JP6611455B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP6611455B2
JP6611455B2 JP2015083102A JP2015083102A JP6611455B2 JP 6611455 B2 JP6611455 B2 JP 6611455B2 JP 2015083102 A JP2015083102 A JP 2015083102A JP 2015083102 A JP2015083102 A JP 2015083102A JP 6611455 B2 JP6611455 B2 JP 6611455B2
Authority
JP
Japan
Prior art keywords
metal foil
exposed portion
resin layer
heat
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015083102A
Other languages
Japanese (ja)
Other versions
JP2016207267A (en
Inventor
広治 南谷
孝司 長岡
賢史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Packaging Corp
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2015083102A priority Critical patent/JP6611455B2/en
Priority to TW105111252A priority patent/TWI699925B/en
Priority to CN201620313772.5U priority patent/CN205723858U/en
Priority to CN201610232746.4A priority patent/CN106058363B/en
Priority to KR1020160045504A priority patent/KR102488346B1/en
Publication of JP2016207267A publication Critical patent/JP2016207267A/en
Application granted granted Critical
Publication of JP6611455B2 publication Critical patent/JP6611455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、軽量化、高放熱化、省スペース化がなされた組電池に関する。   The present invention relates to an assembled battery that is reduced in weight, heat dissipation, and space saving.

なお、本明細書において、「アルミニウム」の語は、AlおよびAl合金を含む意味で用い、「銅」の語は、CuおよびCu合金を含む意味で用い、「ニッケル」の語は、NiおよびNi合金を含む意味で用い、「チタン」の語は、TiおよびTi合金を含む意味で用いている。また、本明細書において、「金属」の語は、単体の金属および合金を含む意味で用いる。   In this specification, the term “aluminum” is used to include Al and Al alloys, the term “copper” is used to include Cu and Cu alloys, and the term “nickel” includes Ni and The term “titanium” is used to include Ni alloys, and includes the meaning of Ti and Ti alloys. In this specification, the term “metal” is used to mean a single metal and an alloy.

ハイブリッド自動車や電気自動車の電池、家庭用または工業用の定置用蓄電池に使用されるリチウムイオン二次電池やリチウムポリマー二次電池は小型化、軽量化に伴い、従来使用されていた金属製の外装に代えて、金属箔の両面に樹脂フィルムを貼り合わせたラミネート外装材が用いられることが多くなっている。また、ラミネート外装材を使用した電気二重層コンデンサやリチウムイオンキャパシタ等も自動車やバスに搭載することが検討されている。   Lithium ion secondary batteries and lithium polymer secondary batteries used in hybrid and electric vehicle batteries, stationary storage batteries for home use or industrial use, have been used in the past due to the reduction in size and weight. Instead, a laminate exterior material in which a resin film is bonded to both surfaces of a metal foil is often used. In addition, mounting an electric double layer capacitor, a lithium ion capacitor, or the like using a laminate exterior material in an automobile or a bus is being studied.

電気自動車など、高エネルギーを必要とするデバイスでは小さな容積で大きな電気エネルギーを得るために、蓄電モジュールを積層させ直列に接続することで対応しているが、充放電の際にモジュールの内部抵抗による熱が蓄積しやすく、モジュール内が高温となるため、電池劣化の促進や、性能の低下に影響がでるだけでなく、安全性にも波及がおきる。このため、複数の蓄電モジュールを積層配置した組電池では、蓄電モジュール間に放熱部材を介在させてモジュールの冷却を行うことが提案されている(特許文献1、2参照)
特許文献1に記載された組電池は、蓄電モジュールの間に放熱部材として波形材を介在させて冷風の流通空間を形成して放熱効果を得るようにしている。また、特許文献2に記載された組電池は、蓄電モジュールの間に冷却液を流通させる管部材を配置し、さらにこの管部材と蓄電モジュールとの間に板バネを介装して空冷用の空間を形成することにより、液冷と空冷の両方により高い冷却効果を得ている。
Devices that require high energy, such as electric vehicles, can handle large amounts of electrical energy with a small volume by stacking power storage modules and connecting them in series. Since heat is likely to accumulate and the temperature inside the module becomes high, it not only promotes battery degradation and affects performance, but also affects safety. For this reason, in an assembled battery in which a plurality of power storage modules are stacked, it has been proposed to cool the modules by interposing a heat dissipation member between the power storage modules (see Patent Documents 1 and 2).
In the assembled battery described in Patent Document 1, a corrugated material is interposed between the power storage modules as a heat radiating member to form a cold air circulation space to obtain a heat radiating effect. In the assembled battery described in Patent Document 2, a tube member for circulating a coolant between the power storage modules is disposed, and a leaf spring is interposed between the tube member and the power storage module for air cooling. By forming the space, a high cooling effect is obtained by both liquid cooling and air cooling.

特開2012−84551号公報JP 2012-84551 A 特開2014−170697号公報JP 2014-170697 A

しかしながら、特許文献1、2に記載された冷却方法は、波形材、管部材、板バネといった嵩高い放熱部材必要であり、さらには冷風または冷却液の供給装置が必要であり、組電池はこれらの冷却装置が大きなスペースを占めている。従って、蓄電モジュールの小型化を図っても組電池の小型化は難しい。さらに、蓄電モジュールはタブリードを用いて電極を接続しているため、タブリードの接続箇所からの発熱や封止部の密封性の低下なども起こる可能性がある。   However, the cooling methods described in Patent Documents 1 and 2 require bulky heat-dissipating members such as corrugated materials, tube members, and leaf springs, and further require a cool air or coolant supply device. The cooling device takes up a large space. Therefore, it is difficult to reduce the size of the battery pack even if the power storage module is downsized. Furthermore, since the power storage module uses the tab lead to connect the electrodes, there is a possibility that heat is generated from the tab lead connecting portion and the sealing performance of the sealing portion is lowered.

本発明は、かかる技術的背景に鑑みてなされたものであって、大型化することなく放熱性能を高め、かつ液漏れのリスクを大幅に低減させた組電池の提供することを目的とする。   The present invention has been made in view of such a technical background, and an object of the present invention is to provide an assembled battery in which heat dissipation performance is improved without increasing the size and the risk of liquid leakage is greatly reduced.

前記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

[1]ラミネート型蓄電モジュールが、
第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有する第一外装材と、第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有する第二外装材と、正極と負極とこれらの間に配置されるセパレーターとを有する電池要素とを備え、
前記第一外装材および第二外装材のうちの少なくとも一方は、第一金属箔内側露出部および第二金属箔内側露出部を含む領域にエンボス部を有し、前記第一外装材の第一熱可塑性樹脂層と第二外装材の第二熱可塑性樹脂層とが向かい合い、第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着した熱封止部に囲まれることによって、室内に第一金属箔内側露出部および第二金属箔内側露出部が臨み、前記エンボス部により凸部となされた複数の電池要素室を有する外装体が形成され、前記外装体の外面に、第一金属箔が露出する第一金属箔外側露出部および第二金属箔が露出する第二金属箔外側露出部が形成され、
前記電池要素室内に電解質とともに封入された電池要素は、正極が第一金属箔内側露出部に導通するとともに負極が第二金属箔内側露出部に導通してなり、
前記ラミネート型蓄電モジュールの複数個が、熱封止部上に空間が形成される態様で積層され、積層方向において隣合うラミネート型蓄電モジュールが第一金属箔外側露出部と第二金属箔露出部とで連結されていることを特徴とする特徴とする組電池。
[1] A laminate type power storage module is
A first heat-resistant resin layer is laminated on one surface of the first metal foil, a first thermoplastic resin layer is laminated on the other surface, and the first metal foil is exposed on the surface on the first thermoplastic resin layer side. A first exterior material having an exposed portion inside the first metal foil, a second heat-resistant resin layer laminated on one surface of the second metal foil, and a second thermoplastic resin layer laminated on the other surface; A battery element having a second exterior material having a second metal foil inner exposed portion at which the second metal foil is exposed on the surface of the thermoplastic resin layer, and a positive electrode, a negative electrode, and a separator disposed between them; ,
At least one of the first exterior material and the second exterior material has an embossed portion in a region including the first metal foil inner exposed portion and the second metal foil inner exposed portion. The thermoplastic resin layer and the second thermoplastic resin layer of the second exterior material face each other, and are surrounded by a heat sealing portion where the first thermoplastic resin layer and the second thermoplastic resin layer are fused, thereby indoors. An exterior body having a plurality of battery element chambers facing the first metal foil inner exposed portion and the second metal foil inner exposed portion and having convex portions by the embossed portion is formed, and the first metal is formed on the outer surface of the exterior body. A first metal foil outer exposed portion where the foil is exposed and a second metal foil outer exposed portion where the second metal foil is exposed are formed,
The battery element enclosed with the electrolyte in the battery element chamber, the positive electrode is conductive to the first metal foil inner exposed portion and the negative electrode is conductive to the second metal foil inner exposed portion,
A plurality of the laminate-type power storage modules are stacked in such a manner that a space is formed on the heat sealing portion, and the laminate-type power storage modules adjacent in the stacking direction are the first metal foil outer exposed portion and the second metal foil exposed portion. A battery pack characterized by being connected with each other.

[2]ラミネート型蓄電モジュールの積層方向において、電池要素室と熱封止部とが重なり合うように複数のラミネート型蓄電モジュールが積層されている前項項1に記載の組電池。   [2] The assembled battery according to the item 1 above, wherein a plurality of laminated power storage modules are stacked so that the battery element chamber and the heat sealing portion overlap in the stacking direction of the laminated power storage modules.

[3]積層方向において隣合うラミネート型蓄電モジュールの間に伝熱体が配置されている前項項1または2に記載の組電池。   [3] The assembled battery according to the above item 1 or 2, wherein a heat transfer body is disposed between the laminated power storage modules adjacent in the stacking direction.

上記[1]に記載の組電池は、ラミネート型蓄電モジュールの電池要素室が外装体の外側に突出する凸部として形成されているので、複数のモジュールの積層によって熱封止部上に空間が形成されている。電池要素から発生した熱は前記空間に放熱され、さらに前記空間にガスが流れることによって放熱が促進されて組電池が冷却される。前記空間は放熱部材を用いることなく形成されるので、組電池を大型化することなく冷却効果が得られる。また、複数の電池要素室を有することにより外装体の表面積が大きくなるので、個々のモジュールの放熱効率が良い。   In the assembled battery according to the above [1], the battery element chamber of the laminate-type energy storage module is formed as a protruding portion that protrudes to the outside of the exterior body, so that a space is formed on the heat sealing portion by stacking a plurality of modules. Is formed. The heat generated from the battery element is dissipated to the space, and further, the gas flows into the space to accelerate the heat dissipation and cool the assembled battery. Since the space is formed without using a heat radiating member, a cooling effect can be obtained without increasing the size of the assembled battery. Moreover, since the surface area of an exterior body becomes large by having several battery element chambers, the thermal radiation efficiency of each module is good.

さらに、個々のラミネート型蓄電モジュールにおいて、複数の電池要素は電池要素室内の第一金属箔内側露出部および第二内側露出部により第一金属箔および第二金属箔を通じて導通し、ラミネート型蓄電モジュール同士は第一金属箔外側露出部および第二金属箔外側露出部により連結される。さらに、組電池と外部デバイスとの接続も第一金属箔外側露出部および第二金属箔外側露出部により行う。即ち、ラミネート型蓄電モジュールおよび組電池はタブリードを持たない。従って、熱封止部の電池要素室に接する部分があまねく第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着しているので密着性が高く液漏れのリスクが大幅に低減される。さらに、タブリードを用いないことで、熱封止作業が簡単になり、また組電池の軽量化および省スペース化を図ることができる。   Furthermore, in each laminate-type power storage module, the plurality of battery elements are conducted through the first metal foil and the second metal foil through the first metal foil inner exposed portion and the second inner exposed portion in the battery element chamber, and the laminate type power storage module The first metal foil outer exposed portion and the second metal foil outer exposed portion are connected to each other. Further, the assembled battery and the external device are also connected by the first metal foil outer exposed portion and the second metal foil outer exposed portion. That is, the laminate-type power storage module and the assembled battery do not have tab leads. Accordingly, since the first thermoplastic resin layer and the second thermoplastic resin layer are fused together at the portion of the heat sealing portion that contacts the battery element chamber, the adhesiveness is high and the risk of liquid leakage is greatly reduced. . Furthermore, by not using the tab lead, the heat sealing work is simplified, and the weight and space saving of the assembled battery can be achieved.

上記[2]に記載の組電池は、電極要素室がモジュールの積層方向および積層方向と直交する方向の両方向において空間と隣り合い、電池要素室がより多くの面積で空間に接するので高い冷却効果が得られる。   The assembled battery according to the above [2] has a high cooling effect because the electrode element chamber is adjacent to the space in both the stacking direction of the module and the direction orthogonal to the stacking direction, and the battery element chamber is in contact with the space in a larger area. Is obtained.

上記[3]に記載の組電池は、伝熱体に排熱されるので高い冷却効果が得られる。   Since the assembled battery according to [3] is exhausted by the heat transfer body, a high cooling effect is obtained.

本発明の組電池を構成するラミネート型蓄電モジュールの一実施形態の斜視図である。It is a perspective view of one embodiment of a laminate type power storage module constituting the assembled battery of the present invention. 図1Aにおける1B−1B線断面図である。It is the 1B-1B sectional view taken on the line in FIG. 1A. 本発明にかかる組電池の一実施形態の斜視図である。1 is a perspective view of an embodiment of an assembled battery according to the present invention. 図2Aにおける2B−2B線断面図である。It is the 2B-2B sectional view taken on the line in FIG. 2A. ベアセルの断面図である。It is sectional drawing of a bare cell. ラミネート型蓄電モジュールにおける電極要素室の他の形状例の断面図である。It is sectional drawing of the other example of a shape of the electrode element chamber in a lamination-type electrical storage module. ラミネート型蓄電モジュールにおける電極要素室のさらに他の形状例の断面図である。It is sectional drawing of the example of further another shape of the electrode element chamber in a lamination type electrical storage module. 本発明にかかる組電池の他の実施形態の断面図である。It is sectional drawing of other embodiment of the assembled battery concerning this invention. 本発明にかかる組電池のさらに他の実施形態の断面図である。It is sectional drawing of other embodiment of the assembled battery concerning this invention. 図7Aの部分拡大図である。It is the elements on larger scale of FIG. 7A. 図7Aの部分拡大図である。It is the elements on larger scale of FIG. 7A.

