 (en) Uv led device
JP4979896B2 (en) Light emitting device
JP2007214592A (en) Light emitting apparatus
JP6628473B2 (en) Light emitting device
US20110309736A1 (en) Light emitting device
JP6642594B2 (en) Light emitting device and method of manufacturing the same
JP4948818B2 (en) Light emitting device and lighting device
JP2011119377A (en) Light emitting device
KR101161397B1 (en) Light emitting device with a lens of silicone and method of fabricating the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6628473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250