図1Aおよび図1Bに本発明の組電池を構成するラミネート型蓄電モジュールの一実施形態を示し、図2Aおよび図2Bに前記ラミネート型蓄電モジュールを用いた組電池の実施形態を示す。   1A and 1B show an embodiment of a laminate-type energy storage module constituting the assembled battery of the present invention, and FIGS. 2A and 2B show an embodiment of an assembled battery using the laminate-type energy storage module.

以下の説明において同一の符号は同一物を示すものとして重複する説明を省略する。また、外装体を構成する第一外装材および第二外装材において、外装材および形成位置にかかわらず金属箔が露出する部分を指す場合は「金属箔露出部」と総称し、電極要素室内に臨んで露出する部分を「金属箔内側露出部」と総称し、外装体の外面に露出する部分を「金属箔外側露出部」と総称する。
[ラミネート型蓄電モジュール]
図1Aおよび図1Bに示すラミネート型蓄電モジュール2の外装体32は、第一外装材10と第二外装材20とにより構成され、3列×3列に配置された9個の電池要素室42を有している。前記各電池要素室42には電池要素60と電解質とが封入されている。
In the following description, the same reference numerals denote the same items, and redundant descriptions are omitted. Also, in the first exterior material and the second exterior material constituting the exterior body, when referring to a portion where the metal foil is exposed regardless of the exterior material and the formation position, it is generically referred to as a “metal foil exposed portion” and is placed in the electrode element chamber. The portion exposed and exposed is generally referred to as “metal foil inner exposed portion”, and the portion exposed on the outer surface of the exterior body is collectively referred to as “metal foil outer exposed portion”.
[Laminated power storage module]
The exterior body 32 of the laminate-type energy storage module 2 shown in FIGS. 1A and 1B is composed of the first exterior material 10 and the second exterior material 20, and nine battery element chambers 42 arranged in 3 rows × 3 rows. have. Each battery element chamber 42 is filled with a battery element 60 and an electrolyte.

前記第一外装材10は第一金属箔11の一方の面に第一耐熱性樹脂層12が積層され他方の面に第一熱可塑性樹脂層13が積層されたラミネート材であり、フラットシートをプレス成形して電池要素室42となる平面視正方形の9個のエンボス部45が形成されている。一方、第二外装材20は第二金属箔21の一方の面に第二耐熱性樹脂層22が積層され他方の面に第二熱可塑性樹脂層23が積層されたラミネート材であり、エンボス部を有さないフラットシートである。前記外装体32は第一外装材10の第一熱可塑性樹脂層13と第二外装材20の第二熱可塑性樹脂層23とが向かい合い、エンボス部45の周りの第一熱可塑性樹脂層13と第二熱可塑性樹脂層23とを融着させて熱封止部52a、52bを形成することにより、電池要素60および電解質を封入する電池要素室42が形成されている。前記電池要素室42は熱封止部52a、52bからエンボス部45の高さ分だけ外装体の外側に突出する凸部として形成され、モジュールの厚みは電池要素室42で厚く、熱封止部52a、52bで薄くなっている。また、前記電池要素室42内には、第一熱可塑性樹脂層13の一部が除去されて第一金属箔11が露出する第一金属箔内側露出部14が形成され、第二熱可塑性樹脂層23の一部が除去されて第二金属箔21が露出する第二金属箔内側露出部24が形成されている。   The first exterior material 10 is a laminate material in which a first heat-resistant resin layer 12 is laminated on one surface of a first metal foil 11 and a first thermoplastic resin layer 13 is laminated on the other surface. Nine embossed portions 45 having a square shape in plan view to be the battery element chamber 42 are formed by press molding. On the other hand, the second exterior material 20 is a laminate material in which the second heat-resistant resin layer 22 is laminated on one surface of the second metal foil 21 and the second thermoplastic resin layer 23 is laminated on the other surface. It is a flat sheet which does not have. In the exterior body 32, the first thermoplastic resin layer 13 of the first exterior material 10 and the second thermoplastic resin layer 23 of the second exterior material 20 face each other, and the first thermoplastic resin layer 13 around the embossed portion 45 The battery element chamber 42 for enclosing the battery element 60 and the electrolyte is formed by fusing the second thermoplastic resin layer 23 to form the heat sealing portions 52a and 52b. The battery element chamber 42 is formed as a convex portion protruding from the heat sealing portions 52a and 52b to the outside of the exterior body by the height of the embossed portion 45, and the module is thick in the battery element chamber 42. It is thin at 52a and 52b. Further, in the battery element chamber 42, a first metal foil inner exposed portion 14 is formed in which a part of the first thermoplastic resin layer 13 is removed to expose the first metal foil 11, and the second thermoplastic resin is formed. A portion of the layer 23 is removed to form a second metal foil inner exposed portion 24 where the second metal foil 21 is exposed.

前記第一外装材10の一辺は熱封止部52aから延長されて両面が外装体32の外面となる第一フランジ15となされ、第一金属箔11が露出する第一金属箔外側露出部16が形成されている。一方、前記第一フランジ15の対向辺においては第二外装材20が熱封止部52aから延長されて両面が外装体32の外面となる第二フランジ25となされ、第二金属箔21が露出する第二金属箔外側露出部26が形成されている。また、前記第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側金属箔露出部26には、それぞれ3個の接続用穴17、27が穿設されている。   One side of the first exterior material 10 is extended from the heat sealing portion 52a to form the first flange 15 whose both surfaces are the outer surfaces of the exterior body 32, and the first metal foil outer exposed portion 16 where the first metal foil 11 is exposed. Is formed. On the other hand, on the opposite side of the first flange 15, the second exterior material 20 is extended from the heat sealing portion 52 a to form the second flange 25 whose both surfaces are the outer surfaces of the exterior body 32, and the second metal foil 21 is exposed. A second metal foil outer exposed portion 26 is formed. The first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer metal foil exposed portion 26 of the second flange 25 are provided with three connection holes 17 and 27, respectively. Yes.

前記電池要素室42に電解質とともに封入される電池要素60は、図3に示すように、正極61、セパレーター62、負極63、セパレーター62を積層し、この積層物をロール状に形成した捲回型ベアセルである。前記電池要素60は最上層として正極61が露出し、最下層として負極63が露出している。電池要素室42内において、電池要素60の正極61は第一外装材10の第一金属箔内側露出部14に接触して電気的に導通し、負極63は第二外装材20の第二金属箔内側露出部24に接触して電気的に導通している。前記第一金属箔11は外装体32の外面の第一金属箔外側露出部16において露出し、第二金属箔21は外装体32の外面の第二金属箔外側露出部26において露出しているので、電池要素60は第一金属箔10および第二金属箔20を通じて外部との電気的導通が得られる。即ち、第一金属箔11は正極側導通部として利用され、第二外装材20の第二金属箔21が負極側導通部として利用される。
[組電池]
図2Aおよび図2Bに示す組電池5は、4個のラミネート型蓄電モジュール2を、積層方向に隣り合うモジュールの第一フランジ15と第二フランジ25とが重なるように互い違いに方向を変え、隣合うモジュールの電池要素室42が重なる態様で積層され、これらが連結されている。即ち、4個のラミネート型蓄電モジュール2は、最上層の1層目のモジュールの第二フランジ25の第二金属箔外側露出部26と2段目のモジュールの第一フランジ15の第一金属箔外側露出16とが接続用穴27、17に導電性材料からなる接続用ピン35を通すことにより連結され、同様に、2層目のモジュールの第二金属箔外側露出部26と3層目のモジュールの第一金属箔外側露出部16とが連結され、3層目のモジュールの第二金属箔外側露出部26と最下層の4層目のモジュールの第一金属箔外側露出部16とが連結されている。また、1層目のモジュールの第一金属箔外側露出部16の接続用穴17には導電性材料からなる正極用ピン36が取り付けられ、4層目の第二金属箔外側露出部26の接続用穴27には導電性材料からなる負極用ピン37が取り付けられている。上記の連結により、4つのラミネート型蓄電モジュール2は直列に連結され、正極用ピン36および負極用ピン37を組電池5の電極端子とし、電線38を引き出して他のデバイスに接続することができる。
As shown in FIG. 3, the battery element 60 enclosed with the electrolyte in the battery element chamber 42 is a wound type in which a positive electrode 61, a separator 62, a negative electrode 63, and a separator 62 are laminated and this laminate is formed into a roll shape. It is a bare cell. The battery element 60 has the positive electrode 61 exposed as the uppermost layer and the negative electrode 63 exposed as the lowermost layer. In the battery element chamber 42, the positive electrode 61 of the battery element 60 contacts the first metal foil inner exposed portion 14 of the first exterior member 10 and is electrically connected, and the negative electrode 63 is the second metal of the second exterior member 20. The foil inner exposed portion 24 is in contact with and electrically connected. The first metal foil 11 is exposed at the first metal foil outer exposed portion 16 on the outer surface of the exterior body 32, and the second metal foil 21 is exposed at the second metal foil outer exposed portion 26 on the outer surface of the outer body 32. Therefore, the battery element 60 can be electrically connected to the outside through the first metal foil 10 and the second metal foil 20. That is, the first metal foil 11 is used as a positive electrode side conductive portion, and the second metal foil 21 of the second exterior material 20 is used as a negative electrode side conductive portion.
[Battery]
The assembled battery 5 shown in FIGS. 2A and 2B changes the direction of the four laminated energy storage modules 2 alternately so that the first flange 15 and the second flange 25 of the modules adjacent to each other in the stacking direction overlap. The battery element chambers 42 of the matching modules are stacked in an overlapping manner, and these are connected. That is, the four laminate-type energy storage modules 2 include the second metal foil outer exposed portion 26 of the second flange 25 of the uppermost first module and the first metal foil of the first flange 15 of the second module. The outer exposed portion 16 is connected to the connecting holes 27 and 17 by passing the connecting pins 35 made of a conductive material. Similarly, the second metal foil outer exposed portion 26 of the second layer module and the third layer The first metal foil outer exposed portion 16 of the module is connected, and the second metal foil outer exposed portion 26 of the third layer module and the first metal foil outer exposed portion 16 of the lowermost fourth layer module are connected. Has been. Further, a positive electrode pin 36 made of a conductive material is attached to the connection hole 17 of the first metal foil outer exposed portion 16 of the first layer module, and the connection of the second metal foil outer exposed portion 26 of the fourth layer is performed. A negative electrode pin 37 made of a conductive material is attached to the service hole 27. With the above connection, the four laminated power storage modules 2 are connected in series, and the positive electrode pin 36 and the negative electrode pin 37 can be used as electrode terminals of the assembled battery 5, and the electric wire 38 can be drawn out and connected to another device. .

前記ラミネート型蓄電モジュール2は、モジュールの厚みが電池要素室42で厚く、熱封止部52a、52bで薄いので、積層方向において隣合うラミネート型蓄電モジュール2の間に空間70が形成される。即ち、電池要素室42の周囲の熱封止部52a、52b上に、(熱封止部52a、52bの幅)×(エンボス部45の高さ)の四角形を断面とする空間70が形成される。前記電池要素室42の周囲には必ず熱封止部52a、52bが存在するので、全ての電池要素室42は積層方向と直交する方向において空間70に接している。   Since the laminate type power storage module 2 is thick in the battery element chamber 42 and thin in the heat sealing portions 52a and 52b, a space 70 is formed between adjacent laminate type power storage modules 2 in the stacking direction. That is, on the heat sealing portions 52a and 52b around the battery element chamber 42, a space 70 whose cross section is a square of (the width of the heat sealing portions 52a and 52b) × (the height of the embossed portion 45) is formed. The Since the heat sealing portions 52a and 52b always exist around the battery element chamber 42, all the battery element chambers 42 are in contact with the space 70 in the direction orthogonal to the stacking direction.

個々のラミネート型蓄電モジュール2において、複数の電池要素60は第一金属箔内側露出部14および第二内側露出部24により第一金属箔11および第二金属箔21を通じて導通し、ラミネート型蓄電モジュール2同士は第一金属箔外側露出部16および第二金属箔外側露出部26により連結できる。さらに、組電池5と外部デバイスとの接続も第一金属箔外側露出部16おおよび第二金属箔外側露出部26により行う。即ち、ラミネート型蓄電モジュール2および組電池5はタブリードを持たない。従って、ラミネート型蓄電モジュール2は熱封止部52a、52bの電池要素室42に接する部分があまねく第一熱可塑性樹脂層13と第二熱可塑性樹脂層23とが融着しているので密着性が高く、タブリードが引き出された電池要素室42よりも高い密閉性が得られ、液漏れのリスクが低減される。さらに、タブリードを用いないことで、熱封止作業が簡単になり、また組電池5の軽量化および省スペース化を図ることができる。   In each laminated power storage module 2, the plurality of battery elements 60 are conducted through the first metal foil 11 and the second metal foil 21 through the first metal foil inner exposed portion 14 and the second inner exposed portion 24, and the laminated power storage module is used. The two can be connected by the first metal foil outer exposed portion 16 and the second metal foil outer exposed portion 26. Furthermore, the assembled battery 5 and the external device are also connected by the first metal foil outer exposed portion 16 and the second metal foil outer exposed portion 26. That is, the laminate-type power storage module 2 and the assembled battery 5 do not have tab leads. Therefore, the laminate-type energy storage module 2 has the adhesiveness because the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 are fused together so that the portions of the heat sealing portions 52a and 52b that are in contact with the battery element chamber 42 are fused. Is higher and a sealing property higher than that of the battery element chamber 42 from which the tab lead is drawn out is obtained, and the risk of liquid leakage is reduced. Furthermore, by not using the tab lead, the heat sealing work is simplified, and the assembled battery 5 can be reduced in weight and space.

前記組電池5は複数のラミネート型蓄電モジュール2を連結することで高容量化されるが、多数の電池要素60を有しているために発生する熱量も大きい。前記組電池5においては、電池要素60で発生した熱が前記空間70に放熱され、さらに前記空間70にガスが流れることによって放熱が促進されて冷却される。前記空間70はラミネート型蓄電モジュール2の積層によって形成された放熱空間であり、波形材のような放熱部材を用いずに放熱性能を発現させることができ、組電池を大型化することなく冷却効果を得ることができる。このような空間70を利用した冷却は複数のラミネート型蓄電モジュール2を積層した構造に特有の効果であり、単独のモジュールでは得られない。また、モジュール全体の電池容量が同じであれば、1個の電池要素とそれを封入する1個の電池要素室を有するモジュールよりも、複数の電池要素とそれらを封入する複数の電池要素室を有するモジュールの方が外装体の表面積が大きいので放熱効率が良い。   The assembled battery 5 is increased in capacity by connecting a plurality of laminate-type energy storage modules 2, but has a large amount of heat due to having a large number of battery elements 60. In the assembled battery 5, heat generated in the battery element 60 is dissipated into the space 70, and further, heat is dissipated by the gas flowing into the space 70 to be cooled. The space 70 is a heat dissipating space formed by stacking the laminate type power storage modules 2 and can exhibit heat dissipating performance without using a heat dissipating member such as a corrugated material, and can provide a cooling effect without increasing the size of the assembled battery. Can be obtained. Such cooling using the space 70 is an effect peculiar to a structure in which a plurality of laminated power storage modules 2 are stacked, and cannot be obtained by a single module. If the battery capacity of the entire module is the same, a plurality of battery elements and a plurality of battery element chambers enclosing them are provided rather than a module having one battery element and one battery element chamber enclosing it. The module has a higher heat dissipation efficiency because the surface area of the exterior body is larger.

冷却効果は、前記空間70には強制的に送風することによって高まり、冷風を送ることによってさらに高まる。しかし、強制的に送風しなくても、発熱によって組電池5内に温度差が生じると自然対流が起こるので相応の冷却効果が得られる。   The cooling effect is enhanced by forcibly blowing air into the space 70 and further enhanced by sending cool air. However, even if the air is not forcibly blown, natural convection occurs when a temperature difference occurs in the assembled battery 5 due to heat generation, so that a corresponding cooling effect is obtained.

組電池内に空間を形成するには、電池要素室がエンボス部によって形成されて外装体の外面に凸部を有していることが条件である。ただし、エンボス部および電極要素室の形態は図2Aおよび図2Bに示した実施形態に限定されるものではなく、外装体を構成する第一外装材および第二外装体のうちの少なくとも一方にエンボス部が形成されていれば、外装体の外面に凸部を形成できる。また、電池要素室間の距離、即ち熱封止部の幅は電池要素室の密閉性を確保できる寸法に設定されていることは当然であるが、放熱用の空間を拡大するために熱封止部の寸法をそれ以上に大きくすることは自由である。   In order to form a space in the assembled battery, it is a condition that the battery element chamber is formed by an embossed portion and has a convex portion on the outer surface of the exterior body. However, the form of the embossed portion and the electrode element chamber is not limited to the embodiment shown in FIGS. 2A and 2B, and at least one of the first exterior material and the second exterior body constituting the exterior body is embossed. If the portion is formed, a convex portion can be formed on the outer surface of the exterior body. In addition, the distance between the battery element chambers, that is, the width of the heat sealing portion is naturally set to a dimension that can ensure the sealing of the battery element chamber. It is free to make the stop dimension larger than that.

図4および図5にエンボス部および電池要素室の他の形態例を示す。なお、これらの図において、第一外装材10および第二外装材20の積層構造および電池要素室の内部構造は図示を省略しているが、室内に臨んで第一金属箔内側露出部および第二金属箔内側露出部が形成されるとともに電池要素60が封入されていることは前記ラミネート型蓄電モジュール2と同じである。   4 and 5 show other embodiments of the embossed portion and the battery element chamber. In these figures, the laminated structure of the first exterior member 10 and the second exterior member 20 and the internal structure of the battery element chamber are not shown, but the first metal foil inner exposed portion and the The two-metal foil inner exposed portion is formed and the battery element 60 is enclosed, which is the same as the laminate type power storage module 2.

図4の外装体80は、第一外装材10および第二外装材20の両方がエンボス部45、46を有し、これらのエンボス部45,46が向かい合って一つの電極要素室81を形成している。図5の外装体82は、前記外装体80と同じく、第一外装材10および第二外装材20の両方がエンボス部45、46を有しているが、それぞれのエンボス部45,46は相手材のフラット部分と向かい合って電極要素室83a、83bを形成している。前記外装体80、82は厚み方向の両面にエンボス部45、46を有しているので、これらの外装体80、82を有するモジュールを積層するとモジュールの両面に空間が形成される。   In the exterior body 80 of FIG. 4, both the first exterior material 10 and the second exterior material 20 have embossed portions 45 and 46, and these embossed portions 45 and 46 face each other to form one electrode element chamber 81. ing. In the exterior body 82 of FIG. 5, both the first exterior material 10 and the second exterior material 20 have embossed portions 45 and 46, as in the case of the exterior body 80. Electrode element chambers 83a and 83b are formed facing the flat portion of the material. Since the exterior bodies 80 and 82 have the embossed portions 45 and 46 on both surfaces in the thickness direction, when modules having these exterior bodies 80 and 82 are stacked, spaces are formed on both surfaces of the module.

また、ラミネート型蓄電モジュールの積層態様によって空間の配置を変えることができる。   Further, the arrangement of the spaces can be changed depending on the lamination mode of the laminate type power storage module.

図6に示す組電池6は、前記ラミネート型蓄電モジュール2を一層おきに位置をずらして積層し、1つのモジュール2の電池要素室42の中心が積層方向において隣り合うモジュール2の熱封止部52a、52bの交点と重なるように配置している。ずらし量は電池要素室42間の距離の1/2である。このようにラミネート型蓄電モジュール2の位置をずらすことで、積層方向において電池要素室42が千鳥状に配置される。なお、ラミネート型蓄電モジュール2をずらすことによって隣合うモジュールの接続用穴17、27の位置がずれるため、第一フランジ15および第二フランジ25の幅を変更して接続用穴17、27の位置合わせを行っている。従って、図6に表したラミネート型蓄電モジュール2の形状は、厳密な意味において図1A〜2Bに表したラミネート型蓄電モジュール2と同一ではないが、説明および図示を簡潔にするために同一符号を用いている。前記組電池6は、前記組電池5と同じく、4個のラミネート型蓄電モジュール2が接続用ピン35によって直列に連結され、1層目のモジュールに取り付けた正極用ピン36および4層目のモジュールに取り付けた負極用ピン37を組電池6の電極端子としている。   The assembled battery 6 shown in FIG. 6 is formed by laminating the laminated power storage modules 2 with the positions shifted every other layer, and the center of the battery element chamber 42 of one module 2 is adjacent to each other in the stacking direction. It arrange | positions so that it may overlap with the intersection of 52a, 52b. The shift amount is ½ of the distance between the battery element chambers 42. By thus shifting the position of the laminate-type power storage module 2, the battery element chambers 42 are arranged in a staggered manner in the stacking direction. Since the positions of the connection holes 17 and 27 of the adjacent modules are shifted by shifting the laminate type power storage module 2, the positions of the connection holes 17 and 27 are changed by changing the widths of the first flange 15 and the second flange 25. Aligning. Therefore, the shape of the laminate type power storage module 2 shown in FIG. 6 is not strictly the same as that of the laminate type power storage module 2 shown in FIGS. 1A to 2B, but the same reference numerals are used for the sake of simplicity of explanation and illustration. Used. As in the assembled battery 5, the assembled battery 6 includes four laminated storage modules 2 connected in series by connecting pins 35, and a positive electrode pin 36 and a fourth layer module attached to the first layer module. The negative electrode pin 37 attached to is used as the electrode terminal of the battery pack 6.

上記の積層構造により、空間71も積層方向において千鳥状に形成され、各層のラミネート型蓄電モジュール2の電池要素室42の直下および直下に空間71が形成される。前記空間71は上記の組電池5の空間70と同じ寸法であるが、組電池5の電極要素室42が積層方向と直交する方向においてのみ空間70と隣り合っているのに対し、組電池6の電極要素室42は積層方向および積層方向と直交する方向の両方向において空間71と隣り合っている。このように、電池要素室42がより多くの面積で空間71に接するようにすることで冷却効率を高めることができる。   With the stacked structure described above, the spaces 71 are also formed in a zigzag pattern in the stacking direction, and the spaces 71 are formed immediately below and directly below the battery element chamber 42 of the laminate-type power storage module 2 of each layer. The space 71 has the same dimensions as the space 70 of the assembled battery 5, but the electrode element chamber 42 of the assembled battery 5 is adjacent to the space 70 only in a direction orthogonal to the stacking direction, whereas the assembled battery 6 The electrode element chamber 42 is adjacent to the space 71 in both the stacking direction and the direction orthogonal to the stacking direction. Thus, cooling efficiency can be improved by making the battery element chamber 42 contact the space 71 with a larger area.

上記のように電極要素室42および空間71が千鳥状に配置される組電池6において、千鳥状配置にするために電極要素室42と熱封止部52a、52bの寸法の大小関係が規制されることはない。電極要素室42と熱封止部52a、52bとが同一寸法の場合は、電極要素室42と同寸の空間が形成される。電極要素室42が熱封止部52a、52bよりも大きい場合は、積層方向において電極要素室42の一部が重なるが空間は形成される。逆に、電極要素室42が熱封止部52a、52bよりも小さい場合は、積層方向において熱封止部52a、52b一部が重なるが、下層の電極要素室42が上層の熱封止部52a、52bを支えているので、空間内に上層の電極要素室42が填まり込んで空間を塞ぐようなことは起こらない。いずれの場合でも熱封止部52a、52bの寸法に対応する空間が形成される。   In the assembled battery 6 in which the electrode element chambers 42 and the spaces 71 are arranged in a staggered manner as described above, the size relationship between the electrode element chambers 42 and the heat sealing portions 52a and 52b is restricted in order to achieve a staggered arrangement. Never happen. When the electrode element chamber 42 and the heat sealing portions 52a and 52b have the same size, a space having the same size as the electrode element chamber 42 is formed. When the electrode element chamber 42 is larger than the heat sealing portions 52a and 52b, a part of the electrode element chamber 42 overlaps in the stacking direction, but a space is formed. Conversely, when the electrode element chamber 42 is smaller than the heat sealing portions 52a and 52b, the heat sealing portions 52a and 52b partially overlap in the stacking direction, but the lower electrode element chamber 42 is the upper heat sealing portion. Since 52a and 52b are supported, it does not occur that the upper electrode element chamber 42 is filled in the space to block the space. In either case, a space corresponding to the dimensions of the heat sealing portions 52a and 52b is formed.

さらに、冷却効果を高める他の手段として、ラミネート型蓄電モジュール2間に伝熱体75を介在させる方法がある。図5の組電池6においては、伝熱体75として金属板を介在させて金属板に排熱することで冷却効果を高めている。前記伝熱体75の材料は熱伝導率が高いアルミニウムや銅が好ましく、伝熱体75に冷却装置を連結して冷却効果を高めることもできる。
[ラミネート型蓄電モジュールおよび組電池の他の形態]
組電池を構成するラミネート型蓄電モジュールは外装体の外面に金属箔外側露出部を有することが条件であるが、それらの形成位置は限定されない。外側金属露出部はモジュール間の導通および組電池と外部との導通を得る部分であり、フランジ以外に設けた外側金属箔露出部においてもそれらの導通は可能である。
Furthermore, as another means for enhancing the cooling effect, there is a method of interposing a heat transfer body 75 between the laminate type power storage modules 2. In the assembled battery 6 of FIG. 5, the cooling effect is enhanced by interposing a metal plate as the heat transfer body 75 and exhausting heat to the metal plate. The material of the heat transfer body 75 is preferably aluminum or copper having a high thermal conductivity, and a cooling device can be connected to the heat transfer body 75 to enhance the cooling effect.
[Other forms of laminated storage module and battery pack]
The laminate-type energy storage module constituting the assembled battery is required to have a metal foil outside exposed portion on the outer surface of the exterior body, but the formation position thereof is not limited. The outer metal exposed portion is a portion for obtaining electrical continuity between modules and electrical continuity between the assembled battery and the outside, and these electrical continuity is also possible in the outer metal foil exposed portion provided other than the flange.

図7A〜7Cに示した4層構造の組電池7を構成するラミネート型蓄電モジュール2a、2b、2c、2dは、組電池6を構成するラミネート型蓄電モジュール2とは、電池要素室42内において電池要素60の正極61が第一金属箔内側露出部14に導通し、負極63が第二金属箔内側露出部24に導通していることが共通しているが、積層位置によって、外装体33の外面において金属箔が露出する金属箔外側露出部の形成位置が異なっている。また、4個のラミネート型蓄電モジュール2a、2b、2c、2dが積層方向において電池要素室42および空間71が千鳥状に位置する態様で積層され成されることは組電池6と共通している。   Laminated power storage modules 2a, 2b, 2c, and 2d constituting the battery pack 7 having the four-layer structure shown in FIGS. 7A to 7C are different from the laminate power storage module 2 constituting the battery pack 6 in the battery element chamber 42. It is common that the positive electrode 61 of the battery element 60 is electrically connected to the first metal foil inner exposed portion 14 and the negative electrode 63 is electrically connected to the second metal foil inner exposed portion 24. The formation position of the metal foil outer exposed portion where the metal foil is exposed on the outer surface of the metal foil is different. Further, it is common to the assembled battery 6 that the four laminated storage modules 2a, 2b, 2c, and 2d are stacked in such a manner that the battery element chambers 42 and the spaces 71 are positioned in a staggered manner in the stacking direction. .

最上層の1層目のラミネート型蓄電モジュール2aは、第一金属箔外側露出部16が第一フランジ15に形成されている。また、図7Bに示すように、第二金属箔外側露出部28は第二金属箔内側露出部24の反対側の面、即ち電池要素室42の底面に形成されている。前記第二金属箔外側露出部28は第二外装材20の第二耐熱性樹脂層22が除去されて第二金属箔21が露出している。   In the first-layer laminated power storage module 2 a, the first metal foil outer exposed portion 16 is formed on the first flange 15. Further, as shown in FIG. 7B, the second metal foil outer exposed portion 28 is formed on the surface opposite to the second metal foil inner exposed portion 24, that is, the bottom surface of the battery element chamber 42. The second metal foil outer exposed portion 28 has the second metal foil 21 exposed by removing the second heat-resistant resin layer 22 of the second exterior material 20.

中間の2層目および3層目のラミネート型蓄電モジュール2b、2cは、図7Cに示すように、第一金属箔外側露出部18が第一金属箔内側露出部14の反対側の面、即ち電池要素室42の天面に形成されている。前記第一金属箔外側露出部18は第一外装材10の第一耐熱性樹脂層12が除去されて第一金属箔11が露出している。また、図7Bに示すように、第二金属箔外側露出部28は二金属箔内側露出部24の反対側の面、即ち電池要素室42の底面に形成されている。前記第二金属箔外側露出部28は第二外装材20の第二耐熱性樹脂層22が除去されて第二金属箔21が露出している。   As shown in FIG. 7C, in the middle second layer and third layer laminated power storage modules 2b and 2c, the first metal foil outer exposed portion 18 is the surface opposite to the first metal foil inner exposed portion 14, that is, It is formed on the top surface of the battery element chamber 42. The first metal foil outer exposed portion 18 has the first metal foil 11 exposed by removing the first heat-resistant resin layer 12 of the first exterior material 10. Further, as shown in FIG. 7B, the second metal foil outer exposed portion 28 is formed on the opposite surface of the two metal foil inner exposed portion 24, that is, the bottom surface of the battery element chamber 42. The second metal foil outer exposed portion 28 has the second metal foil 21 exposed by removing the second heat-resistant resin layer 22 of the second exterior material 20.

最下層の4層目のラミネート型蓄電モジュール2dは、図7Cに示すように、第一金属箔外側露出部18が第一金属箔内側露出部14の反対側の面、即ち電池要素室42の天面に形成されている。前記第一金属箔外側露出部18は第一外装材10の第一耐熱性樹脂層12が除去されて第一金属箔11が露出している。また、第二金属箔外側露出部26は第二フランジ25に形成されている。   As shown in FIG. 7C, in the lowermost fourth-layer laminated power storage module 2 d, the first metal foil outer exposed portion 18 is the surface opposite to the first metal foil inner exposed portion 14, that is, the battery element chamber 42. It is formed on the top surface. The first metal foil outer exposed portion 18 has the first metal foil 11 exposed by removing the first heat-resistant resin layer 12 of the first exterior material 10. The second metal foil outer exposed portion 26 is formed on the second flange 25.

前記組電池7は、上記3種類4個のラミネート型蓄電モジュール2a、2b、2c、2dの間に導電性材料からなる伝熱体75を挟んで積層し、この積層体を治具(図示省略)で挟みつけて伝熱体75とラミネート型蓄電モジュール2a、2b、2cを密着させることにより組み立てられている。この組み立て状態において、電池要素室42の外面に形成された第一金属箔外側露出部18および第二金属箔露出部28は伝熱体75に接触している。前記伝熱体75は導電体であるから、各層の電池要素60は第一金属箔10および第二金属箔20を介して直列に連結されている。また、外部デバイスとの通電は、最上層のラミネート型モジュール2aの第一フランジの15の第一金属箔外部露出部16および最下層のラミネート型蓄電モジュール2cの第二フランジ25の第二金属箔外側露出部26が担い、これらに正極用ピン36および負極用ピン37が取り付けられている。   The assembled battery 7 is laminated by sandwiching a heat transfer body 75 made of a conductive material between the three types and four types of laminate type power storage modules 2a, 2b, 2c, and 2d, and the laminated body is a jig (not shown). ) Between the heat transfer body 75 and the laminate type power storage modules 2a, 2b, 2c. In this assembled state, the first metal foil outer exposed portion 18 and the second metal foil exposed portion 28 formed on the outer surface of the battery element chamber 42 are in contact with the heat transfer body 75. Since the heat transfer body 75 is a conductor, the battery elements 60 of each layer are connected in series via the first metal foil 10 and the second metal foil 20. The external device is energized with the first metal foil externally exposed portion 16 of the first flange 15 of the uppermost laminate module 2a and the second metal foil of the second flange 25 of the lowermost laminate type power storage module 2c. The outer exposed portion 26 bears, and a positive electrode pin 36 and a negative electrode pin 37 are attached thereto.

上記のように、積層したラミネート型蓄電モジュールの接触部分に金属箔外部露出部を設けることにより、接続部材を用いることなくラミネート型蓄電モジュール接続することができる。なお、前記組電池7は冷却効果の向上を目的として伝熱体75を介在させ、伝熱体75を導電部として利用しているが、伝熱体75を介在させずに金属箔外部露出部同士を直接接触させて導通を得ることもできる。
[第一外装材および第二外装材の材料と成形]
第一外装材10は、第一金属箔11の一方の面に第一接着層を介して第一耐熱性樹脂層12が貼り合わされ、他方の面に第二接着層を介して第一熱可塑性樹脂層13が貼り合わされている。第一金属箔内側露出部14は第一熱可塑性樹脂層13および第二接着層を除去することによって形成し、第一金属箔外側露出部16、18は、形成する面に応じて、第一熱可塑性樹脂層13および第二接着層、または第一耐熱性樹脂層12および第一接着剤が除去することにより形成している。また、プレス成形によってエンボス部45を形成する場合は、金属露出部を形成した後にプレス成形を行う。
As described above, by providing the exposed portion of the metal foil at the contact portion of the laminated laminate type electricity storage module, the laminate type electricity storage module can be connected without using a connection member. The assembled battery 7 has a heat transfer body 75 interposed for the purpose of improving the cooling effect, and uses the heat transfer body 75 as a conductive portion. However, the metal foil externally exposed portion without the heat transfer body 75 being interposed. It is also possible to obtain continuity by directly contacting each other.
[Materials and molding of first and second exterior materials]
The first exterior material 10 has a first heat-resistant resin layer 12 bonded to one surface of a first metal foil 11 via a first adhesive layer, and a first thermoplastic resin via a second adhesive layer to the other surface. A resin layer 13 is bonded. The first metal foil inner exposed portion 14 is formed by removing the first thermoplastic resin layer 13 and the second adhesive layer, and the first metal foil outer exposed portions 16 and 18 are formed according to the surface to be formed. It is formed by removing the thermoplastic resin layer 13 and the second adhesive layer, or the first heat-resistant resin layer 12 and the first adhesive. Moreover, when forming the embossed part 45 by press molding, after forming a metal exposure part, press molding is performed.

第二外装材20は、第二金属箔21の一方の面に第三接着層を介して第二耐熱性樹脂層22が貼り合わされ、他方の面に第四接着層を介して第二熱可塑性樹脂層23が貼り合わされている。第一外装材20と同じく、第二金属箔内側露出部24は第二熱可塑性樹脂層23および第四接着層を除去することに形成し、第二金属箔外側露出部26、28は、形成する面に応じて、第二熱可塑性樹脂層23および第四接着層、または第二耐熱性樹脂層22および第三接着層を除去することによって形成している。   The second exterior material 20 has a second heat-resistant resin layer 22 bonded to one surface of the second metal foil 21 via a third adhesive layer, and a second thermoplastic resin via a fourth adhesive layer to the other surface. A resin layer 23 is bonded. Similar to the first exterior material 20, the second metal foil inner exposed portion 24 is formed by removing the second thermoplastic resin layer 23 and the fourth adhesive layer, and the second metal foil outer exposed portions 26 and 28 are formed. Depending on the surface to be formed, the second thermoplastic resin layer 23 and the fourth adhesive layer, or the second heat resistant resin layer 22 and the third adhesive layer are removed.

なお、図1B、2B、6、7B、7Cは、第一接着層、第二接着層、第三接着層および第四接着層の図示を省略している。   1B, 2B, 6, 7B, and 7C omit illustration of the first adhesive layer, the second adhesive layer, the third adhesive layer, and the fourth adhesive layer.

前記第一金属箔11の好ましい材料は軟質のアルミニウム箔であり、厚さは20〜150μmが好ましい。成形性やコストの点で特に30〜80μmの軟質アルミニウム箔が好ましい。一方、第二金属箔21の好ましい材料は、軟質または硬質のアルミニウム箔、ステンレス箔、ニッケル箔、銅箔、チタン箔である。これらの箔の好ましい厚さは10〜150μmであり、耐衝撃性や曲げ耐性、コストの点で15〜100μmが好ましい。   A preferable material of the first metal foil 11 is a soft aluminum foil, and a thickness of 20 to 150 μm is preferable. In terms of formability and cost, a soft aluminum foil having a thickness of 30 to 80 μm is particularly preferable. On the other hand, preferred materials for the second metal foil 21 are soft or hard aluminum foil, stainless steel foil, nickel foil, copper foil, and titanium foil. The preferable thickness of these foils is 10 to 150 μm, and 15 to 100 μm is preferable in terms of impact resistance, bending resistance, and cost.

また、前記第一金属箔11および第二金属箔21はメッキ処理箔やクラッド箔も用いることができる。例えば、第二金属箔21にとして、銅にニッケルメッキを施したメッキ処理箔や、ステンレスとニッケルのクラッド箔を用いることができる。   In addition, the first metal foil 11 and the second metal foil 21 may be plated foil or clad foil. For example, as the second metal foil 21, a plated foil obtained by applying nickel plating to copper, or a clad foil made of stainless steel and nickel can be used.

さらに、前記第一金属箔層11、第二金属箔層21における少なくとも金属箔露出部14、16、24、26が存在する側の面に化成皮膜が形成されているのが好ましい。前記化成皮膜は、金属箔の表面に化成処理を施すことによって形成される皮膜であり、このような化成処理が施されていることによって、内容物(電解質等)による金属箔表面の腐食を十分に防止できるし、電気の取出し窓となる露出部でも、モジュールを作製する際電解質が付着しても変色や劣化することがなく、大気中の水分などによる腐食の影響も低減できる。化成処理層自体の導電性はほとんどないが、塗膜厚が極めて少ないので通電抵抗もほとんどない。例えば、次のような処理を行うことによって、金属箔に化成処理を施す。即ち、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を金属箔の表面に塗工した後、乾燥することにより、化成処理を施す。
Furthermore, it is preferable that a chemical conversion film is formed on at least the surface of the first metal foil layer 11 and the second metal foil layer 21 on the side where the metal foil exposed portions 14, 16, 24, 26 are present. The chemical conversion film is a film formed by performing a chemical conversion treatment on the surface of the metal foil, and by performing such a chemical conversion treatment, the metal foil surface is sufficiently corroded by the contents (electrolyte, etc.). In addition, even when the module is manufactured, the exposed portion serving as an electrical extraction window can be prevented from being discolored or deteriorated even when an electrolyte is attached, and the influence of corrosion due to moisture in the atmosphere can be reduced. Although the chemical conversion treatment layer itself has almost no electrical conductivity, the coating thickness is very small, so there is almost no current resistance. For example, the chemical conversion treatment is performed on the metal foil by performing the following treatment. That is, on the surface of the metal foil that has been degreased,
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a non-metal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride, and coating the surface of the metal foil with any one of the above aqueous solutions 1) to 3) After the process, chemical conversion treatment is performed by drying.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m〜50mg/mが好ましく、特に2mg/m〜20mg/mが好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第一耐熱性樹脂層12および第二耐熱性樹脂層22を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層13、23を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。例えば、ポリエステルフィルムやポリアミドフィルムの他、ポリエチレンナフタレートフィルム、ポリブチレンナフタレートフィルム、ポリカーボネートフィルム等の延伸フィルムが好ましい。また、厚さは9〜50μmの範囲が好ましい。   As the heat-resistant resin constituting the first heat-resistant resin layer 12 and the second heat-resistant resin layer 22, a heat-resistant resin that does not melt at the heat seal temperature when heat-sealing the exterior material is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layers 13 and 23, and a melting point higher by 20 ° C. or higher than the melting point of the thermoplastic resin. It is particularly preferable to use a heat-resistant resin having For example, stretched films such as a polyethylene naphthalate film, a polybutylene naphthalate film, and a polycarbonate film are preferable in addition to a polyester film and a polyamide film. The thickness is preferably in the range of 9 to 50 μm.

前記第一熱可塑性樹脂層13および第二熱可塑性樹脂層23としては、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムが好ましく、厚さは20〜80μmの範囲が好ましい。   As the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23, at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers is used. An unstretched film is preferred, and the thickness is preferably in the range of 20 to 80 μm.

前記第一接着層、第三接着層は二液硬化型のポリエステルポリウレタン系やポリエーテルポリウレタン系の接着剤が好ましく、第二接着層、第四接着層には耐電解質性を考慮してポリオレフィン系の接着剤が好ましい。それぞれの接着剤の好ましい塗布は1〜5g/mである。 The first adhesive layer and the third adhesive layer are preferably a two-component curable polyester polyurethane-based or polyether polyurethane-based adhesive, and the second adhesive layer and the fourth adhesive layer are polyolefin-based considering electrolyte resistance. The adhesive is preferred. Preferred application of the respective adhesive is 1 to 5 g / m 2.

前記第一外装材10および第二外装材20における金属箔露出部の形成方法は何ら限定されない。例えば、ドライラミネート法による金属箔と樹脂層とを貼り合わせる工程で、接着剤を付着させない部分が彫刻されたグラビアロールを用い接着剤を塗布して接着剤未塗布部を形成し、金属箔と樹脂層を貼り合わせた後に接着剤未塗布部上の樹脂層を切除して金属箔を露出させる。上記実施形態のラミネート型蓄電モジュール2に使用している第一外装材10および第二外装材20は熱可塑性樹脂層側の面に金属箔露出部14、16、24、26を有しているので、上記の手法で第一金属箔11と第一熱可塑性樹脂層13、第二金属箔21と第二熱可塑性樹脂層23とを貼り合わせ、貼り合わせ後に金属箔露出部14、16、24、26を形成する。一方、耐熱性樹脂層側の面に金属露出部は無いので、第一金属箔11と第一耐熱性樹脂層12、第二金属箔21と第二耐熱性樹脂層22は周知の貼り合わせ手法によって貼り合わせる。   The method for forming the exposed metal foil portion in the first exterior material 10 and the second exterior material 20 is not limited at all. For example, in the process of laminating a metal foil and a resin layer by a dry laminating method, an adhesive is applied using a gravure roll engraved with a portion to which no adhesive is attached, and an adhesive uncoated portion is formed, and the metal foil and After the resin layers are bonded together, the resin layer on the adhesive-unapplied portion is cut out to expose the metal foil. The 1st exterior material 10 and the 2nd exterior material 20 which are used for the lamination type electrical storage module 2 of the said embodiment have metal foil exposed part 14, 16, 24, 26 in the surface at the side of a thermoplastic resin layer. Therefore, the first metal foil 11 and the first thermoplastic resin layer 13, the second metal foil 21 and the second thermoplastic resin layer 23 are bonded together by the above method, and the metal foil exposed portions 14, 16, and 24 are bonded together. , 26 are formed. On the other hand, since there is no exposed metal portion on the surface of the heat-resistant resin layer side, the first metal foil 11 and the first heat-resistant resin layer 12, and the second metal foil 21 and the second heat-resistant resin layer 22 are well-known bonding methods. Paste together.

また、第一外装材10および/または第二外装材20の第一耐熱性樹脂層12および/または第二耐熱性樹脂層22側の面に金属箔外側露出部を形成する場合は、上記の手法で第一金属箔11と第一耐熱性樹脂層12、第二金属箔21と第二耐熱性樹脂層22を貼り合わせ後に樹脂層を除去する。   When the metal foil outer exposed portion is formed on the first heat-resistant resin layer 12 and / or the second heat-resistant resin layer 22 side surface of the first exterior material 10 and / or the second exterior material 20, After the first metal foil 11 and the first heat-resistant resin layer 12, the second metal foil 21 and the second heat-resistant resin layer 22 are bonded together, the resin layer is removed.

また、図1A等に示すように、第一外装材10にプレス成形してエンボス部45を形成する場合は、金属露出部を形成した後にプレス成形を行う。図示例の第一外装材10の成形においては、第一金属箔内側露出部14が天面に接する雄型、雄型が挿入される雌型および押さえ型からなる成形金型でプレス成形する。第二外装材20にエンボス部を形成する場合も同様にプレス成形を行う。   Further, as shown in FIG. 1A and the like, when the embossed portion 45 is formed by press molding on the first exterior material 10, press forming is performed after the metal exposed portion is formed. In the molding of the first exterior material 10 in the illustrated example, the first metal foil inner exposed portion 14 is press-molded with a molding die including a male die in contact with the top surface, a female die into which the male die is inserted, and a pressing die. In the case where an embossed portion is formed on the second exterior material 20, press molding is performed in the same manner.

また、第一外装材10は第一フランジの無い2辺を第二外装材20から少しはみ出す寸法に裁断しておき、はみ出し部分を熱封止後に折り曲げるようにすれば、切断端面における第一金属箔11と第二金属箔21の接触を防止することができる。第一外装材10と第二外装材10の寸法を逆にして第二外装材20を折り曲げるようにしてもよい。
[電池要素の構造と材料]
前記ラミネート型蓄電モジュール2、2a、2b、2c、2dは電池要素60としてベアセルを用いている。前記ベアセルおよびベアセルとともに封入する電解質の詳細は以下のとおりである。
(ベアセル)
電池要素60としてのベアセルは、正極61、セパレーター62、負極63よって構成されている。前記セルの形態は図3の捲回型に限定されない。ベアセルの他の形態として、正極および負極をセルの大きさに断裁してそれぞれの箔にセパレーターを組み合わせたものをして交互に複数積層し、正電極の集電体同志、および負電極の集電体同志を超音波で接合した積層型を例示できる。
In addition, if the first exterior material 10 is cut to a dimension that slightly protrudes the two sides without the first flange from the second exterior material 20 and the protruding portion is bent after heat sealing, the first metal on the cut end face is obtained. Contact between the foil 11 and the second metal foil 21 can be prevented. The second exterior material 20 may be bent with the dimensions of the first exterior material 10 and the second exterior material 10 reversed.
[Battery element structure and materials]
The laminated power storage modules 2, 2 a, 2 b, 2 c, 2 d use bare cells as the battery elements 60. Details of the bare cell and the electrolyte encapsulated with the bare cell are as follows.
(Bare cell)
A bare cell as the battery element 60 includes a positive electrode 61, a separator 62, and a negative electrode 63. The form of the cell is not limited to the wound type shown in FIG. As another form of the bare cell, the positive electrode and the negative electrode are cut to the size of the cell, and each foil is combined with a separator, and a plurality of layers are alternately stacked. A laminate type in which electrical members are joined by ultrasonic waves can be exemplified.

前記正極61は集電体と正極活物質とで構成されていることが好ましく、前記集電体は金属箔が一般的に使用される。金属箔としては厚さ7〜50μmの硬質または軟質のアルミニウム箔が好ましく用いられ、金属露出部14と接する箇所は活物質が無い方が好ましい。前記正極活物質層の組成は特に限定されるものではないが、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、CMC(カルボキシメチルセルロースナトリウム塩など)、PAN(ポリアクリロニトリル)、直鎖型多糖類等のバインダーに、リチウム塩(例えば、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、マンガン酸リチウム等)を添加した混合組成物などで形成される。前記正極活物質層の厚さは、2μm〜300μmに設定されるのが好ましい。前記正極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。   The positive electrode 61 is preferably composed of a current collector and a positive electrode active material, and a metal foil is generally used for the current collector. As the metal foil, a hard or soft aluminum foil having a thickness of 7 to 50 μm is preferably used, and the portion in contact with the metal exposed portion 14 preferably has no active material. The composition of the positive electrode active material layer is not particularly limited. For example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), CMC (carboxymethyl cellulose sodium salt, etc.), PAN (polyacrylonitrile), linear It is formed of a mixed composition obtained by adding a lithium salt (for example, lithium cobaltate, lithium nickelate, lithium iron phosphate, lithium manganate, etc.) to a binder such as a type polysaccharide. The thickness of the positive electrode active material layer is preferably set to 2 μm to 300 μm. The positive electrode active material layer may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).

さらに、前記集電体と正極活物質の間には、密着性を上げるためにバインダーを用いることが好ましい。前記バインダーは特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN、直鎖型多糖類等で形成された層が挙げられる。前記バインダー層には、集電体と正極活物質層の間の導電性を向上させるために、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤がさらに添加されていてもよい。前記バインダー層の厚さは、0.2μm〜10μmに設定されるのが好ましい。バインダー層を10μm以下とすることで、導電性を持たないバインダーによるベアセルの内部抵抗の増大を極力抑制することができる。   Furthermore, it is preferable to use a binder between the current collector and the positive electrode active material in order to improve adhesion. Although the said binder is not specifically limited, For example, the layer formed with PVDF, SBR, CMC, PAN, a linear polysaccharide etc. is mentioned. In order to improve the electrical conductivity between the current collector and the positive electrode active material layer, a conductive additive such as carbon black or CNT (carbon nanotube) may be further added to the binder layer. The thickness of the binder layer is preferably set to 0.2 μm to 10 μm. By making a binder layer 10 micrometers or less, the increase in the internal resistance of the bare cell by the binder which does not have electroconductivity can be suppressed as much as possible.

前記負極63は、集電体と負極活物質とで構成されていることが好ましく、前記集電体は金属箔が一般的に使用される。金属箔としては厚さ7〜50μmの銅箔が好ましく用いられ、他にアルミニウム箔やチタン箔、ステンレス箔を使用することが出来る。また、正極と同じく、金属露出部24と接する箇所は活物質が無い方が好ましい。前記負極活物質層の組成は特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN、直鎖型多糖類等のバインダーに、添加物(例えば、黒鉛、チタン酸リチウム、Si系合金、スズ系合金等)を添加した混合組成物等で形成される。前記負極活物質層の厚さは、1μm〜300μmに設定されるのが好ましい。前記負極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。   The negative electrode 63 is preferably composed of a current collector and a negative electrode active material, and a metal foil is generally used for the current collector. As the metal foil, a copper foil having a thickness of 7 to 50 μm is preferably used, and aluminum foil, titanium foil, and stainless steel foil can be used. Further, like the positive electrode, it is preferable that the portion in contact with the metal exposed portion 24 has no active material. Although the composition of the negative electrode active material layer is not particularly limited, for example, a binder such as PVDF, SBR, CMC, PAN, linear polysaccharide, and the like (for example, graphite, lithium titanate, Si series) Alloy, tin-based alloy, etc.). The thickness of the negative electrode active material layer is preferably set to 1 μm to 300 μm. The negative electrode active material layer may further contain a conductive additive such as carbon black or CNT (carbon nanotube).

さらに、集電体と負極活物質の間には、密着性を上げるためにバインダーを用いることが好ましい。前記バインダーは特に限定されるものではないが、例えば、PVDF、SBR、CMC、PANで形成された層が挙げられる。前記バインダー層には、集電体と負極活物質層の間の導電性を向上させるために、カーボンブラック、CNT等の導電補助剤がさらに添加されていてもよい。前記バインダー層の厚さは、0.2μm〜10μmに設定されるのが好ましい。前記バインダー層を10μm以下とすることで、導電性を持たないバインダーによるベアセルの内部抵抗の増大を極力抑制することができる。   Furthermore, it is preferable to use a binder between the current collector and the negative electrode active material in order to improve adhesion. Although the said binder is not specifically limited, For example, the layer formed by PVDF, SBR, CMC, and PAN is mentioned. The binder layer may further contain a conductive auxiliary agent such as carbon black or CNT in order to improve the conductivity between the current collector and the negative electrode active material layer. The thickness of the binder layer is preferably set to 0.2 μm to 10 μm. By making the said binder layer 10 micrometers or less, the increase in the internal resistance of the bare cell by the binder which does not have electroconductivity can be suppressed as much as possible.

正極61を構成する集電体(金属箔)にバインダー層および正極活物質層を積層する場合は、金属箔に各層の組成物を順次塗工し、乾燥させる。負極63を構成する集電体(金属箔)にバインダー層および負極活物質層を積層する場合も同様である。   When laminating the binder layer and the positive electrode active material layer on the current collector (metal foil) constituting the positive electrode 61, the composition of each layer is sequentially applied to the metal foil and dried. The same applies when the binder layer and the negative electrode active material layer are laminated on the current collector (metal foil) constituting the negative electrode 63.

前記セパレーター62としては、特に限定されるものではないが、例えば、ポリエチレン製セパレーター、ポリプロピレン製セパレーター、ポリエチレンフィルムとポリプロピレンフィルムとからなる複層フィルムで形成されるセパレーター、あるいはこれの樹脂製セパレーターにセラミック等の耐熱無機物を塗布した湿式または乾式の多孔質フィルムで構成されるセパレーター等が挙げられる。前記セパレーター62の厚さは、5μm〜50μmに設定されるのが好ましい。   The separator 62 is not particularly limited. For example, a polyethylene separator, a polypropylene separator, a separator formed of a multilayer film composed of a polyethylene film and a polypropylene film, or a resin separator made of a ceramic. For example, a separator composed of a wet or dry porous film coated with a heat-resistant inorganic material such as The thickness of the separator 62 is preferably set to 5 μm to 50 μm.

さらに、本発明のラミネート型蓄電モジュールが電気2重層キャパシタである場合の好ましい材料は以下のとおりである。   Furthermore, preferred materials when the laminate type electricity storage module of the present invention is an electric double layer capacitor are as follows.

正極61の集電体および負極63の集電体は厚さ7〜50μmの硬質アルミニウム箔が好ましい。正極活物質および負極活物質はカーボンブラックまたはCNT(カーボンナノチューブ)が好ましい。セパレーターは厚さ5μm〜100μmの多孔質のポリセルロース膜または厚さ5μm〜100μmの不織布等が好ましい。
(電解質)
また、電池要素とともに封入される電解質としては、特に限定されるものではないが、水、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートおよびジメトキシエタンからなる群より選ばれる少なくとも1種の溶媒と、リチウム塩とを含む電解質を挙示できる。前記リチウム塩としては、特に限定されるものではないが、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸4級アンモニウム塩等が挙げられる。前記4級アンモニウム塩としては、例えば、テトラメチルアンモニウム塩などが挙げられる。また、前述の電解質が、PVDF、PEO(ポリエチレンオキサイド)等とゲル化したものを用いてもよい。
[ラミネート型蓄電モジュールおよび組電池の製造方法]
前記ラミネート型蓄電モジュール2、2a、2b、2c、2dは以下の工程により製造することができる。
(1)先に説明した方法により、所要位置に、第一金属箔内側露出部14、第一金属箔外側露出部16または第一金属箔露出部18、およびエンボス部45が形成された第一外装材10を作製する。また、所要位置に、第二金属箔内側露出部24、第二金属箔外側露出部26または第二金属箔外側露出部28が形成された第二外装材20を作製する。
(2)第一外装材10を第一熱可塑性樹脂層13が上にくるように置き、電池要素室42となる各エンボス部45内の第一金属箔内側露出部14に電池要素60の正極61が接触するように電池要素60を装填し、シリンジ等を用いて電解質を注入する。
(3)第二外装材20を、第二外装材20の第二金属箔内側露出部24が電池要素60の負極63に接触するように位置合わせをしながら重ねて外装体32、33を組み立てる。この組み立て状態において、第一フランジ15は第二外装材20の端部から延出するとともに第二フランジ25は第一外装材10の端部から延出して、第一金属箔外側露出16および第二金属箔外側露出部26は外装体32、33の外面に露出している。
(4)加熱した熱板を用いて熱封止部52aを形成する。
(6)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26にクリップを繋いで予備充電を行い、100℃の恒温槽に8時間入れてガス抜きを行う。
(7)減圧下で未封止部分を加熱した熱板で熱封止して熱封止部52bを形成することで、電池要素室42内に電池要素60および電解質を封入する。
(8)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26に接続用穴17、27を穿つ。
The current collector of the positive electrode 61 and the current collector of the negative electrode 63 are preferably hard aluminum foil having a thickness of 7 to 50 μm. The positive electrode active material and the negative electrode active material are preferably carbon black or CNT (carbon nanotube). The separator is preferably a porous polycellulose film having a thickness of 5 μm to 100 μm or a nonwoven fabric having a thickness of 5 μm to 100 μm.
(Electrolytes)
The electrolyte encapsulated together with the battery element is not particularly limited, but at least one selected from the group consisting of water, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and dimethoxyethane. And an electrolyte containing a lithium salt. The lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate, lithium tetrafluoroborate, and quaternary ammonium tetrafluoroborate. Examples of the quaternary ammonium salt include tetramethylammonium salt. Moreover, what the above-mentioned electrolyte gelatinized with PVDF, PEO (polyethylene oxide), etc. may be used.
[Lamination-type power storage module and assembled battery manufacturing method]
The laminated power storage modules 2, 2a, 2b, 2c, and 2d can be manufactured by the following steps.
(1) The first metal foil inner exposed portion 14, the first metal foil outer exposed portion 16 or the first metal foil exposed portion 18, and the embossed portion 45 are formed at the required positions by the method described above. The exterior material 10 is produced. Moreover, the 2nd exterior material 20 in which the 2nd metal foil inner side exposed part 24, the 2nd metal foil outer side exposed part 26, or the 2nd metal foil outer side exposed part 28 was formed in the required position is produced.
(2) The first exterior material 10 is placed so that the first thermoplastic resin layer 13 is on top, and the positive electrode of the battery element 60 is placed on the first metal foil inner exposed part 14 in each embossed part 45 that becomes the battery element chamber 42. The battery element 60 is loaded so that 61 contacts, and an electrolyte is injected using a syringe or the like.
(3) Assembling the exterior bodies 32 and 33 by aligning the second exterior material 20 so that the second metal foil inner exposed portion 24 of the second exterior material 20 is in contact with the negative electrode 63 of the battery element 60. . In this assembled state, the first flange 15 extends from the end of the second exterior member 20 and the second flange 25 extends from the end of the first exterior member 10, and the first metal foil outer exposure 16 and the first The two-metal foil outer exposed portion 26 is exposed on the outer surfaces of the exterior bodies 32 and 33.
(4) The heat sealing part 52a is formed using the heated hot plate.
(6) Preliminary charging is performed by connecting a clip to the first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer exposed portion 26 of the second flange 25, and put in a constant temperature bath at 100 ° C. for 8 hours. Degas.
(7) The battery element 60 and the electrolyte are enclosed in the battery element chamber 42 by heat-sealing the unsealed part with a hot plate heated under reduced pressure to form the heat-sealed portion 52b.
(8) The connection holes 17 and 27 are made in the first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer exposed portion 26 of the second flange 25.

上記製造方法は、その一例を挙げたものに過ぎず、特にこのような製造方法に限定されるものではない。   The above manufacturing method is merely an example, and is not particularly limited to such a manufacturing method.

作製したラミネート型蓄電モジュール2、2a、2b、2c、2dは、所要個数を積層し、あるいは伝熱体75を介在させて積層し、上述した方法により積層方向において隣合うモジュールを連結して組電池を組み立てる。本発明の組電池における積層数は任意である。   The produced laminate type power storage modules 2, 2a, 2b, 2c, and 2d are laminated by laminating a required number or by interposing a heat transfer body 75, and connecting adjacent modules in the laminating direction by the method described above. Assemble the battery. The number of stacks in the assembled battery of the present invention is arbitrary.

本発明にかかる組電池用途は限定されないが、電気が必要な自動車、自転車、二輪車、電車、飛行機、船舶などの電源、具体的にはハイブリッド車や電気自動車、工業用・家庭用蓄電池等の容量が大きなリチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)モジュール、固体電池モジュール、同用途のリチウムイオンキャパシタモジュール、同上用途の電気2重層コンデンサモジュールに用いることができる。   The use of the assembled battery according to the present invention is not limited, but the power source for automobiles, bicycles, two-wheeled vehicles, trains, airplanes, ships, etc. that require electricity, specifically, the capacity of hybrid vehicles, electric vehicles, industrial / household storage batteries, etc. Lithium secondary battery (lithium ion battery, lithium polymer battery, etc.) module, solid battery module, lithium ion capacitor module for the same use, and electric double layer capacitor module for the same use.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
〈実施例1〉
図1A、1Bに示すラミネート型モジュール2を4個作製し、図2A、2Bに示す組電池5を作製した。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<Example 1>
Four laminate-type modules 2 shown in FIGS. 1A and 1B were produced, and an assembled battery 5 shown in FIGS. 2A and 2B was produced.

第一金属箔11はJIS H4160で分類されるA8079の厚さ40μmの軟質のアルミニウム箔であり、両面に化成処理を施した。第一耐熱性樹脂層12は厚さ25μmの二軸延伸ポリアミドフィルムである。第一熱可塑性樹脂層13は厚さ40μmの未延伸ポリプロピレンフィルムである。第二金属箔21は厚さ20μmの軟質のSUS304のステンレス箔であり、両面の両面に化成処理を施した。第二耐熱性樹脂層22は厚さ12μmの二軸延伸ポリエステルフィルムである。第二熱可塑性樹脂層23は厚さ40μmの未延伸ポリプロピレンフィルムである。   The first metal foil 11 was a soft aluminum foil having a thickness of 40 μm of A8079 classified by JIS H4160, and was subjected to chemical conversion treatment on both sides. The first heat resistant resin layer 12 is a biaxially stretched polyamide film having a thickness of 25 μm. The first thermoplastic resin layer 13 is an unstretched polypropylene film having a thickness of 40 μm. The second metal foil 21 was a soft SUS304 stainless steel foil having a thickness of 20 μm, and was subjected to chemical conversion treatment on both sides. The second heat resistant resin layer 22 is a biaxially stretched polyester film having a thickness of 12 μm. The second thermoplastic resin layer 23 is an unstretched polypropylene film having a thickness of 40 μm.

また、第一金属箔内側露出部14および第二金属箔内側露出部24の寸法は30mm×30mmであり、第一金属箔外側露出部16および第二金属箔外側露出部26の寸法は20mm×200mmである。
(第一外装材)
第一金属箔11の片面に、ドライラミネート法により、塗布厚さ3μmの2液硬化型のポリエステルポリウレタン接着剤で第一耐熱性樹脂層12を貼り合わせ、50℃エージング炉で3日間養生した。次に、前記第一金属箔11の反対面に、ドライラミネート法により、塗布厚さ2μmの2液硬化型のオレフィン系接着剤を塗布厚さ2μmに塗布する際に9個の第一金属箔内側露出部14および1個の第一金属箔外側露出部16の寸法および位置に対応する接着剤未塗布部を形成して第一熱可塑性樹脂層13を貼り合わせた。貼り合わせ後、40℃のエージング炉で3日間養生した。
Moreover, the dimension of the 1st metal foil inner side exposed part 14 and the 2nd metal foil inner side exposed part 24 is 30 mm x 30 mm, and the dimension of the 1st metal foil outer side exposed part 16 and the 2nd metal foil outer side exposed part 26 is 20 mm x. 200 mm.
(First exterior material)
The first heat-resistant resin layer 12 was bonded to one surface of the first metal foil 11 by a dry lamination method with a two-part curable polyester polyurethane adhesive having a coating thickness of 3 μm, and cured in a 50 ° C. aging furnace for 3 days. Next, when the two-component curing type olefin adhesive having a coating thickness of 2 μm is applied to the opposite surface of the first metal foil 11 to a coating thickness of 2 μm by the dry laminating method, nine first metal foils are applied. Adhesive uncoated portions corresponding to the dimensions and positions of the inner exposed portion 14 and one first metal foil outer exposed portion 16 were formed, and the first thermoplastic resin layer 13 was bonded. After pasting, it was cured in an aging furnace at 40 ° C. for 3 days.

養生後、接着剤未塗布部上の第一熱可塑性樹脂層13をレーザー刃で切断して除去し、第一金属箔11が露出する第一金属箔内側露出部14および第一金属箔外側露出部16を形成した。   After curing, the first thermoplastic resin layer 13 on the adhesive-unapplied portion is removed by cutting with a laser blade, and the first metal foil inside exposed portion 14 and the first metal foil outside exposed where the first metal foil 11 is exposed. Part 16 was formed.

次に、40mm角の雄型、雌型、押さえ型からなる成形金型を用い、雄型の天面に第一金属箔内側露出部14に接する態様で深さ4mmのプレス成形を行い、電池要素室42となるエンボス部を形成した。さらに周囲をトリミングして第一外装材10を得た。この第一外装材10の平面寸法は140mm×160mmである。
(第二外装材)
第二金属箔21の片面に、ドライラミネート法により、塗布厚さ3μmの2液硬化型のポリエステルポリウレタン接着剤で第二耐熱性樹脂層22を貼り合わせ、50℃エージング炉で3日間養生した。次に、前記第二金属箔21の反対面に、ドライラミネート法により、塗布厚さ2μmの2液硬化型のオレフィン系接着剤を塗布厚さ2μmに塗布する際に9個の第二金属箔内側露出部24および1個の第二金属箔外側露出部26の寸法および位置に対応する接着剤未塗布部を形成して第二熱可塑性樹脂層23を貼り合わせた。貼り合わせ後、40℃のエージング炉で3日間養生した。
Next, using a molding die composed of a 40 mm square male mold, female mold, and pressing mold, press molding with a depth of 4 mm is performed in such a manner that the top surface of the male mold is in contact with the first metal foil inner exposed portion 14. An embossed portion to be the element chamber 42 was formed. Further, the periphery was trimmed to obtain the first exterior material 10. The planar dimension of the first exterior material 10 is 140 mm × 160 mm.
(Second exterior material)
The second heat-resistant resin layer 22 was bonded to one surface of the second metal foil 21 with a two-part curable polyester polyurethane adhesive having a coating thickness of 3 μm by a dry laminating method and cured in a 50 ° C. aging furnace for 3 days. Next, nine second metal foils are applied to the opposite surface of the second metal foil 21 when a two-component curing type olefin-based adhesive having a coating thickness of 2 μm is applied to a coating thickness of 2 μm by a dry laminating method. An adhesive uncoated portion corresponding to the size and position of the inner exposed portion 24 and one second metal foil outer exposed portion 26 was formed, and the second thermoplastic resin layer 23 was bonded. After pasting, it was cured in an aging furnace at 40 ° C. for 3 days.

養生後、接着剤未塗布部上の第二熱可塑性樹脂層23をレーザー刃で切断して除去し、第二金属箔21が露出する第二金属箔内側露出部24および第二金属箔外側露出部26を形成した。さらに周囲をトリミングして第二外装材20を得た。この第二外装材20の平面寸法は150mm×160mmであり、第一外装材10よりも大きい。
(電極要素)
電極要素60として、以下の材料を用いてベアセルを作製した。
After curing, the second thermoplastic resin layer 23 on the adhesive-unapplied portion is removed by cutting with a laser blade, and the second metal foil inner exposed portion 24 and the second metal foil outer exposed portion where the second metal foil 21 is exposed. Part 26 was formed. Further, the periphery was trimmed to obtain a second exterior material 20. The planar size of the second exterior material 20 is 150 mm × 160 mm, which is larger than the first exterior material 10.
(Electrode element)
As the electrode element 60, a bare cell was manufactured using the following materials.

正極61の集電体はJIS H4160で分類されるA1100の硬質アルミニウム箔であり、厚さ15μm、幅500mmである。負極63の集電体はJIS H3100で分類されるC1100Rの硬質銅箔であり、厚さ15μm、幅200mmである。正極活物質層形成用ペーストはコバルト酸リチウムを主成分とする正極活物質60質量部、結着剤兼電解質保持剤としてのPVDF10質量部、アセチレンブラック(導電材)5質量部、N−メチル−2−ピロリドン(有機溶媒)25質量部が混練分散されてなるペーストである。負極活物質形成用ペーストは、カーボン粉末を主成分とする負極活物質57質量部、結着剤兼電解質保持剤としてのPVDF5質量部、ヘキサフルオロプロピレンと無水マレイン酸の共重合体10質量部、アセチレンブラック(導電材)3質量部、N−メチル―2−ピロリドン(有機溶媒)25質量部が混練分散されてなるペーストである。バインダー液はPVDFを溶媒(ジメチルホルムアミド)に溶解させたバインダー液である。セパレータ62は幅38mmで厚さ8μmの多孔質の湿式セパレーターである。電解質はエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)が等量体積比で配合された混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF)が濃度1モル/Lで溶解された溶液である。 The current collector of the positive electrode 61 is a hard aluminum foil of A1100 classified by JIS H4160, and has a thickness of 15 μm and a width of 500 mm. The current collector of the negative electrode 63 is a hard copper foil of C1100R classified according to JIS H3100, and has a thickness of 15 μm and a width of 200 mm. The paste for forming a positive electrode active material layer is 60 parts by mass of a positive electrode active material mainly composed of lithium cobaltate, 10 parts by mass of PVDF as a binder and electrolyte retaining agent, 5 parts by mass of acetylene black (conductive material), N-methyl- A paste in which 25 parts by mass of 2-pyrrolidone (organic solvent) is kneaded and dispersed. The negative electrode active material forming paste includes 57 parts by mass of a negative electrode active material mainly composed of carbon powder, 5 parts by mass of PVDF as a binder and electrolyte retaining agent, 10 parts by mass of a copolymer of hexafluoropropylene and maleic anhydride, A paste in which 3 parts by mass of acetylene black (conductive material) and 25 parts by mass of N-methyl-2-pyrrolidone (organic solvent) are kneaded and dispersed. The binder liquid is a binder liquid in which PVDF is dissolved in a solvent (dimethylformamide). The separator 62 is a porous wet separator having a width of 38 mm and a thickness of 8 μm. The electrolyte is a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in an equal volume ratio, and lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 mol / L. Solution.

前記正極61は以下の工程で作製した。まず、集電体の片面全体にバインダー液を塗布し、100℃で30秒間乾燥させて乾燥後の厚さが0.5μmのバインダー層を形成した。次に前記バインダー層の表面に正極活物質層液性用ペーストを塗布し、100℃で30分間乾燥させ、次いで熱プレスを行い、密度4.8g/cm、乾燥後の厚さが120μmの正極活物質層を形成した。さらに、幅入れにより35mm幅のコイル状に裁断した。 The positive electrode 61 was produced by the following steps. First, a binder solution was applied to the entire surface of the current collector and dried at 100 ° C. for 30 seconds to form a binder layer having a thickness of 0.5 μm after drying. Next, a positive electrode active material layer liquid paste is applied to the surface of the binder layer, dried at 100 ° C. for 30 minutes, and then hot pressed to a density of 4.8 g / cm 3 and a thickness after drying of 120 μm. A positive electrode active material layer was formed. Furthermore, it cut | judged in the coil shape of 35 mm width by width insertion.

前記負極63は以下の工程で作製した。まず、集電体の片面にバインダー液を塗布し、100℃で30秒間乾燥させて乾燥後の厚さが0.5μmのバインダー層を形成した。次に前記バインダー層の表面に負極活物質層液性用ペーストを塗布し、100℃で30分間乾燥させ、次いで熱プレスを行い、密度1.5g/cm、乾燥後の厚さが20.1μmの負極活物質層を形成した。さらに、幅入れにより35mm幅のコイル状に裁断した。 The negative electrode 63 was produced by the following process. First, a binder solution was applied to one side of the current collector and dried at 100 ° C. for 30 seconds to form a binder layer having a thickness of 0.5 μm after drying. Next, the negative electrode active material layer liquid paste is applied to the surface of the binder layer, dried at 100 ° C. for 30 minutes, and then hot pressed to a density of 1.5 g / cm 3 and a dried thickness of 20. A 1 μm negative electrode active material layer was formed. Furthermore, it cut | judged in the coil shape of 35 mm width by width insertion.

次に、負極63(集電体−負極活物質層)/セパレーター62/(正極活物質層−集電体)正極61/セパレーターの順にそれぞれを少しずつずらして積層して捲回し、一方の面に正極61が露出し、反対面に負極63が露出するように押し潰して、38mm角で厚さ4mmのベアセルを作製した。
(ラミネート型蓄電モジュールおよび組電池の組み立て)
(1)第一外装材10を第一熱可塑性樹脂層13が上にくるように置き、電池要素室42を形成する各エンボス部45内の第一金属箔内側露出部14に電池要素60の正極61が接触するように電池要素60を装填し、シリンジ等を用いて電解質を注入した。
(2)第二外装材20を、第二外装材20の第二金属箔内側露出部24が電池要素60の負極63に接触するように位置合わせをしながら重ねて外装体32を組み立てる。この組み立て状態において、第一フランジ15は第二外装材20の端部から延出するとともに第二フランジ25は第一外装材10の端部から延出して、第一金属箔外側露出16および第二金属箔外側露出部26は外装体32の外面に露出している。
(3)約200℃に加熱した熱板を用いて0.3MPaの圧力で3秒間熱封止し、熱封止部52aを形成した。エンボス部45間の熱封止部52aの幅は5mmである。
(4)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26にクリップを繋いで4.2Vの電池電圧が発生するまで充電を行い、100℃の恒温槽に8時間入れて電池要素室42内のガス抜きを行った。
(5)86kPaの減圧下で未封止部分を約200℃に加熱した熱板で熱封止して熱封止部52bを形成することで、電池要素室42内に電池要素60および電解質を封入した。エンボス部45間の熱封止部52bの幅は5mmである。
(6)短絡対策として、第一外装材10の第二フランジ25側の端縁および第二外装材20の第一フランジ15側の端縁に25μmの粘着テープを貼り付けて端面に露出する第一金属箔11および第二金属箔21を被覆した。さらに、他の2辺ははみ出た第二外装材20を第一外装材10側に折り曲げ、絶縁対策を行うとともに側面の強度補強を行った。なお、図2Aは折り曲げ前の状態を示している。
(7)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26に3個の接続用穴17、27を穿った。
Next, the negative electrode 63 (current collector-negative electrode active material layer) / separator 62 / (positive electrode active material layer-current collector) positive electrode 61 / separator are sequentially stacked and wound one by one. A bare cell having a size of 38 mm square and a thickness of 4 mm was produced by crushing so that the positive electrode 61 was exposed on the opposite side and the negative electrode 63 was exposed on the opposite side.
(Assembly of laminated storage module and battery pack)
(1) The first exterior material 10 is placed with the first thermoplastic resin layer 13 on top, and the battery element 60 is placed on the first metal foil inner exposed part 14 in each embossed part 45 forming the battery element chamber 42. The battery element 60 was loaded so that the positive electrode 61 was in contact, and the electrolyte was injected using a syringe or the like.
(2) The exterior body 32 is assembled by overlapping the second exterior material 20 while aligning so that the second metal foil inner exposed portion 24 of the second exterior material 20 contacts the negative electrode 63 of the battery element 60. In this assembled state, the first flange 15 extends from the end of the second exterior member 20 and the second flange 25 extends from the end of the first exterior member 10, and the first metal foil outer exposure 16 and the first The two-metal foil outer exposed portion 26 is exposed on the outer surface of the exterior body 32.
(3) Using a hot plate heated to about 200 ° C., heat sealing was performed at a pressure of 0.3 MPa for 3 seconds to form a heat sealing portion 52a. The width of the heat sealing portion 52a between the embossed portions 45 is 5 mm.
(4) A clip is connected to the first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer exposed portion 26 of the second flange 25, and charging is performed until a battery voltage of 4.2 V is generated. The battery element chamber 42 was degassed by placing it in a constant temperature bath at 0 ° C. for 8 hours.
(5) The battery element 60 and the electrolyte are placed in the battery element chamber 42 by heat-sealing the unsealed part with a hot plate heated to about 200 ° C. under reduced pressure of 86 kPa to form the heat-sealed part 52b. Enclosed. The width of the heat sealing portion 52b between the embossed portions 45 is 5 mm.
(6) As a measure against short circuit, a 25 μm adhesive tape is applied to the edge of the first exterior member 10 on the second flange 25 side and the edge of the second exterior member 20 on the first flange 15 side, and exposed to the end face. One metal foil 11 and second metal foil 21 were coated. Furthermore, the second exterior material 20 that protruded from the other two sides was bent toward the first exterior material 10 to take insulation measures and to strengthen the side. FIG. 2A shows a state before bending.
(7) Three connection holes 17 and 27 were made in the first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer exposed portion 26 of the second flange 25.

以上の工程により、4個のラミネート型蓄電モジュール2を作製した。
(8)図2Aおよび図2Bに参照されるように、4個のラミネート型モジュール2を、積層方向に隣り合うモジュールの第一フランジ15と第二フランジ25とが重なるように互い違いに方向を変えて積層した。
(9)4個のラミネート型モジュール2を接続用ピン35で直列に連結し、最上層の第一金属箔外側露出部16に正極用ピン36を取り付け、最下層の第二金属箔外側露出部26に負極用ピン37を取り付けた。以上の工程により、組電池5を作製した。
Through the above steps, four laminate-type energy storage modules 2 were produced.
(8) As shown in FIGS. 2A and 2B, the four laminated modules 2 are alternately changed in direction so that the first flange 15 and the second flange 25 of the modules adjacent to each other in the stacking direction overlap each other. And laminated.
(9) Four laminated modules 2 are connected in series with connection pins 35, and positive electrode pins 36 are attached to the uppermost first metal foil outer exposed portion 16, and the lowermost second metal foil outer exposed portion is attached. 26, a negative electrode pin 37 was attached. The assembled battery 5 was produced through the above steps.

前記組電池5は、熱封止部52a上に(熱封止部52aの幅5mm)×(エンボス部の高さ4mm)の四角形を断面とする空間70が形成され、熱封止部52b上に(熱封止部52bの幅5mm)×(エンボス部の高さ4mm)の四角形を断面とする空間が形成されている。
〈比較例1〉
比較例1は、実施例1とは構造の異なる4個のラミネート型蓄電モジュールを積層した組電池である。
In the assembled battery 5, a space 70 having a cross section of a quadrangle of (a width 5 mm of the heat sealing portion 52a) × (a height of the embossed portion 4 mm) is formed on the heat sealing portion 52a. Further, a space having a cross section of a quadrangle of (the width of the heat sealing portion 52b is 5 mm) × (the height of the embossed portion is 4 mm) is formed.
<Comparative example 1>
Comparative Example 1 is an assembled battery in which four laminated power storage modules having a different structure from that of Example 1 are stacked.

また、実施例1のラミネート型蓄電モジュール2は、9個の電池要素60をそれぞれの電池要素室42に封入し、外装体の内面および外面に金属箔露出部を形成してタブリードを用いずに電池要素60との導通を得ている。かかるラミネート型蓄電モジュール2に対し、比較例1のラミネート型モジュールは、1個の電池要素が1個の電池要素室に封入され、実施例1の9個分の電池要素と同等の能力が得られるように電池要素のサイズを大きくした。また、比較例1のラミネート型モジュールの外装体は内側にも外側にも金属箔露出部を持たず、電池要素にタブリードを接続して外装体に外部に引き出したモジュールである。
(外装体)
外装材は、実施例1の第一外装材10に対応して電池要素室となるエンボス部を有する部分と、実施例1の第二外装材20に対応して前記エンボス部の開口部を塞ぐフラット部分とが一体となっている。外装体は前記外装材を二つ折りに折り曲げることにより形成される。前記外装材を構成する材料は、金属箔が厚さ40μmの軟質アルミニウム箔(JIS H4160で分類されるA8021の軟質アルミニウム箔であり、耐熱性樹脂層が厚さ25μmの二軸延伸ポリアミドフィルムであり、熱可塑性樹脂層が厚さ40μmのポリプロピレンフィルムである。
Further, in the laminate type power storage module 2 of Example 1, nine battery elements 60 are enclosed in the respective battery element chambers 42, metal foil exposed portions are formed on the inner surface and the outer surface of the outer package, and tab leads are not used. Electrical connection with the battery element 60 is obtained. In contrast to the laminate-type energy storage module 2, the laminate-type module of Comparative Example 1 has one battery element enclosed in one battery element chamber, and has the same capacity as the nine battery elements of Example 1. The size of the battery element was increased as shown. Further, the outer package of the laminate type module of Comparative Example 1 is a module that does not have a metal foil exposed portion on the inner side or the outer side, is connected to the battery element with a tab lead, and is drawn out to the outer package.
(Exterior body)
The exterior material closes the opening of the embossed portion corresponding to the second exterior material 20 of Example 1 and the portion having the embossed portion that becomes the battery element chamber corresponding to the first exterior material 10 of Example 1. The flat part is integrated. The exterior body is formed by folding the exterior material in half. The material constituting the exterior material is a soft aluminum foil having a thickness of 40 μm (A8021 soft aluminum foil classified according to JIS H4160), and a heat-resistant resin layer is a biaxially stretched polyamide film having a thickness of 25 μm. The thermoplastic resin layer is a polypropylene film having a thickness of 40 μm.

前記外装材は、金属箔の一方の面の全体に塗布量を3g/mとしたポリエステルウレタン系接着剤を介して耐熱性樹脂層を貼り合わせ、他方の面の全体に塗布量を2g/mとしたポリオレフィン系接着剤を介して熱可塑性樹脂層を貼り合わせ、次いで40℃の恒温槽内で3日間養生することにより作製した。前記外装材は金属箔露出部を有さず、アルミニウム箔は全体が樹脂層に被覆されている。 The exterior material has a heat-resistant resin layer bonded to the whole of one surface of the metal foil via a polyester urethane-based adhesive with a coating amount of 3 g / m 2, and the coating amount of 2 g / m is applied to the entire other surface. The thermoplastic resin layer was bonded through a polyolefin adhesive having m 2 and then cured in a thermostatic bath at 40 ° C. for 3 days. The said exterior material does not have a metal foil exposed part, and the whole aluminum foil is coat | covered with the resin layer.

前記外装材にプレス成形を施し、115mm×115mm×高さ4mmのエンボス部を形成し、フラット部分および熱封止部予定部の寸法を見込んでトリミングした。
(電池要素およびタブリード)
電池要素は、実施例1と同じ材料を用いて外形が110mm角となるように作製した。
The exterior material was press-molded to form an embossed portion of 115 mm × 115 mm × height 4 mm, and trimmed in anticipation of the dimensions of the flat portion and the heat sealed portion planned portion.
(Battery element and tab lead)
The battery element was manufactured using the same material as in Example 1 so that the outer shape was 110 mm square.

正極タブリードは、長さ30mm、幅3mm、厚さ100μmの軟質のアルミニウム箔(JIS H4000で分類されるA1050の軟質アルミニウム箔)の長さ方向の一端側の5mmを露出させて、アルミニウム箔の両面に長さ10mm、幅5mm、厚さ50μmの無水マレイン酸変性ポリプロピレンフィルム(融点140℃、MFRは3.0g/10分)からなる絶縁フィルムをヒートシールにより挟着して作製した。   The positive electrode tab lead is exposed to 5 mm on one end side in the length direction of a soft aluminum foil (A1050 soft aluminum foil classified by JIS H4000) having a length of 30 mm, a width of 3 mm, and a thickness of 100 μm. An insulating film made of a maleic anhydride-modified polypropylene film (melting point: 140 ° C., MFR: 3.0 g / 10 min) having a length of 10 mm, a width of 5 mm, and a thickness of 50 μm was prepared by heat sealing.

負極タブリードは、長さ40mm、幅3mm、厚さ100μmのニッケル箔の長さ方向の一端側の5mmを露出させて、ニッケル箔の両面に長さ10mm、幅5mm、厚さ50μmの無水マレイン酸変性ポリプロピレンフィルム(融点140℃、MFRは3.0g/10分)からなる絶縁フィルムをヒートシールにより挟着して作製した。   The negative electrode tab lead is exposed to 5 mm on one end side in the length direction of a nickel foil having a length of 40 mm, a width of 3 mm, and a thickness of 100 μm, and maleic anhydride having a length of 10 mm, a width of 5 mm, and a thickness of 50 μm on both surfaces of the nickel foil. An insulating film made of a modified polypropylene film (melting point: 140 ° C., MFR: 3.0 g / 10 min) was produced by being sandwiched by heat sealing.

前記電池要素の正極に正極タブリードの端部を接合するとともに負極に負極タブリードを接合し、電池要素の同じ辺から正極タブリードおよび負極タブリードの先端を引き出した。
(ラミネート型蓄電モジュールおよび組電池の組み立て)
(1)外装材は、あらかじめ、定規などで折り曲げ位置の印をつけておく。
(2)前記外装材のエンボス部に電池要素を装填し、熱封止部予定部にタブリードの絶縁フィルムが載るように位置合わせをし、印をつけた位置で外装材を折り曲げてフラット部分をエンボス部に被せた。
(3)タブリードを引き出した辺を含む2辺に対し、200℃に加熱した熱板を用い0.3MPaの圧力で挟んで3秒間熱封止した。
(4)未封止辺から、実施例1と同じ電解質45mLをシリンジで注入し、実施例1と同じ方法で仮充電およびガス抜きを行った。
(5)3.0Vの放電状態で且つ0.086MPaの減圧下で、未封止辺を200℃に加熱した熱板を用いで0.3MPaの圧力で挟んで3秒間熱封止し、電池要素室内に電池要素および電解質を封入した。
The end of the positive electrode tab lead was joined to the positive electrode of the battery element and the negative electrode tab lead was joined to the negative electrode, and the tips of the positive electrode tab lead and the negative electrode tab lead were drawn from the same side of the battery element.
(Assembly of laminated storage module and battery pack)
(1) The exterior material is marked in advance with a ruler or the like.
(2) The battery element is loaded in the embossed portion of the outer packaging material, aligned so that the insulating film of the tab lead is placed on the heat sealing portion planned portion, and the outer packaging material is bent at the marked position to fold the flat portion. It was put on the embossed part.
(3) Two sides including the side from which the tab lead was pulled out were heat sealed for 3 seconds by sandwiching them at a pressure of 0.3 MPa using a hot plate heated to 200 ° C.
(4) From the unsealed side, 45 mL of the same electrolyte as in Example 1 was injected with a syringe, and temporary charging and degassing were performed in the same manner as in Example 1.
(5) The battery was heat sealed for 3 seconds with a pressure of 0.3 MPa using a hot plate heated to 200 ° C. under a reduced pressure of 0.086 MPa in a discharge state of 3.0 V. The battery element and the electrolyte were enclosed in the element chamber.

以上の工程により、4個のラミネート型蓄電モジュールを作製した。
(6)4個のラミネート型モジュールを積層して直列に連結して組電池を組み立てた。
〈評価〉
上記のようにして得られた実施例1および比較例1の組電池について、下記評価法に基づいて評価を行った。評価結果を表1に示す。
Through the above steps, four laminate type power storage modules were produced.
(6) Four laminated modules were stacked and connected in series to assemble an assembled battery.
<Evaluation>
The assembled batteries of Example 1 and Comparative Example 1 obtained as described above were evaluated based on the following evaluation method. The evaluation results are shown in Table 1.

組電池を16.8Vにフル充電した後、18℃室温下で1Cの充放電(1時間で充電、1時間で放電)を100回繰り返し、再度フル充電したときの電圧と容量を測定した。また、フル充電した電池を1Cの放電をしたとき、0.2Cの放電をしたときの温度を温度センサーにて計測し、平均値を出した。温度計測位置は実施例1および比較例1ともに3層目のモジュールの中央であり、実施例1は3列×3列の中央のエンボス部の外面中央部であり、比較例1はエンボス部の中央部である。   After the assembled battery was fully charged to 16.8 V, 1C charge / discharge (charge in 1 hour, discharge in 1 hour) was repeated 100 times at room temperature of 18 ° C., and the voltage and capacity when fully charged again were measured. In addition, when the fully charged battery was discharged at 1 C, the temperature at the time of 0.2 C discharge was measured with a temperature sensor, and an average value was obtained. The temperature measurement position is the center of the third-layer module in both Example 1 and Comparative Example 1, Example 1 is the center of the outer surface of the embossed part in the center of 3 rows × 3 rows, and Comparative Example 1 is the embossed part. Central part.

Figure 0006611455
表1の通り、実施例1と比較例1とは電池容量に違いは見られず、100サイクルの充放電を繰り返しても同じ結果となった。また、放電時の発熱量については、1C放電時も0.2放電時も比較例1に対し実施例1の組電池は発熱が抑えられ、放熱効果が高いことを確認した。
Figure 0006611455
As shown in Table 1, there was no difference in battery capacity between Example 1 and Comparative Example 1, and the same result was obtained even after 100 cycles of charge / discharge. Moreover, about the emitted-heat amount at the time of discharge, it confirmed that the assembled battery of Example 1 suppressed heat_generation | fever compared with the comparative example 1 at the time of 1C discharge and 0.2 discharge, and the heat dissipation effect was high.

本発明のラミネート型蓄電モジュールは各種電源として好適に利用できる。   The laminate type electricity storage module of the present invention can be suitably used as various power sources.

2、2a、2b、2c、2d…ラミネート型蓄電モジュール
5、6、7…組電池
10…第一外装材
11…第一金属箔
12…第一耐熱性樹脂層
13…第一熱可塑性樹脂層
14…第一金属箔内側露出部
15…第一フランジ
16、18…第一金属箔外側露出部
20…第二外装材
21…第二金属箔
22…第二耐熱性樹脂層
23…第二熱可塑性樹脂層
24…第二金属箔内側露出部
25…第二フランジ
26、28…第二金属箔外側露出部
32、33、80、82…外装体
42、82、83a、83b電池要素室
45、46…エンボス部
52a、52b…熱封止部
60…ベアセル(電池要素)
61…正極
62…セパレーター
63…負極
70、71…空間
75…伝熱体
2, 2 a, 2 b, 2 c, 2 d, laminated power storage modules 5, 6, 7, assembled battery 10, first exterior material 11, first metal foil 12, first heat-resistant resin layer 13, first thermoplastic resin layer DESCRIPTION OF SYMBOLS 14 ... 1st metal foil inner side exposed part 15 ... 1st flange 16, 18 ... 1st metal foil outer side exposed part 20 ... 2nd exterior material 21 ... 2nd metal foil 22 ... 2nd heat resistant resin layer 23 ... 2nd heat Plastic resin layer 24 ... second metal foil inner exposed part 25 ... second flange 26, 28 ... second metal foil outer exposed part 32, 33, 80, 82 ... exterior body 42, 82, 83a, 83b battery element chamber 45, 46 ... Embossed parts 52a, 52b ... Heat sealing part 60 ... Bare cell (battery element)
61 ... Positive electrode 62 ... Separator 63 ... Negative electrode 70, 71 ... Space 75 ... Heat transfer body

Claims (3)

ラミネート型蓄電モジュールが、
第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有する第一外装材と、第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有する第二外装材と、正極と負極とこれらの間に配置されるセパレーターとを有する電池要素とを備え、
前記第一外装材および第二外装材のうちの少なくとも一方は、第一金属箔内側露出部および第二金属箔内側露出部を含む領域にエンボス部を有し、前記第一外装材の第一熱可塑性樹脂層と第二外装材の第二熱可塑性樹脂層とが向かい合い、第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着した熱封止部に囲まれることによって、室内に第一金属箔内側露出部および第二金属箔内側露出部が臨み、前記エンボス部により凸部となされた複数の電池要素室を有する外装体が形成され、前記外装体は、前記第一外装材の一辺が熱封止部から延長されて両面が外装体の外面となる第一フランジとなされ、この第一フランジに第一金属箔が露出する第一金属箔外側露出部が形成され、さらに前記第一金属箔外側露出部に接続用穴が穿設され、前記第二外装材の一辺が熱封止部から延長されて両面が外装体の外面となる第二フランジとなされ、この第二フランジに第二金属箔が露出する第二金属箔外側露出部が形成され、さらに前記第二金属箔外側露出部に接続用穴が穿設され、
前記電池要素室内に電解質とともに封入された電池要素は、正極が第一金属箔内側露出部に導通するとともに負極が第二金属箔内側露出部に導通してなり、
前記ラミネート型蓄電モジュールの複数個が、熱封止部上に空間が形成される態様で積層され、積層方向において隣合うラミネート型蓄電モジュールが第一金属箔外側露出部と第二金属箔外側露出部とがそれぞれの接続用穴に通した接続用ピンを介して電気的に連結されていることを特徴とする特徴とする組電池。
Laminate power storage module
A first heat-resistant resin layer is laminated on one surface of the first metal foil, a first thermoplastic resin layer is laminated on the other surface, and the first metal foil is exposed on the surface on the first thermoplastic resin layer side. A first exterior material having an exposed portion inside the first metal foil, a second heat-resistant resin layer laminated on one surface of the second metal foil, and a second thermoplastic resin layer laminated on the other surface; A battery element having a second exterior material having a second metal foil inner exposed portion at which the second metal foil is exposed on the surface of the thermoplastic resin layer, and a positive electrode, a negative electrode, and a separator disposed between them; ,
At least one of the first exterior material and the second exterior material has an embossed portion in a region including the first metal foil inner exposed portion and the second metal foil inner exposed portion. The thermoplastic resin layer and the second thermoplastic resin layer of the second exterior material face each other, and are surrounded by a heat sealing portion where the first thermoplastic resin layer and the second thermoplastic resin layer are fused, thereby indoors. the first metal foil inner exposed portion and the second metal foil inner exposed portion faces, outer body having a plurality of battery element chamber has been made a convex portion is formed by the embossed portions, said outer body, said first outer package A first flange extending from the heat-sealed portion and having both sides become the outer surface of the exterior body, a first metal foil outer exposed portion is formed on the first flange, and the first metal foil is exposed; A connection hole is drilled in the first metal foil outer exposed portion, and the second One side of the dressing is extended from the heat-sealed portion to form a second flange whose both surfaces become the outer surface of the exterior body, and a second metal foil outer exposed portion is formed in which the second metal foil is exposed to the second flange, Furthermore, a connection hole is drilled in the second metal foil outer exposed portion,
The battery element enclosed with the electrolyte in the battery element chamber, the positive electrode is conductive to the first metal foil inner exposed portion and the negative electrode is conductive to the second metal foil inner exposed portion,
A plurality of the laminate type power storage modules are stacked in such a manner that a space is formed on the heat sealing portion, and the laminate type power storage modules adjacent in the stacking direction are exposed to the first metal foil outer exposed portion and the second metal foil outer exposed. The battery pack is characterized by being electrically connected to each other through a connection pin that passes through each connection hole .
ラミネート型蓄電モジュールの積層方向において、電池要素室と熱封止部とが重なり合うように複数のラミネート型蓄電モジュールが積層されている請求項1に記載の組電池。   2. The assembled battery according to claim 1, wherein a plurality of laminated power storage modules are stacked so that the battery element chamber and the heat sealing portion overlap in the stacking direction of the stacked power storage modules. 積層方向において隣合うラミネート型蓄電モジュールの間に伝熱体が配置されている請求項1または2に記載の組電池。   The assembled battery according to claim 1 or 2, wherein a heat transfer body is disposed between adjacent laminated power storage modules in the stacking direction.
JP2015083102A 2015-04-15 2015-04-15 Assembled battery Active JP6611455B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015083102A JP6611455B2 (en) 2015-04-15 2015-04-15 Assembled battery
TW105111252A TWI699925B (en) 2015-04-15 2016-04-11 Battery
CN201620313772.5U CN205723858U (en) 2015-04-15 2016-04-14 Set of cells
CN201610232746.4A CN106058363B (en) 2015-04-15 2016-04-14 Battery pack
KR1020160045504A KR102488346B1 (en) 2015-04-15 2016-04-14 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083102A JP6611455B2 (en) 2015-04-15 2015-04-15 Assembled battery

Publications (2)

Publication Number Publication Date
JP2016207267A JP2016207267A (en) 2016-12-08
JP6611455B2 true JP6611455B2 (en) 2019-11-27

Family

ID=57308199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083102A Active JP6611455B2 (en) 2015-04-15 2015-04-15 Assembled battery

Country Status (4)

Country Link
JP (1) JP6611455B2 (en)
KR (1) KR102488346B1 (en)
CN (2) CN205723858U (en)
TW (1) TWI699925B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006240A (en) * 2016-07-06 2018-01-11 藤森工業株式会社 Battery outer packaging
TWI721188B (en) 2016-07-06 2021-03-11 日商藤森工業股份有限公司 Battery package, assembled battery, and battery device
DE102016225160A1 (en) * 2016-12-15 2018-06-21 Robert Bosch Gmbh Pouch foil for a battery cell system
CN107394309B (en) * 2017-07-26 2019-11-05 南通沃特光电科技有限公司 A kind of heat sink of batteries of electric automobile group and a kind of battery pack of electric car
JP6874852B2 (en) * 2017-10-11 2021-05-19 株式会社豊田自動織機 Power storage module
JP7177791B2 (en) * 2018-01-10 2022-11-24 藤森工業株式会社 Batteries and electric devices
WO2019187935A1 (en) * 2018-03-27 2019-10-03 日本碍子株式会社 Lithium secondary cell
CN111886745B (en) * 2018-03-27 2023-12-12 日本碍子株式会社 Lithium secondary battery
JP7208201B2 (en) * 2020-09-09 2023-01-18 プライムプラネットエナジー&ソリューションズ株式会社 Battery case and secondary battery provided with the battery case
KR20230141339A (en) * 2022-03-31 2023-10-10 에스케이온 주식회사 Battery module and device comprising the same
EP4428991A1 (en) * 2022-10-26 2024-09-11 LG Energy Solution, Ltd. Battery module comprising cooling fin

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107225A (en) * 1979-02-09 1980-08-16 Matsushita Electric Ind Co Ltd Electric double layer capacitor and method of manufacturing same
US4408259A (en) * 1979-02-09 1983-10-04 Matsushita Electric Industrial Company, Limited Electrochemical double-layer capacitor
JP3615491B2 (en) * 2001-03-05 2005-02-02 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4359809B2 (en) * 2002-08-05 2009-11-11 トヨタ自動車株式会社 Storage element module and manufacturing method thereof
CN1768443A (en) 2003-03-31 2006-05-03 Neclamilion能源株式会社 Radiating member for laminated battery and method of manufacturing the same
JP2005276486A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Laminated battery, battery pack, and vehicle
JP2007095465A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Sealed battery and method of manufacturing same
JP2007095597A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Battery module
KR101243908B1 (en) * 2010-10-12 2013-03-14 삼성에스디아이 주식회사 Battery unit and battery module
JP2013004563A (en) * 2011-06-13 2013-01-07 Aisin Seiki Co Ltd Power storage device, manufacturing method therefor and power storage module
JP2013161674A (en) * 2012-02-06 2013-08-19 Sumitomo Electric Ind Ltd Laminate case for electrochemical element, battery, capacitor, and electrochemical element set
JP2014170697A (en) 2013-03-05 2014-09-18 Honda Motor Co Ltd Battery pack
JP5979074B2 (en) * 2013-05-08 2016-08-24 株式会社オートネットワーク技術研究所 Power storage module
JP6487712B2 (en) * 2015-02-23 2019-03-20 昭和電工パッケージング株式会社 Power storage device

Also Published As

Publication number Publication date
TWI699925B (en) 2020-07-21
CN205723858U (en) 2016-11-23
CN106058363A (en) 2016-10-26
JP2016207267A (en) 2016-12-08
TW201637264A (en) 2016-10-16
CN106058363B (en) 2020-04-17
KR102488346B1 (en) 2023-01-13
KR20160123246A (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6611455B2 (en) Assembled battery
EP1353389B1 (en) Battery and method of its manufacture
JP3729164B2 (en) Automotive battery
JP4661020B2 (en) Bipolar lithium ion secondary battery
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2004095471A (en) Flat battery with laminated outer package
JP2007026734A (en) Bipolar battery, battery pack, and vehicle mounting them
JP2004134210A (en) Lamination type battery, battery pack, and vehicle
KR20130105578A (en) Pouched type secondary battery of coated insulating material
JP2011100623A (en) Laminated battery
KR20180042374A (en) Power storage device
US20190348644A1 (en) High power battery and battery case
KR20120031606A (en) Electrode lead whose protection layer for anti-corrosion is selectively formed, and secondary battery comprising thereof
JP2006066083A (en) Battery pack
JP5206711B2 (en) Power storage module and module frame
JP4211769B2 (en) Automotive battery
JP2009087750A (en) Flat type electrochemical cell
US10468638B2 (en) Method for forming a pouch for a secondary battery
KR101495948B1 (en) Pouched type secondary battery
JP4483489B2 (en) Assembled battery
JP6697224B2 (en) Laminated electricity storage module
JP2004319210A (en) Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle
KR20130013220A (en) Pouched type secondary battery of coated insulating material
JP6637675B2 (en) Storage module and battery pack
JP2012175084A (en) Power storage device, manufacturing method of power storage cell and manufacturing method of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250